Files
Odin/src/checker/expr.c
2016-12-19 13:18:20 +00:00

4724 lines
127 KiB
C

void check_expr (Checker *c, Operand *operand, AstNode *expression);
void check_multi_expr (Checker *c, Operand *operand, AstNode *expression);
void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression);
ExprKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint);
Type * check_type_extra (Checker *c, AstNode *expression, Type *named_type);
Type * check_type (Checker *c, AstNode *expression);
void check_type_decl (Checker *c, Entity *e, AstNode *type_expr, Type *def);
Entity * check_selector (Checker *c, Operand *operand, AstNode *node);
void check_not_tuple (Checker *c, Operand *operand);
bool check_value_is_expressible(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value);
void convert_to_typed (Checker *c, Operand *operand, Type *target_type, i32 level);
gbString expr_to_string (AstNode *expression);
void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type);
void check_const_decl (Checker *c, Entity *e, AstNode *type_expr, AstNode *init_expr, Type *named_type);
void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body);
void update_expr_type (Checker *c, AstNode *e, Type *type, bool final);
gb_inline Type *check_type(Checker *c, AstNode *expression) {
return check_type_extra(c, expression, NULL);
}
typedef struct DelayedEntity {
AstNode * ident;
Entity * entity;
DeclInfo * decl;
} DelayedEntity;
typedef struct DelayedOtherFields {
Entity **other_fields;
isize other_field_count;
isize other_field_index;
MapEntity *entity_map;
} DelayedOtherFields;
typedef Array(DelayedEntity) DelayedEntities;
void check_local_collect_entities(Checker *c, AstNodeArray nodes, DelayedEntities *delayed_entities, DelayedOtherFields *dof);
void check_local_collect_entities_from_when_stmt(Checker *c, AstNodeWhenStmt *ws, DelayedEntities *delayed_entities, DelayedOtherFields *dof) {
Operand operand = {Addressing_Invalid};
check_expr(c, &operand, ws->cond);
if (operand.mode != Addressing_Invalid && !is_type_boolean(operand.type)) {
error_node(ws->cond, "Non-boolean condition in `when` statement");
}
if (operand.mode != Addressing_Constant) {
error_node(ws->cond, "Non-constant condition in `when` statement");
}
if (ws->body == NULL || ws->body->kind != AstNode_BlockStmt) {
error_node(ws->cond, "Invalid body for `when` statement");
} else {
if (operand.value.kind == ExactValue_Bool &&
operand.value.value_bool) {
check_local_collect_entities(c, ws->body->BlockStmt.stmts, delayed_entities, dof);
} else if (ws->else_stmt) {
switch (ws->else_stmt->kind) {
case AstNode_BlockStmt:
check_local_collect_entities(c, ws->else_stmt->BlockStmt.stmts, delayed_entities, dof);
break;
case AstNode_WhenStmt:
check_local_collect_entities_from_when_stmt(c, &ws->else_stmt->WhenStmt, delayed_entities, dof);
break;
default:
error_node(ws->else_stmt, "Invalid `else` statement in `when` statement");
break;
}
}
}
}
// NOTE(bill): The `dof` is for use within records
void check_local_collect_entities(Checker *c, AstNodeArray nodes, DelayedEntities *delayed_entities, DelayedOtherFields *dof) {
for_array(i, nodes) {
AstNode *node = nodes.e[i];
switch (node->kind) {
case_ast_node(ws, WhenStmt, node);
// Will be handled later
case_end;
case_ast_node(gd, GenericDecl, node);
AstNodeValueSpec empty_spec_ = {0}, *empty_spec = &empty_spec_;
AstNodeValueSpec *last = NULL;
for_array(iota, gd->specs) {
AstNode *spec = gd->specs.e[iota];
switch (spec->kind) {
case_ast_node(vs, ValueSpec, spec);
switch (vs->keyword) {
case Token_var:
break;
case Token_const: {
if (vs->type != NULL || vs->values.count > 0) {
last = vs;
} else if (last == NULL) {
last = empty_spec;
}
for_array(i, vs->names) {
AstNode *name = vs->names.e[i];
if (name->kind != AstNode_Ident) {
error_node(name, "A declaration's name must be an identifier, got %.*s", LIT(ast_node_strings[name->kind]));
continue;
}
ExactValue v = make_exact_value_integer(iota);
Entity *e = make_entity_constant(c->allocator, c->context.scope, name->Ident, NULL, v);
e->identifier = name;
AstNode *init = NULL;
if (i < last->values.count) {
init = last->values.e[i];
}
DeclInfo *di = make_declaration_info(c->allocator, e->scope);
di->type_expr = last->type;
di->init_expr = init;
add_entity_and_decl_info(c, name, e, di);
DelayedEntity delay = {name, e, di};
array_add(delayed_entities, delay);
}
check_arity_match(c, vs, last);
} break;
}
case_end;
}
}
case_end;
case_ast_node(cd, ConstDecl, node);
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
isize entity_count = cd->names.count;
isize entity_index = 0;
Entity **entities = gb_alloc_array(c->tmp_allocator, Entity *, entity_count);
for_array(i, cd->values) {
AstNode *name = cd->names.e[i];
AstNode *value = unparen_expr(cd->values.e[i]);
if (name->kind != AstNode_Ident) {
error_node(name, "A declaration's name must be an identifier, got %.*s", LIT(ast_node_strings[name->kind]));
entities[entity_index++] = NULL;
continue;
}
ExactValue v = {ExactValue_Invalid};
Entity *e = make_entity_constant(c->allocator, c->context.scope, name->Ident, NULL, v);
e->identifier = name;
entities[entity_index++] = e;
DeclInfo *d = make_declaration_info(c->allocator, e->scope);
d->type_expr = cd->type;
d->init_expr = value;
add_entity_and_decl_info(c, name, e, d);
DelayedEntity delay = {name, e, d};
array_add(delayed_entities, delay);
}
isize lhs_count = cd->names.count;
isize rhs_count = cd->values.count;
// TODO(bill): Better error messages or is this good enough?
if (rhs_count == 0 && cd->type == NULL) {
error_node(node, "Missing type or initial expression");
} else if (lhs_count < rhs_count) {
error_node(node, "Extra initial expression");
}
if (dof != NULL) {
// NOTE(bill): Within a record
for_array(i, cd->names) {
Entity *e = entities[i];
if (e == NULL) {
continue;
}
AstNode *name = cd->names.e[i];
if (name->kind != AstNode_Ident) {
continue;
}
Token name_token = name->Ident;
if (str_eq(name_token.string, str_lit("_"))) {
dof->other_fields[dof->other_field_index++] = e;
} else {
HashKey key = hash_string(name_token.string);
if (map_entity_get(dof->entity_map, key) != NULL) {
// TODO(bill): Scope checking already checks the declaration
error(name_token, "`%.*s` is already declared in this record", LIT(name_token.string));
} else {
map_entity_set(dof->entity_map, key, e);
dof->other_fields[dof->other_field_index++] = e;
}
add_entity(c, c->context.scope, name, e);
}
}
}
gb_temp_arena_memory_end(tmp);
case_end;
#if 0
case_ast_node(pd, ProcDecl, node);
if (!ast_node_expect(pd->name, AstNode_Ident)) {
break;
}
Entity *e = make_entity_procedure(c->allocator, c->context.scope, pd->name->Ident, NULL);
e->identifier = pd->name;
DeclInfo *d = make_declaration_info(c->allocator, e->scope);
d->proc_decl = node;
add_entity_and_decl_info(c, pd->name, e, d);
check_entity_decl(c, e, d, NULL, NULL);
case_end;
#endif
case_ast_node(td, TypeDecl, node);
if (!ast_node_expect(td->name, AstNode_Ident)) {
break;
}
if (td->name->kind != AstNode_Ident) {
error_node(td->name, "A declaration's name must be an identifier, got %.*s", LIT(ast_node_strings[td->name->kind]));
continue;
}
Token name_token = td->name->Ident;
Entity *e = make_entity_type_name(c->allocator, c->context.scope, name_token, NULL);
e->identifier = td->name;
DeclInfo *d = make_declaration_info(c->allocator, e->scope);
d->type_expr = td->type;
add_entity_and_decl_info(c, td->name, e, d);
DelayedEntity delay = {td->name, e, d};
array_add(delayed_entities, delay);
if (dof != NULL) {
if (str_eq(name_token.string, str_lit("_"))) {
dof->other_fields[dof->other_field_index++] = e;
} else {
HashKey key = hash_string(name_token.string);
if (map_entity_get(dof->entity_map, key) != NULL) {
// TODO(bill): Scope checking already checks the declaration
error(name_token, "`%.*s` is already declared in this record", LIT(name_token.string));
} else {
map_entity_set(dof->entity_map, key, e);
dof->other_fields[dof->other_field_index++] = e;
}
add_entity(c, c->context.scope, td->name, e);
add_entity_use(c, td->name, e);
}
}
case_end;
}
}
// NOTE(bill): `when` stmts need to be handled after the other as the condition may refer to something
// declared after this stmt in source
for_array(i, nodes) {
AstNode *node = nodes.e[i];
switch (node->kind) {
case_ast_node(ws, WhenStmt, node);
check_local_collect_entities_from_when_stmt(c, ws, delayed_entities, dof);
case_end;
}
}
}
void check_scope_decls(Checker *c, AstNodeArray nodes, isize reserve_size, DelayedOtherFields *dof) {
DelayedEntities delayed_entities;
array_init_reserve(&delayed_entities, heap_allocator(), reserve_size);
check_local_collect_entities(c, nodes, &delayed_entities, dof);
for_array(i, delayed_entities) {
DelayedEntity delayed = delayed_entities.e[i];
if (delayed.entity->kind == Entity_TypeName) {
check_entity_decl(c, delayed.entity, delayed.decl, NULL);
}
}
for_array(i, delayed_entities) {
DelayedEntity delayed = delayed_entities.e[i];
if (delayed.entity->kind == Entity_Constant) {
add_entity_and_decl_info(c, delayed.ident, delayed.entity, delayed.decl);
check_entity_decl(c, delayed.entity, delayed.decl, NULL);
}
}
array_free(&delayed_entities);
}
bool check_is_assignable_to_using_subtype(Type *dst, Type *src) {
bool src_is_ptr;
Type *prev_src = src;
src = type_deref(src);
src_is_ptr = src != prev_src;
src = base_type(src);
if (is_type_struct(src)) {
for (isize i = 0; i < src->Record.field_count; i++) {
Entity *f = src->Record.fields[i];
if (f->kind == Entity_Variable && (f->flags & EntityFlag_Anonymous)) {
if (are_types_identical(dst, f->type)) {
return true;
}
if (src_is_ptr && is_type_pointer(dst)) {
if (are_types_identical(type_deref(dst), f->type)) {
return true;
}
}
bool ok = check_is_assignable_to_using_subtype(dst, f->type);
if (ok) {
return true;
}
}
}
}
return false;
}
bool check_is_assignable_to(Checker *c, Operand *operand, Type *type) {
if (operand->mode == Addressing_Invalid ||
type == t_invalid) {
return true;
}
if (operand->mode == Addressing_Builtin) {
return false;
}
Type *s = operand->type;
if (are_types_identical(s, type)) {
return true;
}
Type *src = base_type(s);
Type *dst = base_type(type);
if (is_type_untyped(src)) {
switch (dst->kind) {
case Type_Basic:
if (operand->mode == Addressing_Constant) {
return check_value_is_expressible(c, operand->value, dst, NULL);
}
if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedBool) {
return is_type_boolean(dst);
}
break;
}
if (type_has_nil(dst)) {
return operand->mode == Addressing_Value && operand->type == t_untyped_nil;
}
}
if (are_types_identical(dst, src) && (!is_type_named(dst) || !is_type_named(src))) {
if (is_type_enum(dst) && is_type_enum(src)) {
return are_types_identical(s, type);
}
return true;
}
if (is_type_maybe(dst)) {
Type *elem = base_type(dst)->Maybe.elem;
return are_types_identical(elem, s);
}
if (is_type_untyped_nil(src)) {
return type_has_nil(dst);
}
// ^T <- rawptr
// TODO(bill): Should C-style (not C++) pointer cast be allowed?
// if (is_type_pointer(dst) && is_type_rawptr(src)) {
// return true;
// }
// rawptr <- ^T
if (is_type_rawptr(dst) && is_type_pointer(src)) {
// TODO(bill): Handle this properly
if (dst != type) {
return false;
}
return true;
}
if (dst->kind == Type_Array && src->kind == Type_Array) {
if (are_types_identical(dst->Array.elem, src->Array.elem)) {
return dst->Array.count == src->Array.count;
}
}
if (dst->kind == Type_Slice && src->kind == Type_Slice) {
if (are_types_identical(dst->Slice.elem, src->Slice.elem)) {
return true;
}
}
if (is_type_union(dst)) {
for (isize i = 0; i < dst->Record.field_count; i++) {
Entity *f = dst->Record.fields[i];
if (are_types_identical(f->type, s)) {
return true;
}
}
}
if (is_type_any(dst)) {
// NOTE(bill): Anything can cast to `Any`
add_type_info_type(c, s);
return true;
}
return false;
}
// NOTE(bill): `content_name` is for debugging and error messages
void check_assignment(Checker *c, Operand *operand, Type *type, String context_name) {
check_not_tuple(c, operand);
if (operand->mode == Addressing_Invalid) {
return;
}
if (is_type_untyped(operand->type)) {
Type *target_type = type;
if (type == NULL || is_type_any(type) || is_type_untyped_nil(type)) {
if (type == NULL && base_type(operand->type) == t_untyped_nil) {
error_node(operand->expr, "Use of untyped nil in %.*s", LIT(context_name));
operand->mode = Addressing_Invalid;
return;
}
add_type_info_type(c, type);
target_type = default_type(operand->type);
}
convert_to_typed(c, operand, target_type, 0);
if (operand->mode == Addressing_Invalid) {
return;
}
}
if (type != NULL) {
if (!check_is_assignable_to(c, operand, type)) {
gbString type_str = type_to_string(type);
gbString op_type_str = type_to_string(operand->type);
gbString expr_str = expr_to_string(operand->expr);
if (operand->mode == Addressing_Builtin) {
// TODO(bill): is this a good enough error message?
error_node(operand->expr,
"Cannot assign builtin procedure `%s` in %.*s",
expr_str,
LIT(context_name));
} else {
// TODO(bill): is this a good enough error message?
