Files
Odin/core/mem/allocators.odin

1140 lines
29 KiB
Odin

package mem
import "base:intrinsics"
import "base:runtime"
nil_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
return nil, nil
}
nil_allocator :: proc() -> Allocator {
return Allocator{
procedure = nil_allocator_proc,
data = nil,
}
}
// Custom allocators
Arena :: struct {
data: []byte,
offset: int,
peak_used: int,
temp_count: int,
}
Arena_Temp_Memory :: struct {
arena: ^Arena,
prev_offset: int,
}
arena_init :: proc(a: ^Arena, data: []byte) {
a.data = data
a.offset = 0
a.peak_used = 0
a.temp_count = 0
}
@(deprecated="prefer 'mem.arena_init'")
init_arena :: proc(a: ^Arena, data: []byte) {
a.data = data
a.offset = 0
a.peak_used = 0
a.temp_count = 0
}
@(require_results)
arena_allocator :: proc(arena: ^Arena) -> Allocator {
return Allocator{
procedure = arena_allocator_proc,
data = arena,
}
}
arena_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, location := #caller_location) -> ([]byte, Allocator_Error) {
arena := cast(^Arena)allocator_data
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
#no_bounds_check end := &arena.data[arena.offset]
ptr := align_forward(end, uintptr(alignment))
total_size := size + ptr_sub((^byte)(ptr), (^byte)(end))
if arena.offset + total_size > len(arena.data) {
return nil, .Out_Of_Memory
}
arena.offset += total_size
arena.peak_used = max(arena.peak_used, arena.offset)
if mode != .Alloc_Non_Zeroed {
zero(ptr, size)
}
return byte_slice(ptr, size), nil
case .Free:
return nil, .Mode_Not_Implemented
case .Free_All:
arena.offset = 0
case .Resize:
return default_resize_bytes_align(byte_slice(old_memory, old_size), size, alignment, arena_allocator(arena))
case .Resize_Non_Zeroed:
return default_resize_bytes_align_non_zeroed(byte_slice(old_memory, old_size), size, alignment, arena_allocator(arena))
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features}
}
return nil, nil
case .Query_Info:
return nil, .Mode_Not_Implemented
}
return nil, nil
}
@(require_results)
begin_arena_temp_memory :: proc(a: ^Arena) -> Arena_Temp_Memory {
tmp: Arena_Temp_Memory
tmp.arena = a
tmp.prev_offset = a.offset
a.temp_count += 1
return tmp
}
end_arena_temp_memory :: proc(tmp: Arena_Temp_Memory) {
assert(tmp.arena.offset >= tmp.prev_offset)
assert(tmp.arena.temp_count > 0)
tmp.arena.offset = tmp.prev_offset
tmp.arena.temp_count -= 1
}
Scratch_Allocator :: struct {
data: []byte,
curr_offset: int,
prev_allocation: rawptr,
backup_allocator: Allocator,
leaked_allocations: [dynamic][]byte,
}
scratch_allocator_init :: proc(s: ^Scratch_Allocator, size: int, backup_allocator := context.allocator) -> Allocator_Error {
s.data = make_aligned([]byte, size, 2*align_of(rawptr), backup_allocator) or_return
s.curr_offset = 0
s.prev_allocation = nil
s.backup_allocator = backup_allocator
s.leaked_allocations.allocator = backup_allocator
return nil
}
scratch_allocator_destroy :: proc(s: ^Scratch_Allocator) {
if s == nil {
return
}
for ptr in s.leaked_allocations {
free_bytes(ptr, s.backup_allocator)
}
delete(s.leaked_allocations)
delete(s.data, s.backup_allocator)
s^ = {}
}
scratch_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
s := (^Scratch_Allocator)(allocator_data)
if s.data == nil {
DEFAULT_BACKING_SIZE :: 4 * Megabyte
if !(context.allocator.procedure != scratch_allocator_proc &&
context.allocator.data != allocator_data) {
panic("cyclic initialization of the scratch allocator with itself")
}
scratch_allocator_init(s, DEFAULT_BACKING_SIZE)
}
size := size
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
