Files
Odin/src/llvm_backend_proc.cpp
2025-09-19 16:15:04 +01:00

4407 lines
144 KiB
C++

gb_internal LLVMValueRef lb_call_intrinsic(lbProcedure *p, const char *name, LLVMValueRef* args, unsigned arg_count, LLVMTypeRef* types, unsigned type_count) {
unsigned id = LLVMLookupIntrinsicID(name, gb_strlen(name));
GB_ASSERT_MSG(id != 0, "Unable to find %s", name);
LLVMValueRef ip = LLVMGetIntrinsicDeclaration(p->module->mod, id, types, type_count);
LLVMTypeRef call_type = LLVMIntrinsicGetType(p->module->ctx, id, types, type_count);
return LLVMBuildCall2(p->builder, call_type, ip, args, arg_count, "");
}
gb_internal void lb_mem_copy_overlapping(lbProcedure *p, lbValue dst, lbValue src, lbValue len, bool is_volatile) {
dst = lb_emit_conv(p, dst, t_rawptr);
src = lb_emit_conv(p, src, t_rawptr);
len = lb_emit_conv(p, len, t_int);
char const *name = "llvm.memmove";
if (LLVMIsConstant(len.value)) {
i64 const_len = cast(i64)LLVMConstIntGetSExtValue(len.value);
if (const_len <= 4*build_context.int_size) {
name = "llvm.memmove.inline";
}
}
LLVMTypeRef types[3] = {
lb_type(p->module, t_rawptr),
lb_type(p->module, t_rawptr),
lb_type(p->module, t_int)
};
LLVMValueRef args[4] = {
dst.value,
src.value,
len.value,
LLVMConstInt(LLVMInt1TypeInContext(p->module->ctx), 0, is_volatile)
};
lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
}
gb_internal void lb_mem_copy_non_overlapping(lbProcedure *p, lbValue dst, lbValue src, lbValue len, bool is_volatile) {
dst = lb_emit_conv(p, dst, t_rawptr);
src = lb_emit_conv(p, src, t_rawptr);
len = lb_emit_conv(p, len, t_int);
char const *name = "llvm.memcpy";
if (LLVMIsConstant(len.value)) {
i64 const_len = cast(i64)LLVMConstIntGetSExtValue(len.value);
if (const_len <= 4*build_context.int_size) {
name = "llvm.memcpy.inline";
}
}
LLVMTypeRef types[3] = {
lb_type(p->module, t_rawptr),
lb_type(p->module, t_rawptr),
lb_type(p->module, t_int)
};
LLVMValueRef args[4] = {
dst.value,
src.value,
len.value,
LLVMConstInt(LLVMInt1TypeInContext(p->module->ctx), 0, is_volatile) };
lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
}
gb_internal lbProcedure *lb_create_procedure(lbModule *m, Entity *entity, bool ignore_body) {
GB_ASSERT(entity != nullptr);
GB_ASSERT(entity->kind == Entity_Procedure);
// Skip codegen for unspecialized polymorphic procedures
if (is_type_polymorphic(entity->type) && !entity->Procedure.is_foreign) {
Type *bt = base_type(entity->type);
if (bt->kind == Type_Proc && bt->Proc.is_polymorphic && !bt->Proc.is_poly_specialized) {
// Do not generate code for unspecialized polymorphic procedures
return nullptr;
}
}
if (!entity->Procedure.is_foreign) {
if ((entity->flags & EntityFlag_ProcBodyChecked) == 0) {
GB_PANIC("%.*s :: %s (was parapoly: %d %d)", LIT(entity->token.string), type_to_string(entity->type), is_type_polymorphic(entity->type, true), is_type_polymorphic(entity->type, false));
}
}
String link_name = {};
if (ignore_body) {
lbModule *other_module = lb_module_of_entity(m->gen, entity, m);
link_name = lb_get_entity_name(other_module, entity);
} else {
link_name = lb_get_entity_name(m, entity);
}
{
StringHashKey key = string_hash_string(link_name);
lbValue *found = string_map_get(&m->members, key);
if (found) {
lb_add_entity(m, entity, *found);
return string_map_must_get(&m->procedures, key);
}
}
lbProcedure *p = gb_alloc_item(permanent_allocator(), lbProcedure);
p->module = m;
entity->code_gen_module = m;
entity->code_gen_procedure = p;
p->entity = entity;
p->name = link_name;
DeclInfo *decl = entity->decl_info;
ast_node(pl, ProcLit, decl->proc_lit);
Type *pt = base_type(entity->type);
GB_ASSERT(pt->kind == Type_Proc);
p->type = entity->type;
p->type_expr = decl->type_expr;
p->body = pl->body;
p->inlining = pl->inlining;
p->is_foreign = entity->Procedure.is_foreign;
p->is_export = entity->Procedure.is_export;
p->is_entry_point = false;
gbAllocator a = heap_allocator();
p->children.allocator = a;
p->defer_stmts.allocator = a;
p->blocks.allocator = a;
p->branch_blocks.allocator = a;
p->context_stack.allocator = a;
p->scope_stack.allocator = a;
p->asan_stack_locals.allocator = a;
// map_init(&p->selector_values, 0);
// map_init(&p->selector_addr, 0);
// map_init(&p->tuple_fix_map, 0);
if (p->entity != nullptr && p->entity->Procedure.uses_branch_location) {
p->uses_branch_location = true;
}
if (p->is_foreign) {
lb_add_foreign_library_path(p->module, entity->Procedure.foreign_library);
}
LLVMTypeRef func_type = lb_get_procedure_raw_type(m, p->type);
{
TEMPORARY_ALLOCATOR_GUARD();
char *c_link_name = alloc_cstring(temporary_allocator(), p->name);
p->value = LLVMAddFunction(m->mod, c_link_name, func_type);
}
lb_ensure_abi_function_type(m, p);
lb_add_function_type_attributes(p->value, p->abi_function_type, p->abi_function_type->calling_convention);
if (pt->Proc.diverging) {
lb_add_attribute_to_proc(m, p->value, "noreturn");
}
if (pt->Proc.calling_convention == ProcCC_Naked) {
lb_add_attribute_to_proc(m, p->value, "naked");
}
if (!entity->Procedure.is_foreign && build_context.disable_red_zone) {
lb_add_attribute_to_proc(m, p->value, "noredzone");
}
switch (p->inlining) {
case ProcInlining_inline:
lb_add_attribute_to_proc(m, p->value, "alwaysinline");
break;
case ProcInlining_no_inline:
lb_add_attribute_to_proc(m, p->value, "noinline");
break;
default:
if (build_context.internal_no_inline) {
lb_add_attribute_to_proc(m, p->value, "noinline");
break;
}
}
switch (entity->Procedure.optimization_mode) {
case ProcedureOptimizationMode_None:
lb_add_attribute_to_proc(m, p->value, "optnone");
lb_add_attribute_to_proc(m, p->value, "noinline");
break;
case ProcedureOptimizationMode_FavorSize:
lb_add_attribute_to_proc(m, p->value, "optsize");
break;
}
if (pt->Proc.enable_target_feature.len != 0) {
gbString feature_str = gb_string_make(temporary_allocator(), "");
String_Iterator it = {pt->Proc.enable_target_feature, 0};
bool first = true;
for (;;) {
String str = string_split_iterator(&it, ',');
if (str == "") break;
if (!first) {
feature_str = gb_string_appendc(feature_str, ",");
}
first = false;
feature_str = gb_string_appendc(feature_str, "+");
feature_str = gb_string_append_length(feature_str, str.text, str.len);
}
lb_add_attribute_to_proc_with_string(m, p->value, make_string_c("target-features"), make_string_c(feature_str));
}
if (entity->flags & EntityFlag_Cold) {
lb_add_attribute_to_proc(m, p->value, "cold");
}
if (p->is_export) {
LLVMSetLinkage(p->value, LLVMDLLExportLinkage);
LLVMSetDLLStorageClass(p->value, LLVMDLLExportStorageClass);
LLVMSetVisibility(p->value, LLVMDefaultVisibility);
lb_set_wasm_export_attributes(p->value, p->name);
} else if (!p->is_foreign) {
if (USE_SEPARATE_MODULES) {
LLVMSetLinkage(p->value, LLVMExternalLinkage);
} else {
LLVMSetLinkage(p->value, LLVMInternalLinkage);
// NOTE(bill): if a procedure is defined in package runtime and uses a custom link name,
// then it is very likely it is required by LLVM and thus cannot have internal linkage
if (entity->pkg != nullptr && entity->pkg->kind == Package_Runtime && p->body != nullptr) {
GB_ASSERT(entity->kind == Entity_Procedure);
String link_name = entity->Procedure.link_name;
if (entity->flags & EntityFlag_CustomLinkName &&
link_name != "") {
if (string_starts_with(link_name, str_lit("__"))) {
LLVMSetLinkage(p->value, LLVMExternalLinkage);
} else {
LLVMSetLinkage(p->value, LLVMInternalLinkage);
}
}
}
}
}
lb_set_linkage_from_entity_flags(p->module, p->value, entity->flags);
if (p->is_foreign) {
lb_set_wasm_procedure_import_attributes(p->value, entity, p->name);
}
// NOTE(bill): offset==0 is the return value
isize offset = 1;
if (pt->Proc.return_by_pointer) {
offset = 2;
}
isize parameter_index = 0;
if (pt->Proc.param_count) {
TypeTuple *params = &pt->Proc.params->Tuple;
for (isize i = 0; i < pt->Proc.param_count; i++) {
Entity *e = params->variables[i];
if (e->kind != Entity_Variable) {
continue;
}
if (i+1 == params->variables.count && pt->Proc.c_vararg) {
continue;
}
if (e->flags&EntityFlag_NoAlias) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
}
if (e->flags&EntityFlag_NoCapture) {
if (is_type_internally_pointer_like(e->type)) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nocapture");
}
}
parameter_index += 1;
}
}
if (ignore_body) {
p->body = nullptr;
LLVMSetLinkage(p->value, LLVMExternalLinkage);
}
if (m->debug_builder) { // Debug Information
Type *bt = base_type(p->type);
unsigned line = cast(unsigned)entity->token.pos.line;
LLVMMetadataRef scope = nullptr;
LLVMMetadataRef file = nullptr;
LLVMMetadataRef type = nullptr;
scope = p->module->debug_compile_unit;
type = lb_debug_type_internal_proc(m, bt);
Ast *ident = entity->identifier.load();
if (entity->file != nullptr) {
file = lb_get_llvm_metadata(m, entity->file);
scope = file;
} else if (ident != nullptr && ident->file_id != 0) {
file = lb_get_llvm_metadata(m, ident->file());
scope = file;
} else if (entity->scope != nullptr) {
file = lb_get_llvm_metadata(m, entity->scope->file);
scope = file;
}
GB_ASSERT_MSG(file != nullptr, "%.*s", LIT(entity->token.string));
// LLVMBool is_local_to_unit = !entity->Procedure.is_export;
LLVMBool is_local_to_unit = false;
LLVMBool is_definition = p->body != nullptr;
unsigned scope_line = line;
u32 flags = LLVMDIFlagStaticMember;
LLVMBool is_optimized = false;
if (bt->Proc.diverging) {
flags |= LLVMDIFlagNoReturn;
}
if (p->body == nullptr) {
flags |= LLVMDIFlagPrototyped;
is_optimized = false;
}
if (p->body != nullptr) {
// String debug_name = entity->token.string.text;
String debug_name = p->name;
p->debug_info = LLVMDIBuilderCreateFunction(m->debug_builder, scope,
cast(char const *)debug_name.text, debug_name.len,
cast(char const *)p->name.text, p->name.len,
file, line, type,
is_local_to_unit, is_definition,
scope_line, cast(LLVMDIFlags)flags, is_optimized
);
GB_ASSERT(p->debug_info != nullptr);
LLVMSetSubprogram(p->value, p->debug_info);
lb_set_llvm_metadata(m, p, p->debug_info);
}
}
if (p->body && entity->pkg && ((entity->pkg->kind == Package_Normal) || (entity->pkg->kind == Package_Init))) {
if (build_context.sanitizer_flags & SanitizerFlag_Address && !entity->Procedure.no_sanitize_address) {
lb_add_attribute_to_proc(m, p->value, "sanitize_address");
}
if (build_context.sanitizer_flags & SanitizerFlag_Memory && !entity->Procedure.no_sanitize_memory) {
lb_add_attribute_to_proc(m, p->value, "sanitize_memory");
}
if (build_context.sanitizer_flags & SanitizerFlag_Thread) {
lb_add_attribute_to_proc(m, p->value, "sanitize_thread");
}
}
if (p->body && entity->Procedure.has_instrumentation) {
Entity *instrumentation_enter = m->info->instrumentation_enter_entity;
Entity *instrumentation_exit = m->info->instrumentation_exit_entity;
if (instrumentation_enter && instrumentation_exit) {
String enter = lb_get_entity_name(m, instrumentation_enter);
String exit = lb_get_entity_name(m, instrumentation_exit);
lb_add_attribute_to_proc_with_string(m, p->value, make_string_c("instrument-function-entry"), enter);
lb_add_attribute_to_proc_with_string(m, p->value, make_string_c("instrument-function-exit"), exit);
}
}
lbValue proc_value = {p->value, p->type};
lb_add_entity(m, entity, proc_value);
lb_add_member(m, p->name, proc_value);
lb_add_procedure_value(m, p);
return p;
}
gb_internal lbProcedure *lb_create_dummy_procedure(lbModule *m, String link_name, Type *type) {
{
lbValue *found = string_map_get(&m->members, link_name);
GB_ASSERT_MSG(found == nullptr, "failed to create dummy procedure for: %.*s", LIT(link_name));
}
lbProcedure *p = gb_alloc_item(permanent_allocator(), lbProcedure);
p->module = m;
p->name = link_name;
p->type = type;
p->type_expr = nullptr;
p->body = nullptr;
p->tags = 0;
p->inlining = ProcInlining_none;
p->is_foreign = false;
p->is_export = false;
p->is_entry_point = false;
gbAllocator a = permanent_allocator();
p->children.allocator = a;
p->defer_stmts.allocator = a;
p->blocks.allocator = a;
p->branch_blocks.allocator = a;
p->context_stack.allocator = a;
p->asan_stack_locals.allocator = a;
map_init(&p->tuple_fix_map, 0);
char *c_link_name = alloc_cstring(permanent_allocator(), p->name);
LLVMTypeRef func_type = lb_get_procedure_raw_type(m, p->type);
p->value = LLVMAddFunction(m->mod, c_link_name, func_type);
Type *pt = p->type;
lbCallingConventionKind cc_kind = lbCallingConvention_C;
if (!is_arch_wasm()) {
cc_kind = lb_calling_convention_map[pt->Proc.calling_convention];
}
LLVMSetFunctionCallConv(p->value, cc_kind);
lbValue proc_value = {p->value, p->type};
lb_add_member(m, p->name, proc_value);
lb_add_procedure_value(m, p);
// NOTE(bill): offset==0 is the return value
isize offset = 1;
if (pt->Proc.return_by_pointer) {
lb_add_proc_attribute_at_index(p, 1, "sret");
lb_add_proc_attribute_at_index(p, 1, "noalias");
offset = 2;
}
isize parameter_index = 0;
if (pt->Proc.calling_convention == ProcCC_Odin) {
lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nonnull");
lb_add_proc_attribute_at_index(p, offset+parameter_index, "nocapture");
}
return p;
}
// gb_internal lbValue lb_value_param(lbProcedure *p, Entity *e, Type *abi_type, i32 index, lbParamPasskind *kind_) {
// lbParamPasskind kind = lbParamPass_Value;
// if (e != nullptr && !are_types_identical(abi_type, e->type)) {
// if (is_type_pointer(abi_type)) {
// GB_ASSERT(e->kind == Entity_Variable);
// Type *av = core_type(type_deref(abi_type));
// if (are_types_identical(av, core_type(e->type))) {
// kind = lbParamPass_Pointer;
// if (e->flags&EntityFlag_Value) {
// kind = lbParamPass_ConstRef;
// }
// } else {
// kind = lbParamPass_BitCast;
// }
// } else if (is_type_integer(abi_type)) {
// kind = lbParamPass_Integer;
// } else if (abi_type == t_llvm_bool) {
// kind = lbParamPass_Value;
// } else if (is_type_boolean(abi_type)) {
// kind = lbParamPass_Integer;
// } else if (is_type_simd_vector(abi_type)) {
// kind = lbParamPass_BitCast;
// } else if (is_type_float(abi_type)) {
// kind = lbParamPass_BitCast;
// } else if (is_type_tuple(abi_type)) {
// kind = lbParamPass_Tuple;
// } else if (is_type_proc(abi_type)) {
// kind = lbParamPass_Value;
// } else {
// GB_PANIC("Invalid abi type pass kind %s", type_to_string(abi_type));
// }
// }
// if (kind_) *kind_ = kind;
// lbValue res = {};
// res.value = LLVMGetParam(p->value, cast(unsigned)index);
// res.type = abi_type;
// return res;
// }
gb_internal void lb_start_block(lbProcedure *p, lbBlock *b) {
GB_ASSERT(b != nullptr);
if (!b->appended) {
b->appended = true;
LLVMAppendExistingBasicBlock(p->value, b->block);
}
LLVMPositionBuilderAtEnd(p->builder, b->block);
p->curr_block = b;
}
gb_internal void lb_set_debug_position_to_procedure_begin(lbProcedure *p) {
if (p->debug_info == nullptr) {
return;
}
TokenPos pos = {};
if (p->body != nullptr) {
pos = ast_token(p->body).pos;
} else if (p->type_expr != nullptr) {
pos = ast_token(p->type_expr).pos;
} else if (p->entity != nullptr) {
pos = p->entity->token.pos;
}
if (pos.file_id != 0) {
LLVMSetCurrentDebugLocation2(p->builder, lb_debug_location_from_token_pos(p, pos));
}
}
gb_internal void lb_set_debug_position_to_procedure_end(lbProcedure *p) {
if (p->debug_info == nullptr) {
return;
}
TokenPos pos = {};
if (p->body != nullptr) {
pos = ast_end_token(p->body).pos;
} else if (p->type_expr != nullptr) {
pos = ast_end_token(p->type_expr).pos;
} else if (p->entity != nullptr) {
pos = p->entity->token.pos;
}
if (pos.file_id != 0) {
LLVMSetCurrentDebugLocation2(p->builder, lb_debug_location_from_token_pos(p, pos));
}
}
gb_internal void lb_begin_procedure_body(lbProcedure *p) {
DeclInfo *decl = decl_info_of_entity(p->entity);
if (decl != nullptr) {
for_array(i, decl->labels) {
BlockLabel bl = decl->labels[i];
lbBranchBlocks bb = {bl.label, nullptr, nullptr};
array_add(&p->branch_blocks, bb);
}
}
p->builder = LLVMCreateBuilderInContext(p->module->ctx);
p->decl_block = lb_create_block(p, "decls", true);
p->entry_block = lb_create_block(p, "entry", true);
lb_start_block(p, p->entry_block);
map_init(&p->direct_parameters);
p->variadic_reuses.allocator = heap_allocator();
GB_ASSERT(p->type != nullptr);
lb_ensure_abi_function_type(p->module, p);
if (p->type->Proc.calling_convention == ProcCC_Odin) {
lb_push_context_onto_stack_from_implicit_parameter(p);
}
{
lbFunctionType *ft = p->abi_function_type;
unsigned param_offset = 0;
lbValue return_ptr_value = {};
if (ft->ret.kind == lbArg_Indirect) {
// NOTE(bill): this must be parameter 0
String name = str_lit("agg.result");
if (ft->multiple_return_original_type &&
p->type->Proc.has_named_results) {
auto const &variables = p->type->Proc.results->Tuple.variables;
Entity *e = variables[variables.count-1];
if (!is_blank_ident(e->token)) {
name = e->token.string;
}
}
Type *return_ptr_type = reduce_tuple_to_single_type(p->type->Proc.results);
bool split_returns = ft->multiple_return_original_type != nullptr;
if (split_returns) {
GB_ASSERT(is_type_tuple(return_ptr_type));
auto const &variables = return_ptr_type->Tuple.variables;
return_ptr_type = variables[variables.count-1]->type;
}
Type *ptr_type = alloc_type_pointer(return_ptr_type);
Entity *e = alloc_entity_param(nullptr, make_token_ident(name), ptr_type, false, false);
e->flags |= EntityFlag_NoAlias;
return_ptr_value.value = LLVMGetParam(p->value, 0);
LLVMSetValueName2(return_ptr_value.value, cast(char const *)name.text, name.len);
return_ptr_value.type = ptr_type;
p->return_ptr = lb_addr(return_ptr_value);
lb_add_entity(p->module, e, return_ptr_value);
param_offset += 1;
}
if (p->type->Proc.params != nullptr) {
TypeTuple *params = &p->type->Proc.params->Tuple;
unsigned raw_input_parameters_count = LLVMCountParams(p->value);
p->raw_input_parameters = array_make<LLVMValueRef>(permanent_allocator(), raw_input_parameters_count);
LLVMGetParams(p->value, p->raw_input_parameters.data);
bool is_odin_cc = is_calling_convention_odin(ft->calling_convention);
unsigned param_index = 0;
for_array(i, params->variables) {
Entity *e = params->variables[i];
if (e->kind != Entity_Variable) {
continue;
}
lbArgType *arg_type = &ft->args[param_index];
defer (param_index += 1);
if (arg_type->kind == lbArg_Ignore) {
// Even though it is an ignored argument, it might still be referenced in the
// body.
