Files
Odin/src/types.cpp

5332 lines
150 KiB
C++

struct Ast;
struct Scope;
struct Entity;
// NOTE(Jeroen): Minimum alignment for #load(file, <type>) slices
#define MINIMUM_SLICE_ALIGNMENT 16
enum BasicKind {
Basic_Invalid,
Basic_llvm_bool,
Basic_bool,
Basic_b8,
Basic_b16,
Basic_b32,
Basic_b64,
Basic_i8,
Basic_u8,
Basic_i16,
Basic_u16,
Basic_i32,
Basic_u32,
Basic_i64,
Basic_u64,
Basic_i128,
Basic_u128,
Basic_rune,
Basic_f16,
Basic_f32,
Basic_f64,
Basic_complex32,
Basic_complex64,
Basic_complex128,
Basic_quaternion64,
Basic_quaternion128,
Basic_quaternion256,
Basic_int,
Basic_uint,
Basic_uintptr,
Basic_rawptr,
Basic_string, // [^]u8 + int
Basic_cstring, // [^]u8
Basic_string16, // [^]u16 + int
Basic_cstring16, // [^]u16 + int
Basic_any, // rawptr + ^Type_Info
Basic_typeid,
// Endian Specific Types
Basic_i16le,
Basic_u16le,
Basic_i32le,
Basic_u32le,
Basic_i64le,
Basic_u64le,
Basic_i128le,
Basic_u128le,
Basic_i16be,
Basic_u16be,
Basic_i32be,
Basic_u32be,
Basic_i64be,
Basic_u64be,
Basic_i128be,
Basic_u128be,
Basic_f16le,
Basic_f32le,
Basic_f64le,
Basic_f16be,
Basic_f32be,
Basic_f64be,
// Untyped types
Basic_UntypedBool,
Basic_UntypedInteger,
Basic_UntypedFloat,
Basic_UntypedComplex,
Basic_UntypedQuaternion,
Basic_UntypedString,
Basic_UntypedRune,
Basic_UntypedNil,
Basic_UntypedUninit,
Basic_COUNT,
Basic_byte = Basic_u8,
};
enum BasicFlag {
BasicFlag_Boolean = GB_BIT(0),
BasicFlag_Integer = GB_BIT(1),
BasicFlag_Unsigned = GB_BIT(2),
BasicFlag_Float = GB_BIT(3),
BasicFlag_Complex = GB_BIT(4),
BasicFlag_Quaternion = GB_BIT(5),
BasicFlag_Pointer = GB_BIT(6),
BasicFlag_String = GB_BIT(7),
BasicFlag_Rune = GB_BIT(8),
BasicFlag_Untyped = GB_BIT(9),
BasicFlag_LLVM = GB_BIT(11),
BasicFlag_EndianLittle = GB_BIT(13),
BasicFlag_EndianBig = GB_BIT(14),
BasicFlag_Numeric = BasicFlag_Integer | BasicFlag_Float | BasicFlag_Complex | BasicFlag_Quaternion,
BasicFlag_Ordered = BasicFlag_Integer | BasicFlag_Float | BasicFlag_String | BasicFlag_Pointer | BasicFlag_Rune,
BasicFlag_OrderedNumeric = BasicFlag_Integer | BasicFlag_Float | BasicFlag_Rune,
BasicFlag_ConstantType = BasicFlag_Boolean | BasicFlag_Numeric | BasicFlag_String | BasicFlag_Pointer | BasicFlag_Rune,
BasicFlag_SimpleCompare = BasicFlag_Boolean | BasicFlag_Integer | BasicFlag_Pointer | BasicFlag_Rune,
};
struct BasicType {
BasicKind kind;
u32 flags;
i64 size; // -1 if arch. dep.
String name;
};
enum StructSoaKind : u8 {
StructSoa_None = 0,
StructSoa_Fixed = 1,
StructSoa_Slice = 2,
StructSoa_Dynamic = 3,
};
struct TypeStruct {
Slice<Entity *> fields;
String * tags; // count == fields.count
i64 * offsets; // count == fields.count
Ast * node;
Scope * scope;
i64 custom_align;
i64 custom_min_field_align;
i64 custom_max_field_align;
Type * polymorphic_params; // Type_Tuple
Type * polymorphic_parent;
Wait_Signal polymorphic_wait_signal;
Type * soa_elem;
i32 soa_count;
StructSoaKind soa_kind;
Wait_Signal fields_wait_signal;
BlockingMutex soa_mutex;
BlockingMutex offset_mutex; // for settings offsets
bool is_polymorphic;
bool are_offsets_set : 1;
bool is_packed : 1;
bool is_raw_union : 1;
bool is_all_or_none : 1;
bool is_poly_specialized : 1;
std::atomic<bool> are_offsets_being_processed;
};
struct TypeUnion {
Slice<Type *> variants;
Ast * node;
Scope * scope;
i64 variant_block_size;
i64 custom_align;
Type * polymorphic_params; // Type_Tuple
Type * polymorphic_parent;
Wait_Signal polymorphic_wait_signal;
i16 tag_size;
bool is_polymorphic;
bool is_poly_specialized;
UnionTypeKind kind;
};
struct TypeProc {
Ast *node;
Scope * scope;
Type * params; // Type_Tuple
Type * results; // Type_Tuple
i32 param_count;
i32 result_count;
isize specialization_count;
ProcCallingConvention calling_convention;
i32 variadic_index;
String require_target_feature;
String enable_target_feature;
// TODO(bill): Make this a flag set rather than bools
bool variadic;
bool require_results;
bool c_vararg;
bool is_polymorphic;
bool is_poly_specialized;
bool has_named_results;
bool diverging; // no return
bool return_by_pointer;
bool optional_ok;
};
struct TypeNamed {
String name;
Type * base;
Entity *type_name; /* Entity_TypeName */
BlockingMutex gen_types_data_mutex;
GenTypesData *gen_types_data;
};
#define TYPE_KINDS \
TYPE_KIND(Basic, BasicType) \
TYPE_KIND(Named, TypeNamed) \
TYPE_KIND(Generic, struct { \
i64 id; \
String name; \
Type * specialized; \
Scope * scope; \
Entity *entity; \
}) \
TYPE_KIND(Pointer, struct { Type *elem; }) \
TYPE_KIND(MultiPointer, struct { Type *elem; }) \
TYPE_KIND(Array, struct { \
Type *elem; \
i64 count; \
Type *generic_count; \
}) \
TYPE_KIND(EnumeratedArray, struct { \
Type *elem; \
Type *index; \
ExactValue *min_value; \
ExactValue *max_value; \
i64 count; \
TokenKind op; \
bool is_sparse; \
}) \
TYPE_KIND(Slice, struct { Type *elem; }) \
TYPE_KIND(DynamicArray, struct { Type *elem; }) \
TYPE_KIND(Map, struct { \
Type *key; \
Type *value; \
Type *lookup_result_type; \
Type *debug_metadata_type; \
}) \
TYPE_KIND(Struct, TypeStruct) \
TYPE_KIND(Union, TypeUnion) \
TYPE_KIND(Enum, struct { \
Array<Entity *> fields; \
Ast *node; \
Scope * scope; \
Type * base_type; \
ExactValue *min_value; \
ExactValue *max_value; \
isize min_value_index; \
isize max_value_index; \
}) \
TYPE_KIND(Tuple, struct { \
Slice<Entity *> variables; /* Entity_Variable */ \
i64 * offsets; \
BlockingMutex mutex; /* for settings offsets */ \
std::atomic<bool> are_offsets_being_processed; \
bool are_offsets_set; \
bool is_packed; \
}) \
TYPE_KIND(Proc, TypeProc) \
TYPE_KIND(BitSet, struct { \
Type *elem; \
Type *underlying; \
i64 lower; \
i64 upper; \
Ast * node; \
}) \
TYPE_KIND(SimdVector, struct { \
i64 count; \
Type *elem; \
Type *generic_count; \
}) \
TYPE_KIND(Matrix, struct { \
Type *elem; \
i64 row_count; \
i64 column_count; \
Type *generic_row_count; \
Type *generic_column_count; \
i64 stride_in_bytes; \
bool is_row_major; \
}) \
TYPE_KIND(BitField, struct { \
Scope * scope; \
Type * backing_type; \
Slice<Entity *> fields; \
String * tags; /*count == fields.count*/ \
Slice<u8> bit_sizes; \
Slice<i64> bit_offsets; \
Ast * node; \
}) \
TYPE_KIND(SoaPointer, struct { Type *elem; })
enum TypeKind {
Type_Invalid,
#define TYPE_KIND(k, ...) GB_JOIN2(Type_, k),
TYPE_KINDS
#undef TYPE_KIND
Type_Count,
};
gb_global String const type_strings[] = {
{cast(u8 *)"Invalid", gb_size_of("Invalid")},
#define TYPE_KIND(k, ...) {cast(u8 *)#k, gb_size_of(#k)-1},
TYPE_KINDS
#undef TYPE_KIND
};
#define TYPE_KIND(k, ...) typedef __VA_ARGS__ GB_JOIN2(Type, k);
TYPE_KINDS
#undef TYPE_KIND
enum TypeFlag : u32 {
TypeFlag_Polymorphic = 1<<1,
TypeFlag_PolySpecialized = 1<<2,
TypeFlag_InProcessOfCheckingPolymorphic = 1<<3,
};
struct Type {
TypeKind kind;
union {
#define TYPE_KIND(k, ...) GB_JOIN2(Type, k) k;
TYPE_KINDS
#undef TYPE_KIND
};
// NOTE(bill): These need to be at the end to not affect the unionized data
std::atomic<i64> cached_size;
std::atomic<i64> cached_align;
std::atomic<u64> canonical_hash;
std::atomic<u32> flags; // TypeFlag
bool failure;
};
// IMPORTANT NOTE(bill): This must match the same as the in core.odin
enum Typeid_Kind : u8 {
Typeid_Invalid,
Typeid_Integer,
Typeid_Rune,
Typeid_Float,
Typeid_Complex,
Typeid_Quaternion,
Typeid_String,
Typeid_Boolean,
Typeid_Any,
Typeid_Type_Id,
Typeid_Pointer,
Typeid_Multi_Pointer,
Typeid_Procedure,
Typeid_Array,
Typeid_Enumerated_Array,
Typeid_Dynamic_Array,
Typeid_Slice,
Typeid_Tuple,
Typeid_Struct,
Typeid_Union,
Typeid_Enum,
Typeid_Map,
Typeid_Bit_Set,
Typeid_Simd_Vector,
Typeid_Matrix,
Typeid_SoaPointer,
Typeid_Bit_Field,
Typeid__COUNT
};
// IMPORTANT NOTE(bill): This must match the same as the in core.odin
enum TypeInfoFlag : u32 {
TypeInfoFlag_Comparable = 1<<0,
TypeInfoFlag_Simple_Compare = 1<<1,
};
enum : int {
MATRIX_ELEMENT_COUNT_MIN = 1,
MATRIX_ELEMENT_COUNT_MAX = 16,
MATRIX_ELEMENT_MAX_SIZE = MATRIX_ELEMENT_COUNT_MAX * (2 * 8), // complex128
SIMD_ELEMENT_COUNT_MIN = 1,
SIMD_ELEMENT_COUNT_MAX = 64,
};
gb_internal bool is_type_comparable(Type *t);
gb_internal bool is_type_simple_compare(Type *t);
gb_internal Type *type_deref(Type *t, bool allow_multi_pointer=false);
gb_internal Type *base_type(Type *t);
gb_internal Type *alloc_type_multi_pointer(Type *elem);
gb_internal u32 type_info_flags_of_type(Type *type) {
if (type == nullptr) {
return 0;
}
u32 flags = 0;
if (is_type_comparable(type)) {
flags |= TypeInfoFlag_Comparable;
}
if (is_type_simple_compare(type)) {
flags |= TypeInfoFlag_Comparable|TypeInfoFlag_Simple_Compare;
}
return flags;
}
// TODO(bill): Should I add extra information here specifying the kind of selection?