error_node(operand->expr,
"Cannot assign value `%s` of type `%s` to `%s` in %.*s",
expr_str,
op_type_str,
type_str,
LIT(context_name));
}
operand->mode = Addressing_Invalid;
gb_string_free(expr_str);
gb_string_free(op_type_str);
gb_string_free(type_str);
return;
}
}
}
void populate_using_entity_map(Checker *c, AstNode *node, Type *t, MapEntity *entity_map) {
t = base_type(type_deref(t));
gbString str = expr_to_string(node);
if (t->kind == Type_Record) {
for (isize i = 0; i < t->Record.field_count; i++) {
Entity *f = t->Record.fields[i];
GB_ASSERT(f->kind == Entity_Variable);
String name = f->token.string;
HashKey key = hash_string(name);
Entity **found = map_entity_get(entity_map, key);
if (found != NULL) {
Entity *e = *found;
// TODO(bill): Better type error
error(e->token, "`%.*s` is already declared in `%s`", LIT(name), str);
} else {
map_entity_set(entity_map, key, f);
add_entity(c, c->context.scope, NULL, f);
if (f->flags & EntityFlag_Anonymous) {
populate_using_entity_map(c, node, f->type, entity_map);
}
}
}
}
gb_string_free(str);
}
void check_fields(Checker *c, AstNode *node, AstNodeArray decls,
Entity **fields, isize field_count,
String context) {
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
MapEntity entity_map = {0};
map_entity_init_with_reserve(&entity_map, c->tmp_allocator, 2*field_count);
isize other_field_index = 0;
Entity *using_index_expr = NULL;
if (node->kind == AstNode_UnionType) {
isize field_index = 0;
fields[field_index++] = make_entity_type_name(c->allocator, c->context.scope, empty_token, NULL);
for_array(decl_index, decls) {
AstNode *decl = decls.e[decl_index];
if (decl->kind != AstNode_Parameter) {
continue;
}
ast_node(p, Parameter, decl);
Type *base_type = check_type_extra(c, p->type, NULL);
for_array(name_index, p->names) {
AstNode *name = p->names.e[name_index];
if (!ast_node_expect(name, AstNode_Ident)) {
continue;
}
Token name_token = name->Ident;
Type *type = make_type_named(c->allocator, name_token.string, base_type, NULL);
Entity *e = make_entity_type_name(c->allocator, c->context.scope, name_token, type);
type->Named.type_name = e;
add_entity(c, c->context.scope, name, e);
if (str_eq(name_token.string, str_lit("_"))) {
error(name_token, "`_` cannot be used a union subtype");
continue;
}
HashKey key = hash_string(name_token.string);
if (map_entity_get(&entity_map, key) != NULL) {
// TODO(bill): Scope checking already checks the declaration
error(name_token, "`%.*s` is already declared in this union", LIT(name_token.string));
} else {
map_entity_set(&entity_map, key, e);
fields[field_index++] = e;
}
add_entity_use(c, name, e);
}
}
} else {
isize field_index = 0;
for_array(decl_index, decls) {
AstNode *decl = decls.e[decl_index];
if (decl->kind != AstNode_Parameter) {
continue;
}
ast_node(param, Parameter, decl);
Type *type = check_type_extra(c, param->type, NULL);
if (param->is_using) {
if (param->names.count > 1) {
error_node(param->names.e[0], "Cannot apply `using` to more than one of the same type");
}
}
for_array(name_index, param->names) {
AstNode *name = param->names.e[name_index];
if (!ast_node_expect(name, AstNode_Ident)) {
continue;
}
Token name_token = name->Ident;
Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type, param->is_using, cast(i32)field_index);
e->identifier = name;
if (str_eq(name_token.string, str_lit("_"))) {
fields[field_index++] = e;
} else {
HashKey key = hash_string(name_token.string);
if (map_entity_get(&entity_map, key) != NULL) {
// TODO(bill): Scope checking already checks the declaration
error(name_token, "`%.*s` is already declared in this type", LIT(name_token.string));
} else {
map_entity_set(&entity_map, key, e);
fields[field_index++] = e;
add_entity(c, c->context.scope, name, e);
}
add_entity_use(c, name, e);
}
}
if (param->is_using) {
Type *t = base_type(type_deref(type));
if (!is_type_struct(t) && !is_type_raw_union(t) &&
param->names.count >= 1 &&
param->names.e[0]->kind == AstNode_Ident) {
Token name_token = param->names.e[0]->Ident;
if (is_type_indexable(t)) {
bool ok = true;
for_array(emi, entity_map.entries) {
Entity *e = entity_map.entries.e[emi].value;
if (e->kind == Entity_Variable && e->flags & EntityFlag_Anonymous) {
if (is_type_indexable(e->type)) {
if (e->identifier != param->names.e[0]) {
ok = false;
using_index_expr = e;
break;
}
}
}
}
if (ok) {
using_index_expr = fields[field_index-1];
} else {
fields[field_index-1]->flags &= ~EntityFlag_Anonymous;
error(name_token, "Previous `using` for an index expression `%.*s`", LIT(name_token.string));
}
} else {
error(name_token, "`using` on a field `%.*s` must be a `struct` or `raw_union`", LIT(name_token.string));
continue;
}
}
populate_using_entity_map(c, node, type, &entity_map);
}
}
}
gb_temp_arena_memory_end(tmp);
}
// TODO(bill): Cleanup struct field reordering
// TODO(bill): Inline sorting procedure?
gb_global BaseTypeSizes __checker_sizes = {0};
gb_global gbAllocator __checker_allocator = {0};
GB_COMPARE_PROC(cmp_struct_entity_size) {
// Rule:
// Biggest to smallest alignment
// if same alignment: biggest to smallest size
// if same size: order by source order
Entity *x = *(Entity **)a;
Entity *y = *(Entity **)b;
GB_ASSERT(x != NULL);
GB_ASSERT(y != NULL);
GB_ASSERT(x->kind == Entity_Variable);
GB_ASSERT(y->kind == Entity_Variable);
i64 xa = type_align_of(__checker_sizes, __checker_allocator, x->type);
i64 ya = type_align_of(__checker_sizes, __checker_allocator, y->type);
i64 xs = type_size_of(__checker_sizes, __checker_allocator, x->type);
i64 ys = type_size_of(__checker_sizes, __checker_allocator, y->type);
if (xa == ya) {
if (xs == ys) {
i32 diff = x->Variable.field_index - y->Variable.field_index;
return diff < 0 ? -1 : diff > 0;
}
return xs > ys ? -1 : xs < ys;
}
return xa > ya ? -1 : xa < ya;
}
void check_struct_type(Checker *c, Type *struct_type, AstNode *node) {
GB_ASSERT(is_type_struct(struct_type));
ast_node(st, StructType, node);
isize field_count = 0;
for_array(field_index, st->fields) {
AstNode *field = st->fields.e[field_index];
switch (field->kind) {
case_ast_node(p, Parameter, field);
field_count += p->names.count;
case_end;
}
}
Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count);
check_fields(c, node, st->fields, fields, field_count, str_lit("struct"));
struct_type->Record.struct_is_packed = st->is_packed;
struct_type->Record.struct_is_ordered = st->is_ordered;
struct_type->Record.fields = fields;
struct_type->Record.fields_in_src_order = fields;
struct_type->Record.field_count = field_count;
if (!st->is_packed && !st->is_ordered) {
// NOTE(bill): Reorder fields for reduced size/performance
Entity **reordered_fields = gb_alloc_array(c->allocator, Entity *, field_count);
for (isize i = 0; i < field_count; i++) {
reordered_fields[i] = struct_type->Record.fields_in_src_order[i];
}
// NOTE(bill): Hacky thing
// TODO(bill): Probably make an inline sorting procedure rather than use global variables
__checker_sizes = c->sizes;
__checker_allocator = c->allocator;
// NOTE(bill): compound literal order must match source not layout
gb_sort_array(reordered_fields, field_count, cmp_struct_entity_size);
for (isize i = 0; i < field_count; i++) {
reordered_fields[i]->Variable.field_index = i;
}
struct_type->Record.fields = reordered_fields;
}
type_set_offsets(c->sizes, c->allocator, struct_type);
}
void check_union_type(Checker *c, Type *union_type, AstNode *node) {
GB_ASSERT(is_type_union(union_type));
ast_node(ut, UnionType, node);
isize field_count = 1;
for_array(field_index, ut->fields) {
AstNode *field = ut->fields.e[field_index];
switch (field->kind) {
case_ast_node(p, Parameter, field);
field_count += p->names.count;
case_end;
}
}
Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count);
check_fields(c, node, ut->fields, fields, field_count, str_lit("union"));
union_type->Record.fields = fields;
union_type->Record.field_count = field_count;
}
void check_raw_union_type(Checker *c, Type *union_type, AstNode *node) {
GB_ASSERT(node->kind == AstNode_RawUnionType);
GB_ASSERT(is_type_raw_union(union_type));
ast_node(ut, RawUnionType, node);
isize field_count = 0;
for_array(field_index, ut->fields) {
AstNode *field = ut->fields.e[field_index];
switch (field->kind) {
case_ast_node(p, Parameter, field);
field_count += p->names.count;
case_end;
}
}
Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count);
check_fields(c, node, ut->fields, fields, field_count, str_lit("raw_union"));
union_type->Record.fields = fields;
union_type->Record.field_count = field_count;
}
GB_COMPARE_PROC(cmp_enum_order) {
// Rule:
// Biggest to smallest alignment
// if same alignment: biggest to smallest size
// if same size: order by source order
Entity *x = *(Entity **)a;
Entity *y = *(Entity **)b;
GB_ASSERT(x != NULL);
GB_ASSERT(y != NULL);
GB_ASSERT(x->kind == Entity_Constant);
GB_ASSERT(y->kind == Entity_Constant);
GB_ASSERT(x->Constant.value.kind == ExactValue_Integer);
GB_ASSERT(y->Constant.value.kind == ExactValue_Integer);
i64 i = x->Constant.value.value_integer;
i64 j = y->Constant.value.value_integer;
return i < j ? -1 : i > j;
}
void check_enum_type(Checker *c, Type *enum_type, Type *named_type, AstNode *node) {
GB_ASSERT(node->kind == AstNode_EnumType);
GB_ASSERT(is_type_enum(enum_type));
ast_node(et, EnumType, node);
Type *base_type = t_int;
if (et->base_type != NULL) {
base_type = check_type(c, et->base_type);
}
if (base_type == NULL || !is_type_integer(base_type)) {
error(et->token, "Base type for enumeration must be an integer");
return;
} else
if (base_type == NULL) {
base_type = t_int;
}
enum_type->Record.enum_base = base_type;
Entity **fields = gb_alloc_array(c->allocator, Entity *, et->fields.count);
isize field_index = 0;
ExactValue iota = make_exact_value_integer(-1);
i64 min_value = 0;
i64 max_value = 0;
Type *constant_type = enum_type;
if (named_type != NULL) {
constant_type = named_type;
}
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
MapEntity entity_map = {0};
map_entity_init_with_reserve(&entity_map, c->tmp_allocator, 2*(et->fields.count));
Entity *blank_entity = make_entity_constant(c->allocator, c->context.scope, blank_token, constant_type, make_exact_value_integer(0));;
for_array(i, et->fields) {
AstNode *field = et->fields.e[i];
if (!ast_node_expect(field, AstNode_FieldValue)) {
continue;
}
ast_node(f, FieldValue, field);
Token name_token = f->field->Ident;
if (str_eq(name_token.string, str_lit("count"))) {
error(name_token, "`count` is a reserved identifier for enumerations");
fields[field_index++] = blank_entity;
continue;
} else if (str_eq(name_token.string, str_lit("min_value"))) {
error(name_token, "`min_value` is a reserved identifier for enumerations");
fields[field_index++] = blank_entity;
continue;
} else if (str_eq(name_token.string, str_lit("max_value"))) {
error(name_token, "`max_value` is a reserved identifier for enumerations");
fields[field_index++] = blank_entity;
continue;
}
Operand o = {0};
if (f->value != NULL) {
check_expr(c, &o, f->value);
if (o.mode != Addressing_Constant) {
error_node(f->value, "Enumeration value must be a constant integer %d");
o.mode = Addressing_Invalid;
}
if (o.mode != Addressing_Invalid) {
check_assignment(c, &o, constant_type, str_lit("enumeration"));
}
if (o.mode != Addressing_Invalid) {
iota = o.value;
} else {
iota = exact_binary_operator_value(Token_Add, iota, make_exact_value_integer(1));
}
} else {
iota = exact_binary_operator_value(Token_Add, iota, make_exact_value_integer(1));
}
Entity *e = make_entity_constant(c->allocator, c->context.scope, name_token, constant_type, iota);
if (min_value > iota.value_integer) {
min_value = iota.value_integer;
}
if (max_value < iota.value_integer) {
max_value = iota.value_integer;
}
HashKey key = hash_string(name_token.string);
if (map_entity_get(&entity_map, key)) {
// TODO(bill): Scope checking already checks the declaration
error(name_token, "`%.*s` is already declared in this enumeration", LIT(name_token.string));
} else {
map_entity_set(&entity_map, key, e);
add_entity(c, c->context.scope, NULL, e);
fields[field_index++] = e;
}
add_entity_use(c, f->field, e);
}
GB_ASSERT(field_index <= et->fields.count);
gb_sort_array(fields, field_index, cmp_enum_order);
enum_type->Record.enum_values = fields;
enum_type->Record.enum_value_count = field_index;
enum_type->Record.enum_count = make_entity_constant(c->allocator, NULL,
make_token_ident(str_lit("count")), t_int, make_exact_value_integer(enum_type->Record.enum_value_count));
enum_type->Record.min_value = make_entity_constant(c->allocator, NULL,
make_token_ident(str_lit("min_value")), constant_type, make_exact_value_integer(min_value));
enum_type->Record.max_value = make_entity_constant(c->allocator, NULL,
make_token_ident(str_lit("max_value")), constant_type, make_exact_value_integer(max_value));
gb_temp_arena_memory_end(tmp);
}
Type *check_get_params(Checker *c, Scope *scope, AstNodeArray params, bool *is_variadic_) {
if (params.count == 0) {
return NULL;
}
bool is_variadic = false;
Type *tuple = make_type_tuple(c->allocator);
isize variable_count = 0;
for_array(i, params) {
AstNode *field = params.e[i];
if (!ast_node_expect(field, AstNode_Parameter)) {
continue;
}
ast_node(p, Parameter, field);
variable_count += p->names.count;
}
Entity **variables = gb_alloc_array(c->allocator, Entity *, variable_count);
isize variable_index = 0;
for_array(i, params) {
if (params.e[i]->kind != AstNode_Parameter) {
continue;
}
ast_node(p, Parameter, params.e[i]);
AstNode *type_expr = p->type;
if (type_expr) {
if (type_expr->kind == AstNode_Ellipsis) {
type_expr = type_expr->Ellipsis.expr;
if (i+1 == params.count) {
is_variadic = true;
} else {
error_node(params.e[i], "Invalid AST: Invalid variadic parameter");
}
}
Type *type = check_type(c, type_expr);
for_array(j, p->names) {
AstNode *name = p->names.e[j];
if (ast_node_expect(name, AstNode_Ident)) {
Entity *param = make_entity_param(c->allocator, scope, name->Ident, type, p->is_using);
add_entity(c, scope, name, param);
variables[variable_index++] = param;
}
}
}
}
variable_count = variable_index;
if (is_variadic) {
GB_ASSERT(params.count > 0);
// NOTE(bill): Change last variadic parameter to be a slice
// Custom Calling convention for variadic parameters
Entity *end = variables[variable_count-1];
end->type = make_type_slice(c->allocator, end->type);
}
tuple->Tuple.variables = variables;
tuple->Tuple.variable_count = variable_count;
if (is_variadic_) *is_variadic_ = is_variadic;
return tuple;
}
Type *check_get_results(Checker *c, Scope *scope, AstNodeArray results) {
if (results.count == 0) {
return NULL;
}
Type *tuple = make_type_tuple(c->allocator);
Entity **variables = gb_alloc_array(c->allocator, Entity *, results.count);
isize variable_index = 0;
for_array(i, results) {
AstNode *item = results.e[i];
Type *type = check_type(c, item);
Token token = ast_node_token(item);
token.string = str_lit(""); // NOTE(bill): results are not named
// TODO(bill): Should I have named results?