lbValue dummy = lb_add_local_generated(p, e->type, false).addr;
lb_add_entity(p->module, e, dummy);
} else if (arg_type->kind == lbArg_Direct) {
if (e->token.string.len != 0 && !is_blank_ident(e->token.string)) {
LLVMTypeRef param_type = lb_type(p->module, e->type);
LLVMValueRef original_value = LLVMGetParam(p->value, param_offset+param_index);
LLVMValueRef value = OdinLLVMBuildTransmute(p, original_value, param_type);
lbValue param = {};
param.value = value;
param.type = e->type;
map_set(&p->direct_parameters, e, param);
lbValue ptr = lb_address_from_load_or_generate_local(p, param);
GB_ASSERT(LLVMIsAAllocaInst(ptr.value));
lb_add_entity(p->module, e, ptr);
lb_add_debug_param_variable(p, ptr.value, e->type, e->token, param_index+1, p->curr_block);
}
} else if (arg_type->kind == lbArg_Indirect) {
if (e->token.string.len != 0 && !is_blank_ident(e->token.string)) {
i64 sz = type_size_of(e->type);
bool do_callee_copy = false;
if (is_odin_cc) {
do_callee_copy = sz <= 16;
if (build_context.internal_by_value) {
do_callee_copy = true;
}
}
lbValue ptr = {};
ptr.value = LLVMGetParam(p->value, param_offset+param_index);
ptr.type = alloc_type_pointer(e->type);
if (do_callee_copy) {
lbValue new_ptr = lb_add_local_generated(p, e->type, false).addr;
lb_mem_copy_non_overlapping(p, new_ptr, ptr, lb_const_int(p->module, t_uint, sz));
ptr = new_ptr;
}
lb_add_entity(p->module, e, ptr);
lb_add_debug_param_variable(p, ptr.value, e->type, e->token, param_index+1, p->decl_block);
}
}
}
}
if (p->type->Proc.has_named_results) {
GB_ASSERT(p->type->Proc.result_count > 0);
TypeTuple *results = &p->type->Proc.results->Tuple;
for_array(i, results->variables) {
Entity *e = results->variables[i];
GB_ASSERT(e->kind == Entity_Variable);
if (e->token.string != "") {
GB_ASSERT(!is_blank_ident(e->token));
lbAddr res = {};
if (p->entity && p->entity->decl_info &&
p->entity->decl_info->defer_use_checked &&
p->entity->decl_info->defer_used == 0) {
// NOTE(bill): this is a bodge to get around the issue of the problem BELOW
// We check to see if we ever use a defer statement ever within a procedure and if it
// if it never happens, see if you can possibly do take the return value pointer
//
// NOTE(bill): this could be buggy in that I have missed a case where `defer` was used
//
// TODO(bill): This could be optimized to check to see where a `defer` only uses
// the variable in question
bool has_return_ptr = p->return_ptr.addr.value != nullptr;
lbValue ptr = {};
if (ft->multiple_return_original_type != nullptr) {
isize the_offset = -1;
if (i+1 < results->variables.count) {
the_offset = cast(isize)param_offset + ft->original_arg_count + i;
} else if (has_return_ptr) {
GB_ASSERT(i+1 == results->variables.count);
the_offset = 0;
}
if (the_offset >= 0) {
lbValue ptr = {};
ptr.value = LLVMGetParam(p->value, cast(unsigned)the_offset);
ptr.type = alloc_type_pointer(e->type);
}
} else if (has_return_ptr) {
lbValue ptr = p->return_ptr.addr;
if (results->variables.count > 1) {
ptr = lb_emit_tuple_ep(p, ptr, cast(i32)i);
}
GB_ASSERT(is_type_pointer(ptr.type));
GB_ASSERT(are_types_identical(type_deref(ptr.type), e->type));
}
if (ptr.value != nullptr) {
lb_add_entity(p->module, e, ptr);
lb_add_debug_local_variable(p, ptr.value, e->type, e->token);
// NOTE(bill): no need to zero on the callee side as it is zeroed on the caller side
res = lb_addr(ptr);
}
}
if (res.addr.type == nullptr) {
// NOTE(bill): Don't even bother trying to optimize this with the return ptr value
// This will violate the defer rules if you do:
// foo :: proc() -> (x, y: T) {
// defer x = ... // defer is executed after the `defer`
// return // the values returned should be zeroed
// }
// NOTE(bill): REALLY, don't even bother.
//
// IMPORTANT NOTE(bill): REALLY, don't even bother!!!!!!
res = lb_add_local(p, e->type, e);
}
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
GB_ASSERT(e->Variable.param_value.kind != ParameterValue_Location);
GB_ASSERT(e->Variable.param_value.kind != ParameterValue_Expression);
lbValue c = lb_handle_param_value(p, e->type, e->Variable.param_value, nullptr, nullptr);
lb_addr_store(p, res, c);
}
}
}
}
}
lb_set_debug_position_to_procedure_begin(p);
if (p->debug_info != nullptr) {
if (p->context_stack.count != 0) {
lbBlock *prev_block = p->curr_block;
p->curr_block = p->decl_block;
lb_add_debug_context_variable(p, lb_find_or_generate_context_ptr(p));
p->curr_block = prev_block;
}
}
}
gb_internal void lb_end_procedure_body(lbProcedure *p) {
lb_set_debug_position_to_procedure_begin(p);
LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block);
LLVMBuildBr(p->builder, p->entry_block->block);
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
LLVMValueRef instr = nullptr;
// Make sure there is a "ret void" at the end of a procedure with no return type
if (p->type->Proc.result_count == 0) {
instr = LLVMGetLastInstruction(p->curr_block->block);
if (!lb_is_instr_terminating(instr)) {
lb_emit_defer_stmts(p, lbDeferExit_Return, nullptr, p->body);
lb_set_debug_position_to_procedure_end(p);
LLVMBuildRetVoid(p->builder);
}
}
LLVMBasicBlockRef first_block = LLVMGetFirstBasicBlock(p->value);
LLVMBasicBlockRef block = nullptr;
// Make sure every block terminates, and if not, make it unreachable
for (block = first_block; block != nullptr; block = LLVMGetNextBasicBlock(block)) {
instr = LLVMGetLastInstruction(block);
if (instr == nullptr || !lb_is_instr_terminating(instr)) {
LLVMPositionBuilderAtEnd(p->builder, block);
LLVMBuildUnreachable(p->builder);
}
}
p->curr_block = nullptr;
p->state_flags = 0;
LLVMDisposeBuilder(p->builder);
}
gb_internal void lb_build_nested_proc(lbProcedure *p, AstProcLit *pd, Entity *e) {
GB_ASSERT(pd->body != nullptr);
lbModule *m = p->module;
if (e->min_dep_count.load(std::memory_order_relaxed) == 0) {
// NOTE(bill): Nothing depends upon it so doesn't need to be built
return;
}
// NOTE(bill): Generate a new name
// parent.name-guid
String original_name = e->token.string;
String pd_name = original_name;
if (e->Procedure.link_name.len > 0) {
pd_name = e->Procedure.link_name;
}
isize name_len = p->name.len + 1 + pd_name.len + 1 + 10 + 1;
char *name_text = gb_alloc_array(permanent_allocator(), char, name_len);
i32 guid = cast(i32)p->children.count;
name_len = gb_snprintf(name_text, name_len, "%.*s" ABI_PKG_NAME_SEPARATOR "%.*s-%d", LIT(p->name), LIT(pd_name), guid);
String name = make_string(cast(u8 *)name_text, name_len-1);
e->Procedure.link_name = name;
lbProcedure *nested_proc = lb_create_procedure(p->module, e);
if (nested_proc == nullptr) {
// This is an unspecialized polymorphic procedure, skip codegen
return;
}
e->code_gen_procedure = nested_proc;
lbValue value = {};
value.value = nested_proc->value;
value.type = nested_proc->type;
lb_add_entity(m, e, value);
array_add(&p->children, nested_proc);
mpsc_enqueue(&m->procedures_to_generate, nested_proc);
}
gb_internal Array<lbValue> lb_value_to_array(lbProcedure *p, gbAllocator const &allocator, lbValue value) {
Array<lbValue> array = {};
Type *t = base_type(value.type);
if (t == nullptr) {
// Do nothing
} else if (is_type_tuple(t)) {
array = array_make<lbValue>(allocator, 0, t->Tuple.variables.count);
lb_append_tuple_values(p, &array, value);
} else {
array = array_make<lbValue>(allocator, 1);
array[0] = value;
}
return array;
}
gb_internal lbValue lb_emit_call_internal(lbProcedure *p, lbValue value, lbValue return_ptr, Array<lbValue> const &processed_args, Type *abi_rt, lbAddr context_ptr, ProcInlining inlining) {
GB_ASSERT(p->module->ctx == LLVMGetTypeContext(LLVMTypeOf(value.value)));
unsigned arg_count = cast(unsigned)processed_args.count;
if (return_ptr.value != nullptr) {
arg_count += 1;
}
if (context_ptr.addr.value != nullptr) {
arg_count += 1;
}
LLVMValueRef *args = gb_alloc_array(permanent_allocator(), LLVMValueRef, arg_count);
isize arg_index = 0;
if (return_ptr.value != nullptr) {
args[arg_index++] = return_ptr.value;
}
for_array(i, processed_args) {
lbValue arg = processed_args[i];
if (is_type_proc(arg.type)) {
arg.value = LLVMBuildPointerCast(p->builder, arg.value, lb_type(p->module, arg.type), "");
}
args[arg_index++] = arg.value;
}
if (context_ptr.addr.value != nullptr) {
LLVMValueRef cp = context_ptr.addr.value;
cp = LLVMBuildPointerCast(p->builder, cp, lb_type(p->module, t_rawptr), "");
args[arg_index++] = cp;
}
GB_ASSERT(arg_index == arg_count);
LLVMBasicBlockRef curr_block = LLVMGetInsertBlock(p->builder);
GB_ASSERT(curr_block != p->decl_block->block);
{
Type *proc_type = base_type(value.type);
GB_ASSERT(proc_type->kind == Type_Proc);
LLVMTypeRef fnp = lb_type_internal_for_procedures_raw(p->module, proc_type);
LLVMTypeRef ftp = LLVMPointerType(fnp, 0);
LLVMValueRef fn = value.value;
if (!lb_is_type_kind(LLVMTypeOf(value.value), LLVMFunctionTypeKind)) {
fn = LLVMBuildPointerCast(p->builder, fn, ftp, "");
}
GB_ASSERT_MSG(lb_is_type_kind(fnp, LLVMFunctionTypeKind), "%s", LLVMPrintTypeToString(fnp));
lbFunctionType *ft = map_must_get(&p->module->function_type_map, base_type(value.type));
{
unsigned param_count = LLVMCountParamTypes(fnp);
GB_ASSERT(arg_count >= param_count);
LLVMTypeRef *param_types = gb_alloc_array(temporary_allocator(), LLVMTypeRef, param_count);
LLVMGetParamTypes(fnp, param_types);
for (unsigned i = 0; i < param_count; i++) {
LLVMTypeRef param_type = param_types[i];
LLVMTypeRef arg_type = LLVMTypeOf(args[i]);
if (LB_USE_NEW_PASS_SYSTEM &&
arg_type != param_type) {
LLVMTypeKind arg_kind = LLVMGetTypeKind(arg_type);
LLVMTypeKind param_kind = LLVMGetTypeKind(param_type);
if (arg_kind == param_kind &&
arg_kind == LLVMPointerTypeKind) {
// NOTE(bill): LLVM's newer `ptr` only type system seems to fail at times
// I don't know why...
args[i] = LLVMBuildPointerCast(p->builder, args[i], param_type, "");
arg_type = param_type;
continue;
}
}
GB_ASSERT_MSG(
arg_type == param_type,
"Parameter types do not match: %s != %s, argument: %s\n\t%s",
LLVMPrintTypeToString(arg_type),
LLVMPrintTypeToString(param_type),
LLVMPrintValueToString(args[i]),
LLVMPrintTypeToString(fnp)
);
}
}
LLVMValueRef ret = LLVMBuildCall2(p->builder, fnp, fn, args, arg_count, "");
auto llvm_cc = lb_calling_convention_map[proc_type->Proc.calling_convention];
LLVMSetInstructionCallConv(ret, llvm_cc);
LLVMAttributeIndex param_offset = LLVMAttributeIndex_FirstArgIndex;
if (return_ptr.value != nullptr) {
param_offset += 1;
LLVMAddCallSiteAttribute(ret, 1, lb_create_enum_attribute_with_type(p->module->ctx, "sret", LLVMTypeOf(args[0])));
}
for_array(i, ft->args) {
LLVMAttributeRef attribute = ft->args[i].attribute;
if (attribute != nullptr) {
LLVMAddCallSiteAttribute(ret, param_offset + cast(LLVMAttributeIndex)i, attribute);
}
}
switch (inlining) {
case ProcInlining_none:
break;
case ProcInlining_inline:
LLVMAddCallSiteAttribute(ret, LLVMAttributeIndex_FunctionIndex, lb_create_enum_attribute(p->module->ctx, "alwaysinline"));
break;
case ProcInlining_no_inline:
LLVMAddCallSiteAttribute(ret, LLVMAttributeIndex_FunctionIndex, lb_create_enum_attribute(p->module->ctx, "noinline"));
break;
}
lbValue res = {};
res.value = ret;
res.type = abi_rt;
return res;
}
}
gb_internal lbValue lb_lookup_runtime_procedure(lbModule *m, String const &name) {
AstPackage *pkg = m->info->runtime_package;
Entity *e = scope_lookup_current(pkg->scope, name);
GB_ASSERT_MSG(e != nullptr, "Runtime procedure not found: %s", name);
return lb_find_procedure_value_from_entity(m, e);
}
gb_internal lbValue lb_emit_runtime_call(lbProcedure *p, char const *c_name, Array<lbValue> const &args) {
String name = make_string_c(c_name);
lbValue proc = lb_lookup_runtime_procedure(p->module, name);
return lb_emit_call(p, proc, args);
}
gb_internal lbValue lb_emit_conjugate(lbProcedure *p, lbValue val, Type *type) {
lbValue res = {};
Type *t = val.type;
if (is_type_complex(t)) {
res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, false));
lbValue real = lb_emit_struct_ev(p, val, 0);
lbValue imag = lb_emit_struct_ev(p, val, 1);
imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
lb_emit_store(p, lb_emit_struct_ep(p, res, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, res, 1), imag);
} else if (is_type_quaternion(t)) {
// @QuaternionLayout
res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, false));
lbValue real = lb_emit_struct_ev(p, val, 3);
lbValue imag = lb_emit_struct_ev(p, val, 0);
lbValue jmag = lb_emit_struct_ev(p, val, 1);
lbValue kmag = lb_emit_struct_ev(p, val, 2);
imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
jmag = lb_emit_unary_arith(p, Token_Sub, jmag, jmag.type);
kmag = lb_emit_unary_arith(p, Token_Sub, kmag, kmag.type);
lb_emit_store(p, lb_emit_struct_ep(p, res, 3), real);
lb_emit_store(p, lb_emit_struct_ep(p, res, 0), imag);
lb_emit_store(p, lb_emit_struct_ep(p, res, 1), jmag);
lb_emit_store(p, lb_emit_struct_ep(p, res, 2), kmag);
} else if (is_type_array_like(t)) {
res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, true));
Type *elem_type = base_array_type(t);
i64 count = get_array_type_count(t);
for (i64 i = 0; i < count; i++) {
lbValue dst = lb_emit_array_epi(p, res, i);
lbValue elem = lb_emit_struct_ev(p, val, cast(i32)i);
elem = lb_emit_conjugate(p, elem, elem_type);
lb_emit_store(p, dst, elem);
}
} else if (is_type_matrix(t)) {
Type *mt = base_type(t);
GB_ASSERT(mt->kind == Type_Matrix);
Type *elem_type = mt->Matrix.elem;
res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, true));
for (i64 j = 0; j < mt->Matrix.column_count; j++) {
for (i64 i = 0; i < mt->Matrix.row_count; i++) {
lbValue dst = lb_emit_matrix_epi(p, res, i, j);
lbValue elem = lb_emit_matrix_ev(p, val, i, j);
elem = lb_emit_conjugate(p, elem, elem_type);
lb_emit_store(p, dst, elem);
}
}
}
return lb_emit_load(p, res);
}
gb_internal lbValue lb_emit_call(lbProcedure *p, lbValue value, Array<lbValue> const &args, ProcInlining inlining) {
lbModule *m = p->module;
Type *pt = base_type(value.type);
GB_ASSERT(pt->kind == Type_Proc);
Type *results = pt->Proc.results;
lbAddr context_ptr = {};
if (pt->Proc.calling_convention == ProcCC_Odin) {
context_ptr = lb_find_or_generate_context_ptr(p);
}
defer (if (pt->Proc.diverging) {
LLVMBuildUnreachable(p->builder);
});
bool is_c_vararg = pt->Proc.c_vararg;
isize param_count = pt->Proc.param_count;
if (is_c_vararg) {
GB_ASSERT(param_count-1 <= args.count);
param_count -= 1;
} else {
GB_ASSERT_MSG(param_count == args.count, "%td == %td (%s)", param_count, args.count, LLVMPrintValueToString(value.value));
}
lbValue result = {};
isize ignored_args = 0;
auto processed_args = array_make<lbValue>(permanent_allocator(), 0, args.count);
{
bool is_odin_cc = is_calling_convention_odin(pt->Proc.calling_convention);
lbFunctionType *ft = lb_get_function_type(m, pt);
bool return_by_pointer = ft->ret.kind == lbArg_Indirect;
bool split_returns = ft->multiple_return_original_type != nullptr;
unsigned param_index = 0;
for (isize i = 0; i < param_count; i++) {
Entity *e = pt->Proc.params->Tuple.variables[i];
if (e->kind != Entity_Variable) {
continue;
}
GB_ASSERT(e->flags & EntityFlag_Param);
Type *original_type = e->type;