size = align_forward_int(size, alignment)
switch {
case s.curr_offset+size <= len(s.data):
start := uintptr(raw_data(s.data))
ptr := start + uintptr(s.curr_offset)
ptr = align_forward_uintptr(ptr, uintptr(alignment))
if mode != .Alloc_Non_Zeroed {
zero(rawptr(ptr), size)
}
s.prev_allocation = rawptr(ptr)
offset := int(ptr - start)
s.curr_offset = offset + size
return byte_slice(rawptr(ptr), size), nil
case size <= len(s.data):
start := uintptr(raw_data(s.data))
ptr := align_forward_uintptr(start, uintptr(alignment))
if mode != .Alloc_Non_Zeroed {
zero(rawptr(ptr), size)
}
s.prev_allocation = rawptr(ptr)
offset := int(ptr - start)
s.curr_offset = offset + size
return byte_slice(rawptr(ptr), size), nil
}
a := s.backup_allocator
if a.procedure == nil {
a = context.allocator
s.backup_allocator = a
}
ptr, err := alloc_bytes(size, alignment, a, loc)
if err != nil {
return ptr, err
}
if s.leaked_allocations == nil {
s.leaked_allocations, err = make([dynamic][]byte, a)
}
append(&s.leaked_allocations, ptr)
if logger := context.logger; logger.lowest_level <= .Warning {
if logger.procedure != nil {
logger.procedure(logger.data, .Warning, "mem.Scratch_Allocator resorted to backup_allocator" , logger.options, loc)
}
}
return ptr, err
case .Free:
if old_memory == nil {
return nil, nil
}
start := uintptr(raw_data(s.data))
end := start + uintptr(len(s.data))
old_ptr := uintptr(old_memory)
if s.prev_allocation == old_memory {
s.curr_offset = int(uintptr(s.prev_allocation) - start)
s.prev_allocation = nil
return nil, nil
}
if start <= old_ptr && old_ptr < end {
// NOTE(bill): Cannot free this pointer but it is valid
return nil, nil
}
if len(s.leaked_allocations) != 0 {
for data, i in s.leaked_allocations {
ptr := raw_data(data)
if ptr == old_memory {
free_bytes(data, s.backup_allocator)
ordered_remove(&s.leaked_allocations, i)
return nil, nil
}
}
}
return nil, .Invalid_Pointer
// panic("invalid pointer passed to default_temp_allocator");
case .Free_All:
s.curr_offset = 0
s.prev_allocation = nil
for ptr in s.leaked_allocations {
free_bytes(ptr, s.backup_allocator)
}
clear(&s.leaked_allocations)
case .Resize, .Resize_Non_Zeroed:
begin := uintptr(raw_data(s.data))
end := begin + uintptr(len(s.data))
old_ptr := uintptr(old_memory)
if begin <= old_ptr && old_ptr < end && old_ptr+uintptr(size) < end {
s.curr_offset = int(old_ptr-begin)+size
return byte_slice(old_memory, size), nil
}
data, err := scratch_allocator_proc(allocator_data, .Alloc, size, alignment, old_memory, old_size, loc)
if err != nil {
return data, err
}
runtime.copy(data, byte_slice(old_memory, old_size))
_, err = scratch_allocator_proc(allocator_data, .Free, 0, alignment, old_memory, old_size, loc)
return data, err
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features}
}
return nil, nil
case .Query_Info:
return nil, .Mode_Not_Implemented
}
return nil, nil
}
@(require_results)
scratch_allocator :: proc(allocator: ^Scratch_Allocator) -> Allocator {
return Allocator{
procedure = scratch_allocator_proc,
data = allocator,
}
}
Stack_Allocation_Header :: struct {
prev_offset: int,
padding: int,
}
// Stack is a stack-like allocator which has a strict memory freeing order
Stack :: struct {
data: []byte,
prev_offset: int,
curr_offset: int,
peak_used: int,
}
stack_init :: proc(s: ^Stack, data: []byte) {
s.data = data
s.prev_offset = 0
s.curr_offset = 0
s.peak_used = 0
}
@(deprecated="prefer 'mem.stack_init'")
init_stack :: proc(s: ^Stack, data: []byte) {
s.data = data
s.prev_offset = 0
s.curr_offset = 0
s.peak_used = 0