Entity *param = make_entity_param(c->allocator, scope, token, type, false);
// NOTE(bill): No need to record
variables[variable_index++] = param;
}
tuple->Tuple.variables = variables;
tuple->Tuple.variable_count = results.count;
return tuple;
}
void check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node) {
ast_node(pt, ProcType, proc_type_node);
bool variadic = false;
Type *params = check_get_params(c, c->context.scope, pt->params, &variadic);
Type *results = check_get_results(c, c->context.scope, pt->results);
isize param_count = 0;
isize result_count = 0;
if (params) param_count = params ->Tuple.variable_count;
if (results) result_count = results->Tuple.variable_count;
type->Proc.scope = c->context.scope;
type->Proc.params = params;
type->Proc.param_count = param_count;
type->Proc.results = results;
type->Proc.result_count = result_count;
type->Proc.variadic = variadic;
// type->Proc.implicit_context = implicit_context;
}
void check_identifier(Checker *c, Operand *o, AstNode *n, Type *named_type) {
GB_ASSERT(n->kind == AstNode_Ident);
o->mode = Addressing_Invalid;
o->expr = n;
Entity *e = scope_lookup_entity(c->context.scope, n->Ident.string);
if (e == NULL) {
if (str_eq(n->Ident.string, str_lit("_"))) {
error(n->Ident, "`_` cannot be used as a value type");
} else {
error(n->Ident, "Undeclared name: %.*s", LIT(n->Ident.string));
}
o->type = t_invalid;
o->mode = Addressing_Invalid;
if (named_type != NULL) {
set_base_type(named_type, t_invalid);
}
return;
}
add_entity_use(c, n, e);
check_entity_decl(c, e, NULL, named_type);
if (e->type == NULL) {
compiler_error("Compiler error: How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(n->Ident.string));
return;
}
Type *type = e->type;
switch (e->kind) {
case Entity_Constant:
if (type == t_invalid) {
o->type = t_invalid;
return;
}
if (e == e_iota) {
if (c->context.iota.kind == ExactValue_Invalid) {
error(e->token, "Use of `iota` outside a constant declaration is not allowed");
return;
}
o->value = c->context.iota;
} else {
o->value = e->Constant.value;
}
if (o->value.kind == ExactValue_Invalid) {
return;
}
o->mode = Addressing_Constant;
break;
case Entity_Variable:
e->flags |= EntityFlag_Used;
if (type == t_invalid) {
o->type = t_invalid;
return;
}
#if 0
if (e->Variable.param) {
o->mode = Addressing_Value;
} else {
o->mode = Addressing_Variable;
}
#else
o->mode = Addressing_Variable;
#endif
break;
case Entity_TypeName: {
o->mode = Addressing_Type;
#if 1
// TODO(bill): Fix cyclical dependancy checker
#endif
} break;
case Entity_Procedure:
o->mode = Addressing_Value;
break;
case Entity_Builtin:
o->builtin_id = e->Builtin.id;
o->mode = Addressing_Builtin;
break;
case Entity_ImportName:
error_node(n, "Use of import `%.*s` not in selector", LIT(e->ImportName.name));
return;
case Entity_Nil:
o->mode = Addressing_Value;
break;
case Entity_ImplicitValue:
o->mode = Addressing_Value;
break;
default:
compiler_error("Compiler error: Unknown EntityKind");
break;
}
o->type = type;
}
i64 check_array_count(Checker *c, AstNode *e) {
if (e == NULL) {
return 0;
}
Operand o = {0};
check_expr(c, &o, e);
if (o.mode != Addressing_Constant) {
if (o.mode != Addressing_Invalid) {
error_node(e, "Array count must be a constant");
}
return 0;
}
if (is_type_untyped(o.type) || is_type_integer(o.type)) {
if (o.value.kind == ExactValue_Integer) {
i64 count = o.value.value_integer;
if (count >= 0) {
return count;
}
error_node(e, "Invalid array count");
return 0;
}
}
error_node(e, "Array count must be an integer");
return 0;
}
Type *check_type_extra(Checker *c, AstNode *e, Type *named_type) {
ExactValue null_value = {ExactValue_Invalid};
Type *type = NULL;
gbString err_str = NULL;
switch (e->kind) {
case_ast_node(i, Ident, e);
Operand o = {0};
check_identifier(c, &o, e, named_type);
switch (o.mode) {
case Addressing_Invalid:
break;
case Addressing_Type: {
type = o.type;
goto end;
} break;
case Addressing_NoValue:
err_str = expr_to_string(e);
error_node(e, "`%s` used as a type", err_str);
break;
default:
err_str = expr_to_string(e);
error_node(e, "`%s` used as a type when not a type", err_str);
break;
}
case_end;
case_ast_node(se, SelectorExpr, e);
Operand o = {0};
check_selector(c, &o, e);
switch (o.mode) {
case Addressing_Invalid:
break;
case Addressing_Type:
GB_ASSERT(o.type != NULL);
type = o.type;
goto end;
case Addressing_NoValue:
err_str = expr_to_string(e);
error_node(e, "`%s` used as a type", err_str);
break;
default:
err_str = expr_to_string(e);
error_node(e, "`%s` is not a type", err_str);
break;
}
case_end;
case_ast_node(pe, ParenExpr, e);
type = check_type_extra(c, pe->expr, named_type);
goto end;
case_end;
case_ast_node(ue, UnaryExpr, e);
if (ue->op.kind == Token_Pointer) {
type = make_type_pointer(c->allocator, check_type(c, ue->expr));
goto end;
} else if (ue->op.kind == Token_Maybe) {
type = make_type_maybe(c->allocator, check_type(c, ue->expr));
goto end;
}
case_end;
case_ast_node(pt, PointerType, e);
Type *elem = check_type(c, pt->type);
type = make_type_pointer(c->allocator, elem);
goto end;
case_end;
case_ast_node(mt, MaybeType, e);
Type *elem = check_type(c, mt->type);
type = make_type_maybe(c->allocator, elem);
goto end;
case_end;
case_ast_node(at, ArrayType, e);
if (at->count != NULL) {
Type *elem = check_type_extra(c, at->elem, NULL);
type = make_type_array(c->allocator, elem, check_array_count(c, at->count));
} else {
Type *elem = check_type(c, at->elem);
type = make_type_slice(c->allocator, elem);
}
goto end;
case_end;
case_ast_node(vt, VectorType, e);
Type *elem = check_type(c, vt->elem);
Type *be = base_type(elem);
i64 count = check_array_count(c, vt->count);
if (!is_type_boolean(be) && !is_type_numeric(be)) {
err_str = type_to_string(elem);
error_node(vt->elem, "Vector element type must be numerical or a boolean, got `%s`", err_str);
}
type = make_type_vector(c->allocator, elem, count);
goto end;
case_end;
case_ast_node(st, StructType, e);
type = make_type_struct(c->allocator);
set_base_type(named_type, type);
check_open_scope(c, e);
check_struct_type(c, type, e);
check_close_scope(c);
type->Record.node = e;
goto end;
case_end;
case_ast_node(ut, UnionType, e);
type = make_type_union(c->allocator);
set_base_type(named_type, type);
check_open_scope(c, e);
check_union_type(c, type, e);
check_close_scope(c);
type->Record.node = e;
goto end;
case_end;
case_ast_node(rut, RawUnionType, e);
type = make_type_raw_union(c->allocator);
set_base_type(named_type, type);
check_open_scope(c, e);
check_raw_union_type(c, type, e);
check_close_scope(c);
type->Record.node = e;
goto end;
case_end;
case_ast_node(et, EnumType, e);
type = make_type_enum(c->allocator);
set_base_type(named_type, type);
check_open_scope(c, e);
check_enum_type(c, type, named_type, e);
check_close_scope(c);
type->Record.node = e;
goto end;
case_end;
case_ast_node(pt, ProcType, e);
type = alloc_type(c->allocator, Type_Proc);
set_base_type(named_type, type);
check_open_scope(c, e);
check_procedure_type(c, type, e);
check_close_scope(c);
goto end;
case_end;
case_ast_node(ce, CallExpr, e);
Operand o = {0};
check_expr_or_type(c, &o, e);
if (o.mode == Addressing_Type) {
type = o.type;
goto end;
}
case_end;
}
err_str = expr_to_string(e);
error_node(e, "`%s` is not a type", err_str);
type = t_invalid;
end:
gb_string_free(err_str);
if (type == NULL) {
type = t_invalid;
}
if (is_type_named(type)) {
if (type->Named.base == NULL) {
gbString name = type_to_string(type);
error_node(e, "Invalid type definition of %s", name);
gb_string_free(name);
type->Named.base = t_invalid;
}
}
if (is_type_typed(type)) {
add_type_and_value(&c->info, e, Addressing_Type, type, null_value);
} else {
gbString name = type_to_string(type);
error_node(e, "Invalid type definition of %s", name);
gb_string_free(name);
type = t_invalid;
}
set_base_type(named_type, type);
return type;
}
bool check_unary_op(Checker *c, Operand *o, Token op) {
// TODO(bill): Handle errors correctly
Type *type = base_type(get_enum_base_type(base_vector_type(o->type)));
gbString str = NULL;
switch (op.kind) {
case Token_Add:
case Token_Sub:
if (!is_type_numeric(type)) {
str = expr_to_string(o->expr);
error(op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str);
gb_string_free(str);
}
break;
case Token_Xor:
if (!is_type_integer(type)) {
error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string));
}
break;
case Token_Not:
if (!is_type_boolean(type)) {
str = expr_to_string(o->expr);
error(op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string));
gb_string_free(str);
}
break;
default:
error(op, "Unknown operator `%.*s`", LIT(op.string));
return false;
}
return true;
}
bool check_binary_op(Checker *c, Operand *o, Token op) {
// TODO(bill): Handle errors correctly
Type *type = base_type(get_enum_base_type(base_vector_type(o->type)));
switch (op.kind) {
case Token_Sub:
case Token_SubEq:
if (!is_type_numeric(type) && !is_type_pointer(type)) {
error(op, "Operator `%.*s` is only allowed with numeric or pointer expressions", LIT(op.string));
return false;
}
if (is_type_pointer(type)) {
o->type = t_int;
}
if (base_type(type) == t_rawptr) {
gbString str = type_to_string(type);
error_node(o->expr, "Invalid pointer type for pointer arithmetic: `%s`", str);
gb_string_free(str);
return false;
}
break;
case Token_Add:
case Token_Mul:
case Token_Quo:
case Token_AddEq:
case Token_MulEq:
case Token_QuoEq:
if (!is_type_numeric(type)) {
error(op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string));
return false;
}
break;
case Token_And:
case Token_Or:
case Token_AndEq:
case Token_OrEq:
if (!is_type_integer(type) && !is_type_boolean(type)) {
error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string));
return false;
}
break;
case Token_Mod:
case Token_Xor:
case Token_AndNot:
case Token_ModEq:
case Token_XorEq:
case Token_AndNotEq:
if (!is_type_integer(type)) {
error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string));
return false;
}
break;
case Token_CmpAnd:
case Token_CmpOr:
case Token_CmpAndEq:
case Token_CmpOrEq:
if (!is_type_boolean(type)) {
error(op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string));
return false;
}
break;
default:
error(op, "Unknown operator `%.*s`", LIT(op.string));
return false;
}
return true;
}
bool check_value_is_expressible(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) {
if (in_value.kind == ExactValue_Invalid) {
// NOTE(bill): There's already been an error
return true;
}
type = get_enum_base_type(type);
if (is_type_boolean(type)) {
return in_value.kind == ExactValue_Bool;
} else if (is_type_string(type)) {
return in_value.kind == ExactValue_String;
} else if (is_type_integer(type)) {
ExactValue v = exact_value_to_integer(in_value);
if (v.kind != ExactValue_Integer) {
return false;
}
if (out_value) *out_value = v;
i64 i = v.value_integer;
u64 u = *cast(u64 *)&i;
i64 s = 8*type_size_of(c->sizes, c->allocator, type);
u64 umax = ~0ull;
if (s < 64) {
umax = (1ull << s) - 1ull;
} else {
// TODO(bill): I NEED A PROPER BIG NUMBER LIBRARY THAT CAN SUPPORT 128 bit integers and floats
s = 64;
}
i64 imax = (1ll << (s-1ll));
switch (type->Basic.kind) {
case Basic_i8:
case Basic_i16:
case Basic_i32:
case Basic_i64:
// case Basic_i128:
case Basic_int:
return gb_is_between(i, -imax, imax-1);
case Basic_u8:
case Basic_u16:
case Basic_u32:
case Basic_u64:
// case Basic_u128:
case Basic_uint:
return !(u < 0 || u > umax);
case Basic_UntypedInteger:
return true;
default: GB_PANIC("Compiler error: Unknown integer type!"); break;
}
} else if (is_type_float(type)) {
ExactValue v = exact_value_to_float(in_value);
if (v.kind != ExactValue_Float) {
return false;
}
switch (type->Basic.kind) {
// case Basic_f16:
case Basic_f32:
case Basic_f64:
// case Basic_f128:
if (out_value) *out_value = v;
return true;
case Basic_UntypedFloat:
return true;
}
} else if (is_type_pointer(type)) {
if (in_value.kind == ExactValue_Pointer) {
return true;
}
if (in_value.kind == ExactValue_Integer) {
return true;
}
if (out_value) *out_value = in_value;
}
return false;
}
void check_is_expressible(Checker *c, Operand *o, Type *type) {
GB_ASSERT(is_type_constant_type(type));
GB_ASSERT(o->mode == Addressing_Constant);
if (!check_value_is_expressible(c, o->value, type, &o->value)) {
gbString a = expr_to_string(o->expr);
gbString b = type_to_string(type);
if (is_type_numeric(get_enum_base_type(o->type)) && is_type_numeric(get_enum_base_type(type))) {
if (!is_type_integer(get_enum_base_type(o->type)) && is_type_integer(get_enum_base_type(type))) {
error_node(o->expr, "`%s` truncated to `%s`", a, b);
} else {
error_node(o->expr, "`%s = %lld` overflows `%s`", a, o->value.value_integer, b);
}
} else {
error_node(o->expr, "Cannot convert `%s` to `%s`", a, b);
}
gb_string_free(b);
gb_string_free(a);
o->mode = Addressing_Invalid;
}
}
bool check_is_expr_vector_index(Checker *c, AstNode *expr) {
// HACK(bill): Handle this correctly. Maybe with a custom AddressingMode
expr = unparen_expr(expr);
if (expr->kind == AstNode_IndexExpr) {
ast_node(ie, IndexExpr, expr);
Type *t = type_deref(type_of_expr(&c->info, ie->expr));
if (t != NULL) {
return is_type_vector(t);
}
}
return false;
}
bool check_is_vector_elem(Checker *c, AstNode *expr) {
// HACK(bill): Handle this correctly. Maybe with a custom AddressingMode
expr = unparen_expr(expr);
if (expr->kind == AstNode_SelectorExpr) {
ast_node(se, SelectorExpr, expr);
Type *t = type_deref(type_of_expr(&c->info, se->expr));
if (t != NULL && is_type_vector(t)) {
return true;
}
}
return false;
}
void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) {
switch (op.kind) {
case Token_Pointer: { // Pointer address
if (o->mode == Addressing_Type) {
o->type = make_type_pointer(c->allocator, o->type);
return;
}
if (o->mode != Addressing_Variable ||
check_is_expr_vector_index(c, o->expr) ||
check_is_vector_elem(c, o->expr)) {
if (ast_node_expect(node, AstNode_UnaryExpr)) {
ast_node(ue, UnaryExpr, node);
gbString str = expr_to_string(ue->expr);
error(op, "Cannot take the pointer address of `%s`", str);
gb_string_free(str);
}
o->mode = Addressing_Invalid;
return;
}
o->mode = Addressing_Value;
o->type = make_type_pointer(c->allocator, o->type);
return;
}
case Token_Maybe: { // Make maybe
Type *t = default_type(o->type);
if (o->mode == Addressing_Type) {
o->type = make_type_pointer(c->allocator, t);
return;
}
bool is_value =
o->mode == Addressing_Variable ||
o->mode == Addressing_Value ||
o->mode == Addressing_Constant;
if (!is_value || is_type_untyped(t)) {
if (ast_node_expect(node, AstNode_UnaryExpr)) {
ast_node(ue, UnaryExpr, node);
gbString str = expr_to_string(ue->expr);
error(op, "Cannot convert `%s` to a maybe", str);
gb_string_free(str);
}
o->mode = Addressing_Invalid;
return;
}