lbArgType *arg = &ft->args[param_index];
if (arg->kind == lbArg_Ignore) {
param_index += 1;
ignored_args += 1;
continue;
}
lbValue x = lb_emit_conv(p, args[i], original_type);
LLVMTypeRef xt = lb_type(p->module, x.type);
if (arg->kind == lbArg_Direct) {
LLVMTypeRef abi_type = arg->cast_type;
if (!abi_type) {
abi_type = arg->type;
}
if (xt == abi_type) {
array_add(&processed_args, x);
} else {
x.value = OdinLLVMBuildTransmute(p, x.value, abi_type);
array_add(&processed_args, x);
}
} else if (arg->kind == lbArg_Indirect) {
lbValue ptr = {};
if (arg->is_byval) {
if (is_odin_cc) {
if (are_types_identical(original_type, t_source_code_location)) {
ptr = lb_address_from_load_or_generate_local(p, x);
// } else {
// ptr = lb_address_from_load_if_readonly_parameter(p, x);
}
}
if (ptr.value == nullptr) {
ptr = lb_copy_value_to_ptr(p, x, original_type, arg->byval_alignment);
}
} else if (is_odin_cc) {
// NOTE(bill): Odin parameters are immutable so the original value can be passed if possible
// i.e. `T const &` in C++
if (LLVMIsConstant(x.value)) {
// NOTE(bill): if the value is already constant, then just it as a global variable
// and pass it by pointer
lbAddr addr = lb_add_global_generated_from_procedure(p, original_type, x);
lb_make_global_private_const(addr);
ptr = addr.addr;
} else {
ptr = lb_address_from_load_or_generate_local(p, x);
}
} else {
ptr = lb_copy_value_to_ptr(p, x, original_type, 16);
}
array_add(&processed_args, ptr);
}
param_index += 1;
}
if (is_c_vararg) {
for (isize i = processed_args.count; i < args.count; i++) {
array_add(&processed_args, args[i]);
}
}
Type *rt = reduce_tuple_to_single_type(results);
Type *original_rt = rt;
if (split_returns) {
GB_ASSERT(rt->kind == Type_Tuple);
for (isize j = 0; j < rt->Tuple.variables.count-1; j++) {
Type *partial_return_type = rt->Tuple.variables[j]->type;
lbValue partial_return_ptr = lb_add_local(p, partial_return_type, nullptr, true, false).addr;
array_add(&processed_args, partial_return_ptr);
}
rt = reduce_tuple_to_single_type(rt->Tuple.variables[rt->Tuple.variables.count-1]->type);
}
if (return_by_pointer) {
lbValue return_ptr = lb_add_local_generated(p, rt, true).addr;
lb_emit_call_internal(p, value, return_ptr, processed_args, nullptr, context_ptr, inlining);
result = lb_emit_load(p, return_ptr);
} else if (rt != nullptr) {
result = lb_emit_call_internal(p, value, {}, processed_args, rt, context_ptr, inlining);
if (ft->ret.cast_type) {
result.value = OdinLLVMBuildTransmute(p, result.value, ft->ret.cast_type);
}
result.value = OdinLLVMBuildTransmute(p, result.value, ft->ret.type);
result.type = rt;
if (LLVMTypeOf(result.value) == LLVMInt1TypeInContext(p->module->ctx)) {
result.type = t_llvm_bool;
}
if (!is_type_tuple(rt)) {
result = lb_emit_conv(p, result, rt);
}
} else {
lb_emit_call_internal(p, value, {}, processed_args, nullptr, context_ptr, inlining);
}
if (original_rt != rt) {
GB_ASSERT(split_returns);
GB_ASSERT(is_type_tuple(original_rt));
// IMPORTANT NOTE(bill, 2022-11-24)
// result_ptr is a dummy value which is only used to reference a tuple
// value for the "tuple-fix"
//
// The reason for the fake stack allocation is to have a unique pointer
// for the value to be used as a key within the procedure itself
lbValue result_ptr = lb_add_local_generated(p, original_rt, false).addr;
isize ret_count = original_rt->Tuple.variables.count;
auto tuple_fix_values = slice_make<lbValue>(permanent_allocator(), ret_count);
auto tuple_geps = slice_make<lbValue>(permanent_allocator(), ret_count);
isize offset = ft->original_arg_count - ignored_args;
for (isize j = 0; j < ret_count-1; j++) {
lbValue ret_arg_ptr = processed_args[offset + j];
lbValue ret_arg = lb_emit_load(p, ret_arg_ptr);
tuple_fix_values[j] = ret_arg;
}
tuple_fix_values[ret_count-1] = result;
#if 0
for (isize j = 0; j < ret_count; j++) {
tuple_geps[j] = lb_emit_struct_ep(p, result_ptr, cast(i32)j);
}
for (isize j = 0; j < ret_count; j++) {
lb_emit_store(p, tuple_geps[j], tuple_fix_values[j]);
}
#endif
result = lb_emit_load(p, result_ptr);
lbTupleFix tf = {tuple_fix_values};
map_set(&p->tuple_fix_map, result_ptr.value, tf);
map_set(&p->tuple_fix_map, result.value, tf);
}
}
LLVMValueRef the_proc_value = value.value;
if (LLVMIsAConstantExpr(the_proc_value)) {
// NOTE(bill): it's a bit cast
the_proc_value = LLVMGetOperand(the_proc_value, 0);
}
Entity **found = map_get(&p->module->procedure_values, the_proc_value);
if (found != nullptr) {
Entity *e = *found;
if (e != nullptr && entity_has_deferred_procedure(e)) {
DeferredProcedureKind kind = e->Procedure.deferred_procedure.kind;
Entity *deferred_entity = e->Procedure.deferred_procedure.entity;
lbValue deferred = lb_find_procedure_value_from_entity(p->module, deferred_entity);
bool by_ptr = false;
auto in_args = args;
Array<lbValue> result_as_args = {};
switch (kind) {
case DeferredProcedure_none:
break;
case DeferredProcedure_in_by_ptr:
by_ptr = true;
/*fallthrough*/
case DeferredProcedure_in:
result_as_args = array_clone(heap_allocator(), in_args);
break;
case DeferredProcedure_out_by_ptr:
by_ptr = true;
/*fallthrough*/
case DeferredProcedure_out:
result_as_args = lb_value_to_array(p, heap_allocator(), result);
break;
case DeferredProcedure_in_out_by_ptr:
by_ptr = true;
/*fallthrough*/
case DeferredProcedure_in_out:
{
auto out_args = lb_value_to_array(p, heap_allocator(), result);
array_init(&result_as_args, heap_allocator(), in_args.count + out_args.count);
array_copy(&result_as_args, in_args, 0);
array_copy(&result_as_args, out_args, in_args.count);
}
break;
}
if (by_ptr) {
for_array(i, result_as_args) {
lbValue arg_ptr = lb_address_from_load_or_generate_local(p, result_as_args[i]);
result_as_args[i] = arg_ptr;
}
}
lb_add_defer_proc(p, p->scope_index, deferred, result_as_args);
}
}
return result;
}
gb_internal LLVMValueRef llvm_splat_int(i64 count, LLVMTypeRef type, i64 value, bool is_signed=false) {
LLVMValueRef v = LLVMConstInt(type, value, is_signed);
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
for (i64 i = 0; i < count; i++) {
values[i] = v;
}
return LLVMConstVector(values, cast(unsigned)count);
}
gb_internal lbValue lb_build_builtin_simd_proc(lbProcedure *p, Ast *expr, TypeAndValue const &tv, BuiltinProcId builtin_id) {
ast_node(ce, CallExpr, expr);
lbModule *m = p->module;
lbValue res = {};
res.type = tv.type;
switch (builtin_id) {
case BuiltinProc_simd_indices: {
Type *type = base_type(res.type);
GB_ASSERT(type->kind == Type_SimdVector);
Type *elem = type->SimdVector.elem;
i64 count = type->SimdVector.count;
LLVMValueRef *scalars = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
for (i64 i = 0; i < count; i++) {
scalars[i] = lb_const_value(m, elem, exact_value_i64(i)).value;
}
res.value = LLVMConstVector(scalars, cast(unsigned)count);
return res;
}
}
lbValue arg0 = {}; if (ce->args.count > 0) arg0 = lb_build_expr(p, ce->args[0]);
lbValue arg1 = {}; if (ce->args.count > 1) arg1 = lb_build_expr(p, ce->args[1]);
lbValue arg2 = {}; if (ce->args.count > 2) arg2 = lb_build_expr(p, ce->args[2]);
Type *elem = base_array_type(arg0.type);
bool is_float = is_type_float(elem);
bool is_signed = !is_type_unsigned(elem);
LLVMOpcode op_code = cast(LLVMOpcode)0;
switch (builtin_id) {
case BuiltinProc_simd_add:
case BuiltinProc_simd_sub:
case BuiltinProc_simd_mul:
case BuiltinProc_simd_div:
case BuiltinProc_simd_rem:
if (is_float) {
switch (builtin_id) {
case BuiltinProc_simd_add: op_code = LLVMFAdd; break;
case BuiltinProc_simd_sub: op_code = LLVMFSub; break;
case BuiltinProc_simd_mul: op_code = LLVMFMul; break;
case BuiltinProc_simd_div: op_code = LLVMFDiv; break;
}
} else {
switch (builtin_id) {
case BuiltinProc_simd_add: op_code = LLVMAdd; break;
case BuiltinProc_simd_sub: op_code = LLVMSub; break;
case BuiltinProc_simd_mul: op_code = LLVMMul; break;
case BuiltinProc_simd_div:
if (is_signed) {
op_code = LLVMSDiv;
} else {
op_code = LLVMUDiv;
}
break;
case BuiltinProc_simd_rem:
if (is_signed) {
op_code = LLVMSRem;
} else {
op_code = LLVMURem;
}
break;
}
}
if (op_code) {
res.value = LLVMBuildBinOp(p->builder, op_code, arg0.value, arg1.value, "");
return res;
}
break;
case BuiltinProc_simd_shl: // Odin logic
case BuiltinProc_simd_shr: // Odin logic
case BuiltinProc_simd_shl_masked: // C logic
case BuiltinProc_simd_shr_masked: // C logic
{
i64 sz = type_size_of(elem);
GB_ASSERT(arg0.type->kind == Type_SimdVector);
i64 count = arg0.type->SimdVector.count;
Type *elem1 = base_array_type(arg1.type);
bool is_masked = false;
switch (builtin_id) {
case BuiltinProc_simd_shl: op_code = LLVMShl; is_masked = false; break;
case BuiltinProc_simd_shr: op_code = is_signed ? LLVMAShr : LLVMLShr; is_masked = false; break;
case BuiltinProc_simd_shl_masked: op_code = LLVMShl; is_masked = true; break;
case BuiltinProc_simd_shr_masked: op_code = is_signed ? LLVMAShr : LLVMLShr; is_masked = true; break;
}
if (op_code) {
LLVMValueRef bits = llvm_splat_int(count, lb_type(m, elem1), sz*8 - 1);
if (is_masked) {
// C logic
LLVMValueRef shift = LLVMBuildAnd(p->builder, arg1.value, bits, "");
res.value = LLVMBuildBinOp(p->builder, op_code, arg0.value, shift, "");
} else {
// Odin logic
LLVMValueRef zero = lb_const_nil(m, arg1.type).value;
LLVMValueRef mask = LLVMBuildICmp(p->builder, LLVMIntULE, arg1.value, bits, "");
LLVMValueRef shift = LLVMBuildBinOp(p->builder, op_code, arg0.value, arg1.value, "");
res.value = LLVMBuildSelect(p->builder, mask, shift, zero, "");
}
return res;
}
}
break;
case BuiltinProc_simd_bit_and:
case BuiltinProc_simd_bit_or:
case BuiltinProc_simd_bit_xor:
case BuiltinProc_simd_bit_and_not:
switch (builtin_id) {
case BuiltinProc_simd_bit_and: op_code = LLVMAnd; break;
case BuiltinProc_simd_bit_or: op_code = LLVMOr; break;
case BuiltinProc_simd_bit_xor: op_code = LLVMXor; break;
case BuiltinProc_simd_bit_and_not:
op_code = LLVMAnd;
arg1.value = LLVMBuildNot(p->builder, arg1.value, "");
break;
}
if (op_code) {
res.value = LLVMBuildBinOp(p->builder, op_code, arg0.value, arg1.value, "");
return res;
}
break;
case BuiltinProc_simd_neg:
if (is_float) {
res.value = LLVMBuildFNeg(p->builder, arg0.value, "");
} else {
res.value = LLVMBuildNeg(p->builder, arg0.value, "");
}
return res;
case BuiltinProc_simd_abs:
if (is_float) {
LLVMValueRef pos = arg0.value;
LLVMValueRef neg = LLVMBuildFNeg(p->builder, pos, "");
LLVMValueRef cond = LLVMBuildFCmp(p->builder, LLVMRealOGT, pos, neg, "");
res.value = LLVMBuildSelect(p->builder, cond, pos, neg, "");
} else {
LLVMValueRef pos = arg0.value;
LLVMValueRef neg = LLVMBuildNeg(p->builder, pos, "");
LLVMValueRef cond = LLVMBuildICmp(p->builder, is_signed ? LLVMIntSGT : LLVMIntUGT, pos, neg, "");
res.value = LLVMBuildSelect(p->builder, cond, pos, neg, "");
}
return res;
case BuiltinProc_simd_min:
if (is_float) {
return lb_emit_min(p, res.type, arg0, arg1);
} else {
LLVMValueRef cond = LLVMBuildICmp(p->builder, is_signed ? LLVMIntSLT : LLVMIntULT, arg0.value, arg1.value, "");
res.value = LLVMBuildSelect(p->builder, cond, arg0.value, arg1.value, "");
}
return res;
case BuiltinProc_simd_max:
if (is_float) {
return lb_emit_max(p, res.type, arg0, arg1);
} else {
LLVMValueRef cond = LLVMBuildICmp(p->builder, is_signed ? LLVMIntSGT : LLVMIntUGT, arg0.value, arg1.value, "");
res.value = LLVMBuildSelect(p->builder, cond, arg0.value, arg1.value, "");
}
return res;
case BuiltinProc_simd_lanes_eq:
case BuiltinProc_simd_lanes_ne:
case BuiltinProc_simd_lanes_lt:
case BuiltinProc_simd_lanes_le:
case BuiltinProc_simd_lanes_gt:
case BuiltinProc_simd_lanes_ge:
if (is_float) {
LLVMRealPredicate pred = cast(LLVMRealPredicate)0;
switch (builtin_id) {
case BuiltinProc_simd_lanes_eq: pred = LLVMRealOEQ; break;
case BuiltinProc_simd_lanes_ne: pred = LLVMRealUNE; break;
case BuiltinProc_simd_lanes_lt: pred = LLVMRealOLT; break;
case BuiltinProc_simd_lanes_le: pred = LLVMRealOLE; break;
case BuiltinProc_simd_lanes_gt: pred = LLVMRealOGT; break;
case BuiltinProc_simd_lanes_ge: pred = LLVMRealOGE; break;
}
if (pred) {
res.value = LLVMBuildFCmp(p->builder, pred, arg0.value, arg1.value, "");
res.value = LLVMBuildSExtOrBitCast(p->builder, res.value, lb_type(m, tv.type), "");
return res;
}
} else {
LLVMIntPredicate pred = cast(LLVMIntPredicate)0;
switch (builtin_id) {
case BuiltinProc_simd_lanes_eq: pred = LLVMIntEQ; break;
case BuiltinProc_simd_lanes_ne: pred = LLVMIntNE; break;
case BuiltinProc_simd_lanes_lt: pred = is_signed ? LLVMIntSLT :LLVMIntULT; break;
case BuiltinProc_simd_lanes_le: pred = is_signed ? LLVMIntSLE :LLVMIntULE; break;
case BuiltinProc_simd_lanes_gt: pred = is_signed ? LLVMIntSGT :LLVMIntUGT; break;
case BuiltinProc_simd_lanes_ge: pred = is_signed ? LLVMIntSGE :LLVMIntUGE; break;
}
if (pred) {
res.value = LLVMBuildICmp(p->builder, pred, arg0.value, arg1.value, "");
res.value = LLVMBuildSExtOrBitCast(p->builder, res.value, lb_type(m, tv.type), "");
return res;
}
}
break;
case BuiltinProc_simd_extract:
res.value = LLVMBuildExtractElement(p->builder, arg0.value, arg1.value, "");
return res;
case BuiltinProc_simd_replace:
res.value = LLVMBuildInsertElement(p->builder, arg0.value, arg2.value, arg1.value, "");
return res;
case BuiltinProc_simd_reduce_add_bisect:
case BuiltinProc_simd_reduce_mul_bisect:
{
GB_ASSERT(arg0.type->kind == Type_SimdVector);
i64 num_elems = arg0.type->SimdVector.count;
LLVMValueRef *indices = gb_alloc_array(temporary_allocator(), LLVMValueRef, num_elems);
for (i64 i = 0; i < num_elems; i++) {
indices[i] = lb_const_int(m, t_uint, cast(u64)i).value;
}
switch (builtin_id) {
case BuiltinProc_simd_reduce_add_bisect: op_code = is_float ? LLVMFAdd : LLVMAdd; break;
case BuiltinProc_simd_reduce_mul_bisect: op_code = is_float ? LLVMFMul : LLVMMul; break;
}
LLVMValueRef remaining = arg0.value;
i64 num_remaining = num_elems;
while (num_remaining > 1) {
num_remaining /= 2;
LLVMValueRef left_indices = LLVMConstVector(&indices[0], cast(unsigned)num_remaining);
LLVMValueRef left_value = LLVMBuildShuffleVector(p->builder, remaining, remaining, left_indices, "");
LLVMValueRef right_indices = LLVMConstVector(&indices[num_remaining], cast(unsigned)num_remaining);
LLVMValueRef right_value = LLVMBuildShuffleVector(p->builder, remaining, remaining, right_indices, "");
remaining = LLVMBuildBinOp(p->builder, op_code, left_value, right_value, "");
}
res.value = LLVMBuildExtractElement(p->builder, remaining, indices[0], "");
return res;
}
case BuiltinProc_simd_reduce_add_ordered:
case BuiltinProc_simd_reduce_mul_ordered:
{
LLVMTypeRef llvm_elem = lb_type(m, elem);
LLVMValueRef args[2] = {};
isize args_count = 0;
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_reduce_add_ordered:
if (is_float) {
name = "llvm.vector.reduce.fadd";
args[args_count++] = LLVMConstReal(llvm_elem, 0.0);
} else {
name = "llvm.vector.reduce.add";
}
break;
case BuiltinProc_simd_reduce_mul_ordered:
if (is_float) {
name = "llvm.vector.reduce.fmul";
args[args_count++] = LLVMConstReal(llvm_elem, 1.0);
} else {
name = "llvm.vector.reduce.mul";
}
break;
}
args[args_count++] = arg0.value;
LLVMTypeRef types[1] = {lb_type(p->module, arg0.type)};