}
@(require_results)
stack_allocator :: proc(stack: ^Stack) -> Allocator {
return Allocator{
procedure = stack_allocator_proc,
data = stack,
}
}
stack_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, location := #caller_location) -> ([]byte, Allocator_Error) {
s := cast(^Stack)allocator_data
if s.data == nil {
return nil, .Invalid_Argument
}
raw_alloc :: proc(s: ^Stack, size, alignment: int, zero_memory: bool) -> ([]byte, Allocator_Error) {
curr_addr := uintptr(raw_data(s.data)) + uintptr(s.curr_offset)
padding := calc_padding_with_header(curr_addr, uintptr(alignment), size_of(Stack_Allocation_Header))
if s.curr_offset + padding + size > len(s.data) {
return nil, .Out_Of_Memory
}
s.prev_offset = s.curr_offset
s.curr_offset += padding
next_addr := curr_addr + uintptr(padding)
header := (^Stack_Allocation_Header)(next_addr - size_of(Stack_Allocation_Header))
header.padding = padding
header.prev_offset = s.prev_offset
s.curr_offset += size
s.peak_used = max(s.peak_used, s.curr_offset)
if zero_memory {
zero(rawptr(next_addr), size)
}
return byte_slice(rawptr(next_addr), size), nil
}
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
return raw_alloc(s, size, alignment, mode == .Alloc)
case .Free:
if old_memory == nil {
return nil, nil
}
start := uintptr(raw_data(s.data))
end := start + uintptr(len(s.data))
curr_addr := uintptr(old_memory)
if !(start <= curr_addr && curr_addr < end) {
panic("Out of bounds memory address passed to stack allocator (free)")
}
if curr_addr >= start+uintptr(s.curr_offset) {
// NOTE(bill): Allow double frees
return nil, nil
}
header := (^Stack_Allocation_Header)(curr_addr - size_of(Stack_Allocation_Header))
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(raw_data(s.data)))
if old_offset != header.prev_offset {
// panic("Out of order stack allocator free");
return nil, .Invalid_Pointer
}
s.curr_offset = old_offset
s.prev_offset = header.prev_offset
case .Free_All:
s.prev_offset = 0
s.curr_offset = 0
case .Resize, .Resize_Non_Zeroed:
if old_memory == nil {
return raw_alloc(s, size, alignment, mode == .Resize)
}
if size == 0 {
return nil, nil
}
start := uintptr(raw_data(s.data))
end := start + uintptr(len(s.data))
curr_addr := uintptr(old_memory)
if !(start <= curr_addr && curr_addr < end) {
panic("Out of bounds memory address passed to stack allocator (resize)")
}
if curr_addr >= start+uintptr(s.curr_offset) {
// NOTE(bill): Allow double frees
return nil, nil
}
if old_size == size {
return byte_slice(old_memory, size), nil
}
header := (^Stack_Allocation_Header)(curr_addr - size_of(Stack_Allocation_Header))
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(raw_data(s.data)))
if old_offset != header.prev_offset {
data, err := raw_alloc(s, size, alignment, mode == .Resize)
if err == nil {
runtime.copy(data, byte_slice(old_memory, old_size))
}
return data, err
}
old_memory_size := uintptr(s.curr_offset) - (curr_addr - start)
assert(old_memory_size == uintptr(old_size))
diff := size - old_size
s.curr_offset += diff // works for smaller sizes too
if diff > 0 {
zero(rawptr(curr_addr + uintptr(diff)), diff)
}
return byte_slice(old_memory, size), nil
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features}
}
return nil, nil
case .Query_Info:
return nil, .Mode_Not_Implemented
}
return nil, nil
}
Small_Stack_Allocation_Header :: struct {
padding: u8,
}
// Small_Stack is a stack-like allocator which uses the smallest possible header but at the cost of non-strict memory freeing order
Small_Stack :: struct {
data: []byte,
offset: int,