// e.g. field, constant, array field, type field, etc.
struct Selection {
Entity * entity;
Array<i32> index;
bool indirect; // Set if there was a pointer deref anywhere down the line
u8 swizzle_count; // maximum components = 4
u8 swizzle_indices; // 2 bits per component, representing which swizzle index
bool is_bit_field;
bool pseudo_field;
};
gb_global Selection const empty_selection = {0};
gb_internal Selection make_selection(Entity *entity, Array<i32> index, bool indirect) {
Selection s = {entity, index, indirect};
return s;
}
gb_internal void selection_add_index(Selection *s, isize index) {
if (s->index.data == nullptr) {
array_init(&s->index, permanent_allocator());
}
array_add(&s->index, cast(i32)index);
}
gb_internal Selection selection_combine(Selection const &lhs, Selection const &rhs) {
Selection new_sel = lhs;
new_sel.indirect = lhs.indirect || rhs.indirect;
new_sel.index = array_make<i32>(permanent_allocator(), lhs.index.count+rhs.index.count);
array_copy(&new_sel.index, lhs.index, 0);
array_copy(&new_sel.index, rhs.index, lhs.index.count);
return new_sel;
}
gb_internal Selection sub_selection(Selection const &sel, isize offset) {
Selection res = {};
res.index.data = sel.index.data + offset;
res.index.count = gb_max(sel.index.count - offset, 0);
res.index.capacity = res.index.count;
return res;
}
gb_internal Selection trim_selection(Selection const &sel) {
Selection res = {};
res.index.data = sel.index.data;
res.index.count = gb_max(sel.index.count - 1, 0);
res.index.capacity = res.index.count;
return res;
}
gb_global Type basic_types[] = {
{Type_Basic, {Basic_Invalid, 0, 0, STR_LIT("invalid type")}},
{Type_Basic, {Basic_llvm_bool, BasicFlag_Boolean | BasicFlag_LLVM, 1, STR_LIT("llvm bool")}},
{Type_Basic, {Basic_bool, BasicFlag_Boolean, 1, STR_LIT("bool")}},
{Type_Basic, {Basic_b8, BasicFlag_Boolean, 1, STR_LIT("b8")}},
{Type_Basic, {Basic_b16, BasicFlag_Boolean, 2, STR_LIT("b16")}},
{Type_Basic, {Basic_b32, BasicFlag_Boolean, 4, STR_LIT("b32")}},
{Type_Basic, {Basic_b64, BasicFlag_Boolean, 8, STR_LIT("b64")}},
{Type_Basic, {Basic_i8, BasicFlag_Integer, 1, STR_LIT("i8")}},
{Type_Basic, {Basic_u8, BasicFlag_Integer | BasicFlag_Unsigned, 1, STR_LIT("u8")}},
{Type_Basic, {Basic_i16, BasicFlag_Integer, 2, STR_LIT("i16")}},
{Type_Basic, {Basic_u16, BasicFlag_Integer | BasicFlag_Unsigned, 2, STR_LIT("u16")}},
{Type_Basic, {Basic_i32, BasicFlag_Integer, 4, STR_LIT("i32")}},
{Type_Basic, {Basic_u32, BasicFlag_Integer | BasicFlag_Unsigned, 4, STR_LIT("u32")}},
{Type_Basic, {Basic_i64, BasicFlag_Integer, 8, STR_LIT("i64")}},
{Type_Basic, {Basic_u64, BasicFlag_Integer | BasicFlag_Unsigned, 8, STR_LIT("u64")}},
{Type_Basic, {Basic_i128, BasicFlag_Integer, 16, STR_LIT("i128")}},
{Type_Basic, {Basic_u128, BasicFlag_Integer | BasicFlag_Unsigned, 16, STR_LIT("u128")}},
{Type_Basic, {Basic_rune, BasicFlag_Integer | BasicFlag_Rune, 4, STR_LIT("rune")}},
{Type_Basic, {Basic_f16, BasicFlag_Float, 2, STR_LIT("f16")}},
{Type_Basic, {Basic_f32, BasicFlag_Float, 4, STR_LIT("f32")}},
{Type_Basic, {Basic_f64, BasicFlag_Float, 8, STR_LIT("f64")}},
{Type_Basic, {Basic_complex32, BasicFlag_Complex, 4, STR_LIT("complex32")}},
{Type_Basic, {Basic_complex64, BasicFlag_Complex, 8, STR_LIT("complex64")}},
{Type_Basic, {Basic_complex128, BasicFlag_Complex, 16, STR_LIT("complex128")}},
{Type_Basic, {Basic_quaternion64, BasicFlag_Quaternion, 8, STR_LIT("quaternion64")}},
{Type_Basic, {Basic_quaternion128, BasicFlag_Quaternion, 16, STR_LIT("quaternion128")}},
{Type_Basic, {Basic_quaternion256, BasicFlag_Quaternion, 32, STR_LIT("quaternion256")}},
{Type_Basic, {Basic_int, BasicFlag_Integer, -1, STR_LIT("int")}},
{Type_Basic, {Basic_uint, BasicFlag_Integer | BasicFlag_Unsigned, -1, STR_LIT("uint")}},
{Type_Basic, {Basic_uintptr, BasicFlag_Integer | BasicFlag_Unsigned, -1, STR_LIT("uintptr")}},
{Type_Basic, {Basic_rawptr, BasicFlag_Pointer, -1, STR_LIT("rawptr")}},
{Type_Basic, {Basic_string, BasicFlag_String, -1, STR_LIT("string")}},
{Type_Basic, {Basic_cstring, BasicFlag_String, -1, STR_LIT("cstring")}},
{Type_Basic, {Basic_string16, BasicFlag_String, -1, STR_LIT("string16")}},
{Type_Basic, {Basic_cstring16, BasicFlag_String, -1, STR_LIT("cstring16")}},
{Type_Basic, {Basic_any, 0, 16, STR_LIT("any")}},
{Type_Basic, {Basic_typeid, 0, 8, STR_LIT("typeid")}},
// Endian
{Type_Basic, {Basic_i16le, BasicFlag_Integer | BasicFlag_EndianLittle, 2, STR_LIT("i16le")}},
{Type_Basic, {Basic_u16le, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianLittle, 2, STR_LIT("u16le")}},
{Type_Basic, {Basic_i32le, BasicFlag_Integer | BasicFlag_EndianLittle, 4, STR_LIT("i32le")}},
{Type_Basic, {Basic_u32le, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianLittle, 4, STR_LIT("u32le")}},
{Type_Basic, {Basic_i64le, BasicFlag_Integer | BasicFlag_EndianLittle, 8, STR_LIT("i64le")}},
{Type_Basic, {Basic_u64le, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianLittle, 8, STR_LIT("u64le")}},
{Type_Basic, {Basic_i128le, BasicFlag_Integer | BasicFlag_EndianLittle, 16, STR_LIT("i128le")}},
{Type_Basic, {Basic_u128le, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianLittle, 16, STR_LIT("u128le")}},
{Type_Basic, {Basic_i16be, BasicFlag_Integer | BasicFlag_EndianBig, 2, STR_LIT("i16be")}},
{Type_Basic, {Basic_u16be, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianBig, 2, STR_LIT("u16be")}},
{Type_Basic, {Basic_i32be, BasicFlag_Integer | BasicFlag_EndianBig, 4, STR_LIT("i32be")}},
{Type_Basic, {Basic_u32be, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianBig, 4, STR_LIT("u32be")}},
{Type_Basic, {Basic_i64be, BasicFlag_Integer | BasicFlag_EndianBig, 8, STR_LIT("i64be")}},
{Type_Basic, {Basic_u64be, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianBig, 8, STR_LIT("u64be")}},
{Type_Basic, {Basic_i128be, BasicFlag_Integer | BasicFlag_EndianBig, 16, STR_LIT("i128be")}},
{Type_Basic, {Basic_u128be, BasicFlag_Integer | BasicFlag_Unsigned | BasicFlag_EndianBig, 16, STR_LIT("u128be")}},
{Type_Basic, {Basic_f16le, BasicFlag_Float | BasicFlag_EndianLittle, 2, STR_LIT("f16le")}},
{Type_Basic, {Basic_f32le, BasicFlag_Float | BasicFlag_EndianLittle, 4, STR_LIT("f32le")}},
{Type_Basic, {Basic_f64le, BasicFlag_Float | BasicFlag_EndianLittle, 8, STR_LIT("f64le")}},
{Type_Basic, {Basic_f16be, BasicFlag_Float | BasicFlag_EndianBig, 2, STR_LIT("f16be")}},
{Type_Basic, {Basic_f32be, BasicFlag_Float | BasicFlag_EndianBig, 4, STR_LIT("f32be")}},
{Type_Basic, {Basic_f64be, BasicFlag_Float | BasicFlag_EndianBig, 8, STR_LIT("f64be")}},
// Untyped types
{Type_Basic, {Basic_UntypedBool, BasicFlag_Boolean | BasicFlag_Untyped, 0, STR_LIT("untyped bool")}},
{Type_Basic, {Basic_UntypedInteger, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped integer")}},
{Type_Basic, {Basic_UntypedFloat, BasicFlag_Float | BasicFlag_Untyped, 0, STR_LIT("untyped float")}},
{Type_Basic, {Basic_UntypedComplex, BasicFlag_Complex | BasicFlag_Untyped, 0, STR_LIT("untyped complex")}},
{Type_Basic, {Basic_UntypedQuaternion, BasicFlag_Quaternion | BasicFlag_Untyped, 0, STR_LIT("untyped quaternion")}},
{Type_Basic, {Basic_UntypedString, BasicFlag_String | BasicFlag_Untyped, 0, STR_LIT("untyped string")}},
{Type_Basic, {Basic_UntypedRune, BasicFlag_Integer | BasicFlag_Untyped, 0, STR_LIT("untyped rune")}},
{Type_Basic, {Basic_UntypedNil, BasicFlag_Untyped, 0, STR_LIT("untyped nil")}},
{Type_Basic, {Basic_UntypedUninit, BasicFlag_Untyped, 0, STR_LIT("untyped uninitialized")}},
};
// gb_global Type basic_type_aliases[] = {
// // {Type_Basic, {Basic_byte, BasicFlag_Integer | BasicFlag_Unsigned, 1, STR_LIT("byte")}},
// // {Type_Basic, {Basic_rune, BasicFlag_Integer, 4, STR_LIT("rune")}},
// };
gb_global Type *t_invalid = &basic_types[Basic_Invalid];
gb_global Type *t_llvm_bool = &basic_types[Basic_llvm_bool];
gb_global Type *t_bool = &basic_types[Basic_bool];
gb_global Type *t_i8 = &basic_types[Basic_i8];
gb_global Type *t_u8 = &basic_types[Basic_u8];
gb_global Type *t_i16 = &basic_types[Basic_i16];
gb_global Type *t_u16 = &basic_types[Basic_u16];
gb_global Type *t_i32 = &basic_types[Basic_i32];
gb_global Type *t_u32 = &basic_types[Basic_u32];
gb_global Type *t_i64 = &basic_types[Basic_i64];
gb_global Type *t_u64 = &basic_types[Basic_u64];
gb_global Type *t_i128 = &basic_types[Basic_i128];
gb_global Type *t_u128 = &basic_types[Basic_u128];
gb_global Type *t_rune = &basic_types[Basic_rune];
gb_global Type *t_f16 = &basic_types[Basic_f16];
gb_global Type *t_f32 = &basic_types[Basic_f32];
gb_global Type *t_f64 = &basic_types[Basic_f64];
gb_global Type *t_f16be = &basic_types[Basic_f16be];
gb_global Type *t_f32be = &basic_types[Basic_f32be];
gb_global Type *t_f64be = &basic_types[Basic_f64be];
gb_global Type *t_f16le = &basic_types[Basic_f16le];
gb_global Type *t_f32le = &basic_types[Basic_f32le];