res.value = lb_call_intrinsic(p, name, args, cast(unsigned)args_count, types, gb_count_of(types));
return res;
}
case BuiltinProc_simd_reduce_add_pairs:
case BuiltinProc_simd_reduce_mul_pairs:
{
GB_ASSERT(arg0.type->kind == Type_SimdVector);
i64 num_elems = arg0.type->SimdVector.count;
LLVMValueRef *indices = gb_alloc_array(temporary_allocator(), LLVMValueRef, num_elems);
for (i64 i = 0; i < num_elems/2; i++) {
indices[i] = lb_const_int(m, t_uint, cast(u64)(2*i)).value;
indices[i+num_elems/2] = lb_const_int(m, t_uint, cast(u64)(2*i+1)).value;
}
switch (builtin_id) {
case BuiltinProc_simd_reduce_add_pairs: op_code = is_float ? LLVMFAdd : LLVMAdd; break;
case BuiltinProc_simd_reduce_mul_pairs: op_code = is_float ? LLVMFMul : LLVMMul; break;
}
LLVMValueRef remaining = arg0.value;
i64 num_remaining = num_elems;
while (num_remaining > 1) {
num_remaining /= 2;
LLVMValueRef left_indices = LLVMConstVector(&indices[0], cast(unsigned)num_remaining);
LLVMValueRef left_value = LLVMBuildShuffleVector(p->builder, remaining, remaining, left_indices, "");
LLVMValueRef right_indices = LLVMConstVector(&indices[num_elems/2], cast(unsigned)num_remaining);
LLVMValueRef right_value = LLVMBuildShuffleVector(p->builder, remaining, remaining, right_indices, "");
remaining = LLVMBuildBinOp(p->builder, op_code, left_value, right_value, "");
}
res.value = LLVMBuildExtractElement(p->builder, remaining, indices[0], "");
return res;
}
case BuiltinProc_simd_reduce_min:
case BuiltinProc_simd_reduce_max:
case BuiltinProc_simd_reduce_and:
case BuiltinProc_simd_reduce_or:
case BuiltinProc_simd_reduce_xor:
{
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_reduce_min:
if (is_float) {
name = "llvm.vector.reduce.fmin";
} else if (is_signed) {
name = "llvm.vector.reduce.smin";
} else {
name = "llvm.vector.reduce.umin";
}
break;
case BuiltinProc_simd_reduce_max:
if (is_float) {
name = "llvm.vector.reduce.fmax";
} else if (is_signed) {
name = "llvm.vector.reduce.smax";
} else {
name = "llvm.vector.reduce.umax";
}
break;
case BuiltinProc_simd_reduce_and: name = "llvm.vector.reduce.and"; break;
case BuiltinProc_simd_reduce_or: name = "llvm.vector.reduce.or"; break;
case BuiltinProc_simd_reduce_xor: name = "llvm.vector.reduce.xor"; break;
}
LLVMTypeRef types[1] = { lb_type(p->module, arg0.type) };
LLVMValueRef args[1] = { arg0.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_simd_reduce_any:
case BuiltinProc_simd_reduce_all:
{
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_reduce_any: name = "llvm.vector.reduce.or"; break;
case BuiltinProc_simd_reduce_all: name = "llvm.vector.reduce.and"; break;
}
LLVMTypeRef types[1] = { lb_type(p->module, arg0.type) };
LLVMValueRef args[1] = { arg0.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_simd_extract_lsbs:
case BuiltinProc_simd_extract_msbs:
{
Type *vt = arg0.type;
GB_ASSERT(vt->kind == Type_SimdVector);
i64 elem_bits = 8*type_size_of(elem);
i64 num_elems = get_array_type_count(vt);
LLVMValueRef broadcast_value = arg0.value;
if (builtin_id == BuiltinProc_simd_extract_msbs) {
LLVMTypeRef word_type = lb_type(m, elem);
LLVMValueRef shift_value = llvm_splat_int(num_elems, word_type, elem_bits - 1);
broadcast_value = LLVMBuildAShr(p->builder, broadcast_value, shift_value, "");
}
LLVMTypeRef bitvec_type = LLVMVectorType(LLVMInt1TypeInContext(m->ctx), (unsigned)num_elems);
LLVMValueRef bitvec_value = LLVMBuildTrunc(p->builder, broadcast_value, bitvec_type, "");
LLVMTypeRef mask_type = LLVMIntTypeInContext(m->ctx, (unsigned)num_elems);
LLVMValueRef mask_value = LLVMBuildBitCast(p->builder, bitvec_value, mask_type, "");
LLVMTypeRef result_type = lb_type(m, res.type);
res.value = LLVMBuildZExtOrBitCast(p->builder, mask_value, result_type, "");
return res;
}
case BuiltinProc_simd_shuffle:
{
Type *vt = arg0.type;
GB_ASSERT(vt->kind == Type_SimdVector);
i64 indices_count = ce->args.count-2;
i64 max_count = vt->SimdVector.count*2;
GB_ASSERT(indices_count <= max_count);
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, indices_count);
for (isize i = 0; i < indices_count; i++) {
lbValue idx = lb_build_expr(p, ce->args[i+2]);
GB_ASSERT(LLVMIsConstant(idx.value));
values[i] = idx.value;
}
LLVMValueRef indices = LLVMConstVector(values, cast(unsigned)indices_count);
res.value = LLVMBuildShuffleVector(p->builder, arg0.value, arg1.value, indices, "");
return res;
}
case BuiltinProc_simd_select:
{
LLVMValueRef cond = arg0.value;
LLVMValueRef x = lb_build_expr(p, ce->args[1]).value;
LLVMValueRef y = lb_build_expr(p, ce->args[2]).value;
cond = LLVMBuildICmp(p->builder, LLVMIntNE, cond, LLVMConstNull(LLVMTypeOf(cond)), "");
res.value = LLVMBuildSelect(p->builder, cond, x, y, "");
return res;
}
case BuiltinProc_simd_runtime_swizzle:
{
LLVMValueRef src = arg0.value;
LLVMValueRef indices = lb_build_expr(p, ce->args[1]).value;
Type *vt = arg0.type;
GB_ASSERT(vt->kind == Type_SimdVector);
i64 count = vt->SimdVector.count;
Type *elem_type = vt->SimdVector.elem;
i64 elem_size = type_size_of(elem_type);
// Determine strategy based on element size and target architecture
char const *intrinsic_name = nullptr;
bool use_hardware_runtime_swizzle = false;
// 8-bit elements: Use dedicated table lookup instructions
if (elem_size == 1) {
use_hardware_runtime_swizzle = true;
if (build_context.metrics.arch == TargetArch_amd64 || build_context.metrics.arch == TargetArch_i386) {
// x86/x86-64: Use pshufb intrinsics
switch (count) {
case 16:
intrinsic_name = "llvm.x86.ssse3.pshuf.b.128";
break;
case 32:
intrinsic_name = "llvm.x86.avx2.pshuf.b";
break;
case 64:
intrinsic_name = "llvm.x86.avx512.pshuf.b.512";
break;
default:
use_hardware_runtime_swizzle = false;
break;
}
} else if (build_context.metrics.arch == TargetArch_arm64) {
// ARM64: Use NEON tbl intrinsics with automatic table splitting
switch (count) {
case 16:
intrinsic_name = "llvm.aarch64.neon.tbl1";
break;
case 32:
intrinsic_name = "llvm.aarch64.neon.tbl2";
break;
case 48:
intrinsic_name = "llvm.aarch64.neon.tbl3";
break;
case 64:
intrinsic_name = "llvm.aarch64.neon.tbl4";
break;
default:
use_hardware_runtime_swizzle = false;
break;
}
} else if (build_context.metrics.arch == TargetArch_arm32) {
// ARM32: Use NEON vtbl intrinsics with automatic table splitting
switch (count) {
case 8:
intrinsic_name = "llvm.arm.neon.vtbl1";
break;
case 16:
intrinsic_name = "llvm.arm.neon.vtbl2";
break;
case 24:
intrinsic_name = "llvm.arm.neon.vtbl3";
break;
case 32:
intrinsic_name = "llvm.arm.neon.vtbl4";
break;
default:
use_hardware_runtime_swizzle = false;
break;
}
} else if (build_context.metrics.arch == TargetArch_wasm32 || build_context.metrics.arch == TargetArch_wasm64p32) {
// WebAssembly: Use swizzle (only supports 16-byte vectors)
if (count == 16) {
intrinsic_name = "llvm.wasm.swizzle";
} else {
use_hardware_runtime_swizzle = false;
}
} else {
use_hardware_runtime_swizzle = false;
}
}
if (use_hardware_runtime_swizzle && intrinsic_name != nullptr) {
// Use dedicated hardware swizzle instruction
// Check if required target features are enabled
bool features_enabled = true;
if (build_context.metrics.arch == TargetArch_amd64 || build_context.metrics.arch == TargetArch_i386) {
// x86/x86-64 feature checking
if (count == 16) {
// SSE/SSSE3 for 128-bit vectors
if (!check_target_feature_is_enabled(str_lit("ssse3"), nullptr)) {
features_enabled = false;
}
} else if (count == 32) {
// AVX2 requires ssse3 + avx2 features
if (!check_target_feature_is_enabled(str_lit("ssse3"), nullptr) ||
!check_target_feature_is_enabled(str_lit("avx2"), nullptr)) {
features_enabled = false;
}
} else if (count == 64) {
// AVX512 requires ssse3 + avx2 + avx512f + avx512bw features
if (!check_target_feature_is_enabled(str_lit("ssse3"), nullptr) ||
!check_target_feature_is_enabled(str_lit("avx2"), nullptr) ||
!check_target_feature_is_enabled(str_lit("avx512f"), nullptr) ||
!check_target_feature_is_enabled(str_lit("avx512bw"), nullptr)) {
features_enabled = false;
}
}
} else if (build_context.metrics.arch == TargetArch_arm64 || build_context.metrics.arch == TargetArch_arm32) {
// ARM/ARM64 feature checking - NEON is required for all table/swizzle ops
if (!check_target_feature_is_enabled(str_lit("neon"), nullptr)) {
features_enabled = false;
}
}
if (features_enabled) {
// Add target features to function attributes for LLVM instruction selection
if (build_context.metrics.arch == TargetArch_amd64 || build_context.metrics.arch == TargetArch_i386) {
// x86/x86-64 function attributes
if (count == 16) {
// SSE/SSSE3 for 128-bit vectors
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("target-features"), str_lit("+ssse3"));
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("min-legal-vector-width"), str_lit("128"));
} else if (count == 32) {
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("target-features"), str_lit("+avx,+avx2,+ssse3"));
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("min-legal-vector-width"), str_lit("256"));
} else if (count == 64) {
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("target-features"), str_lit("+avx,+avx2,+avx512f,+avx512bw,+ssse3"));
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("min-legal-vector-width"), str_lit("512"));
}
} else if (build_context.metrics.arch == TargetArch_arm64) {
// ARM64 function attributes - enable NEON for swizzle instructions
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("target-features"), str_lit("+neon"));
// Set appropriate vector width for multi-swizzle operations
if (count >= 32) {
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("min-legal-vector-width"), str_lit("256"));
}
} else if (build_context.metrics.arch == TargetArch_arm32) {
// ARM32 function attributes - enable NEON for swizzle instructions
lb_add_attribute_to_proc_with_string(p->module, p->value, str_lit("target-features"), str_lit("+neon"));
}
// Handle ARM's multi-swizzle intrinsics by splitting the src vector
if (build_context.metrics.arch == TargetArch_arm64 && count > 16) {
// ARM64 TBL2/TBL3/TBL4: Split src into multiple 16-byte vectors
int num_tables = cast(int)(count / 16);
GB_ASSERT_MSG(count % 16 == 0, "ARM64 src size must be multiple of 16 bytes, got %lld bytes", count);
GB_ASSERT_MSG(num_tables <= 4, "ARM64 NEON supports maximum 4 tables (tbl4), got %d tables for %lld-byte vector", num_tables, count);
LLVMValueRef src_parts[4]; // Max 4 tables for tbl4
for (int i = 0; i < num_tables; i++) {
// Extract 16-byte slice from the larger src
LLVMValueRef indices_for_extract[16];
for (int j = 0; j < 16; j++) {
indices_for_extract[j] = LLVMConstInt(LLVMInt32TypeInContext(p->module->ctx), i * 16 + j, false);
}
LLVMValueRef extract_mask = LLVMConstVector(indices_for_extract, 16);
src_parts[i] = LLVMBuildShuffleVector(p->builder, src, LLVMGetUndef(LLVMTypeOf(src)), extract_mask, "");
}
// Call appropriate ARM64 tbl intrinsic
if (count == 32) {
LLVMValueRef args[3] = { src_parts[0], src_parts[1], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 3, nullptr, 0);
} else if (count == 48) {
LLVMValueRef args[4] = { src_parts[0], src_parts[1], src_parts[2], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 4, nullptr, 0);
} else if (count == 64) {
LLVMValueRef args[5] = { src_parts[0], src_parts[1], src_parts[2], src_parts[3], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 5, nullptr, 0);
}
} else if (build_context.metrics.arch == TargetArch_arm32 && count > 8) {
// ARM32 VTBL2/VTBL3/VTBL4: Split src into multiple 8-byte vectors
int num_tables = cast(int)count / 8;
GB_ASSERT_MSG(count % 8 == 0, "ARM32 src size must be multiple of 8 bytes, got %lld bytes", count);
GB_ASSERT_MSG(num_tables <= 4, "ARM32 NEON supports maximum 4 tables (vtbl4), got %d tables for %lld-byte vector", num_tables, count);
LLVMValueRef src_parts[4]; // Max 4 tables for vtbl4
for (int i = 0; i < num_tables; i++) {
// Extract 8-byte slice from the larger src
LLVMValueRef indices_for_extract[8];
for (int j = 0; j < 8; j++) {
indices_for_extract[j] = LLVMConstInt(LLVMInt32TypeInContext(p->module->ctx), i * 8 + j, false);
}
LLVMValueRef extract_mask = LLVMConstVector(indices_for_extract, 8);
src_parts[i] = LLVMBuildShuffleVector(p->builder, src, LLVMGetUndef(LLVMTypeOf(src)), extract_mask, "");
}
// Call appropriate ARM32 vtbl intrinsic
if (count == 16) {
LLVMValueRef args[3] = { src_parts[0], src_parts[1], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 3, nullptr, 0);
} else if (count == 24) {
LLVMValueRef args[4] = { src_parts[0], src_parts[1], src_parts[2], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 4, nullptr, 0);
} else if (count == 32) {
LLVMValueRef args[5] = { src_parts[0], src_parts[1], src_parts[2], src_parts[3], indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, 5, nullptr, 0);
}
} else {
// Single runtime swizzle case (x86, WebAssembly, ARM single-table)
LLVMValueRef args[2] = { src, indices };
res.value = lb_call_intrinsic(p, intrinsic_name, args, gb_count_of(args), nullptr, 0);
}
return res;
} else {
// Features not enabled, fall back to emulation
use_hardware_runtime_swizzle = false;
}
}
// Fallback: Emulate with extracts and inserts for all element sizes
GB_ASSERT(count > 0 && count <= 64); // Sanity check
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
LLVMTypeRef i32_type = LLVMInt32TypeInContext(p->module->ctx);
LLVMTypeRef elem_llvm_type = lb_type(p->module, elem_type);
// Calculate mask based on element size and vector count
i64 max_index = count - 1;
LLVMValueRef index_mask;
if (elem_size == 1) {
// 8-bit: mask to src size (like pshufb behavior)
index_mask = LLVMConstInt(elem_llvm_type, max_index, false);
} else if (elem_size == 2) {
// 16-bit: mask to src size
index_mask = LLVMConstInt(elem_llvm_type, max_index, false);
} else if (elem_size == 4) {
// 32-bit: mask to src size
index_mask = LLVMConstInt(elem_llvm_type, max_index, false);
} else {
// 64-bit: mask to src size
index_mask = LLVMConstInt(elem_llvm_type, max_index, false);
}
for (i64 i = 0; i < count; i++) {
LLVMValueRef idx_i = LLVMConstInt(i32_type, cast(unsigned)i, false);
LLVMValueRef index_elem = LLVMBuildExtractElement(p->builder, indices, idx_i, "");
// Mask index to valid range
LLVMValueRef masked_index = LLVMBuildAnd(p->builder, index_elem, index_mask, "");
// Convert to i32 for extractelement
LLVMValueRef index_i32;
if (LLVMGetIntTypeWidth(LLVMTypeOf(masked_index)) < 32) {
index_i32 = LLVMBuildZExt(p->builder, masked_index, i32_type, "");
} else if (LLVMGetIntTypeWidth(LLVMTypeOf(masked_index)) > 32) {
index_i32 = LLVMBuildTrunc(p->builder, masked_index, i32_type, "");
} else {
index_i32 = masked_index;
}
values[i] = LLVMBuildExtractElement(p->builder, src, index_i32, "");
}
// Build result vector
res.value = LLVMGetUndef(LLVMTypeOf(src));
for (i64 i = 0; i < count; i++) {
LLVMValueRef idx_i = LLVMConstInt(i32_type, cast(unsigned)i, false);
res.value = LLVMBuildInsertElement(p->builder, res.value, values[i], idx_i, "");
}
return res;
}
case BuiltinProc_simd_ceil:
case BuiltinProc_simd_floor:
case BuiltinProc_simd_trunc:
case BuiltinProc_simd_nearest:
{
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_ceil: name = "llvm.ceil"; break;
