Files
Odin/src/llvm_backend_proc.cpp

3218 lines
101 KiB
C++

LLVMValueRef lb_call_intrinsic(lbProcedure *p, const char *name, LLVMValueRef* args, unsigned arg_count, LLVMTypeRef* types, unsigned type_count)
{
unsigned id = LLVMLookupIntrinsicID(name, gb_strlen(name));
GB_ASSERT_MSG(id != 0, "Unable to find %s", name);
LLVMValueRef ip = LLVMGetIntrinsicDeclaration(p->module->mod, id, types, type_count);
LLVMTypeRef call_type = LLVMIntrinsicGetType(p->module->ctx, id, types, type_count);
return LLVMBuildCall2(p->builder, call_type, ip, args, arg_count, "");
}
void lb_mem_copy_overlapping(lbProcedure *p, lbValue dst, lbValue src, lbValue len, bool is_volatile) {
dst = lb_emit_conv(p, dst, t_rawptr);
src = lb_emit_conv(p, src, t_rawptr);
len = lb_emit_conv(p, len, t_int);
char const *name = "llvm.memmove";
if (LLVMIsConstant(len.value)) {
i64 const_len = cast(i64)LLVMConstIntGetSExtValue(len.value);
if (const_len <= 4*build_context.word_size) {
name = "llvm.memmove.inline";
}
}
LLVMTypeRef types[3] = {
lb_type(p->module, t_rawptr),
lb_type(p->module, t_rawptr),
lb_type(p->module, t_int)
};
LLVMValueRef args[4] = {
dst.value,
src.value,
len.value,
LLVMConstInt(LLVMInt1TypeInContext(p->module->ctx), 0, is_volatile)
};
lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
}
void lb_mem_copy_non_overlapping(lbProcedure *p, lbValue dst, lbValue src, lbValue len, bool is_volatile) {
dst = lb_emit_conv(p, dst, t_rawptr);
src = lb_emit_conv(p, src, t_rawptr);
len = lb_emit_conv(p, len, t_int);
char const *name = "llvm.memcpy";
if (LLVMIsConstant(len.value)) {
i64 const_len = cast(i64)LLVMConstIntGetSExtValue(len.value);
if (const_len <= 4*build_context.word_size) {
name = "llvm.memcpy.inline";
}
}
LLVMTypeRef types[3] = {
lb_type(p->module, t_rawptr),
lb_type(p->module, t_rawptr),
lb_type(p->module, t_int)
};
LLVMValueRef args[4] = {
dst.value,
src.value,
len.value,
LLVMConstInt(LLVMInt1TypeInContext(p->module->ctx), 0, is_volatile) };
lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
}
lbProcedure *lb_create_procedure(lbModule *m, Entity *entity, bool ignore_body) {
GB_ASSERT(entity != nullptr);
GB_ASSERT(entity->kind == Entity_Procedure);
if (!entity->Procedure.is_foreign) {
GB_ASSERT_MSG(entity->flags & EntityFlag_ProcBodyChecked, "%.*s :: %s", LIT(entity->token.string), type_to_string(entity->type));
}
String link_name = {};
if (ignore_body) {
lbModule *other_module = lb_pkg_module(m->gen, entity->pkg);
link_name = lb_get_entity_name(other_module, entity);
} else {
link_name = lb_get_entity_name(m, entity);
}
{
StringHashKey key = string_hash_string(link_name);
lbValue *found = string_map_get(&m->members, key);
if (found) {
lb_add_entity(m, entity, *found);
return string_map_must_get(&m->procedures, key);
}
}
lbProcedure *p = gb_alloc_item(permanent_allocator(), lbProcedure);
p->module = m;
entity->code_gen_module = m;
entity->code_gen_procedure = p;
p->entity = entity;
p->name = link_name;
DeclInfo *decl = entity->decl_info;
ast_node(pl, ProcLit, decl->proc_lit);
Type *pt = base_type(entity->type);
GB_ASSERT(pt->kind == Type_Proc);
p->type = entity->type;
p->type_expr = decl->type_expr;
p->body = pl->body;
p->inlining = pl->inlining;
p->is_foreign = entity->Procedure.is_foreign;
p->is_export = entity->Procedure.is_export;
p->is_entry_point = false;
gbAllocator a = heap_allocator();
p->children.allocator = a;
p->defer_stmts.allocator = a;
p->blocks.allocator = a;
p->branch_blocks.allocator = a;
p->context_stack.allocator = a;
p->scope_stack.allocator = a;
map_init(&p->selector_values, a, 0);
map_init(&p->selector_addr, a, 0);
if (p->is_foreign) {
lb_add_foreign_library_path(p->module, entity->Procedure.foreign_library);
}
char *c_link_name = alloc_cstring(permanent_allocator(), p->name);
LLVMTypeRef func_type = lb_get_procedure_raw_type(m, p->type);
p->value = LLVMAddFunction(m->mod, c_link_name, func_type);
lb_ensure_abi_function_type(m, p);
lb_add_function_type_attributes(p->value, p->abi_function_type, p->abi_function_type->calling_convention);
if (pt->Proc.diverging) {
lb_add_attribute_to_proc(m, p->value, "noreturn");
}
if (pt->Proc.calling_convention == ProcCC_Naked) {
lb_add_attribute_to_proc(m, p->value, "naked");
}
if (!entity->Procedure.is_foreign && build_context.disable_red_zone) {
lb_add_attribute_to_proc(m, p->value, "noredzone");
}
switch (p->inlining) {
case ProcInlining_inline:
lb_add_attribute_to_proc(m, p->value, "alwaysinline");
break;
case ProcInlining_no_inline:
lb_add_attribute_to_proc(m, p->value, "noinline");
break;
}
switch (entity->Procedure.optimization_mode) {
case ProcedureOptimizationMode_None:
lb_add_attribute_to_proc(m, p->value, "optnone");
break;
case ProcedureOptimizationMode_Minimal:
lb_add_attribute_to_proc(m, p->value, "optnone");
break;
case ProcedureOptimizationMode_Size:
lb_add_attribute_to_proc(m, p->value, "optsize");
break;
case ProcedureOptimizationMode_Speed:
// TODO(bill): handle this correctly
lb_add_attribute_to_proc(m, p->value, "optsize");
break;
}
if (!entity->Procedure.target_feature_disabled &&
entity->Procedure.target_feature.len != 0) {
auto features = split_by_comma(entity->Procedure.target_feature);
for_array(i, features) {
String feature = features[i];
LLVMAttributeRef ref = LLVMCreateStringAttribute(
m->ctx,
cast(char const *)feature.text, cast(unsigned)feature.len,
"", 0);
LLVMAddAttributeAtIndex(p->value, LLVMAttributeIndex_FunctionIndex, ref);
}
}
if (entity->flags & EntityFlag_Cold) {
lb_add_attribute_to_proc(m, p->value, "cold");
}
lbValue proc_value = {p->value, p->type};
lb_add_entity(m, entity, proc_value);
lb_add_member(m, p->name, proc_value);
lb_add_procedure_value(m, p);
if (p->is_export) {
LLVMSetLinkage(p->value, LLVMDLLExportLinkage);
LLVMSetDLLStorageClass(p->value, LLVMDLLExportStorageClass);
LLVMSetVisibility(p->value, LLVMDefaultVisibility);
lb_set_wasm_export_attributes(p->value, p->name);
} else if (!p->is_foreign) {
if (!USE_SEPARATE_MODULES) {
LLVMSetLinkage(p->value, LLVMInternalLinkage);
// NOTE(bill): if a procedure is defined in package runtime and uses a custom link name,
// then it is very likely it is required by LLVM and thus cannot have internal linkage
if (entity->pkg != nullptr && entity->pkg->kind == Package_Runtime && p->body != nullptr) {
GB_ASSERT(entity->kind == Entity_Procedure);
String link_name = entity->Procedure.link_name;
if (entity->flags & EntityFlag_CustomLinkName &&
link_name != "") {
if (string_starts_with(link_name, str_lit("__"))) {
LLVMSetLinkage(p->value, LLVMExternalLinkage);
} else {
LLVMSetLinkage(p->value, LLVMInternalLinkage);
}
}
}
}
}
lb_set_linkage_from_entity_flags(p->module, p->value, entity->flags);
if (p->is_foreign) {
lb_set_wasm_import_attributes(p->value, entity, p->name);
}
// NOTE(bill): offset==0 is the return value
isize offset = 1;
if (pt->Proc.return_by_pointer) {
offset = 2;
}
isize parameter_index = 0;
if (pt->Proc.param_count) {
TypeTuple *params = &pt->Proc.params->Tuple;
for (isize i = 0; i < pt->Proc.param_count; i++) {
Entity *e = params->variables[i];
if (e->kind != Entity_Variable) {
continue;
}
if (i+1 == params->variables.count && pt->Proc.c_vararg) {
continue;
}
if (e->flags&EntityFlag_NoAlias) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
}
parameter_index += 1;
}
}
if (ignore_body) {
p->body = nullptr;
LLVMSetLinkage(p->value, LLVMExternalLinkage);
}
if (m->debug_builder) { // Debug Information
Type *bt = base_type(p->type);
unsigned line = cast(unsigned)entity->token.pos.line;
LLVMMetadataRef scope = nullptr;
LLVMMetadataRef file = nullptr;
LLVMMetadataRef type = nullptr;
scope = p->module->debug_compile_unit;
type = lb_debug_type_internal_proc(m, bt);
Ast *ident = entity->identifier.load();
if (entity->file != nullptr) {
file = lb_get_llvm_metadata(m, entity->file);
scope = file;
} else if (ident != nullptr && ident->file_id != 0) {
file = lb_get_llvm_metadata(m, ident->file());
scope = file;
} else if (entity->scope != nullptr) {
file = lb_get_llvm_metadata(m, entity->scope->file);
scope = file;
}
GB_ASSERT_MSG(file != nullptr, "%.*s", LIT(entity->token.string));
// LLVMBool is_local_to_unit = !entity->Procedure.is_export;
LLVMBool is_local_to_unit = false;
LLVMBool is_definition = p->body != nullptr;
unsigned scope_line = line;
u32 flags = LLVMDIFlagStaticMember;
LLVMBool is_optimized = false;
if (bt->Proc.diverging) {
flags |= LLVMDIFlagNoReturn;
}
if (p->body == nullptr) {
flags |= LLVMDIFlagPrototyped;
is_optimized = false;
}
if (p->body != nullptr) {
// String debug_name = entity->token.string.text;
String debug_name = p->name;
p->debug_info = LLVMDIBuilderCreateFunction(m->debug_builder, scope,
cast(char const *)debug_name.text, debug_name.len,
cast(char const *)p->name.text, p->name.len,
file, line, type,
is_local_to_unit, is_definition,
scope_line, cast(LLVMDIFlags)flags, is_optimized
);
GB_ASSERT(p->debug_info != nullptr);
LLVMSetSubprogram(p->value, p->debug_info);
lb_set_llvm_metadata(m, p, p->debug_info);
}
}
return p;
}
lbProcedure *lb_create_dummy_procedure(lbModule *m, String link_name, Type *type) {
{
lbValue *found = string_map_get(&m->members, link_name);
GB_ASSERT_MSG(found == nullptr, "failed to create dummy procedure for: %.*s", LIT(link_name));
}
lbProcedure *p = gb_alloc_item(permanent_allocator(), lbProcedure);
p->module = m;
p->name = link_name;
p->type = type;
p->type_expr = nullptr;
p->body = nullptr;
p->tags = 0;
p->inlining = ProcInlining_none;
p->is_foreign = false;
p->is_export = false;
p->is_entry_point = false;
gbAllocator a = permanent_allocator();
p->children.allocator = a;
p->defer_stmts.allocator = a;
p->blocks.allocator = a;
p->branch_blocks.allocator = a;
p->context_stack.allocator = a;
char *c_link_name = alloc_cstring(permanent_allocator(), p->name);
LLVMTypeRef func_type = lb_get_procedure_raw_type(m, p->type);
p->value = LLVMAddFunction(m->mod, c_link_name, func_type);
Type *pt = p->type;
lbCallingConventionKind cc_kind = lbCallingConvention_C;
// TODO(bill): Clean up this logic
if (!is_arch_wasm()) {
cc_kind = lb_calling_convention_map[pt->Proc.calling_convention];
}
LLVMSetFunctionCallConv(p->value, cc_kind);
lbValue proc_value = {p->value, p->type};
lb_add_member(m, p->name, proc_value);
lb_add_procedure_value(m, p);
// NOTE(bill): offset==0 is the return value
isize offset = 1;
if (pt->Proc.return_by_pointer) {
lb_add_proc_attribute_at_index(p, 1, "sret");
lb_add_proc_attribute_at_index(p, 1, "noalias");
offset = 2;
}
isize parameter_index = 0;
if (pt->Proc.calling_convention == ProcCC_Odin) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nonnull");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nocapture");
}
return p;
}
lbValue lb_value_param(lbProcedure *p, Entity *e, Type *abi_type, i32 index, lbParamPasskind *kind_) {
lbParamPasskind kind = lbParamPass_Value;
if (e != nullptr && !are_types_identical(abi_type, e->type)) {
if (is_type_pointer(abi_type)) {
GB_ASSERT(e->kind == Entity_Variable);
Type *av = core_type(type_deref(abi_type));
if (are_types_identical(av, core_type(e->type))) {
kind = lbParamPass_Pointer;
if (e->flags&EntityFlag_Value) {
kind = lbParamPass_ConstRef;
}
} else {
kind = lbParamPass_BitCast;
}
} else if (is_type_integer(abi_type)) {
kind = lbParamPass_Integer;
} else if (abi_type == t_llvm_bool) {
kind = lbParamPass_Value;
} else if (is_type_boolean(abi_type)) {
kind = lbParamPass_Integer;