gb_global Type *t_f64le = &basic_types[Basic_f64le];
gb_global Type *t_complex32 = &basic_types[Basic_complex32];
gb_global Type *t_complex64 = &basic_types[Basic_complex64];
gb_global Type *t_complex128 = &basic_types[Basic_complex128];
gb_global Type *t_quaternion64 = &basic_types[Basic_quaternion64];
gb_global Type *t_quaternion128 = &basic_types[Basic_quaternion128];
gb_global Type *t_quaternion256 = &basic_types[Basic_quaternion256];
gb_global Type *t_int = &basic_types[Basic_int];
gb_global Type *t_uint = &basic_types[Basic_uint];
gb_global Type *t_uintptr = &basic_types[Basic_uintptr];
gb_global Type *t_rawptr = &basic_types[Basic_rawptr];
gb_global Type *t_string = &basic_types[Basic_string];
gb_global Type *t_cstring = &basic_types[Basic_cstring];
gb_global Type *t_string16 = &basic_types[Basic_string16];
gb_global Type *t_cstring16 = &basic_types[Basic_cstring16];
gb_global Type *t_any = &basic_types[Basic_any];
gb_global Type *t_typeid = &basic_types[Basic_typeid];
gb_global Type *t_i16le = &basic_types[Basic_i16le];
gb_global Type *t_u16le = &basic_types[Basic_u16le];
gb_global Type *t_i32le = &basic_types[Basic_i32le];
gb_global Type *t_u32le = &basic_types[Basic_u32le];
gb_global Type *t_i64le = &basic_types[Basic_i64le];
gb_global Type *t_u64le = &basic_types[Basic_u64le];
gb_global Type *t_i128le = &basic_types[Basic_i128le];
gb_global Type *t_u128le = &basic_types[Basic_u128le];
gb_global Type *t_i16be = &basic_types[Basic_i16be];
gb_global Type *t_u16be = &basic_types[Basic_u16be];
gb_global Type *t_i32be = &basic_types[Basic_i32be];
gb_global Type *t_u32be = &basic_types[Basic_u32be];
gb_global Type *t_i64be = &basic_types[Basic_i64be];
gb_global Type *t_u64be = &basic_types[Basic_u64be];
gb_global Type *t_i128be = &basic_types[Basic_i128be];
gb_global Type *t_u128be = &basic_types[Basic_u128be];
gb_global Type *t_untyped_bool = &basic_types[Basic_UntypedBool];
gb_global Type *t_untyped_integer = &basic_types[Basic_UntypedInteger];
gb_global Type *t_untyped_float = &basic_types[Basic_UntypedFloat];
gb_global Type *t_untyped_complex = &basic_types[Basic_UntypedComplex];
gb_global Type *t_untyped_quaternion = &basic_types[Basic_UntypedQuaternion];
gb_global Type *t_untyped_string = &basic_types[Basic_UntypedString];
gb_global Type *t_untyped_rune = &basic_types[Basic_UntypedRune];
gb_global Type *t_untyped_nil = &basic_types[Basic_UntypedNil];
gb_global Type *t_untyped_uninit = &basic_types[Basic_UntypedUninit];
gb_global Type *t_u8_ptr = nullptr;
gb_global Type *t_u8_multi_ptr = nullptr;
gb_global Type *t_u16_ptr = nullptr;
gb_global Type *t_u16_multi_ptr = nullptr;
gb_global Type *t_int_ptr = nullptr;
gb_global Type *t_i64_ptr = nullptr;
gb_global Type *t_f64_ptr = nullptr;
gb_global Type *t_u8_slice = nullptr;
gb_global Type *t_string_slice = nullptr;
// Type generated for the "preload" file
gb_global Type *t_type_info = nullptr;
gb_global Type *t_type_info_enum_value = nullptr;
gb_global Type *t_type_info_ptr = nullptr;
gb_global Type *t_type_info_enum_value_ptr = nullptr;
gb_global Type *t_type_info_string_encoding_kind = nullptr;
gb_global Type *t_type_info_named = nullptr;
gb_global Type *t_type_info_integer = nullptr;
gb_global Type *t_type_info_rune = nullptr;
gb_global Type *t_type_info_float = nullptr;
gb_global Type *t_type_info_complex = nullptr;
gb_global Type *t_type_info_quaternion = nullptr;
gb_global Type *t_type_info_any = nullptr;
gb_global Type *t_type_info_typeid = nullptr;
gb_global Type *t_type_info_string = nullptr;
gb_global Type *t_type_info_boolean = nullptr;
gb_global Type *t_type_info_pointer = nullptr;
gb_global Type *t_type_info_multi_pointer = nullptr;
gb_global Type *t_type_info_procedure = nullptr;
gb_global Type *t_type_info_array = nullptr;
gb_global Type *t_type_info_enumerated_array = nullptr;
gb_global Type *t_type_info_dynamic_array = nullptr;
gb_global Type *t_type_info_slice = nullptr;
gb_global Type *t_type_info_parameters = nullptr;
gb_global Type *t_type_info_struct = nullptr;
gb_global Type *t_type_info_union = nullptr;
gb_global Type *t_type_info_enum = nullptr;
gb_global Type *t_type_info_map = nullptr;
gb_global Type *t_type_info_bit_set = nullptr;
gb_global Type *t_type_info_simd_vector = nullptr;
gb_global Type *t_type_info_matrix = nullptr;
gb_global Type *t_type_info_soa_pointer = nullptr;
gb_global Type *t_type_info_bit_field = nullptr;
gb_global Type *t_type_info_named_ptr = nullptr;
gb_global Type *t_type_info_integer_ptr = nullptr;
gb_global Type *t_type_info_rune_ptr = nullptr;
gb_global Type *t_type_info_float_ptr = nullptr;
gb_global Type *t_type_info_complex_ptr = nullptr;
gb_global Type *t_type_info_quaternion_ptr = nullptr;
gb_global Type *t_type_info_any_ptr = nullptr;
gb_global Type *t_type_info_typeid_ptr = nullptr;
gb_global Type *t_type_info_string_ptr = nullptr;
gb_global Type *t_type_info_boolean_ptr = nullptr;
gb_global Type *t_type_info_pointer_ptr = nullptr;
gb_global Type *t_type_info_multi_pointer_ptr = nullptr;
gb_global Type *t_type_info_procedure_ptr = nullptr;
gb_global Type *t_type_info_array_ptr = nullptr;
gb_global Type *t_type_info_enumerated_array_ptr = nullptr;
gb_global Type *t_type_info_dynamic_array_ptr = nullptr;
gb_global Type *t_type_info_slice_ptr = nullptr;
gb_global Type *t_type_info_parameters_ptr = nullptr;
gb_global Type *t_type_info_struct_ptr = nullptr;
gb_global Type *t_type_info_union_ptr = nullptr;
gb_global Type *t_type_info_enum_ptr = nullptr;
gb_global Type *t_type_info_map_ptr = nullptr;
gb_global Type *t_type_info_bit_set_ptr = nullptr;
gb_global Type *t_type_info_simd_vector_ptr = nullptr;
gb_global Type *t_type_info_matrix_ptr = nullptr;
gb_global Type *t_type_info_soa_pointer_ptr = nullptr;
gb_global Type *t_type_info_bit_field_ptr = nullptr;
gb_global Type *t_allocator = nullptr;
gb_global Type *t_allocator_ptr = nullptr;
gb_global Type *t_context = nullptr;
gb_global Type *t_context_ptr = nullptr;
gb_global Type *t_allocator_error = nullptr;
gb_global Type *t_source_code_location = nullptr;
gb_global Type *t_source_code_location_ptr = nullptr;
gb_global Type *t_load_directory_file = nullptr;
gb_global Type *t_load_directory_file_ptr = nullptr;
gb_global Type *t_load_directory_file_slice = nullptr;
gb_global Type *t_map_info = nullptr;
gb_global Type *t_map_cell_info = nullptr;
gb_global Type *t_raw_map = nullptr;
gb_global Type *t_map_info_ptr = nullptr;
gb_global Type *t_map_cell_info_ptr = nullptr;
gb_global Type *t_raw_map_ptr = nullptr;
gb_global Type *t_equal_proc = nullptr;
gb_global Type *t_hasher_proc = nullptr;
gb_global Type *t_map_get_proc = nullptr;
gb_global Type *t_map_set_proc = nullptr;
gb_global Type *t_objc_object = nullptr;
gb_global Type *t_objc_selector = nullptr;
gb_global Type *t_objc_class = nullptr;
gb_global Type *t_objc_ivar = nullptr;
gb_global Type *t_objc_super = nullptr; // Struct used in lieu of the 'self' instance when calling objc_msgSendSuper.
gb_global Type *t_objc_super_ptr = nullptr;
gb_global Type *t_objc_id = nullptr;
gb_global Type *t_objc_SEL = nullptr;
gb_global Type *t_objc_Class = nullptr;
gb_global Type *t_objc_Ivar = nullptr;
gb_global Type *t_objc_instancetype = nullptr; // Special distinct variant of t_objc_id used mimic auto-typing of instancetype* in Objective-C
enum OdinAtomicMemoryOrder : i32 {
OdinAtomicMemoryOrder_relaxed = 0, // unordered
OdinAtomicMemoryOrder_consume = 1, // monotonic
OdinAtomicMemoryOrder_acquire = 2,
OdinAtomicMemoryOrder_release = 3,
OdinAtomicMemoryOrder_acq_rel = 4,
OdinAtomicMemoryOrder_seq_cst = 5,
OdinAtomicMemoryOrder_COUNT,
};
char const *OdinAtomicMemoryOrder_strings[OdinAtomicMemoryOrder_COUNT] = {
"Relaxed",
"Consume",
"Acquire",
"Release",
"Acq_Rel",
"Seq_Cst",
};
gb_global Type *t_atomic_memory_order = nullptr;
gb_global RecursiveMutex g_type_mutex;
struct TypePath;
gb_internal i64 type_size_of (Type *t);
gb_internal i64 type_align_of (Type *t);
gb_internal i64 type_offset_of (Type *t, i64 index, Type **field_type_=nullptr);
gb_internal gbString type_to_string (Type *type, bool shorthand=true);
gb_internal gbString type_to_string (Type *type, gbAllocator allocator, bool shorthand=true);
gb_internal i64 type_size_of_internal(Type *t, TypePath *path);
gb_internal i64 type_align_of_internal(Type *t, TypePath *path);
gb_internal Type * bit_set_to_int(Type *t);
gb_internal bool are_types_identical(Type *x, Type *y);
gb_internal bool is_type_pointer(Type *t);
gb_internal bool is_type_multi_pointer(Type *t);
gb_internal bool is_type_soa_pointer(Type *t);
gb_internal bool is_type_proc(Type *t);
gb_internal bool is_type_slice(Type *t);
gb_internal bool is_type_integer(Type *t);
gb_internal bool type_set_offsets(Type *t);
// IMPORTANT TODO(bill): SHould this TypePath code be removed since type cycle checking is handled much earlier on?