case BuiltinProc_simd_floor: name = "llvm.floor"; break;
case BuiltinProc_simd_trunc: name = "llvm.trunc"; break;
case BuiltinProc_simd_nearest: name = "llvm.nearbyint"; break;
}
LLVMTypeRef types[1] = { lb_type(p->module, arg0.type) };
LLVMValueRef args[1] = { arg0.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_simd_lanes_reverse:
{
i64 count = get_array_type_count(arg0.type);
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
LLVMTypeRef llvm_u32 = lb_type(m, t_u32);
for (i64 i = 0; i < count; i++) {
values[i] = LLVMConstInt(llvm_u32, count-1-i, false);
}
LLVMValueRef mask = LLVMConstVector(values, cast(unsigned)count);
LLVMValueRef v = arg0.value;
res.value = LLVMBuildShuffleVector(p->builder, v, v, mask, "");
return res;
}
case BuiltinProc_simd_lanes_rotate_left:
case BuiltinProc_simd_lanes_rotate_right:
{
i64 count = get_array_type_count(arg0.type);
GB_ASSERT(is_power_of_two(count));
BigInt bi_count = {};
big_int_from_i64(&bi_count, count);
TypeAndValue const &tv = ce->args[1]->tav;
ExactValue val = exact_value_to_integer(tv.value);
GB_ASSERT(val.kind == ExactValue_Integer);
BigInt *bi = &val.value_integer;
if (builtin_id == BuiltinProc_simd_lanes_rotate_right) {
big_int_neg(bi, bi);
}
big_int_rem(bi, bi, &bi_count);
big_int_dealloc(&bi_count);
i64 left = big_int_to_i64(bi);
LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
LLVMTypeRef llvm_u32 = lb_type(m, t_u32);
for (i64 i = 0; i < count; i++) {
u64 idx = cast(u64)(i+left) & cast(u64)(count-1);
values[i] = LLVMConstInt(llvm_u32, idx, false);
}
LLVMValueRef mask = LLVMConstVector(values, cast(unsigned)count);
LLVMValueRef v = arg0.value;
res.value = LLVMBuildShuffleVector(p->builder, v, v, mask, "");
return res;
}
case BuiltinProc_simd_saturating_add:
case BuiltinProc_simd_saturating_sub:
{
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_saturating_add: name = is_signed ? "llvm.sadd.sat" : "llvm.uadd.sat"; break;
case BuiltinProc_simd_saturating_sub: name = is_signed ? "llvm.ssub.sat" : "llvm.usub.sat"; break;
}
LLVMTypeRef types[1] = {lb_type(p->module, arg0.type)};
LLVMValueRef args[2] = { arg0.value, arg1.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return res;
}
case BuiltinProc_simd_clamp:
{
LLVMValueRef v = arg0.value;
LLVMValueRef min = arg1.value;
LLVMValueRef max = arg2.value;
if (is_float) {
v = LLVMBuildSelect(p->builder, LLVMBuildFCmp(p->builder, LLVMRealOLT, v, min, ""), min, v, "");
res.value = LLVMBuildSelect(p->builder, LLVMBuildFCmp(p->builder, LLVMRealOGT, v, max, ""), max, v, "");
} else if (is_signed) {
v = LLVMBuildSelect(p->builder, LLVMBuildICmp(p->builder, LLVMIntSLT, v, min, ""), min, v, "");
res.value = LLVMBuildSelect(p->builder, LLVMBuildICmp(p->builder, LLVMIntSGT, v, max, ""), max, v, "");
} else {
v = LLVMBuildSelect(p->builder, LLVMBuildICmp(p->builder, LLVMIntULT, v, min, ""), min, v, "");
res.value = LLVMBuildSelect(p->builder, LLVMBuildICmp(p->builder, LLVMIntUGT, v, max, ""), max, v, "");
}
return res;
}
case BuiltinProc_simd_to_bits:
{
res.value = LLVMBuildBitCast(p->builder, arg0.value, lb_type(m, tv.type), "");
return res;
}
case BuiltinProc_simd_gather:
case BuiltinProc_simd_scatter:
case BuiltinProc_simd_masked_load:
case BuiltinProc_simd_masked_store:
case BuiltinProc_simd_masked_expand_load:
case BuiltinProc_simd_masked_compress_store:
{
LLVMValueRef ptr = arg0.value;
LLVMValueRef val = arg1.value;
LLVMValueRef mask = arg2.value;
unsigned count = cast(unsigned)get_array_type_count(arg1.type);
LLVMTypeRef mask_type = LLVMVectorType(LLVMInt1TypeInContext(p->module->ctx), count);
mask = LLVMBuildTrunc(p->builder, mask, mask_type, "");
char const *name = nullptr;
switch (builtin_id) {
case BuiltinProc_simd_gather: name = "llvm.masked.gather"; break;
case BuiltinProc_simd_scatter: name = "llvm.masked.scatter"; break;
case BuiltinProc_simd_masked_load: name = "llvm.masked.load"; break;
case BuiltinProc_simd_masked_store: name = "llvm.masked.store"; break;
case BuiltinProc_simd_masked_expand_load: name = "llvm.masked.expandload"; break;
case BuiltinProc_simd_masked_compress_store: name = "llvm.masked.compressstore"; break;
}
unsigned type_count = 2;
LLVMTypeRef types[2] = {
lb_type(p->module, arg1.type),
lb_type(p->module, arg0.type)
};
auto alignment = cast(unsigned long long)type_align_of(base_array_type(arg1.type));
LLVMValueRef align = LLVMConstInt(LLVMInt32TypeInContext(p->module->ctx), alignment, false);
unsigned arg_count = 4;
LLVMValueRef args[4] = {};
switch (builtin_id) {
case BuiltinProc_simd_masked_load:
types[1] = lb_type(p->module, t_rawptr);
/*fallthrough*/
case BuiltinProc_simd_gather:
args[0] = ptr;
args[1] = align;
args[2] = mask;
args[3] = val;
break;
case BuiltinProc_simd_masked_store:
types[1] = lb_type(p->module, t_rawptr);
/*fallthrough*/
case BuiltinProc_simd_scatter:
args[0] = val;
args[1] = ptr;
args[2] = align;
args[3] = mask;
break;
case BuiltinProc_simd_masked_expand_load:
arg_count = 3;
type_count = 1;
args[0] = ptr;
args[1] = mask;
args[2] = val;
break;
case BuiltinProc_simd_masked_compress_store:
arg_count = 3;
type_count = 1;
args[0] = val;
args[1] = ptr;
args[2] = mask;
break;
}
res.value = lb_call_intrinsic(p, name, args, arg_count, types, type_count);
return res;
}
}
GB_PANIC("Unhandled simd intrinsic: '%.*s'", LIT(builtin_procs[builtin_id].name));
return {};
}
gb_internal lbValue lb_build_builtin_proc(lbProcedure *p, Ast *expr, TypeAndValue const &tv, BuiltinProcId id) {
ast_node(ce, CallExpr, expr);
if (BuiltinProc__simd_begin < id && id < BuiltinProc__simd_end) {
return lb_build_builtin_simd_proc(p, expr, tv, id);
}
switch (id) {
case BuiltinProc_DIRECTIVE: {
ast_node(bd, BasicDirective, ce->proc);
String name = bd->name.string;
if (name == "location") {
String procedure = p->entity->token.string;
TokenPos pos = ast_token(ce->proc).pos;
if (ce->args.count > 0) {
Ast *ident = unselector_expr(ce->args[0]);
GB_ASSERT(ident->kind == Ast_Ident);
Entity *e = entity_of_node(ident);
GB_ASSERT(e != nullptr);
if (e->parent_proc_decl != nullptr && e->parent_proc_decl->entity != nullptr) {
procedure = e->parent_proc_decl->entity.load()->token.string;
} else {
procedure = str_lit("");
}
pos = e->token.pos;
}
return lb_emit_source_code_location_as_global(p, procedure, pos);
} else if (name == "load_directory") {
lbModule *m = p->module;
TEMPORARY_ALLOCATOR_GUARD();
LoadDirectoryCache *cache = map_must_get(&m->info->load_directory_map, expr);
isize count = cache->files.count;
LLVMValueRef *elements = gb_alloc_array(temporary_allocator(), LLVMValueRef, count);
for_array(i, cache->files) {
LoadFileCache *file = cache->files[i];
String file_name = filename_without_directory(file->path);
LLVMValueRef values[2] = {};
values[0] = lb_const_string(m, file_name).value;
values[1] = lb_const_value(m, t_u8_slice, exact_value_string(file->data)).value;
LLVMValueRef element = llvm_const_named_struct(m, t_load_directory_file, values, gb_count_of(values));
elements[i] = element;
}
LLVMValueRef backing_array = llvm_const_array(lb_type(m, t_load_directory_file), elements, count);
Type *array_type = alloc_type_array(t_load_directory_file, count);
lbAddr backing_array_addr = lb_add_global_generated_from_procedure(p, array_type, {backing_array, array_type});
lb_make_global_private_const(backing_array_addr);
LLVMValueRef backing_array_ptr = backing_array_addr.addr.value;
backing_array_ptr = LLVMConstPointerCast(backing_array_ptr, lb_type(m, t_load_directory_file_ptr));
LLVMValueRef const_slice = llvm_const_slice_internal(m, backing_array_ptr, LLVMConstInt(lb_type(m, t_int), count, false));
lbAddr addr = lb_add_global_generated_from_procedure(p, tv.type, {const_slice, t_load_directory_file_slice});
lb_make_global_private_const(addr);
return lb_addr_load(p, addr);
} else {
GB_PANIC("UNKNOWN DIRECTIVE: %.*s", LIT(name));
}
}
case BuiltinProc_type_info_of: {
Ast *arg = ce->args[0];
TypeAndValue tav = type_and_value_of_expr(arg);
if (tav.mode == Addressing_Type) {
Type *t = default_type(type_of_expr(arg));
return lb_type_info(p, t);
}
GB_ASSERT(is_type_typeid(tav.type));
auto args = array_make<lbValue>(permanent_allocator(), 1);
args[0] = lb_build_expr(p, arg);
return lb_emit_runtime_call(p, "__type_info_of", args);
}
case BuiltinProc_typeid_of: {
Ast *arg = ce->args[0];
TypeAndValue tav = type_and_value_of_expr(arg);
GB_ASSERT(tav.mode == Addressing_Type);
Type *t = default_type(type_of_expr(arg));
return lb_typeid(p->module, t);
}
case BuiltinProc_len: {
lbValue v = lb_build_expr(p, ce->args[0]);
Type *t = base_type(v.type);
if (is_type_pointer(t)) {
v = lb_emit_load(p, v);
t = type_deref(t);
}
if (is_type_cstring(t)) {
return lb_cstring_len(p, v);
} else if (is_type_cstring16(t)) {
return lb_cstring16_len(p, v);
} else if (is_type_string16(t)) {
return lb_string_len(p, v);
} else if (is_type_string(t)) {
return lb_string_len(p, v);
} else if (is_type_array(t)) {
GB_PANIC("Array lengths are constant");
} else if (is_type_slice(t)) {
return lb_slice_len(p, v);
} else if (is_type_dynamic_array(t)) {
return lb_dynamic_array_len(p, v);
} else if (is_type_map(t)) {
return lb_map_len(p, v);
} else if (is_type_soa_struct(t)) {
return lb_soa_struct_len(p, v);
}
GB_PANIC("Unreachable");
break;
}
case BuiltinProc_cap: {
lbValue v = lb_build_expr(p, ce->args[0]);
Type *t = base_type(v.type);
if (is_type_pointer(t)) {
v = lb_emit_load(p, v);
t = type_deref(t);
}
if (is_type_string(t)) {
GB_PANIC("Unreachable");
} else if (is_type_array(t)) {
GB_PANIC("Array lengths are constant");
} else if (is_type_slice(t)) {
return lb_slice_len(p, v);
} else if (is_type_dynamic_array(t)) {
return lb_dynamic_array_cap(p, v);
} else if (is_type_map(t)) {
return lb_map_cap(p, v);
} else if (is_type_soa_struct(t)) {
return lb_soa_struct_cap(p, v);
}
GB_PANIC("Unreachable");
break;
}
case BuiltinProc_swizzle: {
isize index_count = ce->args.count-1;
if (is_type_simd_vector(tv.type)) {
lbValue vec = lb_build_expr(p, ce->args[0]);
if (index_count == 0) {
return vec;
}
unsigned mask_len = cast(unsigned)index_count;
LLVMValueRef *mask_elems = gb_alloc_array(permanent_allocator(), LLVMValueRef, index_count);
for (isize i = 1; i < ce->args.count; i++) {
TypeAndValue tv = type_and_value_of_expr(ce->args[i]);
GB_ASSERT(is_type_integer(tv.type));
GB_ASSERT(tv.value.kind == ExactValue_Integer);
u32 index = cast(u32)big_int_to_i64(&tv.value.value_integer);
mask_elems[i-1] = LLVMConstInt(lb_type(p->module, t_u32), index, false);
}
LLVMValueRef mask = LLVMConstVector(mask_elems, mask_len);
LLVMValueRef v1 = vec.value;
LLVMValueRef v2 = vec.value;
lbValue res = {};
res.type = tv.type;
res.value = LLVMBuildShuffleVector(p->builder, v1, v2, mask, "");
return res;
}
lbAddr addr = lb_build_array_swizzle_addr(p, ce, tv);
return lb_addr_load(p, addr);
}
case BuiltinProc_complex: {
lbValue real = lb_build_expr(p, ce->args[0]);
lbValue imag = lb_build_expr(p, ce->args[1]);
lbAddr dst_addr = lb_add_local_generated(p, tv.type, false);
lbValue dst = lb_addr_get_ptr(p, dst_addr);
Type *ft = base_complex_elem_type(tv.type);
real = lb_emit_conv(p, real, ft);
imag = lb_emit_conv(p, imag, ft);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 0), real);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 1), imag);
return lb_emit_load(p, dst);
}
case BuiltinProc_quaternion: {
lbValue xyzw[4] = {};
for (i32 i = 0; i < 4; i++) {
ast_node(f, FieldValue, ce->args[i]);
GB_ASSERT(f->field->kind == Ast_Ident);
String name = f->field->Ident.token.string;
i32 index = -1;
// @QuaternionLayout
if (name == "x" || name == "imag") {
index = 0;
} else if (name == "y" || name == "jmag") {
index = 1;
} else if (name == "z" || name == "kmag") {
index = 2;
} else if (name == "w" || name == "real") {
index = 3;
}
GB_ASSERT(index >= 0);
xyzw[index] = lb_build_expr(p, f->value);
}
lbAddr dst_addr = lb_add_local_generated(p, tv.type, false);
lbValue dst = lb_addr_get_ptr(p, dst_addr);
Type *ft = base_complex_elem_type(tv.type);
xyzw[0] = lb_emit_conv(p, xyzw[0], ft);
xyzw[1] = lb_emit_conv(p, xyzw[1], ft);
xyzw[2] = lb_emit_conv(p, xyzw[2], ft);
xyzw[3] = lb_emit_conv(p, xyzw[3], ft);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 0), xyzw[0]);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 1), xyzw[1]);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 2), xyzw[2]);
lb_emit_store(p, lb_emit_struct_ep(p, dst, 3), xyzw[3]);
return lb_emit_load(p, dst);
}
case BuiltinProc_real: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_complex(val.type)) {
lbValue real = lb_emit_struct_ev(p, val, 0);
return lb_emit_conv(p, real, tv.type);
} else if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue real = lb_emit_struct_ev(p, val, 3);
return lb_emit_conv(p, real, tv.type);
}
GB_PANIC("invalid type for real");
return {};
}
case BuiltinProc_imag: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_complex(val.type)) {
lbValue imag = lb_emit_struct_ev(p, val, 1);
return lb_emit_conv(p, imag, tv.type);
} else if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue imag = lb_emit_struct_ev(p, val, 0);
return lb_emit_conv(p, imag, tv.type);
}
GB_PANIC("invalid type for imag");
return {};
}
case BuiltinProc_jmag: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue imag = lb_emit_struct_ev(p, val, 1);
return lb_emit_conv(p, imag, tv.type);
}
GB_PANIC("invalid type for jmag");
return {};
}
case BuiltinProc_kmag: {
lbValue val = lb_build_expr(p, ce->args[0]);
if (is_type_quaternion(val.type)) {
// @QuaternionLayout
lbValue imag = lb_emit_struct_ev(p, val, 2);
return lb_emit_conv(p, imag, tv.type);
}
GB_PANIC("invalid type for kmag");
return {};
}
case BuiltinProc_conj: {
lbValue val = lb_build_expr(p, ce->args[0]);
return lb_emit_conjugate(p, val, tv.type);
}
case BuiltinProc_expand_values: {
lbValue val = lb_build_expr(p, ce->args[0]);
Type *t = base_type(val.type);
if (!is_type_tuple(tv.type)) {
if (t->kind == Type_Struct) {
GB_ASSERT(t->Struct.fields.count == 1);
return lb_emit_struct_ev(p, val, 0);
} else if (t->kind == Type_Array) {
GB_ASSERT(t->Array.count == 1);
return lb_emit_struct_ev(p, val, 0);
} else {
GB_PANIC("Unknown type of expand_values");
}
}
GB_ASSERT(is_type_tuple(tv.type));
// NOTE(bill): Doesn't need to be zero because it will be initialized in the loops
lbValue tuple = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false));
if (t->kind == Type_Struct) {
for_array(src_index, t->Struct.fields) {
Entity *field = t->Struct.fields[src_index];
i32 field_index = field->Variable.field_index;
lbValue f = lb_emit_struct_ev(p, val, field_index);
lbValue ep = lb_emit_struct_ep(p, tuple, cast(i32)src_index);
lb_emit_store(p, ep, f);
}
} else if (is_type_array_like(t)) {
// TODO(bill): Clean-up this code
lbValue ap = lb_address_from_load_or_generate_local(p, val);
i32 n = cast(i32)get_array_type_count(t);
for (i32 i = 0; i < n; i++) {
lbValue f = lb_emit_load(p, lb_emit_array_epi(p, ap, i));
lbValue ep = lb_emit_struct_ep(p, tuple, i);
lb_emit_store(p, ep, f);
}
} else {
GB_PANIC("Unknown type of expand_values");
}
return lb_emit_load(p, tuple);