} else if (is_type_simd_vector(abi_type)) {
kind = lbParamPass_BitCast;
} else if (is_type_float(abi_type)) {
kind = lbParamPass_BitCast;
} else if (is_type_tuple(abi_type)) {
kind = lbParamPass_Tuple;
} else if (is_type_proc(abi_type)) {
kind = lbParamPass_Value;
} else {
GB_PANIC("Invalid abi type pass kind %s", type_to_string(abi_type));
}
}
if (kind_) *kind_ = kind;
lbValue res = {};
res.value = LLVMGetParam(p->value, cast(unsigned)index);
res.type = abi_type;
return res;
}
void lb_start_block(lbProcedure *p, lbBlock *b) {
GB_ASSERT(b != nullptr);
if (!b->appended) {
b->appended = true;
LLVMAppendExistingBasicBlock(p->value, b->block);
}
LLVMPositionBuilderAtEnd(p->builder, b->block);
p->curr_block = b;
}
void lb_set_debug_position_to_procedure_begin(lbProcedure *p) {
if (p->debug_info == nullptr) {
return;
}
TokenPos pos = {};
if (p->body != nullptr) {
pos = ast_token(p->body).pos;
} else if (p->type_expr != nullptr) {
pos = ast_token(p->type_expr).pos;
} else if (p->entity != nullptr) {
pos = p->entity->token.pos;
}
if (pos.file_id != 0) {
LLVMSetCurrentDebugLocation2(p->builder, lb_debug_location_from_token_pos(p, pos));
}
}
void lb_set_debug_position_to_procedure_end(lbProcedure *p) {
if (p->debug_info == nullptr) {
return;
}
TokenPos pos = {};
if (p->body != nullptr) {
pos = ast_end_token(p->body).pos;
} else if (p->type_expr != nullptr) {
pos = ast_end_token(p->type_expr).pos;
} else if (p->entity != nullptr) {
pos = p->entity->token.pos;
}
if (pos.file_id != 0) {
LLVMSetCurrentDebugLocation2(p->builder, lb_debug_location_from_token_pos(p, pos));
}
}
void lb_begin_procedure_body(lbProcedure *p) {
DeclInfo *decl = decl_info_of_entity(p->entity);
if (decl != nullptr) {
for_array(i, decl->labels) {
BlockLabel bl = decl->labels[i];
lbBranchBlocks bb = {bl.label, nullptr, nullptr};
array_add(&p->branch_blocks, bb);
}
}
p->builder = LLVMCreateBuilderInContext(p->module->ctx);
p->decl_block = lb_create_block(p, "decls", true);
p->entry_block = lb_create_block(p, "entry", true);
lb_start_block(p, p->entry_block);
map_init(&p->direct_parameters, heap_allocator());
GB_ASSERT(p->type != nullptr);
lb_ensure_abi_function_type(p->module, p);
{
lbFunctionType *ft = p->abi_function_type;
unsigned param_offset = 0;
lbValue return_ptr_value = {};
if (ft->ret.kind == lbArg_Indirect) {
// NOTE(bill): this must be parameter 0
String name = str_lit("agg.result");
Type *ptr_type = alloc_type_pointer(reduce_tuple_to_single_type(p->type->Proc.results));
Entity *e = alloc_entity_param(nullptr, make_token_ident(name), ptr_type, false, false);
e->flags |= EntityFlag_NoAlias;
return_ptr_value.value = LLVMGetParam(p->value, 0);
LLVMSetValueName2(return_ptr_value.value, cast(char const *)name.text, name.len);
return_ptr_value.type = ptr_type;
p->return_ptr = lb_addr(return_ptr_value);
lb_add_entity(p->module, e, return_ptr_value);
param_offset += 1;
}
if (p->type->Proc.params != nullptr) {
TypeTuple *params = &p->type->Proc.params->Tuple;
unsigned param_index = 0;
for_array(i, params->variables) {
Entity *e = params->variables[i];
if (e->kind != Entity_Variable) {
continue;
}
lbArgType *arg_type = &ft->args[param_index];
defer (param_index += 1);
if (arg_type->kind == lbArg_Ignore) {
continue;
} else if (arg_type->kind == lbArg_Direct) {
if (e->token.string.len != 0 && !is_blank_ident(e->token.string)) {
LLVMTypeRef param_type = lb_type(p->module, e->type);
LLVMValueRef original_value = LLVMGetParam(p->value, param_offset+param_index);
LLVMValueRef value = OdinLLVMBuildTransmute(p, original_value, param_type);
lbValue param = {};
param.value = value;
param.type = e->type;
map_set(&p->direct_parameters, e, param);
lbValue ptr = lb_address_from_load_or_generate_local(p, param);
GB_ASSERT(LLVMIsAAllocaInst(ptr.value));
lb_add_entity(p->module, e, ptr);
lbBlock *block = p->decl_block;
if (original_value != value) {
block = p->curr_block;
}
LLVMValueRef debug_storage_value = value;
if (original_value != value && LLVMIsALoadInst(value)) {
debug_storage_value = LLVMGetOperand(value, 0);
}
lb_add_debug_param_variable(p, debug_storage_value, e->type, e->token, param_index+1, block, arg_type->kind);
}
} else if (arg_type->kind == lbArg_Indirect) {
if (e->token.string.len != 0 && !is_blank_ident(e->token.string)) {
lbValue ptr = {};
ptr.value = LLVMGetParam(p->value, param_offset+param_index);
ptr.type = alloc_type_pointer(e->type);
lb_add_entity(p->module, e, ptr);
lb_add_debug_param_variable(p, ptr.value, e->type, e->token, param_index+1, p->decl_block, arg_type->kind);
}
}
}
}
if (p->type->Proc.has_named_results) {
GB_ASSERT(p->type->Proc.result_count > 0);
TypeTuple *results = &p->type->Proc.results->Tuple;
for_array(i, results->variables) {
Entity *e = results->variables[i];
GB_ASSERT(e->kind == Entity_Variable);
if (e->token.string != "") {
GB_ASSERT(!is_blank_ident(e->token));
// NOTE(bill): Don't even bother trying to optimize this with the return ptr value
// This will violate the defer rules if you do:
// foo :: proc() -> (x, y: T) {
// defer x = ... // defer is executed after the `defer`
// return // the values returned should be zeroed
// }
lbAddr res = lb_add_local(p, e->type, e);
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
lbValue c = lb_handle_param_value(p, e->type, e->Variable.param_value, e->token.pos);
lb_addr_store(p, res, c);
}
}
}
}
}
if (p->type->Proc.calling_convention == ProcCC_Odin) {
lb_push_context_onto_stack_from_implicit_parameter(p);
}
lb_set_debug_position_to_procedure_begin(p);
if (p->debug_info != nullptr) {
if (p->context_stack.count != 0) {
p->curr_block = p->decl_block;
lb_add_debug_context_variable(p, lb_find_or_generate_context_ptr(p));
}
}
lb_start_block(p, p->entry_block);
}
void lb_end_procedure_body(lbProcedure *p) {
lb_set_debug_position_to_procedure_begin(p);
LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block);
LLVMBuildBr(p->builder, p->entry_block->block);
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
LLVMValueRef instr = nullptr;
// Make sure there is a "ret void" at the end of a procedure with no return type
if (p->type->Proc.result_count == 0) {
instr = LLVMGetLastInstruction(p->curr_block->block);
if (!lb_is_instr_terminating(instr)) {
lb_emit_defer_stmts(p, lbDeferExit_Return, nullptr);
lb_set_debug_position_to_procedure_end(p);
LLVMBuildRetVoid(p->builder);
}
}
LLVMBasicBlockRef first_block = LLVMGetFirstBasicBlock(p->value);
LLVMBasicBlockRef block = nullptr;
// Make sure every block terminates, and if not, make it unreachable
for (block = first_block; block != nullptr; block = LLVMGetNextBasicBlock(block)) {
instr = LLVMGetLastInstruction(block);
if (instr == nullptr || !lb_is_instr_terminating(instr)) {
LLVMPositionBuilderAtEnd(p->builder, block);
LLVMBuildUnreachable(p->builder);
}
}
p->curr_block = nullptr;
p->state_flags = 0;
}
void lb_end_procedure(lbProcedure *p) {
LLVMDisposeBuilder(p->builder);
}
void lb_build_nested_proc(lbProcedure *p, AstProcLit *pd, Entity *e) {
GB_ASSERT(pd->body != nullptr);
lbModule *m = p->module;
auto *min_dep_set = &m->info->minimum_dependency_set;
if (ptr_set_exists(min_dep_set, e) == false) {
// NOTE(bill): Nothing depends upon it so doesn't need to be built
return;
}
// NOTE(bill): Generate a new name
// parent.name-guid
String original_name = e->token.string;
String pd_name = original_name;
if (e->Procedure.link_name.len > 0) {
pd_name = e->Procedure.link_name;
}
isize name_len = p->name.len + 1 + pd_name.len + 1 + 10 + 1;
char *name_text = gb_alloc_array(permanent_allocator(), char, name_len);
i32 guid = cast(i32)p->children.count;
name_len = gb_snprintf(name_text, name_len, "%.*s.%.*s-%d", LIT(p->name), LIT(pd_name), guid);
String name = make_string(cast(u8 *)name_text, name_len-1);
e->Procedure.link_name = name;
lbProcedure *nested_proc = lb_create_procedure(p->module, e);
e->code_gen_procedure = nested_proc;
lbValue value = {};
value.value = nested_proc->value;
value.type = nested_proc->type;
lb_add_entity(m, e, value);
array_add(&p->children, nested_proc);
array_add(&m->procedures_to_generate, nested_proc);
}
Array<lbValue> lb_value_to_array(lbProcedure *p, lbValue value) {
Array<lbValue> array = {};
Type *t = base_type(value.type);
if (t == nullptr) {
// Do nothing
} else if (is_type_tuple(t)) {
GB_ASSERT(t->kind == Type_Tuple);
auto *rt = &t->Tuple;
if (rt->variables.count > 0) {
array = array_make<lbValue>(permanent_allocator(), rt->variables.count);
for_array(i, rt->variables) {
lbValue elem = lb_emit_struct_ev(p, value, cast(i32)i);
array[i] = elem;
}
}
} else {
array = array_make<lbValue>(permanent_allocator(), 1);
array[0] = value;
}
return array;
}
lbValue lb_emit_call_internal(lbProcedure *p, lbValue value, lbValue return_ptr, Array<lbValue> const &processed_args, Type *abi_rt, lbAddr context_ptr, ProcInlining inlining) {
GB_ASSERT(p->module->ctx == LLVMGetTypeContext(LLVMTypeOf(value.value)));
unsigned arg_count = cast(unsigned)processed_args.count;
if (return_ptr.value != nullptr) {
arg_count += 1;
}
if (context_ptr.addr.value != nullptr) {
arg_count += 1;
}
LLVMValueRef *args = gb_alloc_array(permanent_allocator(), LLVMValueRef, arg_count);
isize arg_index = 0;
if (return_ptr.value != nullptr) {
args[arg_index++] = return_ptr.value;
}
for_array(i, processed_args) {
lbValue arg = processed_args[i];
if (is_type_proc(arg.type)) {
arg.value = LLVMBuildPointerCast(p->builder, arg.value, lb_type(p->module, arg.type), "");
}
args[arg_index++] = arg.value;
}
if (context_ptr.addr.value != nullptr) {
LLVMValueRef cp = context_ptr.addr.value;
cp = LLVMBuildPointerCast(p->builder, cp, lb_type(p->module, t_rawptr), "");
args[arg_index++] = cp;
}
LLVMBasicBlockRef curr_block = LLVMGetInsertBlock(p->builder);
GB_ASSERT(curr_block != p->decl_block->block);
{
LLVMTypeRef fnp = lb_type_internal_for_procedures_raw(p->module, value.type);
LLVMTypeRef ftp = LLVMPointerType(fnp, 0);
LLVMValueRef fn = value.value;
if (!lb_is_type_kind(LLVMTypeOf(value.value), LLVMFunctionTypeKind)) {
fn = LLVMBuildPointerCast(p->builder, fn, ftp, "");
}
GB_ASSERT_MSG(lb_is_type_kind(fnp, LLVMFunctionTypeKind), "%s", LLVMPrintTypeToString(fnp));
lbFunctionType *ft = map_must_get(&p->module->function_type_map, base_type(value.type));
{
unsigned param_count = LLVMCountParamTypes(fnp);
GB_ASSERT(arg_count >= param_count);
LLVMTypeRef *param_types = gb_alloc_array(temporary_allocator(), LLVMTypeRef, param_count);
LLVMGetParamTypes(fnp, param_types);
for (unsigned i = 0; i < param_count; i++) {
LLVMTypeRef param_type = param_types[i];
LLVMTypeRef arg_type = LLVMTypeOf(args[i]);
// LLVMTypeKind param_kind = LLVMGetTypeKind(param_type);
// LLVMTypeKind arg_kind = LLVMGetTypeKind(arg_type);
GB_ASSERT_MSG(
arg_type == param_type,
"Parameter types do not match: %s != %s, argument: %s",
LLVMPrintTypeToString(arg_type),
LLVMPrintTypeToString(param_type),
LLVMPrintValueToString(args[i])
);
}
}
LLVMValueRef ret = LLVMBuildCall2(p->builder, fnp, fn, args, arg_count, "");
LLVMAttributeIndex param_offset = LLVMAttributeIndex_FirstArgIndex;
if (return_ptr.value != nullptr) {
param_offset += 1;
LLVMAddCallSiteAttribute(ret, 1, lb_create_enum_attribute_with_type(p->module->ctx, "sret", LLVMTypeOf(args[0])));
}
for_array(i, ft->args) {
LLVMAttributeRef attribute = ft->args[i].attribute;
if (attribute != nullptr) {
LLVMAddCallSiteAttribute(ret, param_offset + cast(LLVMAttributeIndex)i, attribute);