peak_used: int,
}
small_stack_init :: proc(s: ^Small_Stack, data: []byte) {
s.data = data
s.offset = 0
s.peak_used = 0
}
@(deprecated="prefer 'small_stack_init'")
init_small_stack :: proc(s: ^Small_Stack, data: []byte) {
s.data = data
s.offset = 0
s.peak_used = 0
}
@(require_results)
small_stack_allocator :: proc(stack: ^Small_Stack) -> Allocator {
return Allocator{
procedure = small_stack_allocator_proc,
data = stack,
}
}
small_stack_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, location := #caller_location) -> ([]byte, Allocator_Error) {
s := cast(^Small_Stack)allocator_data
if s.data == nil {
return nil, .Invalid_Argument
}
align := clamp(alignment, 1, 8*size_of(Stack_Allocation_Header{}.padding)/2)
raw_alloc :: proc(s: ^Small_Stack, size, alignment: int, zero_memory: bool) -> ([]byte, Allocator_Error) {
curr_addr := uintptr(raw_data(s.data)) + uintptr(s.offset)
padding := calc_padding_with_header(curr_addr, uintptr(alignment), size_of(Small_Stack_Allocation_Header))
if s.offset + padding + size > len(s.data) {
return nil, .Out_Of_Memory
}
s.offset += padding
next_addr := curr_addr + uintptr(padding)
header := (^Small_Stack_Allocation_Header)(next_addr - size_of(Small_Stack_Allocation_Header))
header.padding = auto_cast padding
s.offset += size
s.peak_used = max(s.peak_used, s.offset)
if zero_memory {
zero(rawptr(next_addr), size)
}
return byte_slice(rawptr(next_addr), size), nil
}
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
return raw_alloc(s, size, align, mode == .Alloc)
case .Free:
if old_memory == nil {
return nil, nil
}
start := uintptr(raw_data(s.data))
end := start + uintptr(len(s.data))
curr_addr := uintptr(old_memory)
if !(start <= curr_addr && curr_addr < end) {
// panic("Out of bounds memory address passed to stack allocator (free)");
return nil, .Invalid_Pointer
}
if curr_addr >= start+uintptr(s.offset) {
// NOTE(bill): Allow double frees
return nil, nil
}
header := (^Small_Stack_Allocation_Header)(curr_addr - size_of(Small_Stack_Allocation_Header))
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(raw_data(s.data)))
s.offset = old_offset
case .Free_All:
s.offset = 0
case .Resize, .Resize_Non_Zeroed:
if old_memory == nil {
return raw_alloc(s, size, align, mode == .Resize)
}
if size == 0 {
return nil, nil
}
start := uintptr(raw_data(s.data))
end := start + uintptr(len(s.data))
curr_addr := uintptr(old_memory)
if !(start <= curr_addr && curr_addr < end) {
// panic("Out of bounds memory address passed to stack allocator (resize)");
return nil, .Invalid_Pointer
}
if curr_addr >= start+uintptr(s.offset) {
// NOTE(bill): Treat as a double free
return nil, nil
}
if old_size == size {
return byte_slice(old_memory, size), nil
}
data, err := raw_alloc(s, size, align, mode == .Resize)
if err == nil {
runtime.copy(data, byte_slice(old_memory, old_size))
}
return data, err
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features}
}
return nil, nil
case .Query_Info:
return nil, .Mode_Not_Implemented
}
return nil, nil
}
Dynamic_Pool :: struct {
block_size: int,
out_band_size: int,
alignment: int,
unused_blocks: [dynamic]rawptr,
used_blocks: [dynamic]rawptr,
out_band_allocations: [dynamic]rawptr,
current_block: rawptr,
current_pos: rawptr,
bytes_left: int,
block_allocator: Allocator,
}
DYNAMIC_POOL_BLOCK_SIZE_DEFAULT :: 65536
DYNAMIC_POOL_OUT_OF_BAND_SIZE_DEFAULT :: 6554
dynamic_pool_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
pool := (^Dynamic_Pool)(allocator_data)
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