o->mode = Addressing_Value;
o->type = make_type_maybe(c->allocator, t);
return;
}
}
if (!check_unary_op(c, o, op)) {
o->mode = Addressing_Invalid;
return;
}
if (o->mode == Addressing_Constant) {
Type *type = base_type(o->type);
if (!is_type_constant_type(o->type)) {
gbString xt = type_to_string(o->type);
gbString err_str = expr_to_string(node);
error(op, "Invalid type, `%s`, for constant unary expression `%s`", xt, err_str);
gb_string_free(err_str);
gb_string_free(xt);
o->mode = Addressing_Invalid;
return;
}
i32 precision = 0;
if (is_type_unsigned(type)) {
precision = cast(i32)(8 * type_size_of(c->sizes, c->allocator, type));
}
o->value = exact_unary_operator_value(op.kind, o->value, precision);
if (is_type_typed(type)) {
if (node != NULL) {
o->expr = node;
}
check_is_expressible(c, o, type);
}
return;
}
o->mode = Addressing_Value;
}
void check_comparison(Checker *c, Operand *x, Operand *y, Token op) {
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
gbString err_str = NULL;
if (check_is_assignable_to(c, x, y->type) ||
check_is_assignable_to(c, y, x->type)) {
Type *err_type = x->type;
bool defined = false;
switch (op.kind) {
case Token_CmpEq:
case Token_NotEq:
defined = is_type_comparable(x->type);
break;
case Token_Lt:
case Token_Gt:
case Token_LtEq:
case Token_GtEq: {
defined = is_type_ordered(x->type);
} break;
}
// CLEANUP(bill) NOTE(bill): there is an auto assignment to `any` which needs to be checked
if (is_type_any(x->type) && !is_type_any(y->type)) {
err_type = x->type;
defined = false;
} else if (is_type_any(y->type) && !is_type_any(x->type)) {
err_type = y->type;
defined = false;
}
if (!defined) {
gbString type_string = type_to_string(err_type);
err_str = gb_string_make(c->tmp_allocator,
gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(op.string), type_string));
gb_string_free(type_string);
}
} else {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
err_str = gb_string_make(c->tmp_allocator,
gb_bprintf("mismatched types `%s` and `%s`", xt, yt));
gb_string_free(yt);
gb_string_free(xt);
}
if (err_str != NULL) {
error_node(x->expr, "Cannot compare expression, %s", err_str);
x->type = t_untyped_bool;
} else {
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
x->value = make_exact_value_bool(compare_exact_values(op.kind, x->value, y->value));
} else {
x->mode = Addressing_Value;
update_expr_type(c, x->expr, default_type(x->type), true);
update_expr_type(c, y->expr, default_type(y->type), true);
}
if (is_type_vector(base_type(y->type))) {
x->type = make_type_vector(c->allocator, t_bool, base_type(y->type)->Vector.count);
} else {
x->type = t_untyped_bool;
}
}
if (err_str != NULL) {
gb_string_free(err_str);
};
gb_temp_arena_memory_end(tmp);
}
void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
ast_node(be, BinaryExpr, node);
ExactValue x_val = {0};
if (x->mode == Addressing_Constant) {
x_val = exact_value_to_integer(x->value);
}
bool x_is_untyped = is_type_untyped(x->type);
if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) {
gbString err_str = expr_to_string(x->expr);
error_node(node, "Shifted operand `%s` must be an integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_unsigned(y->type)) {
} else if (is_type_untyped(y->type)) {
convert_to_typed(c, y, t_untyped_integer, 0);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
} else {
gbString err_str = expr_to_string(y->expr);
error_node(node, "Shift amount `%s` must be an unsigned integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (x->mode == Addressing_Constant) {
if (y->mode == Addressing_Constant) {
ExactValue y_val = exact_value_to_integer(y->value);
if (y_val.kind != ExactValue_Integer) {
gbString err_str = expr_to_string(y->expr);
error_node(node, "Shift amount `%s` must be an unsigned integer", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
u64 amount = cast(u64)y_val.value_integer;
if (amount > 1074) {
gbString err_str = expr_to_string(y->expr);
error_node(node, "Shift amount too large: `%s`", err_str);
gb_string_free(err_str);
x->mode = Addressing_Invalid;
return;
}
if (!is_type_integer(x->type)) {
// NOTE(bill): It could be an untyped float but still representable
// as an integer
x->type = t_untyped_integer;
}
x->value = exact_value_shift(be->op.kind, x_val, make_exact_value_integer(amount));
if (is_type_typed(x->type)) {
check_is_expressible(c, x, base_type(x->type));
}
return;
}
if (x_is_untyped) {
ExprInfo *info = map_expr_info_get(&c->info.untyped, hash_pointer(x->expr));
if (info != NULL) {
info->is_lhs = true;
}
x->mode = Addressing_Value;
return;
}
}
if (y->mode == Addressing_Constant && y->value.value_integer < 0) {
gbString err_str = expr_to_string(y->expr);
error_node(node, "Shift amount cannot be negative: `%s`", err_str);
gb_string_free(err_str);
}
x->mode = Addressing_Value;
}
bool check_is_castable_to(Checker *c, Operand *operand, Type *y) {
if (check_is_assignable_to(c, operand, y)) {
return true;
}
Type *x = operand->type;
Type *xb = base_type(x);
Type *yb = base_type(y);
if (are_types_identical(xb, yb)) {
return true;
}
xb = get_enum_base_type(x);
yb = get_enum_base_type(y);
// Cast between booleans and integers
if (is_type_boolean(xb) || is_type_integer(xb)) {
if (is_type_boolean(yb) || is_type_integer(yb)) {
return true;
}
}
// Cast between numbers
if (is_type_integer(xb) || is_type_float(xb)) {
if (is_type_integer(yb) || is_type_float(yb)) {
return true;
}
}
// Cast between pointers
if (is_type_pointer(xb) && is_type_pointer(yb)) {
return true;
}
// (u)int <-> pointer
if (is_type_int_or_uint(xb) && is_type_rawptr(yb)) {
return true;
}
if (is_type_rawptr(xb) && is_type_int_or_uint(yb)) {
return true;
}
// []byte/[]u8 <-> string
if (is_type_u8_slice(xb) && is_type_string(yb)) {
return true;
}
if (is_type_string(xb) && is_type_u8_slice(yb)) {
if (is_type_typed(xb)) {
return true;
}
}
// proc <-> proc
if (is_type_proc(xb) && is_type_proc(yb)) {
return true;
}
// proc -> rawptr
if (is_type_proc(xb) && is_type_rawptr(yb)) {
return true;
}
// rawptr -> proc
if (is_type_rawptr(xb) && is_type_proc(yb)) {
return true;
}
return false;
}
String check_down_cast_name(Type *dst_, Type *src_) {
String result = {0};
Type *dst = type_deref(dst_);
Type *src = type_deref(src_);
Type *dst_s = base_type(dst);
GB_ASSERT(is_type_struct(dst_s) || is_type_raw_union(dst_s));
for (isize i = 0; i < dst_s->Record.field_count; i++) {
Entity *f = dst_s->Record.fields[i];
GB_ASSERT(f->kind == Entity_Variable && f->flags & EntityFlag_Field);
if (f->flags & EntityFlag_Anonymous) {
if (are_types_identical(f->type, src_)) {
return f->token.string;
}
if (are_types_identical(type_deref(f->type), src_)) {
return f->token.string;
}
if (!is_type_pointer(f->type)) {
result = check_down_cast_name(f->type, src_);
if (result.len > 0) {
return result;
}
}
}
}
return result;
}
Operand check_ptr_addition(Checker *c, TokenKind op, Operand *ptr, Operand *offset, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
ast_node(be, BinaryExpr, node);
GB_ASSERT(is_type_pointer(ptr->type));
GB_ASSERT(is_type_integer(offset->type));
GB_ASSERT(op == Token_Add || op == Token_Sub);
Operand operand = {0};
operand.mode = Addressing_Value;
operand.type = ptr->type;
operand.expr = node;
if (base_type(ptr->type) == t_rawptr) {
gbString str = type_to_string(ptr->type);
error_node(node, "Invalid pointer type for pointer arithmetic: `%s`", str);
gb_string_free(str);
operand.mode = Addressing_Invalid;
return operand;
}
if (ptr->mode == Addressing_Constant && offset->mode == Addressing_Constant) {
i64 elem_size = type_size_of(c->sizes, c->allocator, ptr->type);
i64 ptr_val = ptr->value.value_pointer;
i64 offset_val = exact_value_to_integer(offset->value).value_integer;
i64 new_ptr_val = ptr_val;
if (op == Token_Add) {
new_ptr_val += elem_size*offset_val;
} else {
new_ptr_val -= elem_size*offset_val;
}
operand.mode = Addressing_Constant;
operand.value = make_exact_value_pointer(new_ptr_val);
}
return operand;
}
void check_binary_expr(Checker *c, Operand *x, AstNode *node) {
GB_ASSERT(node->kind == AstNode_BinaryExpr);
Operand y_ = {0}, *y = &y_;
ast_node(be, BinaryExpr, node);
if (be->op.kind == Token_as) {
check_expr(c, x, be->left);
Type *type = check_type(c, be->right);
if (x->mode == Addressing_Invalid) {
return;
}
bool is_const_expr = x->mode == Addressing_Constant;
bool can_convert = false;
Type *bt = base_type(type);
if (is_const_expr && is_type_constant_type(bt)) {
if (bt->kind == Type_Basic) {
if (check_value_is_expressible(c, x->value, bt, &x->value)) {
can_convert = true;
}
}
} else if (check_is_castable_to(c, x, type)) {
if (x->mode != Addressing_Constant) {
x->mode = Addressing_Value;
}
can_convert = true;
}
if (!can_convert) {
gbString expr_str = expr_to_string(x->expr);
gbString to_type = type_to_string(type);
gbString from_type = type_to_string(x->type);
error_node(x->expr, "Cannot cast `%s` as `%s` from `%s`", expr_str, to_type, from_type);
gb_string_free(from_type);
gb_string_free(to_type);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(x->type)) {
Type *final_type = type;
if (is_const_expr && !is_type_constant_type(type)) {
final_type = default_type(x->type);
}
update_expr_type(c, x->expr, final_type, true);
}
x->type = type;
return;
} else if (be->op.kind == Token_transmute) {
check_expr(c, x, be->left);
Type *type = check_type(c, be->right);
if (x->mode == Addressing_Invalid) {
return;
}
if (x->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(x->expr);
error_node(x->expr, "Cannot transmute constant expression: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(x->type)) {
gbString expr_str = expr_to_string(x->expr);
error_node(x->expr, "Cannot transmute untyped expression: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
i64 srcz = type_size_of(c->sizes, c->allocator, x->type);
i64 dstz = type_size_of(c->sizes, c->allocator, type);
if (srcz != dstz) {
gbString expr_str = expr_to_string(x->expr);
gbString type_str = type_to_string(type);
error_node(x->expr, "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
gb_string_free(type_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
x->type = type;
return;
} else if (be->op.kind == Token_down_cast) {
check_expr(c, x, be->left);
Type *type = check_type(c, be->right);
if (x->mode == Addressing_Invalid) {
return;
}
if (x->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(node);
error_node(node, "Cannot `down_cast` a constant expression: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(x->type)) {
gbString expr_str = expr_to_string(node);
error_node(node, "Cannot `down_cast` an untyped expression: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
if (!(is_type_pointer(x->type) && is_type_pointer(type))) {
gbString expr_str = expr_to_string(node);
error_node(node, "Can only `down_cast` pointers: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
Type *src = type_deref(x->type);
Type *dst = type_deref(type);
Type *bsrc = base_type(src);
Type *bdst = base_type(dst);
if (!(is_type_struct(bsrc) || is_type_raw_union(bsrc))) {
gbString expr_str = expr_to_string(node);
error_node(node, "Can only `down_cast` pointer from structs or unions: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
if (!(is_type_struct(bdst) || is_type_raw_union(bdst))) {
gbString expr_str = expr_to_string(node);
error_node(node, "Can only `down_cast` pointer to structs or unions: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
String param_name = check_down_cast_name(dst, src);
if (param_name.len == 0) {
gbString expr_str = expr_to_string(node);
error_node(node, "Illegal `down_cast`: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
x->mode = Addressing_Value;
x->type = type;
return;
} else if (be->op.kind == Token_union_cast) {
check_expr(c, x, be->left);
Type *type = check_type(c, be->right);
if (x->mode == Addressing_Invalid) {
return;
}
if (x->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(node);
error_node(node, "Cannot `union_cast` a constant expression: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
if (is_type_untyped(x->type)) {
gbString expr_str = expr_to_string(node);
error_node(node, "Cannot `union_cast` an untyped expression: `%s`", expr_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
bool src_is_ptr = is_type_pointer(x->type);
bool dst_is_ptr = is_type_pointer(type);
Type *src = type_deref(x->type);
Type *dst = type_deref(type);
Type *bsrc = base_type(src);
Type *bdst = base_type(dst);
if (src_is_ptr != dst_is_ptr) {
gbString src_type_str = type_to_string(x->type);
gbString dst_type_str = type_to_string(type);
error_node(node, "Invalid `union_cast` types: `%s` and `%s`", src_type_str, dst_type_str);
gb_string_free(dst_type_str);
gb_string_free(src_type_str);
x->mode = Addressing_Invalid;
return;
}
if (!is_type_union(src)) {
error_node(node, "`union_cast` can only operate on unions");
x->mode = Addressing_Invalid;
return;
}
bool ok = false;
for (isize i = 1; i < bsrc->Record.field_count; i++) {
Entity *f = bsrc->Record.fields[i];
if (are_types_identical(f->type, dst)) {
ok = true;
break;
}
}
if (!ok) {
gbString expr_str = expr_to_string(node);
gbString dst_type_str = type_to_string(type);
error_node(node, "Cannot `union_cast` `%s` to `%s`", expr_str, dst_type_str);
gb_string_free(dst_type_str);
gb_string_free(expr_str);
x->mode = Addressing_Invalid;
return;
}
Entity **variables = gb_alloc_array(c->allocator, Entity *, 2);
variables[0] = make_entity_param(c->allocator, NULL, empty_token, type, false);
variables[1] = make_entity_param(c->allocator, NULL, empty_token, t_bool, false);
Type *tuple = make_type_tuple(c->allocator);
tuple->Tuple.variables = variables;
tuple->Tuple.variable_count = 2;
x->type = tuple;
x->mode = Addressing_Value;
return;
}
check_expr(c, x, be->left);
check_expr(c, y, be->right);
if (x->mode == Addressing_Invalid) {
return;
}
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
x->expr = y->expr;
return;
}
Token op = be->op;
if (token_is_shift(op)) {
check_shift(c, x, y, node);
return;
}
if (op.kind == Token_Add || op.kind == Token_Sub) {
if (is_type_pointer(x->type) && is_type_integer(y->type)) {
*x = check_ptr_addition(c, op.kind, x, y, node);
return;
} else if (is_type_integer(x->type) && is_type_pointer(y->type)) {
if (op.kind == Token_Sub) {
gbString lhs = expr_to_string(x->expr);
gbString rhs = expr_to_string(y->expr);
error_node(node, "Invalid pointer arithmetic, did you mean `%s %.*s %s`?", rhs, LIT(op.string), lhs);
gb_string_free(rhs);
gb_string_free(lhs);
x->mode = Addressing_Invalid;
return;
}
*x = check_ptr_addition(c, op.kind, y, x, node);
return;
}
}
convert_to_typed(c, x, y->type, 0);
if (x->mode == Addressing_Invalid) {
return;
}
convert_to_typed(c, y, x->type, 0);