}
}
switch (inlining) {
case ProcInlining_none:
break;
case ProcInlining_inline:
LLVMAddCallSiteAttribute(ret, LLVMAttributeIndex_FunctionIndex, lb_create_enum_attribute(p->module->ctx, "alwaysinline"));
break;
case ProcInlining_no_inline:
LLVMAddCallSiteAttribute(ret, LLVMAttributeIndex_FunctionIndex, lb_create_enum_attribute(p->module->ctx, "noinline"));
break;
}
lbValue res = {};
res.value = ret;
res.type = abi_rt;
return res;
}
}
lbValue lb_lookup_runtime_procedure(lbModule *m, String const &name) {
AstPackage *pkg = m->info->runtime_package;
Entity *e = scope_lookup_current(pkg->scope, name);
return lb_find_procedure_value_from_entity(m, e);
}
lbValue lb_emit_runtime_call(lbProcedure *p, char const *c_name, Array<lbValue> const &args) {
String name = make_string_c(c_name);
lbValue proc = lb_lookup_runtime_procedure(p->module, name);
return lb_emit_call(p, proc, args);
}
lbValue lb_emit_conjugate(lbProcedure *p, lbValue val, Type *type) {
lbValue res = {};
Type *t = val.type;
if (is_type_complex(t)) {
res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, false));
lbValue real = lb_emit_struct_ev(p, val, 0);
lbValue imag = lb_emit_struct_ev(p, val, 1);
imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
lb_emit_store(p, lb_emit_struct_ep(p, res, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, res, 1), imag);
} else if (is_type_quaternion(t)) {
// @QuaternionLayout
res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, false));
lbValue real = lb_emit_struct_ev(p, val, 3);
lbValue imag = lb_emit_struct_ev(p, val, 0);
lbValue jmag = lb_emit_struct_ev(p, val, 1);
lbValue kmag = lb_emit_struct_ev(p, val, 2);
imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
jmag = lb_emit_unary_arith(p, Token_Sub, jmag, jmag.type);
kmag = lb_emit_unary_arith(p, Token_Sub, kmag, kmag.type);
lb_emit_store(p, lb_emit_struct_ep(p, res, 3), real);
lb_emit_store(p, lb_emit_struct_ep(p, res, 0), imag);
lb_emit_store(p, lb_emit_struct_ep(p, res, 1), jmag);
lb_emit_store(p, lb_emit_struct_ep(p, res, 2), kmag);
} else if (is_type_array_like(t)) {
res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, true));
Type *elem_type = base_array_type(t);
i64 count = get_array_type_count(t);
for (i64 i = 0; i < count; i++) {
lbValue dst = lb_emit_array_epi(p, res, i);
lbValue elem = lb_emit_struct_ev(p, val, cast(i32)i);
elem = lb_emit_conjugate(p, elem, elem_type);
lb_emit_store(p, dst, elem);
}
} else if (is_type_matrix(t)) {
Type *mt = base_type(t);
GB_ASSERT(mt->kind == Type_Matrix);
Type *elem_type = mt->Matrix.elem;
res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, true));
for (i64 j = 0; j < mt->Matrix.column_count; j++) {
for (i64 i = 0; i < mt->Matrix.row_count; i++) {
lbValue dst = lb_emit_matrix_epi(p, res, i, j);
lbValue elem = lb_emit_matrix_ev(p, val, i, j);
elem = lb_emit_conjugate(p, elem, elem_type);
lb_emit_store(p, dst, elem);
}
}
}
return lb_emit_load(p, res);
}
lbValue lb_emit_call(lbProcedure *p, lbValue value, Array<lbValue> const &args, ProcInlining inlining, bool use_copy_elision_hint) {
lbModule *m = p->module;
Type *pt = base_type(value.type);
GB_ASSERT(pt->kind == Type_Proc);
Type *results = pt->Proc.results;
lbAddr context_ptr = {};
if (pt->Proc.calling_convention == ProcCC_Odin) {
context_ptr = lb_find_or_generate_context_ptr(p);
}
defer (if (pt->Proc.diverging) {
LLVMBuildUnreachable(p->builder);
});
bool is_c_vararg = pt->Proc.c_vararg;
isize param_count = pt->Proc.param_count;
if (is_c_vararg) {
GB_ASSERT(param_count-1 <= args.count);
param_count -= 1;
} else {
GB_ASSERT_MSG(param_count == args.count, "%td == %td (%s)", param_count, args.count, LLVMPrintValueToString(value.value));
}
lbValue result = {};
auto processed_args = array_make<lbValue>(permanent_allocator(), 0, args.count);
{
bool is_odin_cc = is_calling_convention_odin(pt->Proc.calling_convention);
lbFunctionType *ft = lb_get_function_type(m, p, pt);
bool return_by_pointer = ft->ret.kind == lbArg_Indirect;
unsigned param_index = 0;
for (isize i = 0; i < param_count; i++) {
Entity *e = pt->Proc.params->Tuple.variables[i];
if (e->kind != Entity_Variable) {
continue;
}
GB_ASSERT(e->flags & EntityFlag_Param);
Type *original_type = e->type;
lbArgType *arg = &ft->args[param_index];
if (arg->kind == lbArg_Ignore) {
continue;
}
lbValue x = lb_emit_conv(p, args[i], original_type);
LLVMTypeRef xt = lb_type(p->module, x.type);
if (arg->kind == lbArg_Direct) {
LLVMTypeRef abi_type = arg->cast_type;
if (!abi_type) {
abi_type = arg->type;
}
if (xt == abi_type) {
array_add(&processed_args, x);
} else {
x.value = OdinLLVMBuildTransmute(p, x.value, abi_type);
array_add(&processed_args, x);
}
} else if (arg->kind == lbArg_Indirect) {
lbValue ptr = {};
if (arg->is_byval) {
if (is_odin_cc && are_types_identical(original_type, t_source_code_location)) {
ptr = lb_address_from_load_or_generate_local(p, x);
} else {
ptr = lb_copy_value_to_ptr(p, x, original_type, arg->byval_alignment);
}
} else if (is_odin_cc) {
// NOTE(bill): Odin parameters are immutable so the original value can be passed if possible
// i.e. `T const &` in C++
ptr = lb_address_from_load_or_generate_local(p, x);
} else {
ptr = lb_copy_value_to_ptr(p, x, original_type, 16);
}
array_add(&processed_args, ptr);
}
param_index += 1;
}
if (is_c_vararg) {
for (isize i = processed_args.count; i < args.count; i++) {
array_add(&processed_args, args[i]);
}
}
if (inlining == ProcInlining_none) {
inlining = p->inlining;
}
Type *rt = reduce_tuple_to_single_type(results);
if (return_by_pointer) {
lbValue return_ptr = {};
if (use_copy_elision_hint && p->copy_elision_hint.ptr.value != nullptr) {
if (are_types_identical(type_deref(p->copy_elision_hint.ptr.type), rt)) {
return_ptr = lb_consume_copy_elision_hint(p);
}
}
if (return_ptr.value == nullptr) {
lbAddr r = lb_add_local_generated(p, rt, true);
return_ptr = r.addr;
}
GB_ASSERT(is_type_pointer(return_ptr.type));
lb_emit_call_internal(p, value, return_ptr, processed_args, nullptr, context_ptr, inlining);
result = lb_emit_load(p, return_ptr);
} else if (rt != nullptr) {
result = lb_emit_call_internal(p, value, {}, processed_args, rt, context_ptr, inlining);
if (ft->ret.cast_type) {
result.value = OdinLLVMBuildTransmute(p, result.value, ft->ret.cast_type);
}
result.value = OdinLLVMBuildTransmute(p, result.value, ft->ret.type);
result.type = rt;
if (LLVMTypeOf(result.value) == LLVMInt1TypeInContext(p->module->ctx)) {
result.type = t_llvm_bool;
}
if (!is_type_tuple(rt)) {
result = lb_emit_conv(p, result, rt);
}
} else {
lb_emit_call_internal(p, value, {}, processed_args, nullptr, context_ptr, inlining);
}
}
Entity **found = map_get(&p->module->procedure_values, value.value);
if (found != nullptr) {
Entity *e = *found;
if (e != nullptr && entity_has_deferred_procedure(e)) {
DeferredProcedureKind kind = e->Procedure.deferred_procedure.kind;
Entity *deferred_entity = e->Procedure.deferred_procedure.entity;
lbValue deferred = lb_find_procedure_value_from_entity(p->module, deferred_entity);
auto in_args = args;
Array<lbValue> result_as_args = {};
switch (kind) {
case DeferredProcedure_none:
break;
case DeferredProcedure_in:
result_as_args = in_args;
break;
case DeferredProcedure_out:
result_as_args = lb_value_to_array(p, result);
break;
case DeferredProcedure_in_out:
{
auto out_args = lb_value_to_array(p, result);
array_init(&result_as_args, permanent_allocator(), in_args.count + out_args.count);
array_copy(&result_as_args, in_args, 0);
array_copy(&result_as_args, out_args, in_args.count);
}
break;
}
lb_add_defer_proc(p, p->scope_index, deferred, result_as_args);
}
}
return result;
}
LLVMValueRef llvm_splat_float(i64 count, LLVMTypeRef type, f64 value) {
LLVMValueRef v = LLVMConstReal(type, value);
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
for (i64 i = 0; i < count; i++) {
values[i] = v;
}
return LLVMConstVector(values, cast(unsigned)count);
}
LLVMValueRef llvm_splat_int(i64 count, LLVMTypeRef type, i64 value, bool is_signed=false) {
LLVMValueRef v = LLVMConstInt(type, value, is_signed);
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
for (i64 i = 0; i < count; i++) {
values[i] = v;
}
return LLVMConstVector(values, cast(unsigned)count);
}
lbValue lb_build_builtin_simd_proc(lbProcedure *p, Ast *expr, TypeAndValue const &tv, BuiltinProcId builtin_id) {
ast_node(ce, CallExpr, expr);
lbModule *m = p->module;
lbValue res = {};
res.type = tv.type;
lbValue arg0 = {}; if (ce->args.count > 0) arg0 = lb_build_expr(p, ce->args[0]);
lbValue arg1 = {}; if (ce->args.count > 1) arg1 = lb_build_expr(p, ce->args[1]);
lbValue arg2 = {}; if (ce->args.count > 2) arg2 = lb_build_expr(p, ce->args[2]);
Type *elem = base_array_type(arg0.type);
bool is_float = is_type_float(elem);
bool is_signed = !is_type_unsigned(elem);
LLVMOpcode op_code = cast(LLVMOpcode)0;
switch (builtin_id) {
case BuiltinProc_simd_add:
case BuiltinProc_simd_sub:
case BuiltinProc_simd_mul:
case BuiltinProc_simd_div:
case BuiltinProc_simd_rem:
if (is_float) {
switch (builtin_id) {
case BuiltinProc_simd_add: op_code = LLVMFAdd; break;
case BuiltinProc_simd_sub: op_code = LLVMFSub; break;
case BuiltinProc_simd_mul: op_code = LLVMFMul; break;
case BuiltinProc_simd_div: op_code = LLVMFDiv; break;
}
} else {
switch (builtin_id) {
case BuiltinProc_simd_add: op_code = LLVMAdd; break;
case BuiltinProc_simd_sub: op_code = LLVMSub; break;
case BuiltinProc_simd_mul: op_code = LLVMMul; break;
case BuiltinProc_simd_div:
if (is_signed) {
op_code = LLVMSDiv;
} else {
op_code = LLVMUDiv;
}
break;
case BuiltinProc_simd_rem:
if (is_signed) {
op_code = LLVMSRem;
} else {
op_code = LLVMURem;
}
break;
}
}
if (op_code) {
res.value = LLVMBuildBinOp(p->builder, op_code, arg0.value, arg1.value, "");
return res;
}
break;
case BuiltinProc_simd_shl: // Odin logic
case BuiltinProc_simd_shr: // Odin logic
case BuiltinProc_simd_shl_masked: // C logic
case BuiltinProc_simd_shr_masked: // C logic
{
i64 sz = type_size_of(elem);
GB_ASSERT(arg0.type->kind == Type_SimdVector);
i64 count = arg0.type->SimdVector.count;
Type *elem1 = base_array_type(arg1.type);
bool is_masked = false;
switch (builtin_id) {
case BuiltinProc_simd_shl: op_code = LLVMShl; is_masked = false; break;
case BuiltinProc_simd_shr: op_code = is_signed ? LLVMAShr : LLVMLShr; is_masked = false; break;
case BuiltinProc_simd_shl_masked: op_code = LLVMShl; is_masked = true; break;
case BuiltinProc_simd_shr_masked: op_code = is_signed ? LLVMAShr : LLVMLShr; is_masked = true; break;
}
if (op_code) {
LLVMValueRef bits = llvm_splat_int(count, lb_type(m, elem1), sz*8 - 1);
if (is_masked) {
// C logic
LLVMValueRef shift = LLVMBuildAnd(p->builder, arg1.value, bits, "");
res.value = LLVMBuildBinOp(p->builder, op_code, arg0.value, shift, "");
} else {
// Odin logic
LLVMValueRef zero = lb_const_nil(m, arg1.type).value;
LLVMValueRef mask = LLVMBuildICmp(p->builder, LLVMIntULE, arg1.value, bits, "");
LLVMValueRef shift = LLVMBuildBinOp(p->builder, op_code, arg0.value, arg1.value, "");
res.value = LLVMBuildSelect(p->builder, mask, shift, zero, "");
}
return res;
}
}
break;
case BuiltinProc_simd_and:
case BuiltinProc_simd_or:
case BuiltinProc_simd_xor:
case BuiltinProc_simd_and_not:
switch (builtin_id) {
case BuiltinProc_simd_and: op_code = LLVMAnd; break;
case BuiltinProc_simd_or: op_code = LLVMOr; break;
case BuiltinProc_simd_xor: op_code = LLVMXor; break;