struct TypePath {
RecursiveMutex mutex;
Array<Entity *> path; // Entity_TypeName;
bool failure;
};
gb_internal void type_path_init(TypePath *tp) {
tp->path.allocator = heap_allocator();
}
gb_internal void type_path_free(TypePath *tp) {
mutex_lock(&tp->mutex);
array_free(&tp->path);
mutex_unlock(&tp->mutex);
}
gb_internal void type_path_print_illegal_cycle(TypePath *tp, isize start_index) {
GB_ASSERT(tp != nullptr);
GB_ASSERT(start_index < tp->path.count);
Entity *e = tp->path[start_index];
GB_ASSERT(e != nullptr);
error(e->token, "Illegal type declaration cycle of `%.*s`", LIT(e->token.string));
// NOTE(bill): Print cycle, if it's deep enough
for (isize j = start_index; j < tp->path.count; j++) {
Entity *e = tp->path[j];
error(e->token, "\t%.*s refers to", LIT(e->token.string));
}
// NOTE(bill): This will only print if the path count > 1
error(e->token, "\t%.*s", LIT(e->token.string));
tp->failure = true;
e->type->failure = true;
base_type(e->type)->failure = true;
}
gb_internal bool type_path_push(TypePath *tp, Type *t) {
GB_ASSERT(tp != nullptr);
if (t->kind != Type_Named) {
return false;
}
Entity *e = t->Named.type_name;
mutex_lock(&tp->mutex);
for (isize i = 0; i < tp->path.count; i++) {
Entity *p = tp->path[i];
if (p == e) {
type_path_print_illegal_cycle(tp, i);
}
}
array_add(&tp->path, e);
mutex_unlock(&tp->mutex);
return true;
}
gb_internal void type_path_pop(TypePath *tp) {
if (tp != nullptr) {
mutex_lock(&tp->mutex);
if (tp->path.count > 0) {
array_pop(&tp->path);
}
mutex_unlock(&tp->mutex);
}
}
#define FAILURE_SIZE 0
#define FAILURE_ALIGNMENT 0
gb_internal Type *base_type(Type *t) {
for (;;) {
if (t == nullptr) {
break;
}
if (t->kind != Type_Named) {
break;
}
if (t == t->Named.base) {
return t_invalid;
}
t = t->Named.base;
}
return t;
}
gb_internal Type *base_named_type(Type *t) {
if (t->kind != Type_Named) {
return t_invalid;
}
Type *prev_named = t;
t = t->Named.base;
for (;;) {
if (t == nullptr) {
break;
}
if (t->kind != Type_Named) {
break;
}
if (t == t->Named.base) {
return t_invalid;
}
prev_named = t;
t = t->Named.base;
}
return prev_named;
}
gb_internal Type *base_enum_type(Type *t) {
Type *bt = base_type(t);
if (bt != nullptr &&
bt->kind == Type_Enum) {
return bt->Enum.base_type;
}
return t;
}
gb_internal Type *core_type(Type *t) {
for (;;) {
if (t == nullptr) {
break;
}
switch (t->kind) {
case Type_Named:
if (t == t->Named.base) {
return t_invalid;
}
t = t->Named.base;
continue;
case Type_Enum:
t = t->Enum.base_type;
continue;
case Type_BitField:
t = t->BitField.backing_type;
continue;
}
break;
}
return t;
}
gb_internal void set_base_type(Type *t, Type *base) {
if (t && t->kind == Type_Named) {
t->Named.base = base;
}
}
gb_internal Type *alloc_type(TypeKind kind) {
// gbAllocator a = heap_allocator();
gbAllocator a = permanent_allocator();
Type *t = gb_alloc_item(a, Type);
gb_zero_item(t);
t->kind = kind;
t->cached_size = -1;
t->cached_align = -1;
return t;
}
gb_internal Type *alloc_type_generic(Scope *scope, i64 id, String name, Type *specialized) {
Type *t = alloc_type(Type_Generic);
t->Generic.id = id;
t->Generic.name = name;
t->Generic.specialized = specialized;
t->Generic.scope = scope;
return t;
}
gb_internal Type *alloc_type_pointer(Type *elem) {
Type *t = alloc_type(Type_Pointer);
t->Pointer.elem = elem;
return t;
}
gb_internal Type *alloc_type_multi_pointer(Type *elem) {
Type *t = alloc_type(Type_MultiPointer);
t->MultiPointer.elem = elem;
return t;
}
gb_internal Type *alloc_type_soa_pointer(Type *elem) {
Type *t = alloc_type(Type_SoaPointer);
t->SoaPointer.elem = elem;
return t;
}
gb_internal Type *alloc_type_pointer_to_multi_pointer(Type *ptr) {
Type *original_type = ptr;
ptr = base_type(ptr);
if (ptr->kind == Type_Pointer) {
return alloc_type_multi_pointer(ptr->Pointer.elem);
} else if (ptr->kind != Type_MultiPointer) {
GB_PANIC("Invalid type: %s", type_to_string(original_type));
}
return original_type;
}
gb_internal Type *alloc_type_multi_pointer_to_pointer(Type *ptr) {
Type *original_type = ptr;
ptr = base_type(ptr);
if (ptr->kind == Type_MultiPointer) {
return alloc_type_pointer(ptr->MultiPointer.elem);
} else if (ptr->kind != Type_Pointer) {
GB_PANIC("Invalid type: %s", type_to_string(original_type));
}
return original_type;
}
gb_internal Type *alloc_type_array(Type *elem, i64 count, Type *generic_count = nullptr) {
if (generic_count != nullptr) {
Type *t = alloc_type(Type_Array);
t->Array.elem = elem;
t->Array.count = count;
t->Array.generic_count = generic_count;
return t;
}
Type *t = alloc_type(Type_Array);
t->Array.elem = elem;
t->Array.count = count;
return t;
}
gb_internal Type *alloc_type_matrix(Type *elem, i64 row_count, i64 column_count, Type *generic_row_count, Type *generic_column_count, bool is_row_major) {
if (generic_row_count != nullptr || generic_column_count != nullptr) {
Type *t = alloc_type(Type_Matrix);
t->Matrix.elem = elem;
t->Matrix.row_count = row_count;
t->Matrix.column_count = column_count;
t->Matrix.generic_row_count = generic_row_count;
t->Matrix.generic_column_count = generic_column_count;
t->Matrix.is_row_major = is_row_major;
return t;
}
Type *t = alloc_type(Type_Matrix);
t->Matrix.elem = elem;
t->Matrix.row_count = row_count;
t->Matrix.column_count = column_count;
t->Matrix.is_row_major = is_row_major;
return t;
}
gb_internal Type *alloc_type_enumerated_array(Type *elem, Type *index, ExactValue const *min_value, ExactValue const *max_value, isize count, TokenKind op) {
Type *t = alloc_type(Type_EnumeratedArray);
t->EnumeratedArray.elem = elem;
t->EnumeratedArray.index = index;
t->EnumeratedArray.min_value = gb_alloc_item(permanent_allocator(), ExactValue);
t->EnumeratedArray.max_value = gb_alloc_item(permanent_allocator(), ExactValue);
gb_memmove(t->EnumeratedArray.min_value, min_value, gb_size_of(ExactValue));
gb_memmove(t->EnumeratedArray.max_value, max_value, gb_size_of(ExactValue));
t->EnumeratedArray.op = op;
if (count == 0) {
t->EnumeratedArray.count = 0;
} else {
t->EnumeratedArray.count = 1 + exact_value_to_i64(exact_value_sub(*max_value, *min_value));
}
return t;
}
gb_internal Type *alloc_type_slice(Type *elem) {
Type *t = alloc_type(Type_Slice);
t->Slice.elem = elem;
return t;
}
gb_internal Type *alloc_type_dynamic_array(Type *elem) {
Type *t = alloc_type(Type_DynamicArray);
t->DynamicArray.elem = elem;
return t;
}
gb_internal Type *alloc_type_struct() {
Type *t = alloc_type(Type_Struct);
return t;
}
gb_internal Type *alloc_type_struct_complete() {
Type *t = alloc_type(Type_Struct);
wait_signal_set(&t->Struct.fields_wait_signal);
wait_signal_set(&t->Struct.polymorphic_wait_signal);
return t;
}
gb_internal Type *alloc_type_union() {
Type *t = alloc_type(Type_Union);
return t;
}
gb_internal Type *alloc_type_enum() {
Type *t = alloc_type(Type_Enum);
t->Enum.min_value = gb_alloc_item(permanent_allocator(), ExactValue);
t->Enum.max_value = gb_alloc_item(permanent_allocator(), ExactValue);
return t;
}
gb_internal Type *alloc_type_bit_field() {
Type *t = alloc_type(Type_BitField);
return t;
}
gb_internal Type *alloc_type_named(String name, Type *base, Entity *type_name) {
Type *t = alloc_type(Type_Named);
t->Named.name = name;
t->Named.base = base;
if (base != t) {
t->Named.base = base_type(base);
}
t->Named.type_name = type_name;
return t;
}
gb_internal bool is_calling_convention_none(ProcCallingConvention calling_convention) {
switch (calling_convention) {
case ProcCC_None:
case ProcCC_InlineAsm:
return true;
}
return false;
}
gb_internal bool is_calling_convention_odin(ProcCallingConvention calling_convention) {
switch (calling_convention) {
case ProcCC_Odin:
case ProcCC_Contextless:
return true;
}
return false;
}
gb_internal Type *alloc_type_tuple() {
Type *t = alloc_type(Type_Tuple);
return t;
}
gb_internal Type *alloc_type_proc(Scope *scope, Type *params, isize param_count, Type *results, isize result_count, bool variadic, ProcCallingConvention calling_convention) {
Type *t = alloc_type(Type_Proc);
if (variadic) {
if (param_count == 0) {
GB_PANIC("variadic procedure must have at least one parameter");
}
GB_ASSERT(params != nullptr && params->kind == Type_Tuple);
Entity *e = params->Tuple.variables[param_count-1];
if (base_type(e->type)->kind != Type_Slice) {
// NOTE(bill): For custom calling convention
GB_PANIC("variadic parameter must be of type slice");
}
}
t->Proc.scope = scope;
t->Proc.params = params;
t->Proc.param_count = cast(i32)param_count;
t->Proc.results = results;
t->Proc.result_count = cast(i32)result_count;
t->Proc.variadic = variadic;
t->Proc.calling_convention = calling_convention;
return t;
}
gb_internal bool is_type_valid_for_keys(Type *t);
gb_internal Type *alloc_type_bit_set() {
Type *t = alloc_type(Type_BitSet);
return t;
}
gb_internal Type *alloc_type_simd_vector(i64 count, Type *elem, Type *generic_count=nullptr) {
Type *t = alloc_type(Type_SimdVector);
t->SimdVector.count = count;
t->SimdVector.elem = elem;
t->SimdVector.generic_count = generic_count;
return t;
}
////////////////////////////////////////////////////////////////
gb_internal Type *type_deref(Type *t, bool allow_multi_pointer) {
if (t != nullptr) {
Type *bt = base_type(t);
if (bt == nullptr) {
return nullptr;
}
switch (bt->kind) {
case Type_Pointer:
return bt->Pointer.elem;
case Type_SoaPointer:
{
Type *elem = base_type(bt->SoaPointer.elem);
GB_ASSERT(elem->kind == Type_Struct && elem->Struct.soa_kind != StructSoa_None);
return elem->Struct.soa_elem;
}
case Type_MultiPointer:
if (allow_multi_pointer) {
return bt->MultiPointer.elem;
}
break;
}
}
return t;
}
gb_internal bool is_type_named(Type *t) {
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return true;
}
return t->kind == Type_Named;
}
gb_internal bool is_type_boolean(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Boolean) != 0;
}
return false;
}
gb_internal bool is_type_integer(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Integer) != 0;
}
return false;
}
gb_internal bool is_type_integer_like(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & (BasicFlag_Integer|BasicFlag_Boolean)) != 0;
}
if (t->kind == Type_BitSet) {
if (t->BitSet.underlying) {
return is_type_integer_like(t->BitSet.underlying);
}
return true;
}
return false;
}
gb_internal bool is_type_unsigned(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Unsigned) != 0;
}
if (t->kind == Type_Enum) {
return (t->Enum.base_type->Basic.flags & BasicFlag_Unsigned) != 0;
}
return false;
}
gb_internal bool is_type_integer_128bit(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Integer) != 0 && t->Basic.size == 16;
}
return false;
}
gb_internal bool is_type_rune(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Rune) != 0;
}
return false;
}
gb_internal bool is_type_integer_or_float(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & (BasicFlag_Integer|BasicFlag_Float)) != 0;
}
return false;
}
gb_internal bool is_type_numeric(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Numeric) != 0;
} else if (t->kind == Type_Enum) {
return is_type_numeric(t->Enum.base_type);
}
// TODO(bill): Should this be here?