if (y->mode == Addressing_Invalid) {
x->mode = Addressing_Invalid;
return;
}
if (token_is_comparison(op)) {
check_comparison(c, x, y, op);
return;
}
if (!are_types_identical(x->type, y->type)) {
if (x->type != t_invalid &&
y->type != t_invalid) {
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
gbString expr_str = expr_to_string(x->expr);
error(op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", expr_str, xt, yt);
gb_string_free(expr_str);
gb_string_free(yt);
gb_string_free(xt);
}
x->mode = Addressing_Invalid;
return;
}
if (!check_binary_op(c, x, op)) {
x->mode = Addressing_Invalid;
return;
}
switch (op.kind) {
case Token_Quo:
case Token_Mod:
case Token_QuoEq:
case Token_ModEq:
if ((x->mode == Addressing_Constant || is_type_integer(x->type)) &&
y->mode == Addressing_Constant) {
bool fail = false;
switch (y->value.kind) {
case ExactValue_Integer:
if (y->value.value_integer == 0) {
fail = true;
}
break;
case ExactValue_Float:
if (y->value.value_float == 0.0) {
fail = true;
}
break;
}
if (fail) {
error_node(y->expr, "Division by zero not allowed");
x->mode = Addressing_Invalid;
return;
}
}
}
if (x->mode == Addressing_Constant &&
y->mode == Addressing_Constant) {
ExactValue a = x->value;
ExactValue b = y->value;
Type *type = base_type(x->type);
if (is_type_pointer(type)) {
GB_ASSERT(op.kind == Token_Sub);
i64 bytes = a.value_pointer - b.value_pointer;
i64 diff = bytes/type_size_of(c->sizes, c->allocator, type);
x->value = make_exact_value_pointer(diff);
return;
}
if (!is_type_constant_type(type)) {
gbString xt = type_to_string(x->type);
gbString err_str = expr_to_string(node);
error(op, "Invalid type, `%s`, for constant binary expression `%s`", xt, err_str);
gb_string_free(err_str);
gb_string_free(xt);
x->mode = Addressing_Invalid;
return;
}
if (op.kind == Token_Quo && is_type_integer(type)) {
op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers
}
x->value = exact_binary_operator_value(op.kind, a, b);
if (is_type_typed(type)) {
if (node != NULL) {
x->expr = node;
}
check_is_expressible(c, x, type);
}
return;
}
x->mode = Addressing_Value;
}
void update_expr_type(Checker *c, AstNode *e, Type *type, bool final) {
HashKey key = hash_pointer(e);
ExprInfo *found = map_expr_info_get(&c->info.untyped, key);
if (found == NULL) {
return;
}
switch (e->kind) {
case_ast_node(ue, UnaryExpr, e);
if (found->value.kind != ExactValue_Invalid) {
break;
}
update_expr_type(c, ue->expr, type, final);
case_end;
case_ast_node(be, BinaryExpr, e);
if (found->value.kind != ExactValue_Invalid) {
break;
}
if (!token_is_comparison(be->op)) {
if (token_is_shift(be->op)) {
update_expr_type(c, be->left, type, final);
} else {
update_expr_type(c, be->left, type, final);
update_expr_type(c, be->right, type, final);
}
}
case_end;
}
if (!final && is_type_untyped(type)) {
found->type = base_type(type);
map_expr_info_set(&c->info.untyped, key, *found);
} else {
ExprInfo old = *found;
map_expr_info_remove(&c->info.untyped, key);
if (old.is_lhs && !is_type_integer(type)) {
gbString expr_str = expr_to_string(e);
gbString type_str = type_to_string(type);
error_node(e, "Shifted operand %s must be an integer, got %s", expr_str, type_str);
gb_string_free(type_str);
gb_string_free(expr_str);
return;
}
add_type_and_value(&c->info, e, found->mode, type, found->value);
}
}
void update_expr_value(Checker *c, AstNode *e, ExactValue value) {
ExprInfo *found = map_expr_info_get(&c->info.untyped, hash_pointer(e));
if (found) {
found->value = value;
}
}
void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) {
gbString expr_str = expr_to_string(operand->expr);
gbString type_str = type_to_string(target_type);
char *extra_text = "";
if (operand->mode == Addressing_Constant) {
if (operand->value.value_integer == 0) {
if (str_ne(make_string_c(expr_str), str_lit("nil"))) { // HACK NOTE(bill): Just in case
// NOTE(bill): Doesn't matter what the type is as it's still zero in the union
extra_text = " - Did you want `nil`?";
}
}
}
error_node(operand->expr, "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text);
gb_string_free(type_str);
gb_string_free(expr_str);
operand->mode = Addressing_Invalid;
}
// NOTE(bill): Set initial level to 0
void convert_to_typed(Checker *c, Operand *operand, Type *target_type, i32 level) {
GB_ASSERT_NOT_NULL(target_type);
if (operand->mode == Addressing_Invalid ||
is_type_typed(operand->type) ||
target_type == t_invalid) {
return;
}
if (is_type_untyped(target_type)) {
Type *x = operand->type;
Type *y = target_type;
if (is_type_numeric(x) && is_type_numeric(y)) {
if (x < y) {
operand->type = target_type;
update_expr_type(c, operand->expr, target_type, false);
}
} else if (x != y) {
convert_untyped_error(c, operand, target_type);
}
return;
}
Type *t = get_enum_base_type(base_type(target_type));
switch (t->kind) {
case Type_Basic:
if (operand->mode == Addressing_Constant) {
check_is_expressible(c, operand, t);
if (operand->mode == Addressing_Invalid) {
return;
}
update_expr_value(c, operand->expr, operand->value);
} else {
switch (operand->type->Basic.kind) {
case Basic_UntypedBool:
if (!is_type_boolean(target_type)) {
convert_untyped_error(c, operand, target_type);
return;
}
break;
case Basic_UntypedInteger:
case Basic_UntypedFloat:
case Basic_UntypedRune:
if (!is_type_numeric(target_type)) {
convert_untyped_error(c, operand, target_type);
return;
}
break;
case Basic_UntypedNil:
if (!type_has_nil(target_type)) {
convert_untyped_error(c, operand, target_type);
return;
}
break;
}
}
break;
case Type_Maybe:
if (is_type_untyped_nil(operand->type)) {
// Okay
} else if (level == 0) {
convert_to_typed(c, operand, t->Maybe.elem, level+1);
return;
}
default:
if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) {
convert_untyped_error(c, operand, target_type);
return;
}
break;
}
operand->type = target_type;
}
bool check_index_value(Checker *c, AstNode *index_value, i64 max_count, i64 *value) {
Operand operand = {Addressing_Invalid};
check_expr(c, &operand, index_value);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
convert_to_typed(c, &operand, t_int, 0);
if (operand.mode == Addressing_Invalid) {
if (value) *value = 0;
return false;
}
if (!is_type_integer(get_enum_base_type(operand.type))) {
gbString expr_str = expr_to_string(operand.expr);
error_node(operand.expr, "Index `%s` must be an integer", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (operand.mode == Addressing_Constant &&
(c->context.stmt_state_flags & StmtStateFlag_bounds_check) != 0) {
i64 i = exact_value_to_integer(operand.value).value_integer;
if (i < 0) {
gbString expr_str = expr_to_string(operand.expr);
error_node(operand.expr, "Index `%s` cannot be a negative value", expr_str);
gb_string_free(expr_str);
if (value) *value = 0;
return false;
}
if (max_count >= 0) { // NOTE(bill): Do array bound checking
if (value) *value = i;
if (i >= max_count) {
gbString expr_str = expr_to_string(operand.expr);
error_node(operand.expr, "Index `%s` is out of bounds range 0..<%lld", expr_str, max_count);
gb_string_free(expr_str);
return false;
}
return true;
}
}
// NOTE(bill): It's alright :D
if (value) *value = -1;
return true;
}
Entity *check_selector(Checker *c, Operand *operand, AstNode *node) {
ast_node(se, SelectorExpr, node);
bool check_op_expr = true;
Entity *expr_entity = NULL;
Entity *entity = NULL;
Selection sel = {0}; // NOTE(bill): Not used if it's an import name
AstNode *op_expr = se->expr;
AstNode *selector = unparen_expr(se->selector);
if (selector == NULL) {
goto error;
}
if (ast_node_expect(selector, AstNode_Ident)) {
}
if (op_expr->kind == AstNode_Ident) {
String name = op_expr->Ident.string;
Entity *e = scope_lookup_entity(c->context.scope, name);
add_entity_use(c, op_expr, e);
expr_entity = e;
if (e != NULL && e->kind == Entity_ImportName &&
selector->kind == AstNode_Ident) {
String sel_name = selector->Ident.string;
check_op_expr = false;
entity = scope_lookup_entity(e->ImportName.scope, sel_name);
if (entity == NULL) {
error_node(op_expr, "`%.*s` is not declared by `%.*s`", LIT(sel_name), LIT(name));
goto error;
}
if (entity->type == NULL) { // Not setup yet
check_entity_decl(c, entity, NULL, NULL);
}
GB_ASSERT(entity->type != NULL);
b32 is_not_exported = true;
Entity **found = map_entity_get(&e->ImportName.scope->implicit, hash_string(sel_name));
if (found == NULL) {
is_not_exported = false;
} else {
Entity *f = *found;
if (f->kind == Entity_ImportName) {
is_not_exported = true;
}
}
if (is_not_exported) {
gbString sel_str = expr_to_string(selector);
error_node(op_expr, "`%s` is not exported by `%.*s`", sel_str, LIT(name));
gb_string_free(sel_str);
// NOTE(bill): Not really an error so don't goto error
}
add_entity_use(c, selector, entity);
}
}
if (check_op_expr) {
check_expr_base(c, operand, op_expr, NULL);
if (operand->mode == Addressing_Invalid) {
goto error;
}
}
if (entity == NULL && selector->kind == AstNode_Ident) {
sel = lookup_field(c->allocator, operand->type, selector->Ident.string, operand->mode == Addressing_Type);
entity = sel.entity;
}
if (entity == NULL) {
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error_node(op_expr, "`%s` (`%s`) has no field `%s`", op_str, type_str, sel_str);
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
goto error;
}
if (expr_entity != NULL && expr_entity->kind == Entity_Constant && entity->kind != Entity_Constant) {
gbString op_str = expr_to_string(op_expr);
gbString type_str = type_to_string(operand->type);
gbString sel_str = expr_to_string(selector);
error_node(op_expr, "Cannot access non-constant field `%s` from `%s`", sel_str, op_str);
gb_string_free(sel_str);
gb_string_free(type_str);
gb_string_free(op_str);
goto error;
}
add_entity_use(c, selector, entity);
switch (entity->kind) {
case Entity_Constant:
operand->mode = Addressing_Constant;
operand->value = entity->Constant.value;
break;
case Entity_Variable:
// TODO(bill): This is the rule I need?
if (sel.indirect || operand->mode != Addressing_Value) {
operand->mode = Addressing_Variable;
}
break;
case Entity_TypeName:
operand->mode = Addressing_Type;
break;
case Entity_Procedure:
operand->mode = Addressing_Value;
break;
case Entity_Builtin:
operand->mode = Addressing_Builtin;
operand->builtin_id = entity->Builtin.id;
break;
// NOTE(bill): These cases should never be hit but are here for sanity reasons
case Entity_Nil:
operand->mode = Addressing_Value;
break;
case Entity_ImplicitValue:
operand->mode = Addressing_Value;
break;
}
operand->type = entity->type;
operand->expr = node;
return entity;
error:
operand->mode = Addressing_Invalid;
operand->expr = node;
return NULL;
}
bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) {
GB_ASSERT(call->kind == AstNode_CallExpr);
ast_node(ce, CallExpr, call);
BuiltinProc *bp = &builtin_procs[id];
{
char *err = NULL;
if (ce->args.count < bp->arg_count) {
err = "Too few";
} else if (ce->args.count > bp->arg_count && !bp->variadic) {
err = "Too many";
}
if (err) {
ast_node(proc, Ident, ce->proc);
error(ce->close, "`%s` arguments for `%.*s`, expected %td, got %td",
err, LIT(proc->string),
bp->arg_count, ce->args.count);
return false;
}
}
switch (id) {
case BuiltinProc_new:
case BuiltinProc_new_slice:
case BuiltinProc_size_of:
case BuiltinProc_align_of:
case BuiltinProc_offset_of:
case BuiltinProc_type_info:
// NOTE(bill): The first arg may be a Type, this will be checked case by case
break;
default:
check_multi_expr(c, operand, ce->args.e[0]);
}
switch (id) {
default:
GB_PANIC("Implement builtin procedure: %.*s", LIT(builtin_procs[id].name));
break;
case BuiltinProc_new: {
// new :: proc(Type) -> ^Type
Operand op = {0};
check_expr_or_type(c, &op, ce->args.e[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `new`");
return false;
}
operand->mode = Addressing_Value;
operand->type = make_type_pointer(c->allocator, type);
} break;
case BuiltinProc_new_slice: {
// new_slice :: proc(Type, len: int[, cap: int]) -> []Type
Operand op = {0};
check_expr_or_type(c, &op, ce->args.e[0]);
Type *type = op.type;
if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `new_slice`");
return false;
}
AstNode *len = ce->args.e[1];
AstNode *cap = NULL;
if (ce->args.count > 2) {
cap = ce->args.e[2];
}
check_expr(c, &op, len);
if (op.mode == Addressing_Invalid) {
return false;
}
if (!is_type_integer(op.type)) {
gbString type_str = type_to_string(operand->type);
error_node(call, "Length for `new_slice` must be an integer, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
if (cap != NULL) {
check_expr(c, &op, cap);
if (op.mode == Addressing_Invalid) {
return false;
}
if (!is_type_integer(op.type)) {
gbString type_str = type_to_string(operand->type);
error_node(call, "Capacity for `new_slice` must be an integer, got `%s`", type_str);
gb_string_free(type_str);
return false;
}
if (ce->args.count > 3) {
error_node(call, "Too many arguments to `new_slice`, expected either 2 or 3");
return false;
}
}
operand->mode = Addressing_Value;
operand->type = make_type_slice(c->allocator, type);
} break;
case BuiltinProc_size_of: {
// size_of :: proc(Type) -> untyped int
Type *type = check_type(c, ce->args.e[0]);
if (type == NULL || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `size_of`");
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, type));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_size_of_val:
// size_of_val :: proc(val: Type) -> untyped int
check_assignment(c, operand, NULL, str_lit("argument of `size_of_val`"));
if (operand->mode == Addressing_Invalid) {
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_size_of(c->sizes, c->allocator, operand->type));
operand->type = t_untyped_integer;
break;
case BuiltinProc_align_of: {
// align_of :: proc(Type) -> untyped int
Type *type = check_type(c, ce->args.e[0]);
if (type == NULL || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `align_of`");
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, type));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_align_of_val:
// align_of_val :: proc(val: Type) -> untyped int
check_assignment(c, operand, NULL, str_lit("argument of `align_of_val`"));
if (operand->mode == Addressing_Invalid) {
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_align_of(c->sizes, c->allocator, operand->type));
operand->type = t_untyped_integer;
break;
case BuiltinProc_offset_of: {
// offset_of :: proc(Type, field) -> untyped int
Operand op = {0};
Type *bt = check_type(c, ce->args.e[0]);
Type *type = base_type(bt);
if (type == NULL || type == t_invalid) {
error_node(ce->args.e[0], "Expected a type for `offset_of`");
return false;
}
AstNode *field_arg = unparen_expr(ce->args.e[1]);
if (field_arg == NULL ||
field_arg->kind != AstNode_Ident) {
error_node(field_arg, "Expected an identifier for field argument");