case BuiltinProc_simd_and_not:
op_code = LLVMAnd;
arg1.value = LLVMBuildNot(p->builder, arg1.value, "");
break;
}
if (op_code) {
res.value = LLVMBuildBinOp(p->builder, op_code, arg0.value, arg1.value, "");
return res;
}
break;
case BuiltinProc_simd_neg:
if (is_float) {
res.value = LLVMBuildFNeg(p->builder, arg0.value, "");
} else {
res.value = LLVMBuildNeg(p->builder, arg0.value, "");
}
return res;
case BuiltinProc_simd_abs:
if (is_float) {
LLVMValueRef pos = arg0.value;
LLVMValueRef neg = LLVMBuildFNeg(p->builder, pos, "");
LLVMValueRef cond = LLVMBuildFCmp(p->builder, LLVMRealOGT, pos, neg, "");
res.value = LLVMBuildSelect(p->builder, cond, pos, neg, "");
} else {
LLVMValueRef pos = arg0.value;
LLVMValueRef neg = LLVMBuildNeg(p->builder, pos, "");
LLVMValueRef cond = LLVMBuildICmp(p->builder, is_signed ? LLVMIntSGT : LLVMIntUGT, pos, neg, "");
res.value = LLVMBuildSelect(p->builder, cond, pos, neg, "");
}
return res;
case BuiltinProc_simd_min:
if (is_float) {
LLVMValueRef cond = LLVMBuildFCmp(p->builder, LLVMRealOLT, arg0.value, arg1.value, "");
res.value = LLVMBuildSelect(p->builder, cond, arg0.value, arg1.value, "");
} else {
LLVMValueRef cond = LLVMBuildICmp(p->builder, is_signed ? LLVMIntSLT : LLVMIntULT, arg0.value, arg1.value, "");
res.value = LLVMBuildSelect(p->builder, cond, arg0.value, arg1.value, "");
}
return res;
case BuiltinProc_simd_max:
if (is_float) {
LLVMValueRef cond = LLVMBuildFCmp(p->builder, LLVMRealOGT, arg0.value, arg1.value, "");
res.value = LLVMBuildSelect(p->builder, cond, arg0.value, arg1.value, "");
} else {
LLVMValueRef cond = LLVMBuildICmp(p->builder, is_signed ? LLVMIntSGT : LLVMIntUGT, arg0.value, arg1.value, "");
res.value = LLVMBuildSelect(p->builder, cond, arg0.value, arg1.value, "");
}
return res;
case BuiltinProc_simd_lanes_eq:
case BuiltinProc_simd_lanes_ne:
case BuiltinProc_simd_lanes_lt:
case BuiltinProc_simd_lanes_le:
case BuiltinProc_simd_lanes_gt:
case BuiltinProc_simd_lanes_ge:
if (is_float) {
LLVMRealPredicate pred = cast(LLVMRealPredicate)0;
switch (builtin_id) {
case BuiltinProc_simd_lanes_eq: pred = LLVMRealOEQ; break;
case BuiltinProc_simd_lanes_ne: pred = LLVMRealONE; break;
case BuiltinProc_simd_lanes_lt: pred = LLVMRealOLT; break;
case BuiltinProc_simd_lanes_le: pred = LLVMRealOLE; break;
case BuiltinProc_simd_lanes_gt: pred = LLVMRealOGT; break;
case BuiltinProc_simd_lanes_ge: pred = LLVMRealOGE; break;
}
if (pred) {
res.value = LLVMBuildFCmp(p->builder, pred, arg0.value, arg1.value, "");
res.value = LLVMBuildSExtOrBitCast(p->builder, res.value, lb_type(m, tv.type), "");
return res;
}
} else {
LLVMIntPredicate pred = cast(LLVMIntPredicate)0;
switch (builtin_id) {
case BuiltinProc_simd_lanes_eq: pred = LLVMIntEQ; break;
case BuiltinProc_simd_lanes_ne: pred = LLVMIntNE; break;
case BuiltinProc_simd_lanes_lt: pred = is_signed ? LLVMIntSLT :LLVMIntULT; break;
case BuiltinProc_simd_lanes_le: pred = is_signed ? LLVMIntSLE :LLVMIntULE; break;
case BuiltinProc_simd_lanes_gt: pred = is_signed ? LLVMIntSGT :LLVMIntUGT; break;
case BuiltinProc_simd_lanes_ge: pred = is_signed ? LLVMIntSGE :LLVMIntUGE; break;
}
if (pred) {
res.value = LLVMBuildICmp(p->builder, pred, arg0.value, arg1.value, "");
res.value = LLVMBuildSExtOrBitCast(p->builder, res.value, lb_type(m, tv.type), "");
return res;
}
}
break;
case BuiltinProc_simd_extract:
res.value = LLVMBuildExtractElement(p->builder, arg0.value, arg1.value, "");
return res;
case BuiltinProc_simd_replace:
res.value = LLVMBuildInsertElement(p->builder, arg0.value, arg2.value, arg1.value, "");
return res;
case BuiltinProc_simd_reduce_add_ordered:
case BuiltinProc_simd_reduce_mul_ordered:
{
LLVMTypeRef llvm_elem = lb_type(m, elem);
LLVMValueRef args[2] = {};
isize args_count = 0;
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_reduce_add_ordered:
if (is_float) {
name = "llvm.vector.reduce.fadd";
args[args_count++] = LLVMConstReal(llvm_elem, 0.0);
} else {
name = "llvm.vector.reduce.add";
}
break;
case BuiltinProc_simd_reduce_mul_ordered:
if (is_float) {
name = "llvm.vector.reduce.fmul";
args[args_count++] = LLVMConstReal(llvm_elem, 1.0);
} else {
name = "llvm.vector.reduce.mul";
}
break;
}
args[args_count++] = arg0.value;
LLVMTypeRef types[1] = {lb_type(p->module, arg0.type)};
res.value = lb_call_intrinsic(p, name, args, cast(unsigned)args_count, types, gb_count_of(types));
return res;
}
case BuiltinProc_simd_reduce_min:
case BuiltinProc_simd_reduce_max:
case BuiltinProc_simd_reduce_and:
case BuiltinProc_simd_reduce_or:
case BuiltinProc_simd_reduce_xor:
{
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_reduce_min:
if (is_float) {
name = "llvm.vector.reduce.fmin";
} else if (is_signed) {
name = "llvm.vector.reduce.smin";
} else {
name = "llvm.vector.reduce.umin";
}
break;
case BuiltinProc_simd_reduce_max:
if (is_float) {
name = "llvm.vector.reduce.fmax";
} else if (is_signed) {
name = "llvm.vector.reduce.smax";
} else {
name = "llvm.vector.reduce.umax";
}
break;
case BuiltinProc_simd_reduce_and: name = "llvm.vector.reduce.and"; break;
case BuiltinProc_simd_reduce_or: name = "llvm.vector.reduce.or"; break;
case BuiltinProc_simd_reduce_xor: name = "llvm.vector.reduce.xor"; break;
}
LLVMTypeRef types[1] = { lb_type(p->module, arg0.type) };
LLVMValueRef args[1] = { arg0.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_simd_shuffle:
{
Type *vt = arg0.type;
GB_ASSERT(vt->kind == Type_SimdVector);
i64 indices_count = ce->args.count-2;
i64 max_count = vt->SimdVector.count*2;
GB_ASSERT(indices_count <= max_count);
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, indices_count);
for (isize i = 0; i < indices_count; i++) {
lbValue idx = lb_build_expr(p, ce->args[i+2]);
GB_ASSERT(LLVMIsConstant(idx.value));
values[i] = idx.value;
}
LLVMValueRef indices = LLVMConstVector(values, cast(unsigned)indices_count);
res.value = LLVMBuildShuffleVector(p->builder, arg0.value, arg1.value, indices, "");
return res;
}
case BuiltinProc_simd_select:
{
LLVMValueRef cond = arg0.value;
LLVMValueRef x = lb_build_expr(p, ce->args[1]).value;
LLVMValueRef y = lb_build_expr(p, ce->args[2]).value;
cond = LLVMBuildICmp(p->builder, LLVMIntNE, cond, LLVMConstNull(LLVMTypeOf(cond)), "");
res.value = LLVMBuildSelect(p->builder, cond, x, y, "");
return res;
}
case BuiltinProc_simd_ceil:
case BuiltinProc_simd_floor:
case BuiltinProc_simd_trunc:
case BuiltinProc_simd_nearest:
{
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_ceil: name = "llvm.ceil"; break;
case BuiltinProc_simd_floor: name = "llvm.floor"; break;
case BuiltinProc_simd_trunc: name = "llvm.trunc"; break;
case BuiltinProc_simd_nearest: name = "llvm.nearbyint"; break;
}
LLVMTypeRef types[1] = { lb_type(p->module, arg0.type) };
LLVMValueRef args[1] = { arg0.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_simd_lanes_reverse:
{
i64 count = get_array_type_count(arg0.type);
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
LLVMTypeRef llvm_u32 = lb_type(m, t_u32);
for (i64 i = 0; i < count; i++) {
values[i] = LLVMConstInt(llvm_u32, count-1-i, false);
}
LLVMValueRef mask = LLVMConstVector(values, cast(unsigned)count);
LLVMValueRef v = arg0.value;
res.value = LLVMBuildShuffleVector(p->builder, v, v, mask, "");
return res;
}
case BuiltinProc_simd_lanes_rotate_left:
case BuiltinProc_simd_lanes_rotate_right:
{
i64 count = get_array_type_count(arg0.type);
GB_ASSERT(is_power_of_two(count));
BigInt bi_count = {};
big_int_from_i64(&bi_count, count);
TypeAndValue const &tv = ce->args[1]->tav;
ExactValue val = exact_value_to_integer(tv.value);
GB_ASSERT(val.kind == ExactValue_Integer);
BigInt *bi = &val.value_integer;
if (builtin_id == BuiltinProc_simd_lanes_rotate_right) {
big_int_neg(bi, bi);
}
big_int_rem(bi, bi, &bi_count);
big_int_dealloc(&bi_count);
i64 left = big_int_to_i64(bi);
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
LLVMTypeRef llvm_u32 = lb_type(m, t_u32);
for (i64 i = 0; i < count; i++) {
u64 idx = cast(u64)(i+left) & cast(u64)(count-1);
values[i] = LLVMConstInt(llvm_u32, idx, false);
}
LLVMValueRef mask = LLVMConstVector(values, cast(unsigned)count);
LLVMValueRef v = arg0.value;
res.value = LLVMBuildShuffleVector(p->builder, v, v, mask, "");
return res;
}
case BuiltinProc_simd_add_sat:
case BuiltinProc_simd_sub_sat:
{
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_add_sat: name = is_signed ? "llvm.sadd.sat" : "llvm.uadd.sat"; break;
case BuiltinProc_simd_sub_sat: name = is_signed ? "llvm.ssub.sat" : "llvm.usub.sat"; break;
}
LLVMTypeRef types[1] = {lb_type(p->module, arg0.type)};
LLVMValueRef args[2] = { arg0.value, arg1.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_simd_clamp:
{
LLVMValueRef v = arg0.value;
LLVMValueRef min = arg1.value;
LLVMValueRef max = arg2.value;
if (is_float) {
v = LLVMBuildSelect(p->builder, LLVMBuildFCmp(p->builder, LLVMRealOLT, v, min, ""), min, v, "");
res.value = LLVMBuildSelect(p->builder, LLVMBuildFCmp(p->builder, LLVMRealOGT, v, max, ""), max, v, "");
} else if (is_signed) {
v = LLVMBuildSelect(p->builder, LLVMBuildICmp(p->builder, LLVMIntSLT, v, min, ""), min, v, "");
res.value = LLVMBuildSelect(p->builder, LLVMBuildICmp(p->builder, LLVMIntSGT, v, max, ""), max, v, "");
} else {
v = LLVMBuildSelect(p->builder, LLVMBuildICmp(p->builder, LLVMIntULT, v, min, ""), min, v, "");
res.value = LLVMBuildSelect(p->builder, LLVMBuildICmp(p->builder, LLVMIntUGT, v, max, ""), max, v, "");
}
return res;
}
case BuiltinProc_simd_to_bits:
{
res.value = LLVMBuildBitCast(p->builder, arg0.value, lb_type(m, tv.type), "");
return res;
}
}
GB_PANIC("Unhandled simd intrinsic: '%.*s'", LIT(builtin_procs[builtin_id].name));
return {};
}
lbValue lb_build_builtin_proc(lbProcedure *p, Ast *expr, TypeAndValue const &tv, BuiltinProcId id) {
ast_node(ce, CallExpr, expr);
if (BuiltinProc__simd_begin < id && id < BuiltinProc__simd_end) {
return lb_build_builtin_simd_proc(p, expr, tv, id);
}
switch (id) {
case BuiltinProc_DIRECTIVE: {
ast_node(bd, BasicDirective, ce->proc);
String name = bd->name.string;
GB_ASSERT(name == "location");
String procedure = p->entity->token.string;
TokenPos pos = ast_token(ce->proc).pos;
if (ce->args.count > 0) {
Ast *ident = unselector_expr(ce->args[0]);
GB_ASSERT(ident->kind == Ast_Ident);
Entity *e = entity_of_node(ident);
GB_ASSERT(e != nullptr);
if (e->parent_proc_decl != nullptr && e->parent_proc_decl->entity != nullptr) {
procedure = e->parent_proc_decl->entity->token.string;
} else {
procedure = str_lit("");
}
pos = e->token.pos;
}
return lb_emit_source_code_location_as_global(p, procedure, pos);
}
case BuiltinProc_type_info_of: {
Ast *arg = ce->args[0];
TypeAndValue tav = type_and_value_of_expr(arg);
if (tav.mode == Addressing_Type) {
Type *t = default_type(type_of_expr(arg));
return lb_type_info(p->module, t);
}
GB_ASSERT(is_type_typeid(tav.type));
auto args = array_make<lbValue>(permanent_allocator(), 1);
args[0] = lb_build_expr(p, arg);
return lb_emit_runtime_call(p, "__type_info_of", args);
}
case BuiltinProc_typeid_of: {
Ast *arg = ce->args[0];
TypeAndValue tav = type_and_value_of_expr(arg);
GB_ASSERT(tav.mode == Addressing_Type);
Type *t = default_type(type_of_expr(arg));
return lb_typeid(p->module, t);
}
case BuiltinProc_len: {
lbValue v = lb_build_expr(p, ce->args[0]);
Type *t = base_type(v.type);
if (is_type_pointer(t)) {
// IMPORTANT TODO(bill): Should there be a nil pointer check?