if (t->kind == Type_Array) {
return is_type_numeric(t->Array.elem);
}
return false;
}
gb_internal bool is_type_string(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_String) != 0;
}
return false;
}
gb_internal bool is_type_string16(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_string16;
}
return false;
}
gb_internal bool is_type_cstring(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_cstring;
}
return false;
}
gb_internal bool is_type_cstring16(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_cstring16;
}
return false;
}
gb_internal bool is_type_typed(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Untyped) == 0;
}
return true;
}
gb_internal bool is_type_untyped(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Untyped) != 0;
}
return false;
}
gb_internal bool is_type_ordered(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
switch (t->kind) {
case Type_Basic:
return (t->Basic.flags & BasicFlag_Ordered) != 0;
case Type_Pointer:
return true;
case Type_MultiPointer:
return true;
}
return false;
}
gb_internal bool is_type_ordered_numeric(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
switch (t->kind) {
case Type_Basic:
return (t->Basic.flags & BasicFlag_OrderedNumeric) != 0;
}
return false;
}
gb_internal bool is_type_constant_type(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
switch (t->kind) {
case Type_Basic:
if (t->Basic.kind == Basic_typeid) {
return true;
}
return (t->Basic.flags & BasicFlag_ConstantType) != 0;
case Type_BitSet:
return true;
case Type_Proc:
return true;
case Type_Array:
return is_type_constant_type(t->Array.elem);
case Type_EnumeratedArray:
return is_type_constant_type(t->EnumeratedArray.elem);
}
return false;
}
gb_internal bool is_type_float(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Float) != 0;
}
return false;
}
gb_internal bool is_type_complex(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Complex) != 0;
}
return false;
}
gb_internal bool is_type_quaternion(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Quaternion) != 0;
}
return false;
}
gb_internal bool is_type_complex_or_quaternion(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & (BasicFlag_Complex|BasicFlag_Quaternion)) != 0;
}
return false;
}
gb_internal bool is_type_pointer(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & BasicFlag_Pointer) != 0;
}
return t->kind == Type_Pointer;
}
gb_internal bool is_type_soa_pointer(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_SoaPointer;
}
gb_internal bool is_type_multi_pointer(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_MultiPointer;
}
gb_internal bool is_type_internally_pointer_like(Type *t) {
return is_type_pointer(t) || is_type_multi_pointer(t) || is_type_cstring(t) || is_type_proc(t);
}
gb_internal bool is_type_tuple(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Tuple;
}
gb_internal bool is_type_uintptr(Type *t) {
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.kind == Basic_uintptr);
}
return false;
}
gb_internal bool is_type_rawptr(Type *t) {
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_rawptr;
}
return false;
}
gb_internal bool is_type_u8(Type *t) {
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_u8;
}
return false;
}
gb_internal bool is_type_u16(Type *t) {
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return t->Basic.kind == Basic_u16;
}
return false;
}
gb_internal bool is_type_array(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Array;
}
gb_internal bool is_type_enumerated_array(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_EnumeratedArray;
}
gb_internal bool is_type_matrix(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Matrix;
}
gb_internal i64 matrix_align_of(Type *t, struct TypePath *tp) {
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
Type *elem = t->Matrix.elem;
i64 row_count = gb_max(t->Matrix.row_count, 1);
i64 column_count = gb_max(t->Matrix.column_count, 1);
bool pop = type_path_push(tp, elem);
if (tp->failure) {
return FAILURE_ALIGNMENT;
}
i64 elem_align = type_align_of_internal(elem, tp);
if (pop) type_path_pop(tp);
i64 elem_size = type_size_of(elem);
// NOTE(bill, 2021-10-25): The alignment strategy here is to have zero padding
// It would be better for performance to pad each column so that each column
// could be maximally aligned but as a compromise, having no padding will be
// beneficial to third libraries that assume no padding
i64 total_expected_size = row_count*column_count*elem_size;
// i64 min_alignment = prev_pow2(elem_align * row_count);
i64 min_alignment = prev_pow2(total_expected_size);
while (total_expected_size != 0 && (total_expected_size % min_alignment) != 0) {
min_alignment >>= 1;
}
min_alignment = gb_max(min_alignment, elem_align);
i64 align = gb_min(min_alignment, build_context.max_simd_align);
return align;
}
gb_internal i64 matrix_type_stride_in_bytes(Type *t, struct TypePath *tp) {
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
if (t->Matrix.stride_in_bytes != 0) {
return t->Matrix.stride_in_bytes;
} else if (t->Matrix.row_count == 0) {
return 0;
}
i64 elem_size;
if (tp != nullptr) {
elem_size = type_size_of_internal(t->Matrix.elem, tp);
} else {
elem_size = type_size_of(t->Matrix.elem);
}
i64 stride_in_bytes = 0;
// NOTE(bill, 2021-10-25): The alignment strategy here is to have zero padding
// It would be better for performance to pad each column/row so that each column/row
// could be maximally aligned but as a compromise, having no padding will be
// beneficial to third libraries that assume no padding
if (t->Matrix.is_row_major) {
stride_in_bytes = elem_size*t->Matrix.column_count;
} else {
stride_in_bytes = elem_size*t->Matrix.row_count;
}
t->Matrix.stride_in_bytes = stride_in_bytes;
return stride_in_bytes;
}
gb_internal i64 matrix_type_stride_in_elems(Type *t) {
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
i64 stride = matrix_type_stride_in_bytes(t, nullptr);
return stride/gb_max(1, type_size_of(t->Matrix.elem));
}
gb_internal i64 matrix_type_total_internal_elems(Type *t) {
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
i64 size = type_size_of(t);
i64 elem_size = type_size_of(t->Matrix.elem);
return size/gb_max(elem_size, 1);
}
gb_internal i64 matrix_indices_to_offset(Type *t, i64 row_index, i64 column_index) {
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
GB_ASSERT(0 <= row_index && row_index < t->Matrix.row_count);
GB_ASSERT(0 <= column_index && column_index < t->Matrix.column_count);
i64 stride_elems = matrix_type_stride_in_elems(t);
if (t->Matrix.is_row_major) {
return column_index + stride_elems*row_index;
} else {
// NOTE(bill): Column-major layout internally
return row_index + stride_elems*column_index;
}
}
gb_internal i64 matrix_row_major_index_to_offset(Type *t, i64 index) {
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
i64 row_index = index/t->Matrix.column_count;
i64 column_index = index%t->Matrix.column_count;
return matrix_indices_to_offset(t, row_index, column_index);
}
gb_internal i64 matrix_column_major_index_to_offset(Type *t, i64 index) {
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
i64 row_index = index%t->Matrix.row_count;
i64 column_index = index/t->Matrix.row_count;
return matrix_indices_to_offset(t, row_index, column_index);
}
gb_internal bool is_matrix_square(Type *t) {
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
return t->Matrix.row_count == t->Matrix.column_count;
}
gb_internal bool is_type_valid_for_matrix_elems(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (is_type_integer(t)) {
return true;
} else if (is_type_float(t)) {
return true;
} else if (is_type_complex(t)) {
return true;
}
if (t->kind == Type_Generic) {
return true;
}
return false;
}
gb_internal bool is_type_dynamic_array(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_DynamicArray;
}
gb_internal bool is_type_slice(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Slice;
}
gb_internal bool is_type_proc(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Proc;
}
gb_internal bool is_type_asm_proc(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Proc && t->Proc.calling_convention == ProcCC_InlineAsm;
}
gb_internal bool is_type_simd_vector(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_SimdVector;
}
gb_internal Type *base_array_type(Type *t) {
Type *bt = base_type(t);
if (is_type_array(bt)) {
return bt->Array.elem;
} else if (is_type_enumerated_array(bt)) {
return bt->EnumeratedArray.elem;
} else if (is_type_simd_vector(bt)) {
return bt->SimdVector.elem;
} else if (is_type_matrix(bt)) {
return bt->Matrix.elem;
}
return t;
}
gb_internal Type *base_any_array_type(Type *t) {
Type *bt = base_type(t);
if (is_type_array(bt)) {
return bt->Array.elem;
} else if (is_type_slice(bt)) {
return bt->Slice.elem;
} else if (is_type_dynamic_array(bt)) {
return bt->DynamicArray.elem;
} else if (is_type_enumerated_array(bt)) {
return bt->EnumeratedArray.elem;
} else if (is_type_simd_vector(bt)) {
return bt->SimdVector.elem;
} else if (is_type_matrix(bt)) {
return bt->Matrix.elem;
}
return t;
}
gb_internal bool is_type_generic(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Generic;
}
gb_internal bool is_type_u8_slice(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Slice) {
return is_type_u8(t->Slice.elem);
}
return false;
}
gb_internal bool is_type_u8_array(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Array) {
return is_type_u8(t->Array.elem);
}
return false;
}
gb_internal bool is_type_u8_ptr(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Pointer) {
return is_type_u8(t->Pointer.elem);
}
return false;
}
gb_internal bool is_type_u8_multi_ptr(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_MultiPointer) {
return is_type_u8(t->Slice.elem);
}
return false;
}
gb_internal bool is_type_rune_array(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Array) {
return is_type_rune(t->Array.elem);
}
return false;
}
gb_internal bool is_type_u16_slice(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Slice) {
return is_type_u16(t->Slice.elem);
}
return false;
}
gb_internal bool is_type_u16_array(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Array) {
return is_type_u16(t->Array.elem);
}
return false;
}
gb_internal bool is_type_u16_ptr(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Pointer) {
return is_type_u16(t->Pointer.elem);
}
return false;
}
gb_internal bool is_type_u16_multi_ptr(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_MultiPointer) {