return false;
}
if (is_type_array(type) || is_type_vector(type)) {
error_node(field_arg, "Invalid type for `offset_of`");
return false;
}
ast_node(arg, Ident, field_arg);
Selection sel = lookup_field(c->allocator, type, arg->string, operand->mode == Addressing_Type);
if (sel.entity == NULL) {
gbString type_str = type_to_string(bt);
error_node(ce->args.e[0],
"`%s` has no field named `%.*s`", type_str, LIT(arg->string));
gb_string_free(type_str);
return false;
}
if (sel.indirect) {
gbString type_str = type_to_string(bt);
error_node(ce->args.e[0],
"Field `%.*s` is embedded via a pointer in `%s`", LIT(arg->string), type_str);
gb_string_free(type_str);
return false;
}
operand->mode = Addressing_Constant;
operand->value = make_exact_value_integer(type_offset_of_from_selection(c->sizes, c->allocator, type, sel));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_offset_of_val: {
// offset_of_val :: proc(val: expression) -> untyped int
AstNode *arg = unparen_expr(ce->args.e[0]);
if (arg->kind != AstNode_SelectorExpr) {
gbString str = expr_to_string(arg);
error_node(arg, "`%s` is not a selector expression", str);
return false;
}
ast_node(s, SelectorExpr, arg);
check_expr(c, operand, s->expr);
if (operand->mode == Addressing_Invalid) {
return false;
}
Type *type = operand->type;
if (base_type(type)->kind == Type_Pointer) {
Type *p = base_type(type);
if (is_type_struct(p)) {
type = p->Pointer.elem;
}
}
if (is_type_array(type) || is_type_vector(type)) {
error_node(arg, "Invalid type for `offset_of_val`");
return false;
}
ast_node(i, Ident, s->selector);
Selection sel = lookup_field(c->allocator, type, i->string, operand->mode == Addressing_Type);
if (sel.entity == NULL) {
gbString type_str = type_to_string(type);
error_node(arg,
"`%s` has no field named `%.*s`", type_str, LIT(i->string));
return false;
}
if (sel.indirect) {
gbString type_str = type_to_string(type);
error_node(ce->args.e[0],
"Field `%.*s` is embedded via a pointer in `%s`", LIT(i->string), type_str);
gb_string_free(type_str);
return false;
}
operand->mode = Addressing_Constant;
// IMPORTANT TODO(bill): Fix for anonymous fields
operand->value = make_exact_value_integer(type_offset_of_from_selection(c->sizes, c->allocator, type, sel));
operand->type = t_untyped_integer;
} break;
case BuiltinProc_type_of_val:
// type_of_val :: proc(val: Type) -> type(Type)
check_assignment(c, operand, NULL, str_lit("argument of `type_of_val`"));
if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) {
return false;
}
operand->mode = Addressing_Type;
break;
case BuiltinProc_type_info: {
// type_info :: proc(Type) -> ^Type_Info
if (c->context.scope->is_global) {
compiler_error("`type_info` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works");
}
// NOTE(bill): The type information may not be setup yet
init_preload(c);
AstNode *expr = ce->args.e[0];
Type *type = check_type(c, expr);
if (type == NULL || type == t_invalid) {
error_node(expr, "Invalid argument to `type_info`");
return false;
}
add_type_info_type(c, type);
operand->mode = Addressing_Value;
operand->type = t_type_info_ptr;
} break;
case BuiltinProc_type_info_of_val: {
// type_info_of_val :: proc(val: Type) -> ^Type_Info
if (c->context.scope->is_global) {
compiler_error("`type_info` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works");
}
// NOTE(bill): The type information may not be setup yet
init_preload(c);
AstNode *expr = ce->args.e[0];
check_assignment(c, operand, NULL, str_lit("argument of `type_info_of_val`"));
if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin)
return false;
add_type_info_type(c, operand->type);
operand->mode = Addressing_Value;
operand->type = t_type_info_ptr;
} break;
case BuiltinProc_compile_assert:
// compile_assert :: proc(cond: bool)
if (!is_type_boolean(operand->type) && operand->mode != Addressing_Constant) {
gbString str = expr_to_string(ce->args.e[0]);
error_node(call, "`%s` is not a constant boolean", str);
gb_string_free(str);
return false;
}
if (!operand->value.value_bool) {
gbString str = expr_to_string(ce->args.e[0]);
error_node(call, "Compile time assertion: `%s`", str);
gb_string_free(str);
}
break;
case BuiltinProc_assert:
// assert :: proc(cond: bool)
if (!is_type_boolean(operand->type)) {
gbString str = expr_to_string(ce->args.e[0]);
error_node(call, "`%s` is not a boolean", str);
gb_string_free(str);
return false;
}
operand->mode = Addressing_NoValue;
break;
case BuiltinProc_panic:
// panic :: proc(msg: string)
if (!is_type_string(operand->type)) {
gbString str = expr_to_string(ce->args.e[0]);
error_node(call, "`%s` is not a string", str);
gb_string_free(str);
return false;
}
operand->mode = Addressing_NoValue;
break;
case BuiltinProc_copy: {
// copy :: proc(x, y: []Type) -> int
Type *dest_type = NULL, *src_type = NULL;
Type *d = base_type(operand->type);
if (d->kind == Type_Slice) {
dest_type = d->Slice.elem;
}
Operand op = {0};
check_expr(c, &op, ce->args.e[1]);
if (op.mode == Addressing_Invalid) {
return false;
}
Type *s = base_type(op.type);
if (s->kind == Type_Slice) {
src_type = s->Slice.elem;
}
if (dest_type == NULL || src_type == NULL) {
error_node(call, "`copy` only expects slices as arguments");
return false;
}
if (!are_types_identical(dest_type, src_type)) {
gbString d_arg = expr_to_string(ce->args.e[0]);
gbString s_arg = expr_to_string(ce->args.e[1]);
gbString d_str = type_to_string(dest_type);
gbString s_str = type_to_string(src_type);
error_node(call,
"Arguments to `copy`, %s, %s, have different elem types: %s vs %s",
d_arg, s_arg, d_str, s_str);
gb_string_free(s_str);
gb_string_free(d_str);
gb_string_free(s_arg);
gb_string_free(d_arg);
return false;
}
operand->type = t_int; // Returns number of elems copied
operand->mode = Addressing_Value;
} break;
case BuiltinProc_append: {
// append :: proc(x : ^[]Type, y : Type) -> bool
Type *x_type = NULL, *y_type = NULL;
x_type = base_type(operand->type);
Operand op = {0};
check_expr(c, &op, ce->args.e[1]);
if (op.mode == Addressing_Invalid) {
return false;
}
y_type = base_type(op.type);
if (!(is_type_pointer(x_type) && is_type_slice(x_type->Pointer.elem))) {
error_node(call, "First argument to `append` must be a pointer to a slice");
return false;
}
Type *elem_type = x_type->Pointer.elem->Slice.elem;
if (!check_is_assignable_to(c, &op, elem_type)) {
gbString d_arg = expr_to_string(ce->args.e[0]);
gbString s_arg = expr_to_string(ce->args.e[1]);
gbString d_str = type_to_string(elem_type);
gbString s_str = type_to_string(y_type);
error_node(call,
"Arguments to `append`, %s, %s, have different element types: %s vs %s",
d_arg, s_arg, d_str, s_str);
gb_string_free(s_str);
gb_string_free(d_str);
gb_string_free(s_arg);
gb_string_free(d_arg);
return false;
}
operand->type = t_bool; // Returns if it was successful
operand->mode = Addressing_Value;
} break;
case BuiltinProc_swizzle: {
// swizzle :: proc(v: {N}T, T...) -> {M}T
Type *vector_type = base_type(operand->type);
if (!is_type_vector(vector_type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"You can only `swizzle` a vector, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
isize max_count = vector_type->Vector.count;
isize arg_count = 0;
for_array(i, ce->args) {
if (i == 0) {
continue;
}
AstNode *arg = ce->args.e[i];
Operand op = {0};
check_expr(c, &op, arg);
if (op.mode == Addressing_Invalid) {
return false;
}
Type *arg_type = base_type(op.type);
if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) {
error_node(op.expr, "Indices to `swizzle` must be constant integers");
return false;
}
if (op.value.value_integer < 0) {
error_node(op.expr, "Negative `swizzle` index");
return false;
}
if (max_count <= op.value.value_integer) {
error_node(op.expr, "`swizzle` index exceeds vector length");
return false;
}
arg_count++;
}
if (arg_count > max_count) {
error_node(call, "Too many `swizzle` indices, %td > %td", arg_count, max_count);
return false;
}
Type *elem_type = vector_type->Vector.elem;
operand->type = make_type_vector(c->allocator, elem_type, arg_count);
operand->mode = Addressing_Value;
} break;
#if 0
case BuiltinProc_ptr_offset: {
// ptr_offset :: proc(ptr: ^T, offset: int) -> ^T
// ^T cannot be rawptr
Type *ptr_type = base_type(operand->type);
if (!is_type_pointer(ptr_type)) {
gbString type_str = type_to_string(operand->type);
defer (gb_string_free(type_str));
error_node(call,
"Expected a pointer to `ptr_offset`, got `%s`",
type_str);
return false;
}
if (ptr_type == t_rawptr) {
error_node(call,
"`rawptr` cannot have pointer arithmetic");
return false;
}
AstNode *offset = ce->args.e[1];
Operand op = {0};
check_expr(c, &op, offset);
if (op.mode == Addressing_Invalid)
return false;
Type *offset_type = base_type(op.type);
if (!is_type_integer(offset_type)) {
error_node(op.expr, "Pointer offsets for `ptr_offset` must be an integer");
return false;
}
if (operand->mode == Addressing_Constant &&
op.mode == Addressing_Constant) {
i64 ptr = operand->value.value_pointer;
i64 elem_size = type_size_of(c->sizes, c->allocator, ptr_type->Pointer.elem);
ptr += elem_size * op.value.value_integer;
operand->value.value_pointer = ptr;
} else {
operand->mode = Addressing_Value;
}
} break;
case BuiltinProc_ptr_sub: {
// ptr_sub :: proc(a, b: ^T) -> int
// ^T cannot be rawptr
Type *ptr_type = base_type(operand->type);
if (!is_type_pointer(ptr_type)) {
gbString type_str = type_to_string(operand->type);
defer (gb_string_free(type_str));
error_node(call,
"Expected a pointer to `ptr_add`, got `%s`",
type_str);
return false;
}
if (ptr_type == t_rawptr) {
error_node(call,
"`rawptr` cannot have pointer arithmetic");
return false;
}
AstNode *offset = ce->args[1];
Operand op = {0};
check_expr(c, &op, offset);
if (op.mode == Addressing_Invalid)
return false;
if (!is_type_pointer(op.type)) {
gbString type_str = type_to_string(operand->type);
defer (gb_string_free(type_str));
error_node(call,
"Expected a pointer to `ptr_add`, got `%s`",
type_str);
return false;
}
if (base_type(op.type) == t_rawptr) {
error_node(call,
"`rawptr` cannot have pointer arithmetic");
return false;
}
if (!are_types_identical(operand->type, op.type)) {
gbString a = type_to_string(operand->type);
gbString b = type_to_string(op.type);
defer (gb_string_free(a));
defer (gb_string_free(b));
error_node(op.expr,
"`ptr_sub` requires to pointer of the same type. Got `%s` and `%s`.", a, b);
return false;
}
operand->type = t_int;
if (operand->mode == Addressing_Constant &&
op.mode == Addressing_Constant) {
u8 *ptr_a = cast(u8 *)operand->value.value_pointer;
u8 *ptr_b = cast(u8 *)op.value.value_pointer;
isize elem_size = type_size_of(c->sizes, c->allocator, ptr_type->Pointer.elem);
operand->value = make_exact_value_integer((ptr_a - ptr_b) / elem_size);
} else {
operand->mode = Addressing_Value;
}
} break;
#endif
case BuiltinProc_slice_ptr: {
// slice_ptr :: proc(a: ^T, len: int[, cap: int]) -> []T
// ^T cannot be rawptr
Type *ptr_type = base_type(operand->type);
if (!is_type_pointer(ptr_type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a pointer to `slice_ptr`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (ptr_type == t_rawptr) {
error_node(call,
"`rawptr` cannot have pointer arithmetic");
return false;
}
AstNode *len = ce->args.e[1];
AstNode *cap = NULL;
if (ce->args.count > 2) {
cap = ce->args.e[2];
}
Operand op = {0};
check_expr(c, &op, len);
if (op.mode == Addressing_Invalid)
return false;
if (!is_type_integer(op.type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Length for `slice_ptr` must be an integer, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (cap != NULL) {
check_expr(c, &op, cap);
if (op.mode == Addressing_Invalid)
return false;
if (!is_type_integer(op.type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Capacity for `slice_ptr` must be an integer, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (ce->args.count > 3) {
error_node(call,
"Too many arguments to `slice_ptr`, expected either 2 or 3");
return false;
}
}
operand->type = make_type_slice(c->allocator, ptr_type->Pointer.elem);
operand->mode = Addressing_Value;
} break;
case BuiltinProc_min: {
// min :: proc(a, b: comparable) -> comparable
Type *type = base_type(operand->type);
if (!is_type_comparable(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a comparable numeric type to `min`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
AstNode *other_arg = ce->args.e[1];
Operand a = *operand;
Operand b = {0};
check_expr(c, &b, other_arg);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
gbString type_str = type_to_string(b.type);
error_node(call,
"Expected a comparable numeric type to `min`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (a.mode == Addressing_Constant &&
b.mode == Addressing_Constant) {
ExactValue x = a.value;
ExactValue y = b.value;
operand->mode = Addressing_Constant;
if (compare_exact_values(Token_Lt, x, y)) {
operand->value = x;
operand->type = a.type;
} else {
operand->value = y;
operand->type = b.type;
}
} else {
operand->mode = Addressing_Value;
operand->type = type;
convert_to_typed(c, &a, b.type, 0);
if (a.mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, &b, a.type, 0);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!are_types_identical(operand->type, b.type)) {
gbString type_a = type_to_string(a.type);
gbString type_b = type_to_string(b.type);
error_node(call,
"Mismatched types to `min`, `%s` vs `%s`",
type_a, type_b);
gb_string_free(type_b);
gb_string_free(type_a);
return false;
}
}
} break;
case BuiltinProc_max: {
// min :: proc(a, b: comparable) -> comparable
Type *type = base_type(operand->type);
if (!is_type_comparable(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a comparable numeric or string type to `max`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
AstNode *other_arg = ce->args.e[1];
Operand a = *operand;
Operand b = {0};
check_expr(c, &b, other_arg);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
gbString type_str = type_to_string(b.type);
error_node(call,
"Expected a comparable numeric or string type to `max`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (a.mode == Addressing_Constant &&
b.mode == Addressing_Constant) {
ExactValue x = a.value;
ExactValue y = b.value;
operand->mode = Addressing_Constant;
if (compare_exact_values(Token_Gt, x, y)) {
operand->value = x;
operand->type = a.type;
} else {
operand->value = y;
operand->type = b.type;
}
} else {
operand->mode = Addressing_Value;
operand->type = type;
convert_to_typed(c, &a, b.type, 0);
if (a.mode == Addressing_Invalid) {
return false;
}
convert_to_typed(c, &b, a.type, 0);
if (b.mode == Addressing_Invalid) {
return false;
}
if (!are_types_identical(operand->type, b.type)) {
gbString type_a = type_to_string(a.type);