v = lb_emit_load(p, v);
t = type_deref(t);
}
if (is_type_cstring(t)) {
return lb_cstring_len(p, v);
} else if (is_type_string(t)) {
return lb_string_len(p, v);
} else if (is_type_array(t)) {
GB_PANIC("Array lengths are constant");
} else if (is_type_slice(t) || is_type_relative_slice(t)) {
return lb_slice_len(p, v);
} else if (is_type_dynamic_array(t)) {
return lb_dynamic_array_len(p, v);
} else if (is_type_map(t)) {
return lb_map_len(p, v);
} else if (is_type_soa_struct(t)) {
return lb_soa_struct_len(p, v);
}
GB_PANIC("Unreachable");
break;
}
case BuiltinProc_cap: {
lbValue v = lb_build_expr(p, ce->args[0]);
Type *t = base_type(v.type);
if (is_type_pointer(t)) {
// IMPORTANT TODO(bill): Should there be a nil pointer check?
v = lb_emit_load(p, v);
t = type_deref(t);
}
if (is_type_string(t)) {
GB_PANIC("Unreachable");
} else if (is_type_array(t)) {
GB_PANIC("Array lengths are constant");
} else if (is_type_slice(t) || is_type_relative_slice(t)) {
return lb_slice_len(p, v);
} else if (is_type_dynamic_array(t)) {
return lb_dynamic_array_cap(p, v);
} else if (is_type_map(t)) {
return lb_map_cap(p, v);
} else if (is_type_soa_struct(t)) {
return lb_soa_struct_cap(p, v);
}
GB_PANIC("Unreachable");
break;
}
case BuiltinProc_swizzle: {
isize index_count = ce->args.count-1;
if (is_type_simd_vector(tv.type)) {
lbValue vec = lb_build_expr(p, ce->args[0]);
if (index_count == 0) {
return vec;
}
unsigned mask_len = cast(unsigned)index_count;
LLVMValueRef *mask_elems = gb_alloc_array(permanent_allocator(), LLVMValueRef, index_count);
for (isize i = 1; i < ce->args.count; i++) {
TypeAndValue tv = type_and_value_of_expr(ce->args[i]);
GB_ASSERT(is_type_integer(tv.type));
GB_ASSERT(tv.value.kind == ExactValue_Integer);
u32 index = cast(u32)big_int_to_i64(&tv.value.value_integer);
mask_elems[i-1] = LLVMConstInt(lb_type(p->module, t_u32), index, false);
}
LLVMValueRef mask = LLVMConstVector(mask_elems, mask_len);
LLVMValueRef v1 = vec.value;
LLVMValueRef v2 = vec.value;
lbValue res = {};
res.type = tv.type;
res.value = LLVMBuildShuffleVector(p->builder, v1, v2, mask, "");
return res;
}
lbAddr addr = lb_build_array_swizzle_addr(p, ce, tv);
return lb_addr_load(p, addr);
}
case BuiltinProc_complex: {
lbValue real = lb_build_expr(p, ce->args[0]);
lbValue imag = lb_build_expr(p, ce->args[1]);
lbAddr dst_addr = lb_add_local_generated(p, tv.type, false);
lbValue dst = lb_addr_get_ptr(p, dst_addr);
Type *ft = base_complex_elem_type(tv.type);
real = lb_emit_conv(p, real, ft);
imag = lb_emit_conv(p, imag, ft);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 1), imag);
return lb_emit_load(p, dst);
}
case BuiltinProc_quaternion: {
lbValue real = lb_build_expr(p, ce->args[0]);
lbValue imag = lb_build_expr(p, ce->args[1]);
lbValue jmag = lb_build_expr(p, ce->args[2]);
lbValue kmag = lb_build_expr(p, ce->args[3]);
// @QuaternionLayout
lbAddr dst_addr = lb_add_local_generated(p, tv.type, false);
lbValue dst = lb_addr_get_ptr(p, dst_addr);
Type *ft = base_complex_elem_type(tv.type);
real = lb_emit_conv(p, real, ft);
imag = lb_emit_conv(p, imag, ft);
jmag = lb_emit_conv(p, jmag, ft);
kmag = lb_emit_conv(p, kmag, ft);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 3), real);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 0), imag);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 1), jmag);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 2), kmag);
return lb_emit_load(p, dst);
}
case BuiltinProc_real: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_complex(val.type)) {
lbValue real = lb_emit_struct_ev(p, val, 0);
return lb_emit_conv(p, real, tv.type);
} else if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue real = lb_emit_struct_ev(p, val, 3);
return lb_emit_conv(p, real, tv.type);
}
GB_PANIC("invalid type for real");
return {};
}
case BuiltinProc_imag: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_complex(val.type)) {
lbValue imag = lb_emit_struct_ev(p, val, 1);
return lb_emit_conv(p, imag, tv.type);
} else if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue imag = lb_emit_struct_ev(p, val, 0);
return lb_emit_conv(p, imag, tv.type);
}
GB_PANIC("invalid type for imag");
return {};
}
case BuiltinProc_jmag: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue imag = lb_emit_struct_ev(p, val, 1);
return lb_emit_conv(p, imag, tv.type);
}
GB_PANIC("invalid type for jmag");
return {};
}
case BuiltinProc_kmag: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue imag = lb_emit_struct_ev(p, val, 2);
return lb_emit_conv(p, imag, tv.type);
}
GB_PANIC("invalid type for kmag");
return {};
}
case BuiltinProc_conj: {
lbValue val = lb_build_expr(p, ce->args[0]);
return lb_emit_conjugate(p, val, tv.type);
}
case BuiltinProc_expand_to_tuple: {
lbValue val = lb_build_expr(p, ce->args[0]);
Type *t = base_type(val.type);
if (!is_type_tuple(tv.type)) {
if (t->kind == Type_Struct) {
GB_ASSERT(t->Struct.fields.count == 1);
return lb_emit_struct_ev(p, val, 0);
} else if (t->kind == Type_Array) {
GB_ASSERT(t->Array.count == 1);
return lb_emit_array_epi(p, val, 0);
} else {
GB_PANIC("Unknown type of expand_to_tuple");
}
}
GB_ASSERT(is_type_tuple(tv.type));
// NOTE(bill): Doesn't need to be zero because it will be initialized in the loops
lbValue tuple = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false));
if (t->kind == Type_Struct) {
for_array(src_index, t->Struct.fields) {
Entity *field = t->Struct.fields[src_index];
i32 field_index = field->Variable.field_index;
lbValue f = lb_emit_struct_ev(p, val, field_index);
lbValue ep = lb_emit_struct_ep(p, tuple, cast(i32)src_index);
lb_emit_store(p, ep, f);
}
} else if (is_type_array_like(t)) {
// TODO(bill): Clean-up this code
lbValue ap = lb_address_from_load_or_generate_local(p, val);
i32 n = cast(i32)get_array_type_count(t);
for (i32 i = 0; i < n; i++) {
lbValue f = lb_emit_load(p, lb_emit_array_epi(p, ap, i));
lbValue ep = lb_emit_struct_ep(p, tuple, i);
lb_emit_store(p, ep, f);
}
} else {
GB_PANIC("Unknown type of expand_to_tuple");
}
return lb_emit_load(p, tuple);
}
case BuiltinProc_min: {
Type *t = type_of_expr(expr);
if (ce->args.count == 2) {
return lb_emit_min(p, t, lb_build_expr(p, ce->args[0]), lb_build_expr(p, ce->args[1]));
} else {
lbValue x = lb_build_expr(p, ce->args[0]);
for (isize i = 1; i < ce->args.count; i++) {
x = lb_emit_min(p, t, x, lb_build_expr(p, ce->args[i]));
}
return x;
}
}
case BuiltinProc_max: {
Type *t = type_of_expr(expr);
if (ce->args.count == 2) {
return lb_emit_max(p, t, lb_build_expr(p, ce->args[0]), lb_build_expr(p, ce->args[1]));
} else {
lbValue x = lb_build_expr(p, ce->args[0]);
for (isize i = 1; i < ce->args.count; i++) {
x = lb_emit_max(p, t, x, lb_build_expr(p, ce->args[i]));
}
return x;
}
}
case BuiltinProc_abs: {
lbValue x = lb_build_expr(p, ce->args[0]);
Type *t = x.type;
if (is_type_unsigned(t)) {
return x;
}
if (is_type_quaternion(t)) {
i64 sz = 8*type_size_of(t);
auto args = array_make<lbValue>(permanent_allocator(), 1);
args[0] = x;
switch (sz) {
case 64: return lb_emit_runtime_call(p, "abs_quaternion64", args);
case 128: return lb_emit_runtime_call(p, "abs_quaternion128", args);
case 256: return lb_emit_runtime_call(p, "abs_quaternion256", args);
}
GB_PANIC("Unknown complex type");
} else if (is_type_complex(t)) {
i64 sz = 8*type_size_of(t);
auto args = array_make<lbValue>(permanent_allocator(), 1);
args[0] = x;
switch (sz) {
case 32: return lb_emit_runtime_call(p, "abs_complex32", args);
case 64: return lb_emit_runtime_call(p, "abs_complex64", args);
case 128: return lb_emit_runtime_call(p, "abs_complex128", args);
}
GB_PANIC("Unknown complex type");
}
lbValue zero = lb_const_nil(p->module, t);
lbValue cond = lb_emit_comp(p, Token_Lt, x, zero);
lbValue neg = lb_emit_unary_arith(p, Token_Sub, x, t);
return lb_emit_select(p, cond, neg, x);
}
case BuiltinProc_clamp:
return lb_emit_clamp(p, type_of_expr(expr),
lb_build_expr(p, ce->args[0]),
lb_build_expr(p, ce->args[1]),
lb_build_expr(p, ce->args[2]));
case BuiltinProc_soa_zip:
return lb_soa_zip(p, ce, tv);
case BuiltinProc_soa_unzip:
return lb_soa_unzip(p, ce, tv);
case BuiltinProc_transpose:
{
lbValue m = lb_build_expr(p, ce->args[0]);
return lb_emit_matrix_tranpose(p, m, tv.type);
}
case BuiltinProc_outer_product:
{
lbValue a = lb_build_expr(p, ce->args[0]);
lbValue b = lb_build_expr(p, ce->args[1]);
return lb_emit_outer_product(p, a, b, tv.type);
}
case BuiltinProc_hadamard_product:
{
lbValue a = lb_build_expr(p, ce->args[0]);
lbValue b = lb_build_expr(p, ce->args[1]);
if (is_type_array(tv.type)) {
return lb_emit_arith(p, Token_Mul, a, b, tv.type);
}
GB_ASSERT(is_type_matrix(tv.type));
return lb_emit_arith_matrix(p, Token_Mul, a, b, tv.type, true);
}
case BuiltinProc_matrix_flatten:
{
lbValue m = lb_build_expr(p, ce->args[0]);
return lb_emit_matrix_flatten(p, m, tv.type);
}
case BuiltinProc_unreachable:
lb_emit_unreachable(p);
return {};
case BuiltinProc_raw_data:
{
lbValue x = lb_build_expr(p, ce->args[0]);
Type *t = base_type(x.type);
lbValue res = {};
switch (t->kind) {
case Type_Slice:
res = lb_slice_elem(p, x);
res = lb_emit_conv(p, res, tv.type);
break;
case Type_DynamicArray:
res = lb_dynamic_array_elem(p, x);
res = lb_emit_conv(p, res, tv.type);
break;
case Type_Basic:
if (t->Basic.kind == Basic_string) {
res = lb_string_elem(p, x);
res = lb_emit_conv(p, res, tv.type);
} else if (t->Basic.kind == Basic_cstring) {
res = lb_emit_conv(p, x, tv.type);
}
break;
case Type_Pointer:
case Type_MultiPointer:
res = lb_emit_conv(p, x, tv.type);
break;
}
GB_ASSERT(res.value != nullptr);
return res;
}
// "Intrinsics"
case BuiltinProc_alloca:
{
lbValue sz = lb_build_expr(p, ce->args[0]);
i64 al = exact_value_to_i64(type_and_value_of_expr(ce->args[1]).value);
lbValue res = {};
res.type = t_u8_ptr;
res.value = LLVMBuildArrayAlloca(p->builder, lb_type(p->module, t_u8), sz.value, "");
LLVMSetAlignment(res.value, cast(unsigned)al);
return res;
}
case BuiltinProc_cpu_relax:
if (build_context.metrics.arch == TargetArch_i386 ||
build_context.metrics.arch == TargetArch_amd64) {
LLVMTypeRef func_type = LLVMFunctionType(LLVMVoidTypeInContext(p->module->ctx), nullptr, 0, false);
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, str_lit("pause"), {}, true);
GB_ASSERT(the_asm != nullptr);
LLVMBuildCall2(p->builder, func_type, the_asm, nullptr, 0, "");
} else if (build_context.metrics.arch == TargetArch_arm64) {
LLVMTypeRef func_type = LLVMFunctionType(LLVMVoidTypeInContext(p->module->ctx), nullptr, 0, false);
// NOTE(bill, 2022-03-30): `isb` appears to a better option that `yield`
// See: https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8258604
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, str_lit("isb"), {}, true);
GB_ASSERT(the_asm != nullptr);
LLVMBuildCall2(p->builder, func_type, the_asm, nullptr, 0, "");
} else {
// NOTE: default to something to prevent optimization
LLVMTypeRef func_type = LLVMFunctionType(LLVMVoidTypeInContext(p->module->ctx), nullptr, 0, false);
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, str_lit(""), {}, true);
GB_ASSERT(the_asm != nullptr);
LLVMBuildCall2(p->builder, func_type, the_asm, nullptr, 0, "");
}
return {};
case BuiltinProc_debug_trap:
case BuiltinProc_trap:
{
char const *name = nullptr;
switch (id) {
case BuiltinProc_debug_trap: name = "llvm.debugtrap"; break;
case BuiltinProc_trap: name = "llvm.trap"; break;
}
lb_call_intrinsic(p, name, nullptr, 0, nullptr, 0);
if (id == BuiltinProc_trap) {
LLVMBuildUnreachable(p->builder);
}
return {};
}
case BuiltinProc_read_cycle_counter:
{
lbValue res = {};
res.type = tv.type;
if (build_context.metrics.arch == TargetArch_arm64) {
LLVMTypeRef func_type = LLVMFunctionType(LLVMInt64TypeInContext(p->module->ctx), nullptr, 0, false);
bool has_side_effects = false;
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, str_lit("mrs x9, cntvct_el0"), str_lit("=r"), has_side_effects);