return dynamic_pool_alloc_bytes(pool, size)
case .Free:
return nil, .Mode_Not_Implemented
case .Free_All:
dynamic_pool_free_all(pool)
return nil, nil
case .Resize, .Resize_Non_Zeroed:
if old_size >= size {
return byte_slice(old_memory, size), nil
}
data, err := dynamic_pool_alloc_bytes(pool, size)
if err == nil {
runtime.copy(data, byte_slice(old_memory, old_size))
}
return data, err
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features, .Query_Info}
}
return nil, nil
case .Query_Info:
info := (^Allocator_Query_Info)(old_memory)
if info != nil && info.pointer != nil {
info.size = pool.block_size
info.alignment = pool.alignment
return byte_slice(info, size_of(info^)), nil
}
return nil, nil
}
return nil, nil
}
@(require_results)
dynamic_pool_allocator :: proc(pool: ^Dynamic_Pool) -> Allocator {
return Allocator{
procedure = dynamic_pool_allocator_proc,
data = pool,
}
}
dynamic_pool_init :: proc(pool: ^Dynamic_Pool,
block_allocator := context.allocator,
array_allocator := context.allocator,
block_size := DYNAMIC_POOL_BLOCK_SIZE_DEFAULT,
out_band_size := DYNAMIC_POOL_OUT_OF_BAND_SIZE_DEFAULT,
alignment := 8) {
pool.block_size = block_size
pool.out_band_size = out_band_size
pool.alignment = alignment
pool.block_allocator = block_allocator
pool.out_band_allocations.allocator = array_allocator
pool. unused_blocks.allocator = array_allocator
pool. used_blocks.allocator = array_allocator
}
dynamic_pool_destroy :: proc(pool: ^Dynamic_Pool) {
dynamic_pool_free_all(pool)
delete(pool.unused_blocks)
delete(pool.used_blocks)
delete(pool.out_band_allocations)
zero(pool, size_of(pool^))
}
@(require_results)
dynamic_pool_alloc :: proc(pool: ^Dynamic_Pool, bytes: int) -> (rawptr, Allocator_Error) {
data, err := dynamic_pool_alloc_bytes(pool, bytes)
return raw_data(data), err
}
@(require_results)
dynamic_pool_alloc_bytes :: proc(p: ^Dynamic_Pool, bytes: int) -> ([]byte, Allocator_Error) {
cycle_new_block :: proc(p: ^Dynamic_Pool) -> (err: Allocator_Error) {
if p.block_allocator.procedure == nil {
panic("You must call pool_init on a Pool before using it")
}
if p.current_block != nil {
append(&p.used_blocks, p.current_block)
}
new_block: rawptr
if len(p.unused_blocks) > 0 {
new_block = pop(&p.unused_blocks)
} else {
data: []byte
data, err = p.block_allocator.procedure(p.block_allocator.data, Allocator_Mode.Alloc,
p.block_size, p.alignment,
nil, 0)
new_block = raw_data(data)
}
p.bytes_left = p.block_size
p.current_pos = new_block
p.current_block = new_block
return
}
n := align_formula(bytes, p.alignment)
if n > p.block_size {
return nil, .Invalid_Argument
}
if n >= p.out_band_size {
assert(p.block_allocator.procedure != nil)
memory, err := p.block_allocator.procedure(p.block_allocator.data, Allocator_Mode.Alloc,
p.block_size, p.alignment,
nil, 0)
if memory != nil {
append(&p.out_band_allocations, raw_data(memory))
}
return memory, err
}
if p.bytes_left < n {
err := cycle_new_block(p)
if err != nil {
return nil, err
}
if p.current_block == nil {
return nil, .Out_Of_Memory
}
}
memory := p.current_pos
p.current_pos = ([^]byte)(p.current_pos)[n:]
p.bytes_left -= n
return ([^]byte)(memory)[:bytes], nil
}
dynamic_pool_reset :: proc(p: ^Dynamic_Pool) {
if p.current_block != nil {
append(&p.unused_blocks, p.current_block)
p.current_block = nil
}
for block in p.used_blocks {
append(&p.unused_blocks, block)
}
clear(&p.used_blocks)
for a in p.out_band_allocations {
free(a, p.block_allocator)
}
clear(&p.out_band_allocations)
p.bytes_left = 0 // Make new allocations call `cycle_new_block` again.