gbString type_b = type_to_string(b.type);
error_node(call,
"Mismatched types to `max`, `%s` vs `%s`",
type_a, type_b);
gb_string_free(type_b);
gb_string_free(type_a);
return false;
}
}
} break;
case BuiltinProc_abs: {
// abs :: proc(n: numeric) -> numeric
Type *type = base_type(operand->type);
if (!is_type_numeric(type)) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a numeric type to `abs`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (operand->mode == Addressing_Constant) {
switch (operand->value.kind) {
case ExactValue_Integer:
operand->value.value_integer = gb_abs(operand->value.value_integer);
break;
case ExactValue_Float:
operand->value.value_float = gb_abs(operand->value.value_float);
break;
default:
GB_PANIC("Invalid numeric constant");
break;
}
} else {
operand->mode = Addressing_Value;
}
operand->type = type;
} break;
case BuiltinProc_clamp: {
// clamp :: proc(a, min, max: comparable) -> comparable
Type *type = base_type(operand->type);
if (!is_type_comparable(type) || !(is_type_numeric(type) || is_type_string(type))) {
gbString type_str = type_to_string(operand->type);
error_node(call,
"Expected a comparable numeric or string type to `clamp`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
AstNode *min_arg = ce->args.e[1];
AstNode *max_arg = ce->args.e[2];
Operand x = *operand;
Operand y = {0};
Operand z = {0};
check_expr(c, &y, min_arg);
if (y.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(y.type) || !(is_type_numeric(y.type) || is_type_string(y.type))) {
gbString type_str = type_to_string(y.type);
error_node(call,
"Expected a comparable numeric or string type to `clamp`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
check_expr(c, &z, max_arg);
if (z.mode == Addressing_Invalid) {
return false;
}
if (!is_type_comparable(z.type) || !(is_type_numeric(z.type) || is_type_string(z.type))) {
gbString type_str = type_to_string(z.type);
error_node(call,
"Expected a comparable numeric or string type to `clamp`, got `%s`",
type_str);
gb_string_free(type_str);
return false;
}
if (x.mode == Addressing_Constant &&
y.mode == Addressing_Constant &&
z.mode == Addressing_Constant) {
ExactValue a = x.value;
ExactValue b = y.value;
ExactValue c = z.value;
operand->mode = Addressing_Constant;
if (compare_exact_values(Token_Lt, a, b)) {
operand->value = b;
operand->type = y.type;
} else if (compare_exact_values(Token_Gt, a, c)) {
operand->value = c;
operand->type = z.type;
} else {
operand->value = a;
operand->type = x.type;
}
} else {
operand->mode = Addressing_Value;
operand->type = type;
convert_to_typed(c, &x, y.type, 0);
if (x.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &y, x.type, 0);
if (y.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &x, z.type, 0);
if (x.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &z, x.type, 0);
if (z.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &y, z.type, 0);
if (y.mode == Addressing_Invalid) { return false; }
convert_to_typed(c, &z, y.type, 0);
if (z.mode == Addressing_Invalid) { return false; }
if (!are_types_identical(x.type, y.type) || !are_types_identical(x.type, z.type)) {
gbString type_x = type_to_string(x.type);
gbString type_y = type_to_string(y.type);
gbString type_z = type_to_string(z.type);
error_node(call,
"Mismatched types to `clamp`, `%s`, `%s`, `%s`",
type_x, type_y, type_z);
gb_string_free(type_z);
gb_string_free(type_y);
gb_string_free(type_x);
return false;
}
}
} break;
case BuiltinProc_enum_to_string: {
Type *type = base_type(operand->type);
if (!is_type_enum(type)) {
gbString type_str = type_to_string(operand->type);
gb_string_free(type_str);
error_node(call,
"Expected an enum to `enum_to_string`, got `%s`",
type_str);
return false;
}
if (operand->mode == Addressing_Constant) {
ExactValue value = make_exact_value_string(str_lit(""));
if (operand->value.kind == ExactValue_Integer) {
i64 index = operand->value.value_integer;
for (isize i = 0; i < type->Record.enum_value_count; i++) {
Entity *f = type->Record.enum_values[i];
if (f->kind == Entity_Constant && f->Constant.value.kind == ExactValue_Integer) {
i64 fv = f->Constant.value.value_integer;
if (index == fv) {
value = make_exact_value_string(f->token.string);
break;
}
}
}
}
operand->value = value;
operand->type = t_string;
return true;
}
add_type_info_type(c, operand->type);
operand->mode = Addressing_Value;
operand->type = t_string;
} break;
}
return true;
}
void check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) {
GB_ASSERT(call->kind == AstNode_CallExpr);
GB_ASSERT(proc_type->kind == Type_Proc);
ast_node(ce, CallExpr, call);
isize param_count = 0;
bool variadic = proc_type->Proc.variadic;
bool vari_expand = (ce->ellipsis.pos.line != 0);
if (proc_type->Proc.params != NULL) {
param_count = proc_type->Proc.params->Tuple.variable_count;
if (variadic) {
param_count--;
}
}
if (vari_expand && !variadic) {
error(ce->ellipsis,
"Cannot use `..` in call to a non-variadic procedure: `%.*s`",
LIT(ce->proc->Ident.string));
return;
}
if (ce->args.count == 0 && param_count == 0) {
return;
}
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
Array(Operand) operands;
array_init_reserve(&operands, c->tmp_allocator, 2*param_count);
for_array(i, ce->args) {
Operand o = {0};
check_multi_expr(c, &o, ce->args.e[i]);
if (o.type->kind != Type_Tuple) {
array_add(&operands, o);
} else {
TypeTuple *tuple = &o.type->Tuple;
if (variadic && i >= param_count) {
error_node(ce->args.e[i], "`..` in a variadic procedure cannot be applied to a %td-valued expression", tuple->variable_count);
operand->mode = Addressing_Invalid;
goto end;
}
for (isize j = 0; j < tuple->variable_count; j++) {
o.type = tuple->variables[j]->type;
array_add(&operands, o);
}
}
}
i32 error_code = 0;
if (operands.count < param_count) {
error_code = -1;
} else if (!variadic && operands.count > param_count) {
error_code = +1;
}
if (error_code != 0) {
char *err_fmt = "Too many arguments for `%s`, expected %td arguments";
if (error_code < 0) {
err_fmt = "Too few arguments for `%s`, expected %td arguments";
}
gbString proc_str = expr_to_string(ce->proc);
error_node(call, err_fmt, proc_str, param_count);
gb_string_free(proc_str);
operand->mode = Addressing_Invalid;
goto end;
}
GB_ASSERT(proc_type->Proc.params != NULL);
Entity **sig_params = proc_type->Proc.params->Tuple.variables;
isize operand_index = 0;
for (; operand_index < param_count; operand_index++) {
Type *arg_type = sig_params[operand_index]->type;
Operand o = operands.e[operand_index];
if (variadic) {
o = operands.e[operand_index];
}
check_assignment(c, &o, arg_type, str_lit("argument"));
}
if (variadic) {
bool variadic_expand = false;
Type *slice = sig_params[param_count]->type;
GB_ASSERT(is_type_slice(slice));
Type *elem = base_type(slice)->Slice.elem;
Type *t = elem;
for (; operand_index < operands.count; operand_index++) {
Operand o = operands.e[operand_index];
if (vari_expand) {
variadic_expand = true;
t = slice;
if (operand_index != param_count) {
error_node(o.expr, "`..` in a variadic procedure can only have one variadic argument at the end");
break;
}
}
check_assignment(c, &o, t, str_lit("argument"));
}
}
end:
gb_temp_arena_memory_end(tmp);
}
Entity *find_using_index_expr(Type *t) {
t = base_type(t);
if (t->kind != Type_Record) {
return NULL;
}
for (isize i = 0; i < t->Record.field_count; i++) {
Entity *f = t->Record.fields[i];
if (f->kind == Entity_Variable &&
f->flags & (EntityFlag_Anonymous|EntityFlag_Field)) {
if (is_type_indexable(f->type)) {
return f;
}
Entity *res = find_using_index_expr(f->type);
if (res != NULL) {
return res;
}
}
}
return NULL;
}
ExprKind check_call_expr(Checker *c, Operand *operand, AstNode *call) {
GB_ASSERT(call->kind == AstNode_CallExpr);
ast_node(ce, CallExpr, call);
check_expr_or_type(c, operand, ce->proc);
if (operand->mode == Addressing_Invalid) {
for_array(i, ce->args) {
check_expr_base(c, operand, ce->args.e[i], NULL);
}
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
if (operand->mode == Addressing_Builtin) {
i32 id = operand->builtin_id;
if (!check_builtin_procedure(c, operand, call, id)) {
operand->mode = Addressing_Invalid;
}
operand->expr = call;
return builtin_procs[id].kind;
}
Type *proc_type = base_type(operand->type);
if (proc_type == NULL || proc_type->kind != Type_Proc ||
!(operand->mode == Addressing_Value || operand->mode == Addressing_Variable)) {
AstNode *e = operand->expr;
gbString str = expr_to_string(e);
error_node(e, "Cannot call a non-procedure: `%s`", str);
gb_string_free(str);
operand->mode = Addressing_Invalid;
operand->expr = call;
return Expr_Stmt;
}
check_call_arguments(c, operand, proc_type, call);
switch (proc_type->Proc.result_count) {
case 0:
operand->mode = Addressing_NoValue;
break;
case 1:
operand->mode = Addressing_Value;
operand->type = proc_type->Proc.results->Tuple.variables[0]->type;
break;
default:
operand->mode = Addressing_Value;
operand->type = proc_type->Proc.results;
break;
}
operand->expr = call;
return Expr_Stmt;
}
void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) {
check_expr_base(c, o, e, t);
check_not_tuple(c, o);
char *err_str = NULL;
switch (o->mode) {
case Addressing_NoValue:
err_str = "used as a value";
break;
case Addressing_Type:
err_str = "is not an expression";
break;
case Addressing_Builtin:
err_str = "must be called";
break;
}
if (err_str != NULL) {
gbString str = expr_to_string(e);
error_node(e, "`%s` %s", str, err_str);
gb_string_free(str);
o->mode = Addressing_Invalid;
}
}
bool check_set_index_data(Operand *o, Type *t, i64 *max_count) {
t = base_type(type_deref(t));
switch (t->kind) {
case Type_Basic:
if (is_type_string(t)) {
if (o->mode == Addressing_Constant) {
*max_count = o->value.value_string.len;
}
if (o->mode != Addressing_Variable) {
o->mode = Addressing_Value;
}
o->type = t_u8;
return true;
}
break;
case Type_Array:
*max_count = t->Array.count;
if (o->mode != Addressing_Variable) {
o->mode = Addressing_Value;
}
o->type = t->Array.elem;
return true;
case Type_Vector:
*max_count = t->Vector.count;
if (o->mode != Addressing_Variable) {
o->mode = Addressing_Value;
}
o->type = t->Vector.elem;
return true;
case Type_Slice:
o->type = t->Slice.elem;
o->mode = Addressing_Variable;
return true;
}
return false;
}
ExprKind check__expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
ExprKind kind = Expr_Stmt;
o->mode = Addressing_Invalid;
o->type = t_invalid;
switch (node->kind) {
default:
goto error;
break;
case_ast_node(be, BadExpr, node)
goto error;
case_end;
case_ast_node(i, Ident, node);
check_identifier(c, o, node, type_hint);
case_end;
case_ast_node(bl, BasicLit, node);
Type *t = t_invalid;
switch (bl->kind) {
case Token_Integer: t = t_untyped_integer; break;
case Token_Float: t = t_untyped_float; break;
case Token_String: t = t_untyped_string; break;
case Token_Rune: t = t_untyped_rune; break;
default: GB_PANIC("Unknown literal"); break;
}
o->mode = Addressing_Constant;
o->type = t;
o->value = make_exact_value_from_basic_literal(*bl);
case_end;
case_ast_node(pl, ProcLit, node);
check_open_scope(c, pl->type);
c->context.decl = make_declaration_info(c->allocator, c->context.scope);
Type *proc_type = check_type(c, pl->type);
if (proc_type != NULL) {
check_proc_body(c, empty_token, c->context.decl, proc_type, pl->body);
o->mode = Addressing_Value;
o->type = proc_type;
check_close_scope(c);
} else {
gbString str = expr_to_string(node);
error_node(node, "Invalid procedure literal `%s`", str);
gb_string_free(str);
check_close_scope(c);
goto error;
}
case_end;
case_ast_node(cl, CompoundLit, node);
Type *type = type_hint;
bool ellipsis_array = false;
bool is_constant = true;
if (cl->type != NULL) {
type = NULL;
// [..]Type
if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != NULL) {
if (cl->type->ArrayType.count->kind == AstNode_Ellipsis) {
type = make_type_array(c->allocator, check_type(c, cl->type->ArrayType.elem), -1);
ellipsis_array = true;
}
}
if (type == NULL) {
type = check_type(c, cl->type);
}
}
if (type == NULL) {
error_node(node, "Missing type in compound literal");
goto error;
}
Type *t = base_type(type);
switch (t->kind) {
case Type_Record: {
if (!is_type_struct(t)) {
if (cl->elems.count != 0) {
error_node(node, "Illegal compound literal");
}
break;
}
if (cl->elems.count == 0) {
break; // NOTE(bill): No need to init
}
{ // Checker values
isize field_count = t->Record.field_count;
if (cl->elems.e[0]->kind == AstNode_FieldValue) {
bool *fields_visited = gb_alloc_array(c->allocator, bool, field_count);
for_array(i, cl->elems) {
AstNode *elem = cl->elems.e[i];
if (elem->kind != AstNode_FieldValue) {
error_node(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed");
continue;
}
ast_node(fv, FieldValue, elem);
if (fv->field->kind != AstNode_Ident) {
gbString expr_str = expr_to_string(fv->field);
error_node(elem, "Invalid field name `%s` in structure literal", expr_str);
gb_string_free(expr_str);
continue;
}
String name = fv->field->Ident.string;
Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type);
if (sel.entity == NULL) {
error_node(elem, "Unknown field `%.*s` in structure literal", LIT(name));
continue;
}
if (sel.index.count > 1) {
error_node(elem, "Cannot assign to an anonymous field `%.*s` in a structure literal (at the moment)", LIT(name));
continue;
}
Entity *field = t->Record.fields[sel.index.e[0]];
add_entity_use(c, fv->field, field);
if (fields_visited[sel.index.e[0]]) {
error_node(elem, "Duplicate field `%.*s` in structure literal", LIT(name));
continue;
}
fields_visited[sel.index.e[0]] = true;
check_expr(c, o, fv->value);
if (base_type(field->type) == t_any) {
is_constant = false;
}
if (is_constant) {
is_constant = o->mode == Addressing_Constant;
}
check_assignment(c, o, field->type, str_lit("structure literal"));
}
} else {
for_array(index, cl->elems) {
AstNode *elem = cl->elems.e[index];
if (elem->kind == AstNode_FieldValue) {
error_node(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed");
continue;
}
Entity *field = t->Record.fields_in_src_order[index];
check_expr(c, o, elem);
if (index >= field_count) {
error_node(o->expr, "Too many values in structure literal, expected %td", field_count);
break;
}
if (base_type(field->type) == t_any) {
is_constant = false;
}
if (is_constant) {
is_constant = o->mode == Addressing_Constant;
}
check_assignment(c, o, field->type, str_lit("structure literal"));
}
if (cl->elems.count < field_count) {
error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count);
}
}
}
} break;
case Type_Slice:
case Type_Array:
case Type_Vector:
{
Type *elem_type = NULL;
String context_name = {0};
if (t->kind == Type_Slice) {
elem_type = t->Slice.elem;
context_name = str_lit("slice literal");
} else if (t->kind == Type_Vector) {