GB_ASSERT(the_asm != nullptr);
res.value = LLVMBuildCall2(p->builder, func_type, the_asm, nullptr, 0, "");
} else {
char const *name = "llvm.readcyclecounter";
res.value = lb_call_intrinsic(p, name, nullptr, 0, nullptr, 0);
}
return res;
}
case BuiltinProc_count_trailing_zeros:
return lb_emit_count_trailing_zeros(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_count_leading_zeros:
return lb_emit_count_leading_zeros(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_count_ones:
return lb_emit_count_ones(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_count_zeros:
return lb_emit_count_zeros(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_reverse_bits:
return lb_emit_reverse_bits(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_byte_swap:
{
lbValue x = lb_build_expr(p, ce->args[0]);
x = lb_emit_conv(p, x, tv.type);
return lb_emit_byte_swap(p, x, tv.type);
}
case BuiltinProc_overflow_add:
case BuiltinProc_overflow_sub:
case BuiltinProc_overflow_mul:
{
Type *main_type = tv.type;
Type *type = main_type;
if (is_type_tuple(main_type)) {
type = main_type->Tuple.variables[0]->type;
}
lbValue x = lb_build_expr(p, ce->args[0]);
lbValue y = lb_build_expr(p, ce->args[1]);
x = lb_emit_conv(p, x, type);
y = lb_emit_conv(p, y, type);
char const *name = nullptr;
if (is_type_unsigned(type)) {
switch (id) {
case BuiltinProc_overflow_add: name = "llvm.uadd.with.overflow"; break;
case BuiltinProc_overflow_sub: name = "llvm.usub.with.overflow"; break;
case BuiltinProc_overflow_mul: name = "llvm.umul.with.overflow"; break;
}
} else {
switch (id) {
case BuiltinProc_overflow_add: name = "llvm.sadd.with.overflow"; break;
case BuiltinProc_overflow_sub: name = "llvm.ssub.with.overflow"; break;
case BuiltinProc_overflow_mul: name = "llvm.smul.with.overflow"; break;
}
}
LLVMTypeRef types[1] = {lb_type(p->module, type)};
LLVMValueRef args[2] = { x.value, y.value };
lbValue res = {};
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
if (is_type_tuple(main_type)) {
Type *res_type = nullptr;
gbAllocator a = permanent_allocator();
res_type = alloc_type_tuple();
slice_init(&res_type->Tuple.variables, a, 2);
res_type->Tuple.variables[0] = alloc_entity_field(nullptr, blank_token, type, false, 0);
res_type->Tuple.variables[1] = alloc_entity_field(nullptr, blank_token, t_llvm_bool, false, 1);
res.type = res_type;
} else {
res.value = LLVMBuildExtractValue(p->builder, res.value, 0, "");
res.type = type;
}
return res;
}
case BuiltinProc_sqrt:
{
Type *type = tv.type;
lbValue x = lb_build_expr(p, ce->args[0]);
x = lb_emit_conv(p, x, type);
char const *name = "llvm.sqrt";
LLVMTypeRef types[1] = {lb_type(p->module, type)};
LLVMValueRef args[1] = { x.value };
lbValue res = {};
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = type;
return res;
}
case BuiltinProc_fused_mul_add:
{
Type *type = tv.type;
lbValue x = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), type);
lbValue y = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), type);
lbValue z = lb_emit_conv(p, lb_build_expr(p, ce->args[2]), type);
char const *name = "llvm.fma";
LLVMTypeRef types[1] = {lb_type(p->module, type)};
LLVMValueRef args[3] = { x.value, y.value, z.value };
lbValue res = {};
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = type;
return res;
}
case BuiltinProc_mem_copy:
{
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue src = lb_build_expr(p, ce->args[1]);
lbValue len = lb_build_expr(p, ce->args[2]);
lb_mem_copy_overlapping(p, dst, src, len, false);
return {};
}
case BuiltinProc_mem_copy_non_overlapping:
{
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue src = lb_build_expr(p, ce->args[1]);
lbValue len = lb_build_expr(p, ce->args[2]);
lb_mem_copy_non_overlapping(p, dst, src, len, false);
return {};
}
case BuiltinProc_mem_zero:
{
lbValue ptr = lb_build_expr(p, ce->args[0]);
lbValue len = lb_build_expr(p, ce->args[1]);
ptr = lb_emit_conv(p, ptr, t_rawptr);
len = lb_emit_conv(p, len, t_int);
unsigned alignment = 1;
lb_mem_zero_ptr_internal(p, ptr.value, len.value, alignment, false);
return {};
}
case BuiltinProc_mem_zero_volatile:
{
lbValue ptr = lb_build_expr(p, ce->args[0]);
lbValue len = lb_build_expr(p, ce->args[1]);
ptr = lb_emit_conv(p, ptr, t_rawptr);
len = lb_emit_conv(p, len, t_int);
unsigned alignment = 1;
lb_mem_zero_ptr_internal(p, ptr.value, len.value, alignment, true);
return {};
}
case BuiltinProc_ptr_offset:
{
lbValue ptr = lb_build_expr(p, ce->args[0]);
lbValue len = lb_build_expr(p, ce->args[1]);
len = lb_emit_conv(p, len, t_int);
return lb_emit_ptr_offset(p, ptr, len);
}
case BuiltinProc_ptr_sub:
{
lbValue ptr0 = lb_build_expr(p, ce->args[0]);
lbValue ptr1 = lb_build_expr(p, ce->args[1]);
LLVMTypeRef type_int = lb_type(p->module, t_int);
LLVMValueRef diff = LLVMBuildPtrDiff2(p->builder, lb_type(p->module, ptr0.type), ptr0.value, ptr1.value, "");
diff = LLVMBuildIntCast2(p->builder, diff, type_int, /*signed*/true, "");
lbValue res = {};
res.type = t_int;
res.value = diff;
return res;
}
// TODO(bill): Which is correct?
case BuiltinProc_atomic_thread_fence:
LLVMBuildFence(p->builder, llvm_atomic_ordering_from_odin(ce->args[0]), false, "");
return {};
case BuiltinProc_atomic_signal_fence:
LLVMBuildFence(p->builder, llvm_atomic_ordering_from_odin(ce->args[0]), true, "");
return {};
case BuiltinProc_volatile_store:
case BuiltinProc_non_temporal_store:
case BuiltinProc_atomic_store:
case BuiltinProc_atomic_store_explicit: {
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue val = lb_build_expr(p, ce->args[1]);
val = lb_emit_conv(p, val, type_deref(dst.type));
LLVMValueRef instr = LLVMBuildStore(p->builder, val.value, dst.value);
switch (id) {
case BuiltinProc_non_temporal_store:
{
unsigned kind_id = LLVMGetMDKindIDInContext(p->module->ctx, "nontemporal", 11);
LLVMMetadataRef node = LLVMValueAsMetadata(LLVMConstInt(lb_type(p->module, t_u32), 1, false));
LLVMSetMetadata(instr, kind_id, LLVMMetadataAsValue(p->module->ctx, node));
}
break;
case BuiltinProc_volatile_store: LLVMSetVolatile(instr, true); break;
case BuiltinProc_atomic_store: LLVMSetOrdering(instr, LLVMAtomicOrderingSequentiallyConsistent); break;
case BuiltinProc_atomic_store_explicit: LLVMSetOrdering(instr, llvm_atomic_ordering_from_odin(ce->args[2])); break;
}
LLVMSetAlignment(instr, cast(unsigned)type_align_of(type_deref(dst.type)));
return {};
}
case BuiltinProc_volatile_load:
case BuiltinProc_non_temporal_load:
case BuiltinProc_atomic_load:
case BuiltinProc_atomic_load_explicit: {
lbValue dst = lb_build_expr(p, ce->args[0]);
LLVMValueRef instr = LLVMBuildLoad2(p->builder, lb_type(p->module, type_deref(dst.type)), dst.value, "");
switch (id) {
case BuiltinProc_non_temporal_load:
{
unsigned kind_id = LLVMGetMDKindIDInContext(p->module->ctx, "nontemporal", 11);
LLVMMetadataRef node = LLVMValueAsMetadata(LLVMConstInt(lb_type(p->module, t_u32), 1, false));
LLVMSetMetadata(instr, kind_id, LLVMMetadataAsValue(p->module->ctx, node));
}
break;
break;
case BuiltinProc_volatile_load: LLVMSetVolatile(instr, true); break;
case BuiltinProc_atomic_load: LLVMSetOrdering(instr, LLVMAtomicOrderingSequentiallyConsistent); break;
case BuiltinProc_atomic_load_explicit: LLVMSetOrdering(instr, llvm_atomic_ordering_from_odin(ce->args[1])); break;
}
LLVMSetAlignment(instr, cast(unsigned)type_align_of(type_deref(dst.type)));
lbValue res = {};
res.value = instr;
res.type = type_deref(dst.type);
return res;
}
case BuiltinProc_unaligned_store:
{
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue src = lb_build_expr(p, ce->args[1]);
src = lb_address_from_load_or_generate_local(p, src);
Type *t = type_deref(dst.type);
lb_mem_copy_non_overlapping(p, dst, src, lb_const_int(p->module, t_int, type_size_of(t)), false);
return {};
}
case BuiltinProc_unaligned_load:
{
lbValue src = lb_build_expr(p, ce->args[0]);
Type *t = type_deref(src.type);
lbAddr dst = lb_add_local_generated(p, t, false);
lb_mem_copy_non_overlapping(p, dst.addr, src, lb_const_int(p->module, t_int, type_size_of(t)), false);
return lb_addr_load(p, dst);
}
case BuiltinProc_atomic_add:
case BuiltinProc_atomic_sub:
case BuiltinProc_atomic_and:
case BuiltinProc_atomic_nand:
case BuiltinProc_atomic_or:
case BuiltinProc_atomic_xor:
case BuiltinProc_atomic_exchange:
case BuiltinProc_atomic_add_explicit:
case BuiltinProc_atomic_sub_explicit:
case BuiltinProc_atomic_and_explicit:
case BuiltinProc_atomic_nand_explicit:
case BuiltinProc_atomic_or_explicit:
case BuiltinProc_atomic_xor_explicit:
case BuiltinProc_atomic_exchange_explicit: {
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue val = lb_build_expr(p, ce->args[1]);
val = lb_emit_conv(p, val, type_deref(dst.type));
LLVMAtomicRMWBinOp op = {};
LLVMAtomicOrdering ordering = {};
switch (id) {
case BuiltinProc_atomic_add: op = LLVMAtomicRMWBinOpAdd; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_sub: op = LLVMAtomicRMWBinOpSub; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_and: op = LLVMAtomicRMWBinOpAnd; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_nand: op = LLVMAtomicRMWBinOpNand; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_or: op = LLVMAtomicRMWBinOpOr; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_xor: op = LLVMAtomicRMWBinOpXor; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_exchange: op = LLVMAtomicRMWBinOpXchg; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_add_explicit: op = LLVMAtomicRMWBinOpAdd; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_sub_explicit: op = LLVMAtomicRMWBinOpSub; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_and_explicit: op = LLVMAtomicRMWBinOpAnd; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_nand_explicit: op = LLVMAtomicRMWBinOpNand; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_or_explicit: op = LLVMAtomicRMWBinOpOr; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_xor_explicit: op = LLVMAtomicRMWBinOpXor; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_exchange_explicit: op = LLVMAtomicRMWBinOpXchg; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
}
lbValue res = {};
res.value = LLVMBuildAtomicRMW(p->builder, op, dst.value, val.value, ordering, false);
res.type = tv.type;
return res;
}
case BuiltinProc_atomic_compare_exchange_strong:
case BuiltinProc_atomic_compare_exchange_weak:
case BuiltinProc_atomic_compare_exchange_strong_explicit:
case BuiltinProc_atomic_compare_exchange_weak_explicit: {
lbValue address = lb_build_expr(p, ce->args[0]);
Type *elem = type_deref(address.type);
lbValue old_value = lb_build_expr(p, ce->args[1]);
lbValue new_value = lb_build_expr(p, ce->args[2]);
old_value = lb_emit_conv(p, old_value, elem);
new_value = lb_emit_conv(p, new_value, elem);
LLVMAtomicOrdering success_ordering = {};
LLVMAtomicOrdering failure_ordering = {};
LLVMBool weak = false;
switch (id) {
case BuiltinProc_atomic_compare_exchange_strong: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = false; break;
case BuiltinProc_atomic_compare_exchange_weak: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = true; break;
case BuiltinProc_atomic_compare_exchange_strong_explicit: success_ordering = llvm_atomic_ordering_from_odin(ce->args[3]); failure_ordering = llvm_atomic_ordering_from_odin(ce->args[4]); weak = false; break;
case BuiltinProc_atomic_compare_exchange_weak_explicit: success_ordering = llvm_atomic_ordering_from_odin(ce->args[3]); failure_ordering = llvm_atomic_ordering_from_odin(ce->args[4]); weak = true; break;
}
// TODO(bill): Figure out how to make it weak
LLVMBool single_threaded = false;
LLVMValueRef value = LLVMBuildAtomicCmpXchg(
p->builder, address.value,
old_value.value, new_value.value,
success_ordering,
failure_ordering,
single_threaded
);
LLVMSetWeak(value, weak);
if (tv.type->kind == Type_Tuple) {
Type *fix_typed = alloc_type_tuple();