return is_type_u16(t->Slice.elem);
}
return false;
}
gb_internal bool is_type_array_like(Type *t) {
return is_type_array(t) || is_type_enumerated_array(t);
}
gb_internal i64 get_array_type_count(Type *t) {
Type *bt = base_type(t);
if (bt->kind == Type_Array) {
return bt->Array.count;
} else if (bt->kind == Type_EnumeratedArray) {
return bt->EnumeratedArray.count;
} else if (bt->kind == Type_SimdVector) {
return bt->SimdVector.count;
}
GB_ASSERT(is_type_array_like(t));
return -1;
}
gb_internal Type *core_array_type(Type *t) {
for (;;) {
t = base_array_type(t);
switch (t->kind) {
case Type_Array:
case Type_EnumeratedArray:
case Type_SimdVector:
case Type_Matrix:
break;
default:
return t;
}
}
}
gb_internal i32 type_math_rank(Type *t) {
i32 rank = 0;
for (;;) {
t = base_type(t);
switch (t->kind) {
case Type_Array:
rank += 1;
t = t->Array.elem;
break;
case Type_Matrix:
rank += 2;
t = t->Matrix.elem;
break;
default:
return rank;
}
}
}
gb_internal Type *base_complex_elem_type(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
switch (t->Basic.kind) {
case Basic_complex32: return t_f16;
case Basic_complex64: return t_f32;
case Basic_complex128: return t_f64;
case Basic_quaternion64: return t_f16;
case Basic_quaternion128: return t_f32;
case Basic_quaternion256: return t_f64;
case Basic_UntypedComplex: return t_untyped_float;
case Basic_UntypedQuaternion: return t_untyped_float;
}
}
GB_PANIC("Invalid complex type");
return t_invalid;
}
gb_internal bool is_type_struct(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Struct;
}
gb_internal bool is_type_union(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Union;
}
gb_internal bool is_type_soa_struct(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Struct && t->Struct.soa_kind != StructSoa_None;
}
gb_internal bool is_type_raw_union(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return (t->kind == Type_Struct && t->Struct.is_raw_union);
}
gb_internal bool is_type_enum(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return (t->kind == Type_Enum);
}
gb_internal bool is_type_bit_set(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return (t->kind == Type_BitSet);
}
gb_internal bool is_type_bit_field(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return (t->kind == Type_BitField);
}
gb_internal bool is_type_map(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return t->kind == Type_Map;
}
gb_internal bool is_type_union_maybe_pointer(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Union && t->Union.variants.count == 1) {
Type *v = t->Union.variants[0];
return is_type_internally_pointer_like(v);
}
return false;
}
gb_internal bool is_type_union_maybe_pointer_original_alignment(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Union && t->Union.variants.count == 1) {
Type *v = t->Union.variants[0];
if (is_type_internally_pointer_like(v)) {
return type_align_of(v) == type_align_of(t);
}
}
return false;
}
enum TypeEndianKind {
TypeEndian_Platform,
TypeEndian_Little,
TypeEndian_Big,
};
gb_internal TypeEndianKind type_endian_kind_of(Type *t) {
t = core_type(t);
if (t->kind == Type_Basic) {
if (t->Basic.flags & BasicFlag_EndianLittle) {
return TypeEndian_Little;
}
if (t->Basic.flags & BasicFlag_EndianBig) {
return TypeEndian_Big;
}
} else if (t->kind == Type_BitSet) {
return type_endian_kind_of(bit_set_to_int(t));
}
return TypeEndian_Platform;
}
gb_internal bool is_type_endian_big(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
if (t->Basic.flags & BasicFlag_EndianBig) {
return true;
} else if (t->Basic.flags & BasicFlag_EndianLittle) {
return false;
}
return build_context.endian_kind == TargetEndian_Big;
} else if (t->kind == Type_BitSet) {
return is_type_endian_big(bit_set_to_int(t));
} else if (t->kind == Type_Pointer) {
return is_type_endian_big(&basic_types[Basic_uintptr]);
}
return build_context.endian_kind == TargetEndian_Big;
}
gb_internal bool is_type_endian_little(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
if (t->Basic.flags & BasicFlag_EndianLittle) {
return true;
} else if (t->Basic.flags & BasicFlag_EndianBig) {
return false;
}
return build_context.endian_kind == TargetEndian_Little;
} else if (t->kind == Type_BitSet) {
return is_type_endian_little(bit_set_to_int(t));
} else if (t->kind == Type_Pointer) {
return is_type_endian_little(&basic_types[Basic_uintptr]);
}
return build_context.endian_kind == TargetEndian_Little;
}
gb_internal bool is_type_endian_platform(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_Basic) {
return (t->Basic.flags & (BasicFlag_EndianLittle|BasicFlag_EndianBig)) == 0;
} else if (t->kind == Type_BitSet) {
return is_type_endian_platform(bit_set_to_int(t));
} else if (t->kind == Type_Pointer) {
return is_type_endian_platform(&basic_types[Basic_uintptr]);
}
return false;
}
gb_internal bool types_have_same_internal_endian(Type *a, Type *b) {
return is_type_endian_little(a) == is_type_endian_little(b);
}
gb_internal bool is_type_endian_specific(Type *t) {
t = core_type(t);
if (t == nullptr) { return false; }
if (t->kind == Type_BitSet) {
t = bit_set_to_int(t);
}
if (t->kind == Type_Basic) {
switch (t->Basic.kind) {
case Basic_i16le:
case Basic_u16le:
case Basic_i32le:
case Basic_u32le:
case Basic_i64le:
case Basic_u64le:
case Basic_u128le:
return true;
case Basic_i16be:
case Basic_u16be:
case Basic_i32be:
case Basic_u32be:
case Basic_i64be:
case Basic_u64be:
case Basic_u128be:
return true;
case Basic_f16le:
case Basic_f16be:
case Basic_f32le:
case Basic_f32be:
case Basic_f64le:
case Basic_f64be:
return true;
}
}
return false;
}
gb_internal bool is_type_dereferenceable(Type *t) {
if (is_type_rawptr(t)) {
return false;
}
return is_type_pointer(t) || is_type_soa_pointer(t);
}
gb_internal bool is_type_different_to_arch_endianness(Type *t) {
switch (build_context.endian_kind) {
case TargetEndian_Little:
return !is_type_endian_little(t);
case TargetEndian_Big:
return !is_type_endian_big(t);
}
return false;
}
gb_internal Type *integer_endian_type_to_platform_type(Type *t) {
t = core_type(t);
if (t->kind == Type_BitSet) {
t = bit_set_to_int(t);
}
GB_ASSERT_MSG(t->kind == Type_Basic, "%s", type_to_string(t));
switch (t->Basic.kind) {
// Endian Specific Types
case Basic_i16le: return t_i16;
case Basic_u16le: return t_u16;
case Basic_i32le: return t_i32;
case Basic_u32le: return t_u32;
case Basic_i64le: return t_i64;
case Basic_u64le: return t_u64;
case Basic_i128le: return t_i128;
case Basic_u128le: return t_u128;
case Basic_i16be: return t_i16;
case Basic_u16be: return t_u16;
case Basic_i32be: return t_i32;
case Basic_u32be: return t_u32;
case Basic_i64be: return t_i64;
case Basic_u64be: return t_u64;
case Basic_i128be: return t_i128;
case Basic_u128be: return t_u128;
case Basic_f16le: return t_f16;
case Basic_f16be: return t_f16;
case Basic_f32le: return t_f32;
case Basic_f32be: return t_f32;
case Basic_f64le: return t_f64;
case Basic_f64be: return t_f64;
}
return t;
}
gb_internal bool is_type_any(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return (t->kind == Type_Basic && t->Basic.kind == Basic_any);
}
gb_internal bool is_type_typeid(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
return (t->kind == Type_Basic && t->Basic.kind == Basic_typeid);
}
gb_internal bool is_type_untyped_nil(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
// NOTE(bill): checking for `nil` or `---` at once is just to improve the error handling
return (t->kind == Type_Basic && (t->Basic.kind == Basic_UntypedNil || t->Basic.kind == Basic_UntypedUninit));
}
gb_internal bool is_type_untyped_uninit(Type *t) {
t = base_type(t);
if (t == nullptr) { return false; }
// NOTE(bill): checking for `nil` or `---` at once is just to improve the error handling
return (t->kind == Type_Basic && t->Basic.kind == Basic_UntypedUninit);
}
gb_internal bool is_type_empty_union(Type *t) {
if (t == nullptr) {
return false;
}
t = base_type(t);
if (t == nullptr) {
return false;
}
return t->kind == Type_Union && t->Union.variants.count == 0;
}
gb_internal bool is_type_valid_for_keys(Type *t) {
t = core_type(t);
if (t->kind == Type_Generic) {
return true;
}
if (is_type_untyped(t)) {
return false;
}
return type_size_of(t) > 0 && is_type_comparable(t);
}
gb_internal bool is_type_valid_bit_set_elem(Type *t) {
if (is_type_enum(t)) {
return true;
}
t = core_type(t);
if (t->kind == Type_Generic) {
return true;
}
return false;
}
gb_internal bool is_valid_bit_field_backing_type(Type *type) {
if (type == nullptr) {
return false;
}
type = base_type(type);
if (is_type_untyped(type)) {
return false;
}
if (is_type_integer(type)) {
return true;
}
if (type->kind == Type_Array) {
return is_type_integer(type->Array.elem);
}
return false;
}
gb_internal Type *bit_set_to_int(Type *t) {
GB_ASSERT(is_type_bit_set(t));
Type *bt = base_type(t);
Type *underlying = bt->BitSet.underlying;
if (underlying != nullptr && is_type_integer(underlying)) {
return underlying;
}
if (underlying != nullptr && is_valid_bit_field_backing_type(underlying)) {
return underlying;
}
i64 sz = type_size_of(t);
switch (sz) {
case 0: return t_u8;
case 1: return t_u8;
case 2: return t_u16;
case 4: return t_u32;
case 8: return t_u64;
case 16: return t_u128;
}
GB_PANIC("Unknown bit_set size");
return nullptr;
}
gb_internal bool is_type_valid_vector_elem(Type *t) {
t = base_type(t);
if (t->kind == Type_Basic) {
if (t->Basic.flags & BasicFlag_EndianLittle) {
return false;
}
if (t->Basic.flags & BasicFlag_EndianBig) {
return false;
}
if (is_type_integer(t)) {
return !is_type_integer_128bit(t);
}
if (is_type_float(t)) {
return true;
}
if (is_type_boolean(t)) {
return true;
}
if (t->Basic.kind == Basic_rawptr) {
return true;
}
}
return false;
}
gb_internal bool is_type_indexable(Type *t) {
Type *bt = base_type(t);
switch (bt->kind) {
case Type_Basic:
return bt->Basic.kind == Basic_string || bt->Basic.kind == Basic_string16;
case Type_Array:
case Type_Slice:
case Type_DynamicArray:
case Type_Map:
return true;
case Type_MultiPointer:
return true;
case Type_EnumeratedArray:
return true;
case Type_Matrix:
return true;
}
return false;
}
gb_internal bool is_type_sliceable(Type *t) {
Type *bt = base_type(t);
switch (bt->kind) {
case Type_Basic:
return bt->Basic.kind == Basic_string || bt->Basic.kind == Basic_string16;
case Type_Array:
case Type_Slice:
case Type_DynamicArray:
return true;
case Type_EnumeratedArray:
return false;
case Type_Matrix:
return false;
}
return false;
}