elem_type = t->Vector.elem;
context_name = str_lit("vector literal");
} else {
elem_type = t->Array.elem;
context_name = str_lit("array literal");
}
i64 max = 0;
isize index = 0;
isize elem_count = cl->elems.count;
if (base_type(elem_type) == t_any) {
is_constant = false;
}
for (; index < elem_count; index++) {
AstNode *e = cl->elems.e[index];
if (e->kind == AstNode_FieldValue) {
error_node(e,
"`field = value` is only allowed in struct literals");
continue;
}
if (t->kind == Type_Array &&
t->Array.count >= 0 &&
index >= t->Array.count) {
error_node(e, "Index %lld is out of bounds (>= %lld) for array literal", index, t->Array.count);
}
if (t->kind == Type_Vector &&
t->Vector.count >= 0 &&
index >= t->Vector.count) {
error_node(e, "Index %lld is out of bounds (>= %lld) for vector literal", index, t->Vector.count);
}
Operand operand = {0};
check_expr_with_type_hint(c, &operand, e, elem_type);
check_assignment(c, &operand, elem_type, context_name);
if (is_constant) {
is_constant = operand.mode == Addressing_Constant;
}
}
if (max < index) {
max = index;
}
if (t->kind == Type_Vector) {
if (t->Vector.count > 1 && gb_is_between(index, 2, t->Vector.count-1)) {
error_node(cl->elems.e[0], "Expected either 1 (broadcast) or %td elements in vector literal, got %td", t->Vector.count, index);
}
}
if (t->kind == Type_Array && ellipsis_array) {
t->Array.count = max;
}
} break;
default: {
gbString str = type_to_string(type);
error_node(node, "Invalid compound literal type `%s`", str);
gb_string_free(str);
goto error;
} break;
}
if (is_constant) {
o->mode = Addressing_Constant;
o->value = make_exact_value_compound(node);
} else {
o->mode = Addressing_Value;
}
o->type = type;
case_end;
case_ast_node(pe, ParenExpr, node);
kind = check_expr_base(c, o, pe->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(te, TagExpr, node);
// TODO(bill): Tag expressions
error_node(node, "Tag expressions are not supported yet");
kind = check_expr_base(c, o, te->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(re, RunExpr, node);
// TODO(bill): Tag expressions
kind = check_expr_base(c, o, re->expr, type_hint);
o->expr = node;
case_end;
case_ast_node(ue, UnaryExpr, node);
check_expr(c, o, ue->expr);
if (o->mode == Addressing_Invalid) {
goto error;
}
check_unary_expr(c, o, ue->op, node);
if (o->mode == Addressing_Invalid) {
goto error;
}
case_end;
case_ast_node(be, BinaryExpr, node);
check_binary_expr(c, o, node);
if (o->mode == Addressing_Invalid) {
goto error;
}
case_end;
case_ast_node(se, SelectorExpr, node);
check_selector(c, o, node);
case_end;
case_ast_node(ie, IndexExpr, node);
check_expr(c, o, ie->expr);
if (o->mode == Addressing_Invalid) {
goto error;
}
Type *t = base_type(type_deref(o->type));
bool is_const = o->mode == Addressing_Constant;
i64 max_count = -1;
bool valid = check_set_index_data(o, t, &max_count);
if (is_const) {
valid = false;
}
if (!valid && (is_type_struct(t) || is_type_raw_union(t))) {
Entity *found = find_using_index_expr(t);
if (found != NULL) {
valid = check_set_index_data(o, found->type, &max_count);
}
}
if (!valid) {
gbString str = expr_to_string(o->expr);
if (is_const) {
error_node(o->expr, "Cannot index a constant `%s`", str);
} else {
error_node(o->expr, "Cannot index `%s`", str);
}
gb_string_free(str);
goto error;
}
if (ie->index == NULL) {
gbString str = expr_to_string(o->expr);
error_node(o->expr, "Missing index for `%s`", str);
gb_string_free(str);
goto error;
}
i64 index = 0;
bool ok = check_index_value(c, ie->index, max_count, &index);
case_end;
case_ast_node(se, SliceExpr, node);
check_expr(c, o, se->expr);
if (o->mode == Addressing_Invalid) {
goto error;
}
bool valid = false;
i64 max_count = -1;
Type *t = base_type(type_deref(o->type));
switch (t->kind) {
case Type_Basic:
if (is_type_string(t)) {
valid = true;
if (o->mode == Addressing_Constant) {
max_count = o->value.value_string.len;
}
if (se->max != NULL) {
error_node(se->max, "Max (3rd) index not needed in substring expression");
}
o->type = t_string;
}
break;
case Type_Array:
valid = true;
max_count = t->Array.count;
if (o->mode != Addressing_Variable) {
gbString str = expr_to_string(node);
error_node(node, "Cannot slice array `%s`, value is not addressable", str);
gb_string_free(str);
goto error;
}
o->type = make_type_slice(c->allocator, t->Array.elem);
break;
case Type_Slice:
valid = true;
break;
}
if (!valid) {
gbString str = expr_to_string(o->expr);
error_node(o->expr, "Cannot slice `%s`", str);
gb_string_free(str);
goto error;
}
o->mode = Addressing_Value;
i64 indices[3] = {0};
AstNode *nodes[3] = {se->low, se->high, se->max};
for (isize i = 0; i < gb_count_of(nodes); i++) {
i64 index = max_count;
if (nodes[i] != NULL) {
i64 capacity = -1;
if (max_count >= 0)
capacity = max_count;
i64 j = 0;
if (check_index_value(c, nodes[i], capacity, &j)) {
index = j;
}
} else if (i == 0) {
index = 0;
}
indices[i] = index;
}
for (isize i = 0; i < gb_count_of(indices); i++) {
i64 a = indices[i];
for (isize j = i+1; j < gb_count_of(indices); j++) {
i64 b = indices[j];
if (a > b && b >= 0) {
error(se->close, "Invalid slice indices: [%td > %td]", a, b);
}
}
}
case_end;
case_ast_node(ce, CallExpr, node);
return check_call_expr(c, o, node);
case_end;
case_ast_node(de, DerefExpr, node);
check_expr_or_type(c, o, de->expr);
if (o->mode == Addressing_Invalid) {
goto error;
} else {
Type *t = base_type(o->type);
if (t->kind == Type_Pointer) {
o->mode = Addressing_Variable;
o->type = t->Pointer.elem;
} else {
gbString str = expr_to_string(o->expr);
error_node(o->expr, "Cannot dereference `%s`", str);
gb_string_free(str);
goto error;
}
}
case_end;
case_ast_node(de, DemaybeExpr, node);
check_expr_or_type(c, o, de->expr);
if (o->mode == Addressing_Invalid) {
goto error;
} else {
Type *t = base_type(o->type);
if (t->kind == Type_Maybe) {
Entity **variables = gb_alloc_array(c->allocator, Entity *, 2);
Type *elem = t->Maybe.elem;
Token tok = make_token_ident(str_lit(""));
variables[0] = make_entity_param(c->allocator, NULL, tok, elem, false);
variables[1] = make_entity_param(c->allocator, NULL, tok, t_bool, false);
Type *tuple = make_type_tuple(c->allocator);
tuple->Tuple.variables = variables;
tuple->Tuple.variable_count = 2;
o->type = tuple;
o->mode = Addressing_Variable;
} else {
gbString str = expr_to_string(o->expr);
error_node(o->expr, "Cannot demaybe `%s`", str);
gb_string_free(str);
goto error;
}
}
case_end;
case AstNode_ProcType:
case AstNode_PointerType:
case AstNode_MaybeType:
case AstNode_ArrayType:
case AstNode_VectorType:
case AstNode_StructType:
case AstNode_RawUnionType:
o->mode = Addressing_Type;
o->type = check_type(c, node);
break;
}
kind = Expr_Expr;
o->expr = node;
return kind;
error:
o->mode = Addressing_Invalid;
o->expr = node;
return kind;
}
ExprKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
ExprKind kind = check__expr_base(c, o, node, type_hint);
Type *type = NULL;
ExactValue value = {ExactValue_Invalid};
switch (o->mode) {
case Addressing_Invalid:
type = t_invalid;
break;
case Addressing_NoValue:
type = NULL;
break;
case Addressing_Constant:
type = o->type;
value = o->value;
break;
default:
type = o->type;
break;
}
if (type != NULL && is_type_untyped(type)) {
add_untyped(&c->info, node, false, o->mode, type, value);
} else {
add_type_and_value(&c->info, node, o->mode, type, value);
}
return kind;
}
void check_multi_expr(Checker *c, Operand *o, AstNode *e) {
gbString err_str = NULL;
check_expr_base(c, o, e, NULL);
switch (o->mode) {
default:
return; // NOTE(bill): Valid
case Addressing_NoValue:
err_str = expr_to_string(e);
error_node(e, "`%s` used as value", err_str);
break;
case Addressing_Type:
err_str = expr_to_string(e);
error_node(e, "`%s` is not an expression", err_str);
break;
}
gb_string_free(err_str);
o->mode = Addressing_Invalid;
}
void check_not_tuple(Checker *c, Operand *o) {
if (o->mode == Addressing_Value) {
// NOTE(bill): Tuples are not first class thus never named
if (o->type->kind == Type_Tuple) {
isize count = o->type->Tuple.variable_count;
GB_ASSERT(count != 1);
error_node(o->expr,
"%td-valued tuple found where single value expected", count);
o->mode = Addressing_Invalid;
}
}
}
void check_expr(Checker *c, Operand *o, AstNode *e) {
check_multi_expr(c, o, e);
check_not_tuple(c, o);
}
void check_expr_or_type(Checker *c, Operand *o, AstNode *e) {
check_expr_base(c, o, e, NULL);
check_not_tuple(c, o);
if (o->mode == Addressing_NoValue) {
gbString str = expr_to_string(o->expr);
error_node(o->expr, "`%s` used as value or type", str);
gb_string_free(str);
o->mode = Addressing_Invalid;
}
}
gbString write_expr_to_string(gbString str, AstNode *node);
gbString write_params_to_string(gbString str, AstNodeArray params, char *sep) {
for_array(i, params) {
ast_node(p, Parameter, params.e[i]);
if (i > 0) {
str = gb_string_appendc(str, sep);
}
str = write_expr_to_string(str, params.e[i]);
}
return str;
}
gbString string_append_token(gbString str, Token token) {
if (token.string.len > 0) {
return gb_string_append_length(str, token.string.text, token.string.len);
}
return str;
}
gbString write_expr_to_string(gbString str, AstNode *node) {
if (node == NULL)
return str;
if (is_ast_node_stmt(node)) {
GB_ASSERT("stmt passed to write_expr_to_string");
}
switch (node->kind) {
default:
str = gb_string_appendc(str, "(BadExpr)");
break;
case_ast_node(i, Ident, node);
str = string_append_token(str, *i);
case_end;
case_ast_node(bl, BasicLit, node);
str = string_append_token(str, *bl);
case_end;
case_ast_node(pl, ProcLit, node);
str = write_expr_to_string(str, pl->type);
case_end;
case_ast_node(cl, CompoundLit, node);
str = write_expr_to_string(str, cl->type);
str = gb_string_appendc(str, "{");
for_array(i, cl->elems) {
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, cl->elems.e[i]);
}
str = gb_string_appendc(str, "}");
case_end;
case_ast_node(te, TagExpr, node);
str = gb_string_appendc(str, "#");
str = string_append_token(str, te->name);
str = write_expr_to_string(str, te->expr);
case_end;
case_ast_node(ue, UnaryExpr, node);
str = string_append_token(str, ue->op);
str = write_expr_to_string(str, ue->expr);
case_end;
case_ast_node(de, DerefExpr, node);
str = write_expr_to_string(str, de->expr);
str = gb_string_appendc(str, "^");
case_end;
case_ast_node(de, DemaybeExpr, node);
str = write_expr_to_string(str, de->expr);
str = gb_string_appendc(str, "?");
case_end;
case_ast_node(be, BinaryExpr, node);
str = write_expr_to_string(str, be->left);
str = gb_string_appendc(str, " ");
str = string_append_token(str, be->op);
str = gb_string_appendc(str, " ");
str = write_expr_to_string(str, be->right);
case_end;
case_ast_node(pe, ParenExpr, node);
str = gb_string_appendc(str, "(");
str = write_expr_to_string(str, pe->expr);
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(se, SelectorExpr, node);
str = write_expr_to_string(str, se->expr);
str = gb_string_appendc(str, ".");
str = write_expr_to_string(str, se->selector);
case_end;
case_ast_node(ie, IndexExpr, node);
str = write_expr_to_string(str, ie->expr);
str = gb_string_appendc(str, "[");
str = write_expr_to_string(str, ie->index);
str = gb_string_appendc(str, "]");
case_end;
case_ast_node(se, SliceExpr, node);
str = write_expr_to_string(str, se->expr);
str = gb_string_appendc(str, "[");
str = write_expr_to_string(str, se->low);
str = gb_string_appendc(str, ":");
str = write_expr_to_string(str, se->high);
if (se->triple_indexed) {
str = gb_string_appendc(str, ":");
str = write_expr_to_string(str, se->max);
}
str = gb_string_appendc(str, "]");
case_end;
case_ast_node(e, Ellipsis, node);
str = gb_string_appendc(str, "..");
case_end;
case_ast_node(fv, FieldValue, node);
str = write_expr_to_string(str, fv->field);
str = gb_string_appendc(str, " = ");
str = write_expr_to_string(str, fv->value);
case_end;
case_ast_node(pt, PointerType, node);
str = gb_string_appendc(str, "^");
str = write_expr_to_string(str, pt->type);
case_end;
case_ast_node(mt, MaybeType, node);
str = gb_string_appendc(str, "?");
str = write_expr_to_string(str, mt->type);
case_end;
case_ast_node(at, ArrayType, node);
str = gb_string_appendc(str, "[");
str = write_expr_to_string(str, at->count);
str = gb_string_appendc(str, "]");
str = write_expr_to_string(str, at->elem);
case_end;
case_ast_node(vt, VectorType, node);
str = gb_string_appendc(str, "[vector ");
str = write_expr_to_string(str, vt->count);
str = gb_string_appendc(str, "]");
str = write_expr_to_string(str, vt->elem);
case_end;
case_ast_node(p, Parameter, node);
if (p->is_using) {
str = gb_string_appendc(str, "using ");
}
for_array(i, p->names) {
AstNode *name = p->names.e[i];
if (i > 0)
str = gb_string_appendc(str, ", ");
str = write_expr_to_string(str, name);
}
str = gb_string_appendc(str, ": ");
str = write_expr_to_string(str, p->type);
case_end;
case_ast_node(ce, CallExpr, node);
str = write_expr_to_string(str, ce->proc);
str = gb_string_appendc(str, "(");
for_array(i, ce->args) {
AstNode *arg = ce->args.e[i];
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = write_expr_to_string(str, arg);
}
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(pt, ProcType, node);
str = gb_string_appendc(str, "proc(");
str = write_params_to_string(str, pt->params, ", ");
str = gb_string_appendc(str, ")");
case_end;
case_ast_node(st, StructType, node);
str = gb_string_appendc(str, "struct ");
if (st->is_packed) str = gb_string_appendc(str, "#packed ");
if (st->is_ordered) str = gb_string_appendc(str, "#ordered ");
for_array(i, st->fields) {
if (i > 0) {
str = gb_string_appendc(str, "; ");
}
str = write_expr_to_string(str, st->fields.e[i]);
}
// str = write_params_to_string(str, st->decl_list, ", ");
str = gb_string_appendc(str, "}");
case_end;
case_ast_node(st, RawUnionType, node);
str = gb_string_appendc(str, "raw_union {");
for_array(i, st->fields) {
if (i > 0) {
str = gb_string_appendc(str, "; ");
}
str = write_expr_to_string(str, st->fields.e[i]);
}
// str = write_params_to_string(str, st->decl_list, ", ");
str = gb_string_appendc(str, "}");
case_end;
case_ast_node(st, UnionType, node);
str = gb_string_appendc(str, "union {");
for_array(i, st->fields) {
if (i > 0) {
str = gb_string_appendc(str, "; ");
}
str = write_expr_to_string(str, st->fields.e[i]);
}
// str = write_params_to_string(str, st->decl_list, ", ");
str = gb_string_appendc(str, "}");
case_end;
case_ast_node(et, EnumType, node);
str = gb_string_appendc(str, "enum ");
if (et->base_type != NULL) {
str = write_expr_to_string(str, et->base_type);
str = gb_string_appendc(str, " ");
}
str = gb_string_appendc(str, "{");
str = gb_string_appendc(str, "}");
case_end;
}
return str;
}
gbString expr_to_string(AstNode *expression) {
return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression);
}