}
case BuiltinProc_compress_values: {
isize value_count = 0;
for (Ast *arg : ce->args) {
Type *t = arg->tav.type;
if (is_type_tuple(t)) {
value_count += t->Tuple.variables.count;
} else {
value_count += 1;
}
}
if (value_count == 1) {
lbValue x = lb_build_expr(p, ce->args[0]);
x = lb_emit_conv(p, x, tv.type);
return x;
}
Type *dt = base_type(tv.type);
lbAddr addr = lb_add_local_generated(p, tv.type, true);
if (is_type_struct(dt) || is_type_tuple(dt)) {
i32 index = 0;
for (Ast *arg : ce->args) {
lbValue x = lb_build_expr(p, arg);
if (is_type_tuple(x.type)) {
for (isize i = 0; i < x.type->Tuple.variables.count; i++) {
lbValue y = lb_emit_tuple_ev(p, x, cast(i32)i);
lbValue ptr = lb_emit_struct_ep(p, addr.addr, index++);
y = lb_emit_conv(p, y, type_deref(ptr.type));
lb_emit_store(p, ptr, y);
}
} else {
lbValue ptr = lb_emit_struct_ep(p, addr.addr, index++);
x = lb_emit_conv(p, x, type_deref(ptr.type));
lb_emit_store(p, ptr, x);
}
}
GB_ASSERT(index == value_count);
} else if (is_type_array_like(dt)) {
i32 index = 0;
for (Ast *arg : ce->args) {
lbValue x = lb_build_expr(p, arg);
if (is_type_tuple(x.type)) {
for (isize i = 0; i < x.type->Tuple.variables.count; i++) {
lbValue y = lb_emit_tuple_ev(p, x, cast(i32)i);
lbValue ptr = lb_emit_array_epi(p, addr.addr, index++);
y = lb_emit_conv(p, y, type_deref(ptr.type));
lb_emit_store(p, ptr, y);
}
} else {
lbValue ptr = lb_emit_array_epi(p, addr.addr, index++);
x = lb_emit_conv(p, x, type_deref(ptr.type));
lb_emit_store(p, ptr, x);
}
}
GB_ASSERT(index == value_count);
} else {
GB_PANIC("TODO(bill): compress_values -> %s", type_to_string(tv.type));
}
return lb_addr_load(p, addr);
}
case BuiltinProc_min: {
Type *t = type_of_expr(expr);
if (ce->args.count == 2) {
return lb_emit_min(p, t, lb_build_expr(p, ce->args[0]), lb_build_expr(p, ce->args[1]));
} else {
lbValue x = lb_build_expr(p, ce->args[0]);
for (isize i = 1; i < ce->args.count; i++) {
x = lb_emit_min(p, t, x, lb_build_expr(p, ce->args[i]));
}
return x;
}
}
case BuiltinProc_max: {
Type *t = type_of_expr(expr);
if (ce->args.count == 2) {
return lb_emit_max(p, t, lb_build_expr(p, ce->args[0]), lb_build_expr(p, ce->args[1]));
} else {
lbValue x = lb_build_expr(p, ce->args[0]);
for (isize i = 1; i < ce->args.count; i++) {
x = lb_emit_max(p, t, x, lb_build_expr(p, ce->args[i]));
}
return x;
}
}
case BuiltinProc_abs: {
lbValue x = lb_build_expr(p, ce->args[0]);
Type *t = x.type;
if (is_type_unsigned(t)) {
return x;
}
if (is_type_quaternion(t)) {
i64 sz = 8*type_size_of(t);
auto args = array_make<lbValue>(permanent_allocator(), 1);
args[0] = x;
switch (sz) {
case 64: return lb_emit_runtime_call(p, "abs_quaternion64", args);
case 128: return lb_emit_runtime_call(p, "abs_quaternion128", args);
case 256: return lb_emit_runtime_call(p, "abs_quaternion256", args);
}
GB_PANIC("Unknown complex type");
} else if (is_type_complex(t)) {
i64 sz = 8*type_size_of(t);
auto args = array_make<lbValue>(permanent_allocator(), 1);
args[0] = x;
switch (sz) {
case 32: return lb_emit_runtime_call(p, "abs_complex32", args);
case 64: return lb_emit_runtime_call(p, "abs_complex64", args);
case 128: return lb_emit_runtime_call(p, "abs_complex128", args);
}
GB_PANIC("Unknown complex type");
} else if (is_type_float(t)) {
bool little = is_type_endian_little(t) || (is_type_endian_platform(t) && build_context.endian_kind == TargetEndian_Little);
Type *t_unsigned = nullptr;
lbValue mask = {0};
switch (type_size_of(t)) {
case 2:
t_unsigned = t_u16;
mask = lb_const_int(p->module, t_unsigned, little ? 0x7FFF : 0xFF7F);
break;
case 4:
t_unsigned = t_u32;
mask = lb_const_int(p->module, t_unsigned, little ? 0x7FFFFFFF : 0xFFFFFF7F);
break;
case 8:
t_unsigned = t_u64;
mask = lb_const_int(p->module, t_unsigned, little ? 0x7FFFFFFFFFFFFFFF : 0xFFFFFFFFFFFFFF7F);
break;
default:
GB_PANIC("abs: unhandled float size");
}
lbValue as_unsigned = lb_emit_transmute(p, x, t_unsigned);
lbValue abs = lb_emit_arith(p, Token_And, as_unsigned, mask, t_unsigned);
return lb_emit_transmute(p, abs, t);
}
lbValue zero = lb_const_nil(p->module, t);
lbValue cond = lb_emit_comp(p, Token_Lt, x, zero);
lbValue neg = lb_emit_unary_arith(p, Token_Sub, x, t);
return lb_emit_select(p, cond, neg, x);
}
case BuiltinProc_clamp:
return lb_emit_clamp(p, type_of_expr(expr),
lb_build_expr(p, ce->args[0]),
lb_build_expr(p, ce->args[1]),
lb_build_expr(p, ce->args[2]));
case BuiltinProc_soa_zip:
return lb_soa_zip(p, ce, tv);
case BuiltinProc_soa_unzip:
return lb_soa_unzip(p, ce, tv);
case BuiltinProc_transpose:
{
lbValue m = lb_build_expr(p, ce->args[0]);
return lb_emit_matrix_tranpose(p, m, tv.type);
}
case BuiltinProc_outer_product:
{
lbValue a = lb_build_expr(p, ce->args[0]);
lbValue b = lb_build_expr(p, ce->args[1]);
return lb_emit_outer_product(p, a, b, tv.type);
}
case BuiltinProc_hadamard_product:
{
lbValue a = lb_build_expr(p, ce->args[0]);
lbValue b = lb_build_expr(p, ce->args[1]);
if (is_type_array(tv.type)) {
return lb_emit_arith(p, Token_Mul, a, b, tv.type);
}
GB_ASSERT(is_type_matrix(tv.type));
return lb_emit_arith_matrix(p, Token_Mul, a, b, tv.type, true);
}
case BuiltinProc_matrix_flatten:
{
lbValue m = lb_build_expr(p, ce->args[0]);
return lb_emit_matrix_flatten(p, m, tv.type);
}
case BuiltinProc_unreachable:
lb_emit_unreachable(p);
return {};
case BuiltinProc_raw_data:
{
lbValue x = lb_build_expr(p, ce->args[0]);
Type *t = base_type(x.type);
lbValue res = {};
switch (t->kind) {
case Type_Slice:
res = lb_slice_elem(p, x);
res = lb_emit_conv(p, res, tv.type);
break;
case Type_DynamicArray:
res = lb_dynamic_array_elem(p, x);
res = lb_emit_conv(p, res, tv.type);
break;
case Type_Basic:
if (t->Basic.kind == Basic_string) {
res = lb_string_elem(p, x);
res = lb_emit_conv(p, res, tv.type);
} else if (t->Basic.kind == Basic_cstring) {
res = lb_emit_conv(p, x, tv.type);
} else if (t->Basic.kind == Basic_string16) {
res = lb_string_elem(p, x);
res = lb_emit_conv(p, res, tv.type);
} else if (t->Basic.kind == Basic_cstring16) {
res = lb_emit_conv(p, x, tv.type);
}
break;
case Type_Pointer:
case Type_MultiPointer:
res = lb_emit_conv(p, x, tv.type);
break;
}
GB_ASSERT(res.value != nullptr);
return res;
}
// "Intrinsics"
case BuiltinProc_alloca:
{
lbValue sz = lb_build_expr(p, ce->args[0]);
i64 al = exact_value_to_i64(type_and_value_of_expr(ce->args[1]).value);
lbValue res = {};
res.type = alloc_type_multi_pointer(t_u8);
res.value = LLVMBuildArrayAlloca(p->builder, lb_type(p->module, t_u8), sz.value, "");
LLVMSetAlignment(res.value, cast(unsigned)al);
return res;
}
case BuiltinProc_cpu_relax:
if (build_context.metrics.arch == TargetArch_i386 ||
build_context.metrics.arch == TargetArch_amd64) {
LLVMTypeRef func_type = LLVMFunctionType(LLVMVoidTypeInContext(p->module->ctx), nullptr, 0, false);
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, str_lit("pause"), {}, true);
GB_ASSERT(the_asm != nullptr);
LLVMBuildCall2(p->builder, func_type, the_asm, nullptr, 0, "");
} else if (build_context.metrics.arch == TargetArch_arm64) {
LLVMTypeRef func_type = LLVMFunctionType(LLVMVoidTypeInContext(p->module->ctx), nullptr, 0, false);
// NOTE(bill, 2022-03-30): `isb` appears to a better option that `yield`
// See: https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8258604
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, str_lit("isb"), {}, true);
GB_ASSERT(the_asm != nullptr);
LLVMBuildCall2(p->builder, func_type, the_asm, nullptr, 0, "");
} else {
// NOTE: default to something to prevent optimization
LLVMTypeRef func_type = LLVMFunctionType(LLVMVoidTypeInContext(p->module->ctx), nullptr, 0, false);
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, str_lit(""), {}, true);
GB_ASSERT(the_asm != nullptr);
LLVMBuildCall2(p->builder, func_type, the_asm, nullptr, 0, "");
}
return {};
case BuiltinProc_debug_trap:
case BuiltinProc_trap:
{
char const *name = nullptr;
switch (id) {
case BuiltinProc_debug_trap: name = "llvm.debugtrap"; break;
case BuiltinProc_trap: name = "llvm.trap"; break;
}
lb_call_intrinsic(p, name, nullptr, 0, nullptr, 0);
if (id == BuiltinProc_trap) {
LLVMBuildUnreachable(p->builder);
}
return {};
}
case BuiltinProc_read_cycle_counter:
{
lbValue res = {};
res.type = tv.type;
if (build_context.metrics.arch == TargetArch_arm64) {
LLVMTypeRef func_type = LLVMFunctionType(LLVMInt64TypeInContext(p->module->ctx), nullptr, 0, false);
bool has_side_effects = false;
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, str_lit("mrs $0, cntvct_el0"), str_lit("=r"), has_side_effects);
GB_ASSERT(the_asm != nullptr);
res.value = LLVMBuildCall2(p->builder, func_type, the_asm, nullptr, 0, "");
} else {
char const *name = "llvm.readcyclecounter";
res.value = lb_call_intrinsic(p, name, nullptr, 0, nullptr, 0);
}
return res;
}
case BuiltinProc_read_cycle_counter_frequency:
{
lbValue res = {};
res.type = tv.type;
if (build_context.metrics.arch == TargetArch_arm64) {
LLVMTypeRef func_type = LLVMFunctionType(LLVMInt64TypeInContext(p->module->ctx), nullptr, 0, false);
bool has_side_effects = false;
LLVMValueRef the_asm = llvm_get_inline_asm(func_type, str_lit("mrs $0, cntfrq_el0"), str_lit("=r"), has_side_effects);
GB_ASSERT(the_asm != nullptr);
res.value = LLVMBuildCall2(p->builder, func_type, the_asm, nullptr, 0, "");
}
return res;
}
case BuiltinProc_count_trailing_zeros:
return lb_emit_count_trailing_zeros(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_count_leading_zeros:
return lb_emit_count_leading_zeros(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_count_ones:
return lb_emit_count_ones(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_count_zeros:
return lb_emit_count_zeros(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_reverse_bits:
return lb_emit_reverse_bits(p, lb_build_expr(p, ce->args[0]), tv.type);
case BuiltinProc_byte_swap:
{
lbValue x = lb_build_expr(p, ce->args[0]);
x = lb_emit_conv(p, x, tv.type);
return lb_emit_byte_swap(p, x, tv.type);
}
case BuiltinProc_overflow_add:
case BuiltinProc_overflow_sub:
case BuiltinProc_overflow_mul:
{
Type *main_type = tv.type;
Type *type = main_type;
if (is_type_tuple(main_type)) {
type = main_type->Tuple.variables[0]->type;
}
lbValue x = lb_build_expr(p, ce->args[0]);
lbValue y = lb_build_expr(p, ce->args[1]);
x = lb_emit_conv(p, x, type);
y = lb_emit_conv(p, y, type);
char const *name = nullptr;
if (is_type_unsigned(type)) {
switch (id) {
case BuiltinProc_overflow_add: name = "llvm.uadd.with.overflow"; break;
case BuiltinProc_overflow_sub: name = "llvm.usub.with.overflow"; break;
case BuiltinProc_overflow_mul: name = "llvm.umul.with.overflow"; break;
}
} else {
switch (id) {
case BuiltinProc_overflow_add: name = "llvm.sadd.with.overflow"; break;
case BuiltinProc_overflow_sub: name = "llvm.ssub.with.overflow"; break;
case BuiltinProc_overflow_mul: name = "llvm.smul.with.overflow"; break;
}
}
LLVMTypeRef types[1] = {lb_type(p->module, type)};
LLVMValueRef args[2] = { x.value, y.value };
lbValue res = {};
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
if (is_type_tuple(main_type)) {
Type *res_type = nullptr;
gbAllocator a = permanent_allocator();
res_type = alloc_type_tuple();
slice_init(&res_type->Tuple.variables, a, 2);
res_type->Tuple.variables[0] = alloc_entity_field(nullptr, blank_token, type, false, 0);
res_type->Tuple.variables[1] = alloc_entity_field(nullptr, blank_token, t_llvm_bool, false, 1);
res.type = res_type;
} else {
res.value = LLVMBuildExtractValue(p->builder, res.value, 0, "");
res.type = type;
}
return res;
}
case BuiltinProc_saturating_add:
case BuiltinProc_saturating_sub:
{
Type *main_type = tv.type;
Type *type = main_type;
lbValue x = lb_build_expr(p, ce->args[0]);
lbValue y = lb_build_expr(p, ce->args[1]);
x = lb_emit_conv(p, x, type);
y = lb_emit_conv(p, y, type);
char const *name = nullptr;
if (is_type_unsigned(type)) {
switch (id) {
case BuiltinProc_saturating_add: name = "llvm.uadd.sat"; break;
case BuiltinProc_saturating_sub: name = "llvm.usub.sat"; break;
}
} else {
switch (id) {
case BuiltinProc_saturating_add: name = "llvm.sadd.sat"; break;
case BuiltinProc_saturating_sub: name = "llvm.ssub.sat"; break;
}
}
LLVMTypeRef types[1] = {lb_type(p->module, type)};
LLVMValueRef args[2] = { x.value, y.value };
lbValue res = {};
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = type;
return res;
}
case BuiltinProc_sqrt:
{
Type *type = tv.type;
lbValue x = lb_build_expr(p, ce->args[0]);
x = lb_emit_conv(p, x, type);
char const *name = "llvm.sqrt";
LLVMTypeRef types[1] = {lb_type(p->module, type)};
LLVMValueRef args[1] = { x.value };
lbValue res = {};
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = type;
return res;
}
case BuiltinProc_fused_mul_add:
{
Type *type = tv.type;
lbValue x = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), type);
lbValue y = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), type);
lbValue z = lb_emit_conv(p, lb_build_expr(p, ce->args[2]), type);
char const *name = "llvm.fma";
LLVMTypeRef types[1] = {lb_type(p->module, type)};
LLVMValueRef args[3] = { x.value, y.value, z.value };
lbValue res = {};
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = type;
return res;
}
case BuiltinProc_mem_copy:
{
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue src = lb_build_expr(p, ce->args[1]);
lbValue len = lb_build_expr(p, ce->args[2]);
lb_mem_copy_overlapping(p, dst, src, len, false);
return {};
}
case BuiltinProc_mem_copy_non_overlapping:
{
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue src = lb_build_expr(p, ce->args[1]);
lbValue len = lb_build_expr(p, ce->args[2]);
lb_mem_copy_non_overlapping(p, dst, src, len, false);
return {};
}
case BuiltinProc_mem_zero:
{
lbValue ptr = lb_build_expr(p, ce->args[0]);
lbValue len = lb_build_expr(p, ce->args[1]);
ptr = lb_emit_conv(p, ptr, t_rawptr);
len = lb_emit_conv(p, len, t_int);
unsigned alignment = 1;
lb_mem_zero_ptr_internal(p, ptr.value, len.value, alignment, false);
return {};
}
case BuiltinProc_mem_zero_volatile:
{
lbValue ptr = lb_build_expr(p, ce->args[0]);
lbValue len = lb_build_expr(p, ce->args[1]);
ptr = lb_emit_conv(p, ptr, t_rawptr);
len = lb_emit_conv(p, len, t_int);
unsigned alignment = 1;
lb_mem_zero_ptr_internal(p, ptr.value, len.value, alignment, true);
return {};
}
case BuiltinProc_ptr_offset:
{
lbValue ptr = lb_build_expr(p, ce->args[0]);
lbValue len = lb_build_expr(p, ce->args[1]);
len = lb_emit_conv(p, len, t_int);
return lb_emit_ptr_offset(p, ptr, len);
}
case BuiltinProc_ptr_sub:
{
Type *elem0 = type_deref(type_of_expr(ce->args[0]), true);
Type *elem1 = type_deref(type_of_expr(ce->args[1]), true);
GB_ASSERT(are_types_identical(elem0, elem1));
Type *elem = elem0;
lbValue ptr0 = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_uintptr);
lbValue ptr1 = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t_uintptr);
ptr0 = lb_emit_conv(p, ptr0, t_int);
ptr1 = lb_emit_conv(p, ptr1, t_int);
lbValue diff = lb_emit_arith(p, Token_Sub, ptr0, ptr1, t_int);
return lb_emit_arith(p, Token_Quo, diff, lb_const_int(p->module, t_int, type_size_of(elem)), t_int);
}
// TODO(bill): Which is correct?