gb_internal Entity *type_get_polymorphic_parent(Type *t, Type **params_) {
t = base_type(t);
if (t == nullptr) {
return nullptr;
}
Type *parent = nullptr;
if (t->kind == Type_Struct) {
parent = t->Struct.polymorphic_parent;
if (params_) *params_ = t->Struct.polymorphic_params;
} else if (t->kind == Type_Union) {
parent = t->Union.polymorphic_parent;
if (params_) *params_ = t->Union.polymorphic_params;
}
if (parent != nullptr) {
GB_ASSERT(parent->kind == Type_Named);
return parent->Named.type_name;
}
return nullptr;
}
gb_internal bool is_type_polymorphic_record(Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
return t->Struct.is_polymorphic;
} else if (t->kind == Type_Union) {
return t->Union.is_polymorphic;
}
return false;
}
gb_internal Scope *polymorphic_record_parent_scope(Type *t) {
t = base_type(t);
if (is_type_polymorphic_record(t)) {
if (t->kind == Type_Struct) {
return t->Struct.scope->parent;
} else if (t->kind == Type_Union) {
return t->Union.scope->parent;
}
}
return nullptr;
}
gb_internal bool is_type_polymorphic_record_specialized(Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
return t->Struct.is_poly_specialized;
} else if (t->kind == Type_Union) {
return t->Union.is_poly_specialized;
}
return false;
}
gb_internal bool is_type_polymorphic_record_unspecialized(Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
return t->Struct.is_polymorphic && !t->Struct.is_poly_specialized;
} else if (t->kind == Type_Union) {
return t->Union.is_polymorphic && !t->Union.is_poly_specialized;
}
return false;
}
gb_internal TypeTuple *get_record_polymorphic_params(Type *t) {
t = base_type(t);
switch (t->kind) {
case Type_Struct:
wait_signal_until_available(&t->Struct.polymorphic_wait_signal);
if (t->Struct.polymorphic_params) {
return &t->Struct.polymorphic_params->Tuple;
}
break;
case Type_Union:
wait_signal_until_available(&t->Union.polymorphic_wait_signal);
if (t->Union.polymorphic_params) {
return &t->Union.polymorphic_params->Tuple;
}
break;
}
return nullptr;
}
gb_internal bool is_type_polymorphic(Type *t, bool or_specialized=false) {
if (t == nullptr) {
return false;
}
if (t->flags & TypeFlag_InProcessOfCheckingPolymorphic) {
return false;
}
switch (t->kind) {
case Type_Generic:
return true;
case Type_Named:
{
u32 flags = t->flags;
t->flags |= TypeFlag_InProcessOfCheckingPolymorphic;
bool ok = is_type_polymorphic(t->Named.base, or_specialized);
t->flags = flags;
return ok;
}
case Type_Pointer:
return is_type_polymorphic(t->Pointer.elem, or_specialized);
case Type_MultiPointer:
return is_type_polymorphic(t->MultiPointer.elem, or_specialized);
case Type_SoaPointer:
return is_type_polymorphic(t->SoaPointer.elem, or_specialized);
case Type_EnumeratedArray:
if (is_type_polymorphic(t->EnumeratedArray.index, or_specialized)) {
return true;
}
return is_type_polymorphic(t->EnumeratedArray.elem, or_specialized);
case Type_Array:
if (t->Array.generic_count != nullptr) {
return true;
}
return is_type_polymorphic(t->Array.elem, or_specialized);
case Type_SimdVector:
if (t->SimdVector.generic_count != nullptr) {
return true;
}
return is_type_polymorphic(t->SimdVector.elem, or_specialized);
case Type_DynamicArray:
return is_type_polymorphic(t->DynamicArray.elem, or_specialized);
case Type_Slice:
return is_type_polymorphic(t->Slice.elem, or_specialized);
case Type_Matrix:
if (t->Matrix.generic_row_count != nullptr) {
return true;
}
if (t->Matrix.generic_column_count != nullptr) {
return true;
}
return is_type_polymorphic(t->Matrix.elem, or_specialized);
case Type_Tuple:
for (Entity *e : t->Tuple.variables) {
if (e->kind == Entity_Constant) {
if (e->Constant.value.kind != ExactValue_Invalid) {
return or_specialized;
}
} else if (is_type_polymorphic(e->type, or_specialized)) {
return true;
}
}
break;
case Type_Proc:
if (t->Proc.is_polymorphic) {
return true;
}
if (t->Proc.param_count > 0 &&
is_type_polymorphic(t->Proc.params, or_specialized)) {
return true;
}
if (t->Proc.result_count > 0 &&
is_type_polymorphic(t->Proc.results, or_specialized)) {
return true;
}
break;
case Type_Enum:
if (t->kind == Type_Enum) {
if (t->Enum.base_type != nullptr) {
return is_type_polymorphic(t->Enum.base_type, or_specialized);
}
return false;
}
break;
case Type_Union:
if (t->Union.is_polymorphic) {
return true;
}
if (or_specialized && t->Union.is_poly_specialized) {
return true;
}
// for_array(i, t->Union.variants) {
// if (is_type_polymorphic(t->Union.variants[i], or_specialized)) {
// return true;
// }
// }
break;
case Type_Struct:
if (t->Struct.is_polymorphic) {
return true;
}
if (or_specialized && t->Struct.is_poly_specialized) {
return true;
}
break;
case Type_Map:
if (t->Map.key == nullptr || t->Map.value == nullptr) {
return false;
}
if (is_type_polymorphic(t->Map.key, or_specialized)) {
return true;
}
if (is_type_polymorphic(t->Map.value, or_specialized)) {
return true;
}
break;
case Type_BitSet:
if (is_type_polymorphic(t->BitSet.elem, or_specialized)) {
return true;
}
if (t->BitSet.underlying != nullptr &&
is_type_polymorphic(t->BitSet.underlying, or_specialized)) {
return true;
}
break;
}
return false;
}
gb_internal bool type_has_nil(Type *t) {
t = base_type(t);
switch (t->kind) {
case Type_Basic: {
switch (t->Basic.kind) {
case Basic_rawptr:
case Basic_any:
return true;
case Basic_cstring:
case Basic_cstring16:
return true;
case Basic_typeid:
return true;
}
return false;
} break;
case Type_Enum:
case Type_BitSet:
return true;
case Type_Slice:
case Type_Proc:
case Type_Pointer:
case Type_SoaPointer:
case Type_MultiPointer:
case Type_DynamicArray:
case Type_Map:
return true;
case Type_Union:
return t->Union.kind != UnionType_no_nil;
case Type_Struct:
if (is_type_soa_struct(t)) {
switch (t->Struct.soa_kind) {
case StructSoa_Fixed: return false;
case StructSoa_Slice: return true;
case StructSoa_Dynamic: return true;
}
}
return false;
}
return false;
}
gb_internal bool is_type_union_constantable(Type *type) {
Type *bt = base_type(type);
GB_ASSERT(bt->kind == Type_Union);
if (bt->Union.variants.count == 0) {
return true;
} else if (bt->Union.variants.count == 1) {
return is_type_constant_type(bt->Union.variants[0]);
}
for (Type *v : bt->Union.variants) {
if (!is_type_constant_type(v)) {
return false;
}
}
return true;
}
gb_internal bool is_type_raw_union_constantable(Type *type) {
Type *bt = base_type(type);
GB_ASSERT(bt->kind == Type_Struct);
GB_ASSERT(bt->Struct.is_raw_union);
for (Entity *f : bt->Struct.fields) {
if (!is_type_constant_type(f->type)) {
return false;
}
}
// return true;
return false; // Disable raw union constants for the time being
}
gb_internal bool elem_type_can_be_constant(Type *t) {
t = base_type(t);
if (t == t_invalid) {
return false;
}
if (is_type_any(t)) {
return false;
}
if (is_type_raw_union(t)) {
return is_type_raw_union_constantable(t);
}
if (is_type_union(t)) {
return is_type_union_constantable(t);
}
return true;
}
gb_internal bool elem_cannot_be_constant(Type *t) {
if (is_type_any(t)) {
return true;
}
if (is_type_union(t)) {
return !is_type_union_constantable(t);
}
if (is_type_raw_union(t)) {
return !is_type_raw_union_constantable(t);
}
return false;
}
gb_internal bool is_type_lock_free(Type *t) {
t = core_type(t);
if (t == t_invalid) {
return false;
}
i64 sz = type_size_of(t);
// TODO(bill): Figure this out correctly
return sz <= build_context.max_align;
}
gb_internal bool is_type_comparable(Type *t) {
t = base_type(t);
switch (t->kind) {
case Type_Basic:
switch (t->Basic.kind) {
case Basic_UntypedNil:
case Basic_any:
return false;
case Basic_rune:
return true;
case Basic_string:
case Basic_cstring:
case Basic_string16:
case Basic_cstring16:
return true;
case Basic_typeid:
return true;
}
return true;
case Type_Pointer:
return true;
case Type_SoaPointer:
return true;
case Type_MultiPointer:
return true;
case Type_Enum:
return is_type_comparable(core_type(t));
case Type_EnumeratedArray:
return is_type_comparable(t->EnumeratedArray.elem);
case Type_Array:
return is_type_comparable(t->Array.elem);
case Type_Proc:
return true;
case Type_Matrix:
return is_type_comparable(t->Matrix.elem);
case Type_BitSet:
return true;
case Type_Struct:
if (t->Struct.soa_kind != StructSoa_None) {
return false;
}
if (t->Struct.is_raw_union) {
return is_type_simple_compare(t);
}
for_array(i, t->Struct.fields) {
Entity *f = t->Struct.fields[i];
if (!is_type_comparable(f->type)) {
return false;
}
}
return true;
case Type_Union:
for_array(i, t->Union.variants) {
Type *v = t->Union.variants[i];
if (!is_type_comparable(v)) {
return false;
}
}
return true;
case Type_SimdVector:
return true;
case Type_BitField:
return is_type_comparable(t->BitField.backing_type);
}
return false;
}
// NOTE(bill): type can be easily compared using memcmp
gb_internal bool is_type_simple_compare(Type *t) {
t = core_type(t);
switch (t->kind) {
case Type_Array:
return is_type_simple_compare(t->Array.elem);
case Type_EnumeratedArray:
return is_type_simple_compare(t->EnumeratedArray.elem);
case Type_Basic:
if (t->Basic.flags & BasicFlag_SimpleCompare) {
return true;
}
if (t->Basic.kind == Basic_typeid) {
return true;
}
return false;
case Type_Pointer:
case Type_MultiPointer:
case Type_SoaPointer:
case Type_Proc:
case Type_BitSet:
return true;
case Type_Matrix:
return is_type_simple_compare(t->Matrix.elem);
case Type_Struct:
for_array(i, t->Struct.fields) {
Entity *f = t->Struct.fields[i];
if (!is_type_simple_compare(f->type)) {
return false;
}
}
return true;
case Type_Union:
for_array(i, t->Union.variants) {
Type *v = t->Union.variants[i];
if (!is_type_simple_compare(v)) {
return false;
}
}
// make it dumb on purpose
return t->Union.variants.count == 1;
case Type_SimdVector:
return is_type_simple_compare(t->SimdVector.elem);
}
return false;
}
// NOTE(bill): type can be easily compared using memcmp or contains a float
gb_internal bool is_type_nearly_simple_compare(Type *t) {
t = core_type(t);
switch (t->kind) {
case Type_Array:
return is_type_nearly_simple_compare(t->Array.elem);
case Type_EnumeratedArray:
return is_type_nearly_simple_compare(t->EnumeratedArray.elem);
case Type_Basic:
if (t->Basic.flags & (BasicFlag_SimpleCompare|BasicFlag_Numeric)) {
return true;
}
if (t->Basic.kind == Basic_typeid) {
return true;
}
return false;
case Type_Pointer:
case Type_MultiPointer:
case Type_SoaPointer:
case Type_Proc:
case Type_BitSet:
return true;
case Type_Matrix:
return is_type_nearly_simple_compare(t->Matrix.elem);
case Type_Struct:
for_array(i, t->Struct.fields) {
Entity *f = t->Struct.fields[i];