}
dynamic_pool_free_all :: proc(p: ^Dynamic_Pool) {
dynamic_pool_reset(p)
for block in p.unused_blocks {
free(block, p.block_allocator)
}
clear(&p.unused_blocks)
}
panic_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int,loc := #caller_location) -> ([]byte, Allocator_Error) {
switch mode {
case .Alloc:
if size > 0 {
panic("mem: panic allocator, .Alloc called", loc=loc)
}
case .Alloc_Non_Zeroed:
if size > 0 {
panic("mem: panic allocator, .Alloc_Non_Zeroed called", loc=loc)
}
case .Resize:
if size > 0 {
panic("mem: panic allocator, .Resize called", loc=loc)
}
case .Resize_Non_Zeroed:
if size > 0 {
panic("mem: panic allocator, .Resize_Non_Zeroed called", loc=loc)
}
case .Free:
if old_memory != nil {
panic("mem: panic allocator, .Free called", loc=loc)
}
case .Free_All:
panic("mem: panic allocator, .Free_All called", loc=loc)
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Query_Features}
}
return nil, nil
case .Query_Info:
panic("mem: panic allocator, .Query_Info called", loc=loc)
}
return nil, nil
}
@(require_results)
panic_allocator :: proc() -> Allocator {
return Allocator{
procedure = panic_allocator_proc,
data = nil,
}
}
Buddy_Block :: struct #align(align_of(uint)) {
size: uint,
is_free: bool,
}
@(require_results)
buddy_block_next :: proc(block: ^Buddy_Block) -> ^Buddy_Block {
return (^Buddy_Block)(([^]byte)(block)[block.size:])
}
@(require_results)
buddy_block_split :: proc(block: ^Buddy_Block, size: uint) -> ^Buddy_Block {
block := block
if block != nil && size != 0 {
// Recursive Split
for size < block.size {
sz := block.size >> 1
block.size = sz
block = buddy_block_next(block)
block.size = sz
block.is_free = true
}
if size <= block.size {
return block
}
}
// Block cannot fit the requested allocation size
return nil
}
buddy_block_coalescence :: proc(head, tail: ^Buddy_Block) {
for {
// Keep looping until there are no more buddies to coalesce
block := head
buddy := buddy_block_next(block)
no_coalescence := true
for block < tail && buddy < tail { // make sure the buddies are within the range
if block.is_free && buddy.is_free && block.size == buddy.size {
// Coalesce buddies into one
block.size <<= 1
block = buddy_block_next(block)
if block < tail {
buddy = buddy_block_next(block)
no_coalescence = false
}
} else if block.size < buddy.size {
// The buddy block is split into smaller blocks
block = buddy
buddy = buddy_block_next(buddy)
} else {
block = buddy_block_next(buddy)
if block < tail {
// Leave the buddy block for the next iteration
buddy = buddy_block_next(block)
}
}
}
if no_coalescence {
return
}
}
}
@(require_results)
buddy_block_find_best :: proc(head, tail: ^Buddy_Block, size: uint) -> ^Buddy_Block {
assert(size != 0)
best_block: ^Buddy_Block
block := head // left
buddy := buddy_block_next(block) // right
// The entire memory section between head and tail is free,
// just call 'buddy_block_split' to get the allocation
if buddy == tail && block.is_free {
return buddy_block_split(block, size)
}
// Find the block which is the 'best_block' to requested allocation sized
for block < tail && buddy < tail { // make sure the buddies are within the range
// If both buddies are free, coalesce them together
// NOTE: this is an optimization to reduce fragmentation
// this could be completely ignored
if block.is_free && buddy.is_free && block.size == buddy.size {
block.size <<= 1
if size <= block.size && (best_block == nil || block.size <= best_block.size) {
best_block = block
}
block = buddy_block_next(buddy)
if block < tail {
// Delay the buddy block for the next iteration
buddy = buddy_block_next(block)
}
continue
}
if block.is_free && size <= block.size &&
(best_block == nil || block.size <= best_block.size) {
best_block = block
}
if buddy.is_free && size <= buddy.size &&
(best_block == nil || buddy.size < best_block.size) {