case BuiltinProc_atomic_thread_fence:
LLVMBuildFence(p->builder, llvm_atomic_ordering_from_odin(ce->args[0]), false, "");
return {};
case BuiltinProc_atomic_signal_fence:
LLVMBuildFence(p->builder, llvm_atomic_ordering_from_odin(ce->args[0]), true, "");
return {};
case BuiltinProc_volatile_store:
case BuiltinProc_non_temporal_store:
case BuiltinProc_atomic_store:
case BuiltinProc_atomic_store_explicit: {
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue val = lb_build_expr(p, ce->args[1]);
val = lb_emit_conv(p, val, type_deref(dst.type));
LLVMValueRef instr = LLVMBuildStore(p->builder, val.value, dst.value);
switch (id) {
case BuiltinProc_non_temporal_store:
{
unsigned kind_id = LLVMGetMDKindIDInContext(p->module->ctx, "nontemporal", 11);
LLVMMetadataRef node = LLVMValueAsMetadata(LLVMConstInt(lb_type(p->module, t_u32), 1, false));
LLVMSetMetadata(instr, kind_id, LLVMMetadataAsValue(p->module->ctx, node));
}
break;
case BuiltinProc_volatile_store:
LLVMSetVolatile(instr, true);
break;
case BuiltinProc_atomic_store:
LLVMSetOrdering(instr, LLVMAtomicOrderingSequentiallyConsistent);
LLVMSetVolatile(instr, true);
break;
case BuiltinProc_atomic_store_explicit:
{
auto ordering = llvm_atomic_ordering_from_odin(ce->args[2]);
LLVMSetOrdering(instr, ordering);
LLVMSetVolatile(instr, true);
}
break;
}
LLVMSetAlignment(instr, cast(unsigned)type_align_of(type_deref(dst.type)));
return {};
}
case BuiltinProc_volatile_load:
case BuiltinProc_non_temporal_load:
case BuiltinProc_atomic_load:
case BuiltinProc_atomic_load_explicit: {
lbValue dst = lb_build_expr(p, ce->args[0]);
LLVMValueRef instr = OdinLLVMBuildLoad(p, lb_type(p->module, type_deref(dst.type)), dst.value);
switch (id) {
case BuiltinProc_non_temporal_load:
{
unsigned kind_id = LLVMGetMDKindIDInContext(p->module->ctx, "nontemporal", 11);
LLVMMetadataRef node = LLVMValueAsMetadata(LLVMConstInt(lb_type(p->module, t_u32), 1, false));
LLVMSetMetadata(instr, kind_id, LLVMMetadataAsValue(p->module->ctx, node));
}
break;
break;
case BuiltinProc_volatile_load:
LLVMSetVolatile(instr, true);
break;
case BuiltinProc_atomic_load:
LLVMSetOrdering(instr, LLVMAtomicOrderingSequentiallyConsistent);
LLVMSetVolatile(instr, true);
break;
case BuiltinProc_atomic_load_explicit:
{
auto ordering = llvm_atomic_ordering_from_odin(ce->args[1]);
LLVMSetOrdering(instr, ordering);
LLVMSetVolatile(instr, true);
}
break;
}
LLVMSetAlignment(instr, cast(unsigned)type_align_of(type_deref(dst.type)));
lbValue res = {};
res.value = instr;
res.type = type_deref(dst.type);
return res;
}
case BuiltinProc_unaligned_store:
{
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue src = lb_build_expr(p, ce->args[1]);
Type *t = type_deref(dst.type);
if (is_type_simd_vector(t)) {
LLVMValueRef store = LLVMBuildStore(p->builder, src.value, dst.value);
LLVMSetAlignment(store, 1);
} else {
src = lb_address_from_load_or_generate_local(p, src);
lb_mem_copy_non_overlapping(p, dst, src, lb_const_int(p->module, t_int, type_size_of(t)), false);
}
return {};
}
case BuiltinProc_unaligned_load:
{
lbValue src = lb_build_expr(p, ce->args[0]);
Type *t = type_deref(src.type);
if (is_type_simd_vector(t)) {
lbValue res = {};
res.type = t;
res.value = OdinLLVMBuildLoadAligned(p, lb_type(p->module, t), src.value, 1);
return res;
} else {
lbAddr dst = lb_add_local_generated(p, t, false);
lb_mem_copy_non_overlapping(p, dst.addr, src, lb_const_int(p->module, t_int, type_size_of(t)), false);
return lb_addr_load(p, dst);
}
}
case BuiltinProc_atomic_add:
case BuiltinProc_atomic_sub:
case BuiltinProc_atomic_and:
case BuiltinProc_atomic_nand:
case BuiltinProc_atomic_or:
case BuiltinProc_atomic_xor:
case BuiltinProc_atomic_exchange:
case BuiltinProc_atomic_add_explicit:
case BuiltinProc_atomic_sub_explicit:
case BuiltinProc_atomic_and_explicit:
case BuiltinProc_atomic_nand_explicit:
case BuiltinProc_atomic_or_explicit:
case BuiltinProc_atomic_xor_explicit:
case BuiltinProc_atomic_exchange_explicit: {
lbValue dst = lb_build_expr(p, ce->args[0]);
lbValue val = lb_build_expr(p, ce->args[1]);
val = lb_emit_conv(p, val, type_deref(dst.type));
LLVMAtomicRMWBinOp op = {};
LLVMAtomicOrdering ordering = {};
switch (id) {
case BuiltinProc_atomic_add: op = LLVMAtomicRMWBinOpAdd; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_sub: op = LLVMAtomicRMWBinOpSub; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_and: op = LLVMAtomicRMWBinOpAnd; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_nand: op = LLVMAtomicRMWBinOpNand; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_or: op = LLVMAtomicRMWBinOpOr; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_xor: op = LLVMAtomicRMWBinOpXor; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_exchange: op = LLVMAtomicRMWBinOpXchg; ordering = LLVMAtomicOrderingSequentiallyConsistent; break;
case BuiltinProc_atomic_add_explicit: op = LLVMAtomicRMWBinOpAdd; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_sub_explicit: op = LLVMAtomicRMWBinOpSub; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_and_explicit: op = LLVMAtomicRMWBinOpAnd; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_nand_explicit: op = LLVMAtomicRMWBinOpNand; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_or_explicit: op = LLVMAtomicRMWBinOpOr; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_xor_explicit: op = LLVMAtomicRMWBinOpXor; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
case BuiltinProc_atomic_exchange_explicit: op = LLVMAtomicRMWBinOpXchg; ordering = llvm_atomic_ordering_from_odin(ce->args[2]); break;
}
lbValue res = {};
res.value = LLVMBuildAtomicRMW(p->builder, op, dst.value, val.value, ordering, false);
res.type = tv.type;
LLVMSetVolatile(res.value, true);
return res;
}
case BuiltinProc_atomic_compare_exchange_strong:
case BuiltinProc_atomic_compare_exchange_weak:
case BuiltinProc_atomic_compare_exchange_strong_explicit:
case BuiltinProc_atomic_compare_exchange_weak_explicit: {
lbValue address = lb_build_expr(p, ce->args[0]);
Type *elem = type_deref(address.type);
lbValue old_value = lb_build_expr(p, ce->args[1]);
lbValue new_value = lb_build_expr(p, ce->args[2]);
old_value = lb_emit_conv(p, old_value, elem);
new_value = lb_emit_conv(p, new_value, elem);
LLVMAtomicOrdering success_ordering = {};
LLVMAtomicOrdering failure_ordering = {};
LLVMBool weak = false;
switch (id) {
case BuiltinProc_atomic_compare_exchange_strong: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = false; break;
case BuiltinProc_atomic_compare_exchange_weak: success_ordering = LLVMAtomicOrderingSequentiallyConsistent; failure_ordering = LLVMAtomicOrderingSequentiallyConsistent; weak = true; break;
case BuiltinProc_atomic_compare_exchange_strong_explicit: success_ordering = llvm_atomic_ordering_from_odin(ce->args[3]); failure_ordering = llvm_atomic_ordering_from_odin(ce->args[4]); weak = false; break;
case BuiltinProc_atomic_compare_exchange_weak_explicit: success_ordering = llvm_atomic_ordering_from_odin(ce->args[3]); failure_ordering = llvm_atomic_ordering_from_odin(ce->args[4]); weak = true; break;
}
LLVMBool single_threaded = false;
LLVMValueRef value = LLVMBuildAtomicCmpXchg(
p->builder, address.value,
old_value.value, new_value.value,
success_ordering,
failure_ordering,
single_threaded
);
LLVMSetWeak(value, weak);
LLVMSetVolatile(value, true);
if (is_type_tuple(tv.type)) {
Type *fix_typed = alloc_type_tuple();
slice_init(&fix_typed->Tuple.variables, permanent_allocator(), 2);
fix_typed->Tuple.variables[0] = tv.type->Tuple.variables[0];
fix_typed->Tuple.variables[1] = alloc_entity_field(nullptr, blank_token, t_llvm_bool, false, 1);
lbValue res = {};
res.value = value;
res.type = fix_typed;
return res;
} else {
lbValue res = {};
res.value = LLVMBuildExtractValue(p->builder, value, 0, "");
res.type = tv.type;
return res;
}
}
case BuiltinProc_type_equal_proc:
return lb_equal_proc_for_type(p->module, ce->args[0]->tav.type);
case BuiltinProc_type_hasher_proc:
return lb_hasher_proc_for_type(p->module, ce->args[0]->tav.type);
case BuiltinProc_type_map_info:
return lb_gen_map_info_ptr(p->module, ce->args[0]->tav.type);
case BuiltinProc_type_map_cell_info:
return lb_gen_map_cell_info_ptr(p->module, ce->args[0]->tav.type);
case BuiltinProc_fixed_point_mul:
case BuiltinProc_fixed_point_div:
case BuiltinProc_fixed_point_mul_sat:
case BuiltinProc_fixed_point_div_sat:
{
Type *platform_type = integer_endian_type_to_platform_type(tv.type);
lbValue x = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), platform_type);
lbValue y = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), platform_type);
lbValue scale = lb_emit_conv(p, lb_build_expr(p, ce->args[2]), t_i32);
char const *name = nullptr;
if (is_type_unsigned(tv.type)) {
switch (id) {
case BuiltinProc_fixed_point_mul: name = "llvm.umul.fix"; break;
case BuiltinProc_fixed_point_div: name = "llvm.udiv.fix"; break;
case BuiltinProc_fixed_point_mul_sat: name = "llvm.umul.fix.sat"; break;
case BuiltinProc_fixed_point_div_sat: name = "llvm.udiv.fix.sat"; break;
}
} else {
switch (id) {
case BuiltinProc_fixed_point_mul: name = "llvm.smul.fix"; break;
case BuiltinProc_fixed_point_div: name = "llvm.sdiv.fix"; break;
case BuiltinProc_fixed_point_mul_sat: name = "llvm.smul.fix.sat"; break;
case BuiltinProc_fixed_point_div_sat: name = "llvm.sdiv.fix.sat"; break;
}
}
GB_ASSERT(name != nullptr);
lbValue res = {};
res.type = platform_type;
if (id == BuiltinProc_fixed_point_div ||
id == BuiltinProc_fixed_point_div_sat) {
res.value = lb_integer_division_intrinsics(p, x.value, y.value, scale.value, platform_type, name);
} else {
LLVMTypeRef types[1] = {lb_type(p->module, platform_type)};
LLVMValueRef args[3] = {
x.value,
y.value,
scale.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
}
return lb_emit_conv(p, res, tv.type);
}
case BuiltinProc_expect:
{
Type *t = default_type(tv.type);
lbValue x = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t);
lbValue y = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t);
char const *name = "llvm.expect";
LLVMTypeRef types[1] = {lb_type(p->module, t)};
lbValue res = {};
LLVMValueRef args[2] = { x.value, y.value };
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = t;
return lb_emit_conv(p, res, t);
}
case BuiltinProc_prefetch_read_instruction:
case BuiltinProc_prefetch_read_data:
case BuiltinProc_prefetch_write_instruction:
case BuiltinProc_prefetch_write_data:
{
lbValue ptr = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_rawptr);
unsigned long long locality = cast(unsigned long long)exact_value_to_i64(ce->args[1]->tav.value);
unsigned long long rw = 0;
unsigned long long cache = 0;
switch (id) {
case BuiltinProc_prefetch_read_instruction:
rw = 0;
cache = 0;
break;
case BuiltinProc_prefetch_read_data:
rw = 0;
cache = 1;
break;
case BuiltinProc_prefetch_write_instruction:
rw = 1;
cache = 0;
break;
case BuiltinProc_prefetch_write_data:
rw = 1;
cache = 1;
break;
}
char const *name = "llvm.prefetch";
LLVMTypeRef types[1] = {lb_type(p->module, t_rawptr)};
LLVMTypeRef llvm_i32 = lb_type(p->module, t_i32);
LLVMValueRef args[4] = {};
args[0] = ptr.value;
args[1] = LLVMConstInt(llvm_i32, rw, false);
args[2] = LLVMConstInt(llvm_i32, locality, false);
args[3] = LLVMConstInt(llvm_i32, cache, false);
lbValue res = {};
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
res.type = nullptr;
return res;
}
case BuiltinProc___entry_point:
if (p->module->info->entry_point) {
lbValue entry_point = lb_find_procedure_value_from_entity(p->module, p->module->info->entry_point);
GB_ASSERT(entry_point.value != nullptr);
lb_emit_call(p, entry_point, {});
}
return {};
case BuiltinProc_syscall:
{
unsigned arg_count = cast(unsigned)ce->args.count;
LLVMValueRef *args = gb_alloc_array(permanent_allocator(), LLVMValueRef, arg_count);
for_array(i, ce->args) {
lbValue arg = lb_build_expr(p, ce->args[i]);
arg = lb_emit_conv(p, arg, t_uintptr);
args[i] = arg.value;
}
LLVMTypeRef llvm_uintptr = lb_type(p->module, t_uintptr);
LLVMTypeRef *llvm_arg_types = gb_alloc_array(permanent_allocator(), LLVMTypeRef, arg_count);
for (unsigned i = 0; i < arg_count; i++) {
llvm_arg_types[i] = llvm_uintptr;
}
LLVMTypeRef func_type = LLVMFunctionType(llvm_uintptr, llvm_arg_types, arg_count, false);
LLVMValueRef inline_asm = nullptr;
switch (build_context.metrics.arch) {
case TargetArch_riscv64:
{
GB_ASSERT(arg_count <= 7);
char asm_string[] = "ecall";
gbString constraints = gb_string_make(heap_allocator(), "={a0}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"a7",
"a0",
"a1",
"a2",
"a3",
"a4",
"a5",
"a6"
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
constraints = gb_string_appendc(constraints, ",~{memory}");
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
break;
case TargetArch_amd64:
{
GB_ASSERT(arg_count <= 7);
char asm_string[] = "syscall";
gbString constraints = gb_string_make(heap_allocator(), "={rax}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"rax",
"rdi",
"rsi",
"rdx",
"r10",
"r8",
"r9"
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
// The SYSCALL instruction stores the address of the
// following instruction into RCX, and RFLAGS in R11.
//
// RSP is not saved, but at least on Linux it appears
// that the kernel system-call handler does the right
// thing.
//
// Some but not all system calls will additionally
// clobber memory.
//
// TODO:
// * Figure out what Darwin does.
constraints = gb_string_appendc(constraints, ",~{rcx},~{r11},~{memory}");
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
break;
case TargetArch_i386:
{
GB_ASSERT(arg_count <= 7);
char asm_string[] = "int $$0x80";
gbString constraints = gb_string_make(heap_allocator(), "={eax}");
for (unsigned i = 0; i < gb_min(arg_count, 6); i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"eax",
"ebx",
"ecx",
"edx",
"esi",
"edi",
"ebp",
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
constraints = gb_string_appendc(constraints, ",~{memory}");
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
break;
case TargetArch_arm64:
{
GB_ASSERT(arg_count <= 7);
if(build_context.metrics.os == TargetOs_darwin) {
char asm_string[] = "svc #0x80";
gbString constraints = gb_string_make(heap_allocator(), "={x0}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"x16",
"x0",
"x1",
"x2",
"x3",
"x4",
"x5",
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
constraints = gb_string_appendc(constraints, ",~{memory}");
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
} else {
char asm_string[] = "svc #0";
gbString constraints = gb_string_make(heap_allocator(), "={x0}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"x8",
"x0",
"x1",
"x2",
"x3",
"x4",
"x5",
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
constraints = gb_string_appendc(constraints, ",~{memory}");
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
}
break;
case TargetArch_arm32:
{
GB_ASSERT(arg_count <= 7);
char asm_string[] = "svc #0";
gbString constraints = gb_string_make(heap_allocator(), "={r0}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"r7",
"r0",
"r1",
"r2",
"r3",
"r4",
"r5",
"r6",
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
constraints = gb_string_appendc(constraints, ",~{memory}");
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
break;
default:
GB_PANIC("Unsupported platform");
}
lbValue res = {};
res.value = LLVMBuildCall2(p->builder, func_type, inline_asm, args, arg_count, "");
res.type = t_uintptr;
return res;
}
case BuiltinProc_syscall_bsd:
{
// This is a BSD-style syscall where errors are indicated by a high
// Carry Flag and a positive return value, allowing the kernel to
// return any value that fits into a machine word.
//
// This is unlike Linux, where errors are indicated by a negative
// return value, limiting what can be expressed in one result.
unsigned arg_count = cast(unsigned)ce->args.count;
LLVMValueRef *args = gb_alloc_array(permanent_allocator(), LLVMValueRef, arg_count);
for_array(i, ce->args) {
lbValue arg = lb_build_expr(p, ce->args[i]);
arg = lb_emit_conv(p, arg, t_uintptr);
args[i] = arg.value;
}
LLVMTypeRef llvm_uintptr = lb_type(p->module, t_uintptr);
LLVMTypeRef *llvm_arg_types = gb_alloc_array(permanent_allocator(), LLVMTypeRef, arg_count);
for (unsigned i = 0; i < arg_count; i++) {
llvm_arg_types[i] = llvm_uintptr;
}
LLVMTypeRef *results = gb_alloc_array(permanent_allocator(), LLVMTypeRef, 2);
results[0] = lb_type(p->module, t_uintptr);
results[1] = lb_type(p->module, t_bool);
LLVMTypeRef llvm_results = LLVMStructTypeInContext(p->module->ctx, results, 2, false);
LLVMTypeRef func_type = LLVMFunctionType(llvm_results, llvm_arg_types, arg_count, false);
LLVMValueRef inline_asm = nullptr;
switch (build_context.metrics.arch) {
case TargetArch_amd64:
{
GB_ASSERT(arg_count <= 7);
char asm_string[] = "syscall; setnb %cl";
// Using CL as an output; RCX doesn't need to get clobbered later.
gbString constraints = gb_string_make(heap_allocator(), "={rax},={cl}");
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
static char const *regs[] = {
"rax",
"rdi",
"rsi",
"rdx",
"r10",
"r8",
"r9",
};
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
// NOTE(Feoramund): If you're experiencing instability
// regarding syscalls during optimized builds, it is
// possible that the ABI has changed for your platform,
// or I've missed a register clobber.
//
// Documentation on this topic is sparse, but I was able to
// determine what registers were being clobbered by adding
// dummy values to them, setting a breakpoint after the
// syscall, and checking the state of the registers afterwards.
//
// Be advised that manually stepping through a debugger may
// cause the kernel to not return via sysret, which will
// preserve register state that normally would've been
// otherwise clobbered.
//
// It is also possible that some syscalls clobber different registers.
if (build_context.metrics.os == TargetOs_freebsd) {
// As a fix for CVE-2019-5595, FreeBSD started
// clobbering R8, R9, and R10, instead of restoring
// them.
//
// More info here:
//
// https://www.freebsd.org/security/advisories/FreeBSD-SA-19:01.syscall.asc
// https://github.com/freebsd/freebsd-src/blob/098dbd7ff7f3da9dda03802cdb2d8755f816eada/sys/amd64/amd64/exception.S#L605
// https://stackoverflow.com/q/66878250
constraints = gb_string_appendc(constraints, ",~{r8},~{r9},~{r10}");
}
// Both FreeBSD and NetBSD might clobber RDX.
//
// For NetBSD, it was clobbered during a call to sysctl.
//
// For FreeBSD, it's listed as "return value 2" in their
// AMD64 assembly, so there's no guarantee that it will persist.
constraints = gb_string_appendc(constraints, ",~{rdx},~{r11},~{cc},~{memory}");
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
break;
case TargetArch_arm64:
{
GB_ASSERT(arg_count <= 7);
char const *asm_string;
char const **regs;
gbString constraints;
if (build_context.metrics.os == TargetOs_netbsd) {
asm_string = "svc #0; cset x17, cc";
constraints = gb_string_make(heap_allocator(), "={x0},={x17}");
static char const *_regs[] = {
"x17",
"x0",
"x1",
"x2",
"x3",
"x4",
"x5",
};
regs = _regs;
} else {
// FreeBSD (tested), OpenBSD (untested).
asm_string = "svc #0; cset x8, cc";
constraints = gb_string_make(heap_allocator(), "={x0},={x8}");
static char const *_regs[] = {
"x8",
"x0",
"x1",
"x2",
"x3",
"x4",
"x5",
};
regs = _regs;
// FreeBSD clobbered x1 on a call to sysctl.