slice_init(&fix_typed->Tuple.variables, permanent_allocator(), 2);
fix_typed->Tuple.variables[0] = tv.type->Tuple.variables[0];
fix_typed->Tuple.variables[1] = alloc_entity_field(nullptr, blank_token, t_llvm_bool, false, 1);
lbValue res = {};
res.value = value;
res.type = fix_typed;
return res;
} else {
lbValue res = {};
res.value = LLVMBuildExtractValue(p->builder, value, 0, "");
res.type = tv.type;
return res;
}
}
case BuiltinProc_type_equal_proc:
return lb_get_equal_proc_for_type(p->module, ce->args[0]->tav.type);
case BuiltinProc_type_hasher_proc:
return lb_get_hasher_proc_for_type(p->module, ce->args[0]->tav.type);
case BuiltinProc_type_map_info:
return lb_gen_map_info_ptr(p->module, ce->args[0]->tav.type);
case BuiltinProc_type_map_cell_info:
return lb_gen_map_cell_info_ptr(p->module, ce->args[0]->tav.type);
case BuiltinProc_fixed_point_mul:
case BuiltinProc_fixed_point_div:
case BuiltinProc_fixed_point_mul_sat:
case BuiltinProc_fixed_point_div_sat:
{
Type *platform_type = integer_endian_type_to_platform_type(tv.type);
lbValue x = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), platform_type);
lbValue y = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), platform_type);
lbValue scale = lb_emit_conv(p, lb_build_expr(p, ce->args[2]), t_i32);
char const *name = nullptr;
if (is_type_unsigned(tv.type)) {
switch (id) {
case BuiltinProc_fixed_point_mul: name = "llvm.umul.fix"; break;
case BuiltinProc_fixed_point_div: name = "llvm.udiv.fix"; break;
case BuiltinProc_fixed_point_mul_sat: name = "llvm.umul.fix.sat"; break;
case BuiltinProc_fixed_point_div_sat: name = "llvm.udiv.fix.sat"; break;
}
} else {
switch (id) {
case BuiltinProc_fixed_point_mul: name = "llvm.smul.fix"; break;
case BuiltinProc_fixed_point_div: name = "llvm.sdiv.fix"; break;
case BuiltinProc_fixed_point_mul_sat: name = "llvm.smul.fix.sat"; break;
case BuiltinProc_fixed_point_div_sat: name = "llvm.sdiv.fix.sat"; break;
}
}
GB_ASSERT(name != nullptr);
LLVMTypeRef types[1] = {lb_type(p->module, platform_type)};
lbValue res = {};
LLVMValueRef args[3] = {
x.value,
y.value,
scale.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = platform_type;
return lb_emit_conv(p, res, tv.type);
}
case BuiltinProc_expect:
{
Type *t = default_type(tv.type);
lbValue x = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t);
lbValue y = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t);
char const *name = "llvm.expect";
LLVMTypeRef types[1] = {lb_type(p->module, t)};
lbValue res = {};
LLVMValueRef args[2] = { x.value, y.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = t;
return lb_emit_conv(p, res, t);
}
case BuiltinProc_prefetch_read_instruction:
case BuiltinProc_prefetch_read_data:
case BuiltinProc_prefetch_write_instruction:
case BuiltinProc_prefetch_write_data:
{
lbValue ptr = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_rawptr);
unsigned long long locality = cast(unsigned long long)exact_value_to_i64(ce->args[1]->tav.value);
unsigned long long rw = 0;
unsigned long long cache = 0;
switch (id) {
case BuiltinProc_prefetch_read_instruction:
rw = 0;
cache = 0;
break;
case BuiltinProc_prefetch_read_data:
rw = 0;
cache = 1;
break;
case BuiltinProc_prefetch_write_instruction:
rw = 1;
cache = 0;
break;
case BuiltinProc_prefetch_write_data:
rw = 1;
cache = 1;
break;
}
char const *name = "llvm.prefetch";
LLVMTypeRef types[1] = {lb_type(p->module, t_rawptr)};
LLVMTypeRef llvm_i32 = lb_type(p->module, t_i32);
LLVMValueRef args[4] = {};
args[0] = ptr.value;
args[1] = LLVMConstInt(llvm_i32, rw, false);
args[2] = LLVMConstInt(llvm_i32, locality, false);
args[3] = LLVMConstInt(llvm_i32, cache, false);
lbValue res = {};
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = nullptr;
return res;
}
case BuiltinProc___entry_point:
if (p->module->info->entry_point) {
lbValue entry_point = lb_find_procedure_value_from_entity(p->module, p->module->info->entry_point);
GB_ASSERT(entry_point.value != nullptr);
lb_emit_call(p, entry_point, {});
}
return {};
case BuiltinProc_syscall:
{
unsigned arg_count = cast(unsigned)ce->args.count;
LLVMValueRef *args = gb_alloc_array(permanent_allocator(), LLVMValueRef, arg_count);
for_array(i, ce->args) {
lbValue arg = lb_build_expr(p, ce->args[i]);
arg = lb_emit_conv(p, arg, t_uintptr);
args[i] = arg.value;
}
LLVMTypeRef llvm_uintptr = lb_type(p->module, t_uintptr);
LLVMTypeRef *llvm_arg_types = gb_alloc_array(permanent_allocator(), LLVMTypeRef, arg_count);
for (unsigned i = 0; i < arg_count; i++) {
llvm_arg_types[i] = llvm_uintptr;
}
LLVMTypeRef func_type = LLVMFunctionType(llvm_uintptr, llvm_arg_types, arg_count, false);
LLVMValueRef inline_asm = nullptr;
switch (build_context.metrics.arch) {
case TargetArch_amd64:
{
GB_ASSERT(arg_count <= 7);
char asm_string[] = "syscall";
gbString constraints = gb_string_make(heap_allocator(), "={rax}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"rax",
"rdi",
"rsi",
"rdx",
"r10",
"r8",
"r9"
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
// The SYSCALL instruction stores the address of the
// following instruction into RCX, and RFLAGS in R11.
//
// RSP is not saved, but at least on Linux it appears
// that the kernel system-call handler does the right
// thing.
//
// Some but not all system calls will additionally
// clobber memory.
//
// TODO: FreeBSD is different and will also clobber
// R8, R9, and R10. Additionally CF is used to
// indicate an error instead of -errno.
constraints = gb_string_appendc(constraints, ",~{rcx},~{r11},~{memory}");
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
break;
case TargetArch_i386:
{
GB_ASSERT(arg_count <= 7);
char asm_string_default[] = "int $0x80";
char *asm_string = asm_string_default;
gbString constraints = gb_string_make(heap_allocator(), "={eax}");
for (unsigned i = 0; i < gb_min(arg_count, 6); i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"eax",
"ebx",
"ecx",
"edx",
"esi",
"edi",
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
if (arg_count == 7) {
char asm_string7[] = "push %[arg6]\npush %%ebp\nmov 4(%%esp), %%ebp\nint $0x80\npop %%ebp\nadd $4, %%esp";
asm_string = asm_string7;
constraints = gb_string_appendc(constraints, ",rm");
}
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
break;
case TargetArch_arm64:
{
GB_ASSERT(arg_count <= 7);
if(build_context.metrics.os == TargetOs_darwin) {
char asm_string[] = "svc #0x80";
gbString constraints = gb_string_make(heap_allocator(), "={x0}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"x16",
"x0",
"x1",
"x2",
"x3",
"x4",
"x5",
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
} else {
char asm_string[] = "svc #0";
gbString constraints = gb_string_make(heap_allocator(), "={x0}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"x8",
"x0",
"x1",
"x2",
"x3",
"x4",
"x5",
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
}
break;
case TargetArch_arm32:
{
// TODO(bill): Check this is correct
GB_ASSERT(arg_count <= 7);
char asm_string[] = "svc #0";
gbString constraints = gb_string_make(heap_allocator(), "={r0}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"r8",
"r0",
"r1",
"r2",
"r3",
"r4",
"r5",
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
break;
default:
GB_PANIC("Unsupported platform");
}
lbValue res = {};
res.value = LLVMBuildCall2(p->builder, func_type, inline_asm, args, arg_count, "");
res.type = t_uintptr;
return res;
}
case BuiltinProc_objc_send:
return lb_handle_objc_send(p, expr);
case BuiltinProc_objc_find_selector: return lb_handle_objc_find_selector(p, expr);
case BuiltinProc_objc_find_class: return lb_handle_objc_find_class(p, expr);
case BuiltinProc_objc_register_selector: return lb_handle_objc_register_selector(p, expr);
case BuiltinProc_objc_register_class: return lb_handle_objc_register_class(p, expr);
case BuiltinProc_constant_utf16_cstring:
{
auto const encode_surrogate_pair = [](Rune r, u16 *r1, u16 *r2) {
if (r < 0x10000 || r > 0x10ffff) {
*r1 = 0xfffd;
*r2 = 0xfffd;
} else {
r -= 0x10000;
*r1 = 0xd800 + ((r>>10)&0x3ff);
*r2 = 0xdc00 + (r&0x3ff);
}
};
lbModule *m = p->module;
auto tav = type_and_value_of_expr(ce->args[0]);
GB_ASSERT(tav.value.kind == ExactValue_String);
String value = tav.value.value_string;
LLVMTypeRef llvm_u16 = lb_type(m, t_u16);
isize max_len = value.len*2 + 1;
LLVMValueRef *buffer = gb_alloc_array(temporary_allocator(), LLVMValueRef, max_len);
isize n = 0;
while (value.len > 0) {
Rune r = 0;
isize w = gb_utf8_decode(value.text, value.len, &r);
value.text += w;
value.len -= w;
if ((0 <= r && r < 0xd800) || (0xe000 <= r && r < 0x10000)) {
buffer[n++] = LLVMConstInt(llvm_u16, cast(u16)r, false);
} else if (0x10000 <= r && r <= 0x10ffff) {
u16 r1, r2;
encode_surrogate_pair(r, &r1, &r2);
buffer[n++] = LLVMConstInt(llvm_u16, r1, false);
buffer[n++] = LLVMConstInt(llvm_u16, r2, false);
} else {
buffer[n++] = LLVMConstInt(llvm_u16, 0xfffd, false);
}
}
buffer[n++] = LLVMConstInt(llvm_u16, 0, false);
LLVMValueRef array = LLVMConstArray(llvm_u16, buffer, cast(unsigned int)n);
char *name = nullptr;
{
isize max_len = 7+8+1;
name = gb_alloc_array(permanent_allocator(), char, max_len);
u32 id = m->gen->global_array_index.fetch_add(1);
isize len = gb_snprintf(name, max_len, "csbs$%x", id);
len -= 1;
}
LLVMTypeRef type = LLVMTypeOf(array);
LLVMValueRef global_data = LLVMAddGlobal(m->mod, type, name);
LLVMSetInitializer(global_data, array);
LLVMSetLinkage(global_data, LLVMInternalLinkage);
LLVMValueRef indices[] = {
LLVMConstInt(lb_type(m, t_u32), 0, false),
LLVMConstInt(lb_type(m, t_u32), 0, false),
};
lbValue res = {};
res.type = tv.type;
res.value = LLVMBuildInBoundsGEP2(p->builder, type, global_data, indices, gb_count_of(indices), "");
return res;
}
case BuiltinProc_wasm_memory_grow:
{
char const *name = "llvm.wasm.memory.grow";
LLVMTypeRef types[1] = {
lb_type(p->module, t_uintptr),
};
LLVMValueRef args[2] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_uintptr).value;
args[1] = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t_uintptr).value;
lbValue res = {};
res.type = tv.type;
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_wasm_memory_size:
{
char const *name = "llvm.wasm.memory.size";
LLVMTypeRef types[1] = {
lb_type(p->module, t_uintptr),
};
LLVMValueRef args[1] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_uintptr).value;
lbValue res = {};
res.type = tv.type;
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_wasm_memory_atomic_wait32:
{
char const *name = "llvm.wasm.memory.atomic.wait32";
LLVMTypeRef types[1] = {
lb_type(p->module, t_u32),
};
Type *t_u32_ptr = alloc_type_pointer(t_u32);
LLVMValueRef args[3] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_u32_ptr).value;
args[1] = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t_u32).value;
args[2] = lb_emit_conv(p, lb_build_expr(p, ce->args[2]), t_i64).value;
lbValue res = {};
res.type = tv.type;
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_wasm_memory_atomic_notify32:
{
char const *name = "llvm.wasm.memory.atomic.notify";
LLVMTypeRef types[1] = {
lb_type(p->module, t_u32),
};
Type *t_u32_ptr = alloc_type_pointer(t_u32);
LLVMValueRef args[2] = {
lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_u32_ptr).value,
lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t_u32).value };
lbValue res = {};
res.type = tv.type;
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_x86_cpuid:
{
Type *param_types[2] = {t_u32, t_u32};
Type *type = alloc_type_proc_from_types(param_types, gb_count_of(param_types), tv.type, false, ProcCC_None);
LLVMTypeRef func_type = lb_get_procedure_raw_type(p->module, type);
LLVMValueRef the_asm = llvm_get_inline_asm(
func_type,
str_lit("cpuid"),
str_lit("={ax},={bx},={cx},={dx},{ax},{cx}"),
true
);
GB_ASSERT(the_asm != nullptr);
LLVMValueRef args[2] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_u32).value;