// If each buddy are the same size, then it makes more sense
// to pick the buddy as it "bounces around" less
best_block = buddy
}
if (block.size <= buddy.size) {
block = buddy_block_next(buddy)
if (block < tail) {
// Delay the buddy block for the next iteration
buddy = buddy_block_next(block)
}
} else {
// Buddy was split into smaller blocks
block = buddy
buddy = buddy_block_next(buddy)
}
}
if best_block != nil {
// This will handle the case if the 'best_block' is also the perfect fit
return buddy_block_split(best_block, size)
}
// Maybe out of memory
return nil
}
Buddy_Allocator :: struct {
head: ^Buddy_Block,
tail: ^Buddy_Block,
alignment: uint,
}
@(require_results)
buddy_allocator :: proc(b: ^Buddy_Allocator) -> Allocator {
return Allocator{
procedure = buddy_allocator_proc,
data = b,
}
}
buddy_allocator_init :: proc(b: ^Buddy_Allocator, data: []byte, alignment: uint) {
assert(data != nil)
assert(is_power_of_two(uintptr(len(data))))
assert(is_power_of_two(uintptr(alignment)))
alignment := alignment
if alignment < size_of(Buddy_Block) {
alignment = size_of(Buddy_Block)
}
ptr := raw_data(data)
assert(uintptr(ptr) % uintptr(alignment) == 0, "data is not aligned to minimum alignment")
b.head = (^Buddy_Block)(ptr)
b.head.size = len(data)
b.head.is_free = true
b.tail = buddy_block_next(b.head)
b.alignment = alignment
}
@(require_results)
buddy_block_size_required :: proc(b: ^Buddy_Allocator, size: uint) -> uint {
size := size
actual_size := b.alignment
size += size_of(Buddy_Block)
size = align_forward_uint(size, b.alignment)
for size > actual_size {
actual_size <<= 1
}
return actual_size
}
@(require_results)
buddy_allocator_alloc :: proc(b: ^Buddy_Allocator, size: uint, zeroed: bool) -> ([]byte, Allocator_Error) {
if size != 0 {
actual_size := buddy_block_size_required(b, size)
found := buddy_block_find_best(b.head, b.tail, actual_size)
if found != nil {
// Try to coalesce all the free buddy blocks and then search again
buddy_block_coalescence(b.head, b.tail)
found = buddy_block_find_best(b.head, b.tail, actual_size)
}
if found == nil {
return nil, .Out_Of_Memory
}
found.is_free = false
data := ([^]byte)(found)[b.alignment:][:size]
if zeroed {
zero_slice(data)
}
return data, nil
}
return nil, nil
}
buddy_allocator_free :: proc(b: ^Buddy_Allocator, ptr: rawptr) -> Allocator_Error {
if ptr != nil {
if !(b.head <= ptr && ptr <= b.tail) {
return .Invalid_Pointer
}
block := (^Buddy_Block)(([^]byte)(ptr)[-b.alignment:])
block.is_free = true
buddy_block_coalescence(b.head, b.tail)
}
return nil
}
buddy_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int,loc := #caller_location) -> ([]byte, Allocator_Error) {
b := (^Buddy_Allocator)(allocator_data)
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
return buddy_allocator_alloc(b, uint(size), mode == .Alloc)
case .Resize:
return default_resize_bytes_align(byte_slice(old_memory, old_size), size, alignment, buddy_allocator(b))
case .Resize_Non_Zeroed:
return default_resize_bytes_align_non_zeroed(byte_slice(old_memory, old_size), size, alignment, buddy_allocator(b))
case .Free:
return nil, buddy_allocator_free(b, old_memory)
case .Free_All:
alignment := b.alignment
head := ([^]byte)(b.head)
tail := ([^]byte)(b.tail)
data := head[:ptr_sub(tail, head)]
buddy_allocator_init(b, data, alignment)
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Query_Features, .Alloc, .Alloc_Non_Zeroed, .Resize, .Resize_Non_Zeroed, .Free, .Free_All, .Query_Info}
}
return nil, nil
case .Query_Info:
info := (^Allocator_Query_Info)(old_memory)
if info != nil && info.pointer != nil {
ptr := info.pointer
if !(b.head <= ptr && ptr <= b.tail) {
return nil, .Invalid_Pointer
}
block := (^Buddy_Block)(([^]byte)(ptr)[-b.alignment:])
info.size = int(block.size)
info.alignment = int(b.alignment)
return byte_slice(info, size_of(info^)), nil
}
return nil, nil
}
return nil, nil
}