constraints = gb_string_appendc(constraints, ",~{x1}");
}
for (unsigned i = 0; i < arg_count; i++) {
constraints = gb_string_appendc(constraints, ",{");
constraints = gb_string_appendc(constraints, regs[i]);
constraints = gb_string_appendc(constraints, "}");
}
constraints = gb_string_appendc(constraints, ",~{cc},~{memory}");
inline_asm = llvm_get_inline_asm(func_type, make_string_c(asm_string), make_string_c(constraints));
}
break;
default:
GB_PANIC("Unsupported platform");
}
lbValue res = {};
res.value = LLVMBuildCall2(p->builder, func_type, inline_asm, args, arg_count, "");
res.type = make_optional_ok_type(t_uintptr, true);
return res;
}
case BuiltinProc_objc_send:
return lb_handle_objc_send(p, expr);
case BuiltinProc_objc_find_selector: return lb_handle_objc_find_selector(p, expr);
case BuiltinProc_objc_find_class: return lb_handle_objc_find_class(p, expr);
case BuiltinProc_objc_register_selector: return lb_handle_objc_register_selector(p, expr);
case BuiltinProc_objc_register_class: return lb_handle_objc_register_class(p, expr);
case BuiltinProc_objc_ivar_get: return lb_handle_objc_ivar_get(p, expr);
case BuiltinProc_objc_block: return lb_handle_objc_block(p, expr);
case BuiltinProc_constant_utf16_cstring:
{
auto const encode_surrogate_pair = [](Rune r, u16 *r1, u16 *r2) {
if (r < 0x10000 || r > 0x10ffff) {
*r1 = 0xfffd;
*r2 = 0xfffd;
} else {
r -= 0x10000;
*r1 = 0xd800 + ((r>>10)&0x3ff);
*r2 = 0xdc00 + (r&0x3ff);
}
};
lbModule *m = p->module;
auto tav = type_and_value_of_expr(ce->args[0]);
GB_ASSERT(tav.value.kind == ExactValue_String);
String value = tav.value.value_string;
LLVMTypeRef llvm_u16 = lb_type(m, t_u16);
isize max_len = value.len*2 + 1;
LLVMValueRef *buffer = gb_alloc_array(temporary_allocator(), LLVMValueRef, max_len);
isize n = 0;
while (value.len > 0) {
Rune r = 0;
isize w = gb_utf8_decode(value.text, value.len, &r);
value.text += w;
value.len -= w;
if ((0 <= r && r < 0xd800) || (0xe000 <= r && r < 0x10000)) {
buffer[n++] = LLVMConstInt(llvm_u16, cast(u16)r, false);
} else if (0x10000 <= r && r <= 0x10ffff) {
u16 r1, r2;
encode_surrogate_pair(r, &r1, &r2);
buffer[n++] = LLVMConstInt(llvm_u16, r1, false);
buffer[n++] = LLVMConstInt(llvm_u16, r2, false);
} else {
buffer[n++] = LLVMConstInt(llvm_u16, 0xfffd, false);
}
}
buffer[n++] = LLVMConstInt(llvm_u16, 0, false);
LLVMValueRef array = LLVMConstArray(llvm_u16, buffer, cast(unsigned int)n);
char *name = nullptr;
{
isize max_len = 7+8+1;
name = gb_alloc_array(permanent_allocator(), char, max_len);
u32 id = m->global_array_index.fetch_add(1);
isize len = gb_snprintf(name, max_len, "csbs$%x", id);
len -= 1;
}
LLVMTypeRef type = LLVMTypeOf(array);
LLVMValueRef global_data = LLVMAddGlobal(m->mod, type, name);
LLVMSetInitializer(global_data, array);
LLVMSetUnnamedAddress(global_data, LLVMGlobalUnnamedAddr);
LLVMSetLinkage(global_data, LLVMInternalLinkage);
LLVMValueRef indices[] = {
LLVMConstInt(lb_type(m, t_u32), 0, false),
LLVMConstInt(lb_type(m, t_u32), 0, false),
};
lbValue res = {};
res.type = tv.type;
res.value = LLVMBuildInBoundsGEP2(p->builder, type, global_data, indices, gb_count_of(indices), "");
return res;
}
case BuiltinProc_wasm_memory_grow:
{
char const *name = "llvm.wasm.memory.grow";
LLVMTypeRef types[1] = {
lb_type(p->module, t_i32),
};
LLVMValueRef args[2] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_uintptr).value;
args[1] = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t_uintptr).value;
lbValue res = {};
res.type = t_i32;
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return lb_emit_conv(p, res, tv.type);
}
case BuiltinProc_wasm_memory_size:
{
char const *name = "llvm.wasm.memory.size";
LLVMTypeRef types[1] = {
lb_type(p->module, t_i32),
};
LLVMValueRef args[1] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_uintptr).value;
lbValue res = {};
res.type = t_i32;
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), types, gb_count_of(types));
return lb_emit_conv(p, res, tv.type);
}
case BuiltinProc_wasm_memory_atomic_wait32:
{
char const *name = "llvm.wasm.memory.atomic.wait32";
Type *t_u32_ptr = alloc_type_pointer(t_u32);
LLVMValueRef args[3] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_u32_ptr).value;
args[1] = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t_u32).value;
args[2] = lb_emit_conv(p, lb_build_expr(p, ce->args[2]), t_i64).value;
lbValue res = {};
res.type = tv.type;
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), nullptr, 0);
return res;
}
case BuiltinProc_wasm_memory_atomic_notify32:
{
char const *name = "llvm.wasm.memory.atomic.notify";
Type *t_u32_ptr = alloc_type_pointer(t_u32);
LLVMValueRef args[2] = {
lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_u32_ptr).value,
lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t_u32).value
};
lbValue res = {};
res.type = tv.type;
res.value = lb_call_intrinsic(p, name, args, gb_count_of(args), nullptr, 0);
return res;
}
case BuiltinProc_x86_cpuid:
{
Type *param_types[2] = {t_u32, t_u32};
Type *type = alloc_type_proc_from_types(param_types, gb_count_of(param_types), tv.type, false, ProcCC_None);
LLVMTypeRef func_type = lb_get_procedure_raw_type(p->module, type);
LLVMValueRef the_asm = llvm_get_inline_asm(
func_type,
str_lit("cpuid"),
str_lit("={ax},={bx},={cx},={dx},{ax},{cx}"),
true
);
GB_ASSERT(the_asm != nullptr);
LLVMValueRef args[2] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_u32).value;
args[1] = lb_emit_conv(p, lb_build_expr(p, ce->args[1]), t_u32).value;
lbValue res = {};
res.type = tv.type;
res.value = LLVMBuildCall2(p->builder, func_type, the_asm, args, gb_count_of(args), "");
return res;
}
case BuiltinProc_x86_xgetbv:
{
Type *type = alloc_type_proc_from_types(&t_u32, 1, tv.type, false, ProcCC_None);
LLVMTypeRef func_type = lb_get_procedure_raw_type(p->module, type);
LLVMValueRef the_asm = llvm_get_inline_asm(
func_type,
str_lit("xgetbv"),
str_lit("={ax},={dx},{cx}"),
true
);
GB_ASSERT(the_asm != nullptr);
LLVMValueRef args[1] = {};
args[0] = lb_emit_conv(p, lb_build_expr(p, ce->args[0]), t_u32).value;
lbValue res = {};
res.type = tv.type;
res.value = LLVMBuildCall2(p->builder, func_type, the_asm, args, gb_count_of(args), "");
return res;
}
case BuiltinProc_valgrind_client_request:
{
lbValue args[7] = {};
for (isize i = 0; i < 7; i++) {
args[i] = lb_emit_conv(p, lb_build_expr(p, ce->args[i]), t_uintptr);
}
if (!build_context.ODIN_VALGRIND_SUPPORT) {
return args[0];
}
lbValue array = lb_generate_local_array(p, t_uintptr, 6, false);
for (isize i = 0; i < 6; i++) {
lbValue gep = lb_emit_array_epi(p, array, i);
lb_emit_store(p, gep, args[i+1]);
}
switch (build_context.metrics.arch) {
case TargetArch_amd64:
{
Type *param_types[2] = {};
param_types[0] = t_uintptr;
param_types[1] = array.type;
Type *type = alloc_type_proc_from_types(param_types, gb_count_of(param_types), t_uintptr, false, ProcCC_None);
LLVMTypeRef func_type = lb_get_procedure_raw_type(p->module, type);
LLVMValueRef the_asm = llvm_get_inline_asm(
func_type,
str_lit("rolq $$3, %rdi; rolq $$13, %rdi\n rolq $$61, %rdi; rolq $$51, %rdi\n xchgq %rbx, %rbx"),
str_lit("={rdx},{rdx},{rax},~{cc},~{memory}"),
true
);
LLVMValueRef asm_args[2] = {};
asm_args[0] = args[0].value;
asm_args[1] = array.value;
lbValue res = {};
res.type = t_uintptr;
res.value = LLVMBuildCall2(p->builder, func_type, the_asm, asm_args, gb_count_of(asm_args), "");
return res;
}
break;
default:
GB_PANIC("Unsupported architecture: %.*s", LIT(target_arch_names[build_context.metrics.arch]));
break;
}
}
}
GB_PANIC("Unhandled built-in procedure %.*s", LIT(builtin_procs[id].name));
return {};
}
gb_internal lbValue lb_handle_param_value(lbProcedure *p, Type *parameter_type, ParameterValue const &param_value, TypeProc *procedure_type, Ast* call_expression) {
switch (param_value.kind) {
case ParameterValue_Constant:
if (is_type_constant_type(parameter_type)) {
auto res = lb_const_value(p->module, parameter_type, param_value.value);
return res;
} else {
ExactValue ev = param_value.value;
lbValue arg = {};
Type *type = type_of_expr(param_value.original_ast_expr);
if (type != nullptr) {
arg = lb_const_value(p->module, type, ev);
} else {
arg = lb_const_value(p->module, parameter_type, param_value.value);
}
return lb_emit_conv(p, arg, parameter_type);
}
case ParameterValue_Nil:
return lb_const_nil(p->module, parameter_type);
case ParameterValue_Location:
{
String proc_name = {};
if (p->entity != nullptr) {
proc_name = p->entity->token.string;
}
ast_node(ce, CallExpr, call_expression);
TokenPos pos = ast_token(ce->proc).pos;
return lb_emit_source_code_location_as_global(p, proc_name, pos);
}
case ParameterValue_Expression:
{
Ast *orig = param_value.original_ast_expr;
if (orig->kind == Ast_BasicDirective) {
gbString expr = expr_to_string(call_expression, temporary_allocator());
return lb_const_string(p->module, make_string_c(expr));
}
isize param_idx = -1;
String param_str = {0};
{
Ast *call = unparen_expr(orig);
GB_ASSERT(call->kind == Ast_CallExpr);
ast_node(ce, CallExpr, call);
GB_ASSERT(ce->proc->kind == Ast_BasicDirective);
GB_ASSERT(ce->args.count == 1);
Ast *target = ce->args[0];
GB_ASSERT(target->kind == Ast_Ident);
String target_str = target->Ident.token.string;
param_idx = lookup_procedure_parameter(procedure_type, target_str);
param_str = target_str;
}
GB_ASSERT(param_idx >= 0);
Ast *target_expr = nullptr;
ast_node(ce, CallExpr, call_expression);
if (ce->split_args->positional.count > param_idx) {
target_expr = ce->split_args->positional[param_idx];
}
for_array(i, ce->split_args->named) {
Ast *arg = ce->split_args->named[i];
ast_node(fv, FieldValue, arg);
GB_ASSERT(fv->field->kind == Ast_Ident);
String name = fv->field->Ident.token.string;
if (name == param_str) {
target_expr = fv->value;
break;
}
}
gbString expr = expr_to_string(target_expr, temporary_allocator());
return lb_const_string(p->module, make_string_c(expr));
}
case ParameterValue_Value:
return lb_build_expr(p, param_value.ast_value);
}
return lb_const_nil(p->module, parameter_type);
}
gb_internal lbValue lb_build_call_expr_internal(lbProcedure *p, Ast *expr);
gb_internal lbValue lb_build_call_expr(lbProcedure *p, Ast *expr) {
expr = unparen_expr(expr);
ast_node(ce, CallExpr, expr);
lbValue res = lb_build_call_expr_internal(p, expr);
if (ce->optional_ok_one) {
GB_ASSERT(is_type_tuple(res.type));
GB_ASSERT(res.type->Tuple.variables.count == 2);
return lb_emit_struct_ev(p, res, 0);
}
return res;
}
gb_internal void lb_add_values_to_array(lbProcedure *p, Array<lbValue> *args, lbValue value) {
if (is_type_tuple(value.type)) {
for_array(i, value.type->Tuple.variables) {
lbValue sub_value = lb_emit_struct_ev(p, value, cast(i32)i);
array_add(args, sub_value);
}
} else {
array_add(args, value);
}
}
gb_internal lbValue lb_build_call_expr_internal(lbProcedure *p, Ast *expr) {
lbModule *m = p->module;
TypeAndValue tv = type_and_value_of_expr(expr);
ast_node(ce, CallExpr, expr);
TypeAndValue proc_tv = type_and_value_of_expr(ce->proc);
AddressingMode proc_mode = proc_tv.mode;
if (proc_mode == Addressing_Type) {
GB_ASSERT(ce->args.count == 1);
lbValue x = lb_build_expr(p, ce->args[0]);
lbValue y = lb_emit_conv(p, x, tv.type);
y.type = tv.type;
return y;
}
Ast *proc_expr = unparen_expr(ce->proc);
if (proc_mode == Addressing_Builtin) {
Entity *e = entity_of_node(proc_expr);
BuiltinProcId id = BuiltinProc_Invalid;
if (e != nullptr) {
id = cast(BuiltinProcId)e->Builtin.id;
} else {
id = BuiltinProc_DIRECTIVE;
}
return lb_build_builtin_proc(p, expr, tv, id);
}
// NOTE(bill): Regular call
lbValue value = {};
Entity *proc_entity = entity_of_node(proc_expr);
if (proc_entity != nullptr) {
if (proc_entity->flags & EntityFlag_Disabled) {
GB_ASSERT(tv.type == nullptr);
return {};
}
}
if (proc_expr->tav.mode == Addressing_Constant) {
ExactValue v = proc_expr->tav.value;
switch (v.kind) {
case ExactValue_Integer:
{
u64 u = big_int_to_u64(&v.value_integer);
lbValue x = {};
x.value = LLVMConstInt(lb_type(m, t_uintptr), u, false);
x.type = t_uintptr;
x = lb_emit_conv(p, x, t_rawptr);
value = lb_emit_conv(p, x, proc_expr->tav.type);
break;
}
case ExactValue_Pointer:
{
u64 u = cast(u64)v.value_pointer;
lbValue x = {};
x.value = LLVMConstInt(lb_type(m, t_uintptr), u, false);
x.type = t_uintptr;
x = lb_emit_conv(p, x, t_rawptr);
value = lb_emit_conv(p, x, proc_expr->tav.type);
break;
}
}
}
if (value.value == nullptr) {
value = lb_build_expr(p, proc_expr);
}
GB_ASSERT(value.value != nullptr);
Type *proc_type_ = base_type(value.type);
GB_ASSERT(proc_type_->kind == Type_Proc);
TypeProc *pt = &proc_type_->Proc;
GB_ASSERT(ce->split_args != nullptr);
auto args = array_make<lbValue>(permanent_allocator(), 0, pt->param_count);
bool vari_expand = (ce->ellipsis.pos.line != 0);
bool is_c_vararg = pt->c_vararg;
for_array(i, ce->split_args->positional) {
Entity *e = pt->params->Tuple.variables[i];
if (e->kind == Entity_TypeName) {
array_add(&args, lb_const_nil(p->module, e->type));
continue;
} else if (e->kind == Entity_Constant) {
array_add(&args, lb_const_value(p->module, e->type, e->Constant.value));
continue;
}
GB_ASSERT(e->kind == Entity_Variable);
if (pt->variadic && pt->variadic_index == i) {
lbValue variadic_args = lb_const_nil(p->module, e->type);
auto variadic = slice(ce->split_args->positional, pt->variadic_index, ce->split_args->positional.count);
if (variadic.count != 0) {
// variadic call argument generation
Type *slice_type = e->type;
GB_ASSERT(slice_type->kind == Type_Slice);
if (is_c_vararg) {
GB_ASSERT(!vari_expand);
Type *elem_type = slice_type->Slice.elem;
for (Ast *var_arg : variadic) {
lbValue arg = lb_build_expr(p, var_arg);
if (is_type_any(elem_type)) {
if (is_type_untyped_nil(arg.type)) {
arg = lb_const_nil(p->module, t_rawptr);
}
array_add(&args, lb_emit_c_vararg(p, arg, arg.type));
} else {
array_add(&args, lb_emit_c_vararg(p, arg, elem_type));
}
}
break;
} else if (vari_expand) {
GB_ASSERT(variadic.count == 1);
variadic_args = lb_build_expr(p, variadic[0]);
variadic_args = lb_emit_conv(p, variadic_args, slice_type);
} else {
Type *elem_type = slice_type->Slice.elem;
auto var_args = array_make<lbValue>(heap_allocator(), 0, variadic.count);
defer (array_free(&var_args));
for (Ast *var_arg : variadic) {
lbValue v = lb_build_expr(p, var_arg);
lb_add_values_to_array(p, &var_args, v);
}
isize slice_len = var_args.count;
if (slice_len > 0) {
lbAddr slice = {};
for (auto const &vr : p->variadic_reuses) {
if (are_types_identical(vr.slice_type, slice_type)) {
slice = vr.slice_addr;
break;
}
}
DeclInfo *d = decl_info_of_entity(p->entity);
if (d != nullptr && slice.addr.value == nullptr) {
for (auto const &vr : d->variadic_reuses) {
if (are_types_identical(vr.slice_type, slice_type)) {
#if LLVM_VERSION_MAJOR >= 13
// NOTE(bill): No point wasting even more memory, just reuse this stack variable too
if (p->variadic_reuses.count > 0) {
slice = p->variadic_reuses[0].slice_addr;
} else {
slice = lb_add_local_generated(p, slice_type, true);
}
// NOTE(bill): Change the underlying type to match the specific type
slice.addr.type = alloc_type_pointer(slice_type);
#else
slice = lb_add_local_generated(p, slice_type, true);
#endif
array_add(&p->variadic_reuses, lbVariadicReuseSlices{slice_type, slice});
break;
}
}
}
lbValue base_array_ptr = p->variadic_reuse_base_array_ptr.addr;
if (base_array_ptr.value == nullptr) {
if (d != nullptr) {
i64 max_bytes = d->variadic_reuse_max_bytes;
i64 max_align = gb_max(d->variadic_reuse_max_align, 16);
p->variadic_reuse_base_array_ptr = lb_add_local_generated(p, alloc_type_array(t_u8, max_bytes), true);
lb_try_update_alignment(p->variadic_reuse_base_array_ptr.addr, cast(unsigned)max_align);
base_array_ptr = p->variadic_reuse_base_array_ptr.addr;
} else {
base_array_ptr = lb_add_local_generated(p, alloc_type_array(elem_type, slice_len), true).addr;
}
}
if (slice.addr.value == nullptr) {
slice = lb_add_local_generated(p, slice_type, true);
}
GB_ASSERT(base_array_ptr.value != nullptr);
GB_ASSERT(slice.addr.value != nullptr);
base_array_ptr = lb_emit_conv(p, base_array_ptr, alloc_type_pointer(alloc_type_array(elem_type, slice_len)));
for (isize i = 0; i < var_args.count; i++) {
lbValue addr = lb_emit_array_epi(p, base_array_ptr, cast(i32)i);
lbValue var_arg = var_args[i];
var_arg = lb_emit_conv(p, var_arg, elem_type);
lb_emit_store(p, addr, var_arg);
}
lbValue base_elem = lb_emit_array_epi(p, base_array_ptr, 0);
lbValue len = lb_const_int(p->module, t_int, slice_len);
lb_fill_slice(p, slice, base_elem, len);
variadic_args = lb_addr_load(p, slice);
}
}
}
array_add(&args, variadic_args);
break;
} else {
lbValue value = lb_build_expr(p, ce->split_args->positional[i]);
lb_add_values_to_array(p, &args, value);
}
}
if (!is_c_vararg) {
array_resize(&args, pt->param_count);
}
for (Ast *arg : ce->split_args->named) {
ast_node(fv, FieldValue, arg);
GB_ASSERT(fv->field->kind == Ast_Ident);
String name = fv->field->Ident.token.string;
gb_unused(name);
isize param_index = lookup_procedure_parameter(pt, name);
GB_ASSERT(param_index >= 0);
Entity *e = pt->params->Tuple.variables[param_index];
if (e->kind == Entity_TypeName) {
lbValue value = lb_const_nil(p->module, e->type);
args[param_index] = value;
} else if (is_c_vararg && pt->variadic && pt->variadic_index == param_index) {
GB_ASSERT(param_index == pt->param_count-1);
Type *slice_type = e->type;
GB_ASSERT(slice_type->kind == Type_Slice);
Type *elem_type = slice_type->Slice.elem;
if (fv->value->kind == Ast_CompoundLit) {
ast_node(literal, CompoundLit, fv->value);
for (Ast *var_arg : literal->elems) {
lbValue arg = lb_build_expr(p, var_arg);
if (is_type_any(elem_type)) {
if (is_type_untyped_nil(arg.type)) {
arg = lb_const_nil(p->module, t_rawptr);
}
array_add(&args, lb_emit_c_vararg(p, arg, arg.type));
} else {
array_add(&args, lb_emit_c_vararg(p, arg, elem_type));
}
}
} else {
lbValue value = lb_build_expr(p, fv->value);
GB_ASSERT(!is_type_tuple(value.type));
array_add(&args, lb_emit_c_vararg(p, value, value.type));
}
} else {
lbValue value = lb_build_expr(p, fv->value);
GB_ASSERT(!is_type_tuple(value.type));
args[param_index] = value;
}
}
if (pt->params != nullptr) {
isize min_count = pt->params->Tuple.variables.count;
if (is_c_vararg) {
min_count -= 1;
}
GB_ASSERT(args.count >= min_count);
for_array(arg_index, pt->params->Tuple.variables) {
Entity *e = pt->params->Tuple.variables[arg_index];
if (pt->variadic && arg_index == pt->variadic_index) {
if (!is_c_vararg && args[arg_index].value == 0) {
args[arg_index] = lb_const_nil(p->module, e->type);
}
continue;
}
lbValue arg = args[arg_index];
if (arg.value == nullptr && arg.type == nullptr) {
switch (e->kind) {
case Entity_TypeName:
args[arg_index] = lb_const_nil(p->module, e->type);
break;
case Entity_Variable:
args[arg_index] = lb_handle_param_value(p, e->type, e->Variable.param_value, pt, expr);
break;
case Entity_Constant:
args[arg_index] = lb_const_value(p->module, e->type, e->Constant.value);
break;
default:
GB_PANIC("Unknown entity kind %.*s\n", LIT(entity_strings[e->kind]));
}
} else {
args[arg_index] = lb_emit_conv(p, arg, e->type);
}
}
}
isize final_count = is_c_vararg ? args.count : pt->param_count;
auto call_args = array_slice(args, 0, final_count);
return lb_emit_call(p, value, call_args, ce->inlining);
}