args[1] = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t_u32).value;
lbValue res = {};
res.type = tv.type;
res.value = LLVMBuildCall2(p->builder, func_type, the_asm, args, gb_count_of(args), "");
return res;
}
case BuiltinProc_x86_xgetbv:
{
Type *type = alloc_type_proc_from_types(&t_u32, 1, tv.type, false, ProcCC_None);
LLVMTypeRef func_type = lb_get_procedure_raw_type(p->module, type);
LLVMValueRef the_asm = llvm_get_inline_asm(
func_type,
str_lit("xgetbv"),
str_lit("={ax},={dx},{cx}"),
true
);
GB_ASSERT(the_asm != nullptr);
LLVMValueRef args[1] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_u32).value;
lbValue res = {};
res.type = tv.type;
res.value = LLVMBuildCall2(p->builder, func_type, the_asm, args, gb_count_of(args), "");
return res;
}
case BuiltinProc_valgrind_client_request:
{
lbValue args[7] = {};
for (isize i = 0; i < 7; i++) {
args[i] = lb_emit_conv(p, lb_build_expr(p, ce->args[i]), t_uintptr);
}
if (!build_context.ODIN_VALGRIND_SUPPORT) {
return args[0];
}
lbValue array = lb_generate_local_array(p, t_uintptr, 6, false);
for (isize i = 0; i < 6; i++) {
lbValue gep = lb_emit_array_epi(p, array, i);
lb_emit_store(p, gep, args[i+1]);
}
switch (build_context.metrics.arch) {
case TargetArch_amd64:
{
Type *param_types[2] = {};
param_types[0] = t_uintptr;
param_types[1] = array.type;
Type *type = alloc_type_proc_from_types(param_types, gb_count_of(param_types), t_uintptr, false, ProcCC_None);
LLVMTypeRef func_type = lb_get_procedure_raw_type(p->module, type);
LLVMValueRef the_asm = llvm_get_inline_asm(
func_type,
str_lit("rolq $3, %rdi; rolq $13, %rdi\n rolq $61, %rdi; rolq $51, %rdi\n xchgq %rbx, %rbx"),
str_lit("={rdx},{rdx},{rax},cc,memory"),
true
);
LLVMValueRef asm_args[2] = {};
asm_args[0] = args[0].value;
asm_args[1] = array.value;
lbValue res = {};
res.type = t_uintptr;
res.value = LLVMBuildCall2(p->builder, func_type, the_asm, asm_args, gb_count_of(asm_args), "");
return res;
}
break;
default:
GB_PANIC("Unsupported architecture: %.*s", LIT(target_arch_names[build_context.metrics.arch]));
break;
}
}
}
GB_PANIC("Unhandled built-in procedure %.*s", LIT(builtin_procs[id].name));
return {};
}
lbValue lb_handle_param_value(lbProcedure *p, Type *parameter_type, ParameterValue const &param_value, TokenPos const &pos) {
switch (param_value.kind) {
case ParameterValue_Constant:
if (is_type_constant_type(parameter_type)) {
auto res = lb_const_value(p->module, parameter_type, param_value.value);
return res;
} else {
ExactValue ev = param_value.value;
lbValue arg = {};
Type *type = type_of_expr(param_value.original_ast_expr);
if (type != nullptr) {
arg = lb_const_value(p->module, type, ev);
} else {
arg = lb_const_value(p->module, parameter_type, param_value.value);
}
return lb_emit_conv(p, arg, parameter_type);
}
case ParameterValue_Nil:
return lb_const_nil(p->module, parameter_type);
case ParameterValue_Location:
{
String proc_name = {};
if (p->entity != nullptr) {
proc_name = p->entity->token.string;
}
return lb_emit_source_code_location_as_global(p, proc_name, pos);
}
case ParameterValue_Value:
return lb_build_expr(p, param_value.ast_value);
}
return lb_const_nil(p->module, parameter_type);
}
lbValue lb_build_call_expr_internal(lbProcedure *p, Ast *expr);
lbValue lb_build_call_expr(lbProcedure *p, Ast *expr) {
expr = unparen_expr(expr);
ast_node(ce, CallExpr, expr);
lbValue res = lb_build_call_expr_internal(p, expr);
if (ce->optional_ok_one) { // TODO(bill): Minor hack for #optional_ok procedures
GB_ASSERT(is_type_tuple(res.type));
GB_ASSERT(res.type->Tuple.variables.count == 2);
return lb_emit_struct_ev(p, res, 0);
}
return res;
}
lbValue lb_build_call_expr_internal(lbProcedure *p, Ast *expr) {
lbModule *m = p->module;
TypeAndValue tv = type_and_value_of_expr(expr);
ast_node(ce, CallExpr, expr);
TypeAndValue proc_tv = type_and_value_of_expr(ce->proc);
AddressingMode proc_mode = proc_tv.mode;
if (proc_mode == Addressing_Type) {
GB_ASSERT(ce->args.count == 1);
lbValue x = lb_build_expr(p, ce->args[0]);
lbValue y = lb_emit_conv(p, x, tv.type);
return y;
}
Ast *proc_expr = unparen_expr(ce->proc);
if (proc_mode == Addressing_Builtin) {
Entity *e = entity_of_node(proc_expr);
BuiltinProcId id = BuiltinProc_Invalid;
if (e != nullptr) {
id = cast(BuiltinProcId)e->Builtin.id;
} else {
id = BuiltinProc_DIRECTIVE;
}
return lb_build_builtin_proc(p, expr, tv, id);
}
// NOTE(bill): Regular call
lbValue value = {};
Entity *proc_entity = entity_of_node(proc_expr);
if (proc_entity != nullptr) {
if (proc_entity->flags & EntityFlag_Disabled) {
GB_ASSERT(tv.type == nullptr);
return {};
}
}
if (proc_expr->tav.mode == Addressing_Constant) {
ExactValue v = proc_expr->tav.value;
switch (v.kind) {
case ExactValue_Integer:
{
u64 u = big_int_to_u64(&v.value_integer);
lbValue x = {};
x.value = LLVMConstInt(lb_type(m, t_uintptr), u, false);
x.type = t_uintptr;
x = lb_emit_conv(p, x, t_rawptr);
value = lb_emit_conv(p, x, proc_expr->tav.type);
break;
}
case ExactValue_Pointer:
{
u64 u = cast(u64)v.value_pointer;
lbValue x = {};
x.value = LLVMConstInt(lb_type(m, t_uintptr), u, false);
x.type = t_uintptr;
x = lb_emit_conv(p, x, t_rawptr);
value = lb_emit_conv(p, x, proc_expr->tav.type);
break;
}
}
}
if (value.value == nullptr) {
value = lb_build_expr(p, proc_expr);
}
GB_ASSERT(value.value != nullptr);
Type *proc_type_ = base_type(value.type);
GB_ASSERT(proc_type_->kind == Type_Proc);
TypeProc *pt = &proc_type_->Proc;
if (is_call_expr_field_value(ce)) {
auto args = array_make<lbValue>(permanent_allocator(), pt->param_count);
for_array(arg_index, ce->args) {
Ast *arg = ce->args[arg_index];
ast_node(fv, FieldValue, arg);
GB_ASSERT(fv->field->kind == Ast_Ident);
String name = fv->field->Ident.token.string;
isize index = lookup_procedure_parameter(pt, name);
GB_ASSERT(index >= 0);
TypeAndValue tav = type_and_value_of_expr(fv->value);
if (tav.mode == Addressing_Type) {
args[index] = lb_const_nil(m, tav.type);
} else {
args[index] = lb_build_expr(p, fv->value);
}
}
TypeTuple *params = &pt->params->Tuple;
for (isize i = 0; i < args.count; i++) {
Entity *e = params->variables[i];
if (e->kind == Entity_TypeName) {
args[i] = lb_const_nil(m, e->type);
} else if (e->kind == Entity_Constant) {
continue;
} else {
GB_ASSERT(e->kind == Entity_Variable);
if (args[i].value == nullptr) {
args[i] = lb_handle_param_value(p, e->type, e->Variable.param_value, ast_token(expr).pos);
} else {
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
}
for (isize i = 0; i < args.count; i++) {
Entity *e = params->variables[i];
if (args[i].type == nullptr) {
continue;
} else if (is_type_untyped_nil(args[i].type)) {
args[i] = lb_const_nil(m, e->type);
} else if (is_type_untyped_undef(args[i].type)) {
args[i] = lb_const_undef(m, e->type);
}
}
return lb_emit_call(p, value, args, ce->inlining, p->copy_elision_hint.ast == expr);
}
isize arg_index = 0;
isize arg_count = 0;
for_array(i, ce->args) {
Ast *arg = ce->args[i];
TypeAndValue tav = type_and_value_of_expr(arg);
GB_ASSERT_MSG(tav.mode != Addressing_Invalid, "%s %s %d", expr_to_string(arg), expr_to_string(expr), tav.mode);
GB_ASSERT_MSG(tav.mode != Addressing_ProcGroup, "%s", expr_to_string(arg));
Type *at = tav.type;
if (at->kind == Type_Tuple) {
arg_count += at->Tuple.variables.count;
} else {
arg_count++;
}
}
isize param_count = 0;
if (pt->params) {
GB_ASSERT(pt->params->kind == Type_Tuple);
param_count = pt->params->Tuple.variables.count;
}
auto args = array_make<lbValue>(permanent_allocator(), cast(isize)gb_max(param_count, arg_count));
isize variadic_index = pt->variadic_index;
bool variadic = pt->variadic && variadic_index >= 0;
bool vari_expand = ce->ellipsis.pos.line != 0;
bool is_c_vararg = pt->c_vararg;
String proc_name = {};
if (p->entity != nullptr) {
proc_name = p->entity->token.string;
}
TokenPos pos = ast_token(ce->proc).pos;
TypeTuple *param_tuple = nullptr;
if (pt->params) {
GB_ASSERT(pt->params->kind == Type_Tuple);
param_tuple = &pt->params->Tuple;
}
for_array(i, ce->args) {
Ast *arg = ce->args[i];
TypeAndValue arg_tv = type_and_value_of_expr(arg);
if (arg_tv.mode == Addressing_Type) {
args[arg_index++] = lb_const_nil(m, arg_tv.type);
} else {
lbValue a = lb_build_expr(p, arg);
Type *at = a.type;
if (at->kind == Type_Tuple) {
for_array(i, at->Tuple.variables) {
lbValue v = lb_emit_struct_ev(p, a, cast(i32)i);
args[arg_index++] = v;
}
} else {
args[arg_index++] = a;
}
}
}
if (param_count > 0) {
GB_ASSERT_MSG(pt->params != nullptr, "%s %td", expr_to_string(expr), pt->param_count);
GB_ASSERT(param_count < 1000000);
if (arg_count < param_count) {
isize end = cast(isize)param_count;
if (variadic) {
end = variadic_index;
}
while (arg_index < end) {
Entity *e = param_tuple->variables[arg_index];
GB_ASSERT(e->kind == Entity_Variable);
args[arg_index++] = lb_handle_param_value(p, e->type, e->Variable.param_value, ast_token(expr).pos);
}
}
if (is_c_vararg) {
GB_ASSERT(variadic);
GB_ASSERT(!vari_expand);
isize i = 0;
for (; i < variadic_index; i++) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_Variable) {
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
Type *variadic_type = param_tuple->variables[i]->type;
GB_ASSERT(is_type_slice(variadic_type));
variadic_type = base_type(variadic_type)->Slice.elem;
if (!is_type_any(variadic_type)) {
for (; i < arg_count; i++) {
args[i] = lb_emit_conv(p, args[i], variadic_type);
}
} else {
for (; i < arg_count; i++) {
args[i] = lb_emit_conv(p, args[i], default_type(args[i].type));
}
}
} else if (variadic) {
isize i = 0;
for (; i < variadic_index; i++) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_Variable) {
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
if (!vari_expand) {
Type *variadic_type = param_tuple->variables[i]->type;
GB_ASSERT(is_type_slice(variadic_type));
variadic_type = base_type(variadic_type)->Slice.elem;
for (; i < arg_count; i++) {
args[i] = lb_emit_conv(p, args[i], variadic_type);
}
}
} else {
for (isize i = 0; i < param_count; i++) {
Entity *e = param_tuple->variables[i];
if (e->kind == Entity_Variable) {
if (args[i].value == nullptr) {
continue;
}
GB_ASSERT_MSG(args[i].value != nullptr, "%.*s", LIT(e->token.string));
args[i] = lb_emit_conv(p, args[i], e->type);
}
}
}
if (variadic && !vari_expand && !is_c_vararg) {
// variadic call argument generation
Type *slice_type = param_tuple->variables[variadic_index]->type;
Type *elem_type = base_type(slice_type)->Slice.elem;
lbAddr slice = lb_add_local_generated(p, slice_type, true);
isize slice_len = arg_count+1 - (variadic_index+1);
if (slice_len > 0) {
lbAddr base_array = lb_add_local_generated(p, alloc_type_array(elem_type, slice_len), true);
for (isize i = variadic_index, j = 0; i < arg_count; i++, j++) {
lbValue addr = lb_emit_array_epi(p, base_array.addr, cast(i32)j);
lb_emit_store(p, addr, args[i]);
}
lbValue base_elem = lb_emit_array_epi(p, base_array.addr, 0);
lbValue len = lb_const_int(m, t_int, slice_len);
lb_fill_slice(p, slice, base_elem, len);
}
arg_count = param_count;
args[variadic_index] = lb_addr_load(p, slice);
}
}
if (variadic && variadic_index+1 < param_count) {
for (isize i = variadic_index+1; i < param_count; i++) {
Entity *e = param_tuple->variables[i];
args[i] = lb_handle_param_value(p, e->type, e->Variable.param_value, ast_token(expr).pos);
}
}
isize final_count = param_count;
if (is_c_vararg) {
final_count = arg_count;
}
if (param_tuple != nullptr) {
for (isize i = 0; i < gb_min(args.count, param_tuple->variables.count); i++) {
Entity *e = param_tuple->variables[i];
if (args[i].type == nullptr) {
continue;
} else if (is_type_untyped_nil(args[i].type)) {
args[i] = lb_const_nil(m, e->type);
} else if (is_type_untyped_undef(args[i].type)) {
args[i] = lb_const_undef(m, e->type);
}
}
}
auto call_args = array_slice(args, 0, final_count);
return lb_emit_call(p, value, call_args, ce->inlining, p->copy_elision_hint.ast == expr);
}