if (!is_type_nearly_simple_compare(f->type)) {
return false;
}
}
return true;
case Type_Union:
for_array(i, t->Union.variants) {
Type *v = t->Union.variants[i];
if (!is_type_nearly_simple_compare(v)) {
return false;
}
}
// make it dumb on purpose
return t->Union.variants.count == 1;
case Type_SimdVector:
return is_type_nearly_simple_compare(t->SimdVector.elem);
}
return false;
}
gb_internal bool is_type_load_safe(Type *type) {
GB_ASSERT(type != nullptr);
type = core_type(core_array_type(type));
switch (type->kind) {
case Type_Basic:
return (type->Basic.flags & (BasicFlag_Boolean|BasicFlag_Numeric|BasicFlag_Rune)) != 0;
case Type_BitSet:
if (type->BitSet.underlying) {
return is_type_load_safe(type->BitSet.underlying);
}
return true;
case Type_Pointer:
case Type_MultiPointer:
case Type_Slice:
case Type_DynamicArray:
case Type_Proc:
case Type_SoaPointer:
return false;
case Type_Enum:
case Type_EnumeratedArray:
case Type_Array:
case Type_SimdVector:
case Type_Matrix:
GB_PANIC("should never be hit");
return false;
case Type_Struct:
for_array(i, type->Struct.fields) {
if (!is_type_load_safe(type->Struct.fields[i]->type)) {
return false;
}
}
return type_size_of(type) > 0;
case Type_Union:
for_array(i, type->Union.variants) {
if (!is_type_load_safe(type->Union.variants[i])) {
return false;
}
}
return type_size_of(type) > 0;
}
return false;
}
gb_internal String lookup_subtype_polymorphic_field(Type *dst, Type *src) {
Type *prev_src = src;
// Type *prev_dst = dst;
src = base_type(type_deref(src));
// dst = base_type(type_deref(dst));
bool src_is_ptr = src != prev_src;
// bool dst_is_ptr = dst != prev_dst;
GB_ASSERT(is_type_struct(src) || is_type_union(src));
for_array(i, src->Struct.fields) {
Entity *f = src->Struct.fields[i];
if (f->kind == Entity_Variable && f->flags & EntityFlags_IsSubtype) {
if (are_types_identical(dst, f->type)) {
return f->token.string;
}
if (src_is_ptr && is_type_pointer(dst)) {
if (are_types_identical(type_deref(dst), f->type)) {
return f->token.string;
}
}
if ((f->flags & EntityFlag_Using) != 0 && is_type_struct(f->type)) {
String name = lookup_subtype_polymorphic_field(dst, f->type);
if (name.len > 0) {
return name;
}
}
}
}
return str_lit("");
}
gb_internal bool lookup_subtype_polymorphic_selection(Type *dst, Type *src, Selection *sel) {
Type *prev_src = src;
// Type *prev_dst = dst;
src = base_type(type_deref(src));
// dst = base_type(type_deref(dst));
bool src_is_ptr = src != prev_src;
// bool dst_is_ptr = dst != prev_dst;
GB_ASSERT(is_type_struct(src) || is_type_union(src));
for_array(i, src->Struct.fields) {
Entity *f = src->Struct.fields[i];
if (f->kind == Entity_Variable && f->flags & EntityFlags_IsSubtype) {
if (are_types_identical(dst, f->type)) {
array_add(&sel->index, cast(i32)i);
sel->entity = f;
return true;
}
if (src_is_ptr && is_type_pointer(dst)) {
if (are_types_identical(type_deref(dst), f->type)) {
array_add(&sel->index, cast(i32)i);
sel->indirect = true;
sel->entity = f;
return true;
}
}
if ((f->flags & EntityFlag_Using) != 0 && is_type_struct(f->type)) {
String name = lookup_subtype_polymorphic_field(dst, f->type);
if (name.len > 0) {
array_add(&sel->index, cast(i32)i);
return lookup_subtype_polymorphic_selection(dst, f->type, sel);
}
}
}
}
return false;
}
gb_internal bool are_types_identical_internal(Type *x, Type *y, bool check_tuple_names);
gb_internal bool are_types_identical(Type *x, Type *y) {
if (x == y) {
return true;
}
if ((x == nullptr && y != nullptr) ||
(x != nullptr && y == nullptr)) {
return false;
}
if (x->kind == Type_Named) {
Entity *e = x->Named.type_name;
if (e->TypeName.is_type_alias) {
x = x->Named.base;
}
}
if (y->kind == Type_Named) {
Entity *e = y->Named.type_name;
if (e->TypeName.is_type_alias) {
y = y->Named.base;
}
}
if (x == nullptr || y == nullptr || x->kind != y->kind) {
return false;
}
// MUTEX_GUARD(&g_type_mutex);
return are_types_identical_internal(x, y, false);
}
gb_internal bool are_types_identical_unique_tuples(Type *x, Type *y) {
if (x == y) {
return true;
}
if (!x | !y) {
return false;
}
if (x->kind == Type_Named) {
Entity *e = x->Named.type_name;
if (e->TypeName.is_type_alias) {
x = x->Named.base;
}
}
if (y->kind == Type_Named) {
Entity *e = y->Named.type_name;
if (e->TypeName.is_type_alias) {
y = y->Named.base;
}
}
if (x->kind != y->kind) {
return false;
}
// MUTEX_GUARD(&g_type_mutex);
return are_types_identical_internal(x, y, true);
}
gb_internal bool are_types_identical_internal(Type *x, Type *y, bool check_tuple_names) {
if (x == y) {
return true;
}
if (!x | !y) {
return false;
}
#if 0
if (x->kind == Type_Named) {
Entity *e = x->Named.type_name;
if (e->TypeName.is_type_alias) {
x = x->Named.base;
}
}
if (y->kind == Type_Named) {
Entity *e = y->Named.type_name;
if (e->TypeName.is_type_alias) {
y = y->Named.base;
}
}
if (x->kind != y->kind) {
return false;
}
#endif
switch (x->kind) {
case Type_Generic:
return are_types_identical(x->Generic.specialized, y->Generic.specialized);
case Type_Basic:
return x->Basic.kind == y->Basic.kind;
case Type_EnumeratedArray:
return are_types_identical(x->EnumeratedArray.index, y->EnumeratedArray.index) &&
are_types_identical(x->EnumeratedArray.elem, y->EnumeratedArray.elem);
case Type_Array:
return (x->Array.count == y->Array.count) && are_types_identical(x->Array.elem, y->Array.elem);
case Type_Matrix:
return x->Matrix.row_count == y->Matrix.row_count &&
x->Matrix.column_count == y->Matrix.column_count &&
x->Matrix.is_row_major == y->Matrix.is_row_major &&
are_types_identical(x->Matrix.elem, y->Matrix.elem);
case Type_DynamicArray:
return are_types_identical(x->DynamicArray.elem, y->DynamicArray.elem);
case Type_Slice:
return are_types_identical(x->Slice.elem, y->Slice.elem);
case Type_BitSet:
if (are_types_identical(x->BitSet.elem, y->BitSet.elem) &&
are_types_identical(x->BitSet.underlying, y->BitSet.underlying)) {
if (is_type_enum(x->BitSet.elem)) {
return true;
}
return x->BitSet.lower == y->BitSet.lower && x->BitSet.upper == y->BitSet.upper;
}
return false;
case Type_Enum:
if (x == y) {
return true;
}
if (x->Enum.fields.count != y->Enum.fields.count) {
return false;
}
if (!are_types_identical(x->Enum.base_type, y->Enum.base_type)) {
return false;
}
if (x->Enum.min_value_index != y->Enum.min_value_index) {
return false;
}
if (x->Enum.max_value_index != y->Enum.max_value_index) {
return false;
}
for (isize i = 0; i < x->Enum.fields.count; i++) {
Entity *a = x->Enum.fields[i];
Entity *b = y->Enum.fields[i];
if (a->token.string != b->token.string) {
return false;
}
GB_ASSERT(a->kind == b->kind);
GB_ASSERT(a->kind == Entity_Constant);
bool same = compare_exact_values(Token_CmpEq, a->Constant.value, b->Constant.value);
if (!same) {
return false;
}
}
return true;
case Type_Union:
if (x->Union.variants.count == y->Union.variants.count &&
x->Union.kind == y->Union.kind) {
if (x->Union.custom_align != y->Union.custom_align) {
if (type_align_of(x) != type_align_of(y)) {
return false;
}
}
// NOTE(bill): zeroth variant is nullptr
for_array(i, x->Union.variants) {
if (!are_types_identical(x->Union.variants[i], y->Union.variants[i])) {
return false;
}
}
return true;
}
break;
case Type_Struct:
if (x->Struct.is_raw_union == y->Struct.is_raw_union &&
x->Struct.fields.count == y->Struct.fields.count &&
x->Struct.is_packed == y->Struct.is_packed &&
x->Struct.is_all_or_none == y->Struct.is_all_or_none &&
x->Struct.soa_kind == y->Struct.soa_kind &&
x->Struct.soa_count == y->Struct.soa_count &&
are_types_identical(x->Struct.soa_elem, y->Struct.soa_elem)) {
if (x->Struct.custom_align != y->Struct.custom_align) {
if (type_align_of(x) != type_align_of(y)) {
return false;
}
}
for_array(i, x->Struct.fields) {
Entity *xf = x->Struct.fields[i];
Entity *yf = y->Struct.fields[i];
if (xf->kind != yf->kind) {
return false;
}
if (!are_types_identical(xf->type, yf->type)) {
return false;
}
if (xf->token.string != yf->token.string) {
return false;
}
if (x->Struct.tags[i] != y->Struct.tags[i]) {
return false;
}
u64 xf_flags = (xf->flags&EntityFlags_IsSubtype);
u64 yf_flags = (yf->flags&EntityFlags_IsSubtype);
if (xf_flags != yf_flags) {
return false;
}
}
// TODO(bill): Which is the correct logic here?
// return are_types_identical(x->Struct.polymorphic_params, y->Struct.polymorphic_params);
return true;
}
break;
case Type_Pointer:
return are_types_identical(x->Pointer.elem, y->Pointer.elem);
case Type_MultiPointer:
return are_types_identical(x->MultiPointer.elem, y->MultiPointer.elem);
case Type_SoaPointer:
return are_types_identical(x->SoaPointer.elem, y->SoaPointer.elem);
case Type_Named:
return x->Named.type_name == y->Named.type_name;
case Type_Tuple:
if (x->Tuple.variables.count == y->Tuple.variables.count &&
x->Tuple.is_packed == y->Tuple.is_packed) {
for_array(i, x->Tuple.variables) {
Entity *xe = x->Tuple.variables[i];
Entity *ye = y->Tuple.variables[i];
if (xe->kind != ye->kind || !are_types_identical(xe->type, ye->type)) {
return false;
}
if (check_tuple_names) {
if (xe->token.string != ye->token.string) {
return false;
}
}
if (xe->kind == Entity_Constant && !compare_exact_values(Token_CmpEq, xe->Constant.value, ye->Constant.value)) {
// NOTE(bill): This is needed for polymorphic procedures
return false;
}
}
return true;
}
break;
case Type_Proc:
return x->Proc.calling_convention == y->Proc.calling_convention &&
x->Proc.c_vararg == y->Proc.c_vararg &&
x->Proc.variadic == y->Proc.variadic &&
x->Proc.diverging == y->Proc.diverging &&
x->Proc.optional_ok == y->Proc.optional_ok &&
are_types_identical_internal(x->Proc.params, y->Proc.params, check_tuple_names) &&
are_types_identical_internal(x->Proc.results, y->Proc.results, check_tuple_names);
case Type_Map:
return are_types_identical(x->Map.key, y->Map.key) &&
are_types_identical(x->Map.value, y->Map.value);
case Type_SimdVector:
if (x->SimdVector.count == y->SimdVector.count) {
return are_types_identical(x->SimdVector.elem, y->SimdVector.elem);
}
break;
case Type_BitField:
if (are_types_identical(x->BitField.backing_type, y->BitField.backing_type) &&
x->BitField.fields.count == y->BitField.fields.count) {
for_array(i, x->BitField.fields) {
Entity *a = x->BitField.fields[i];
Entity *b = y->BitField.fields[i];
if (!are_types_identical(a->type, b->type)) {
return false;
}
if (a->token.string != b->token.string) {
return false;
}
if (x->BitField.bit_sizes[i] != y->BitField.bit_sizes[i]) {
return false;
}
if (x->BitField.bit_offsets[i] != y->BitField.bit_offsets[i]) {
return false;
}
}
return true;
}
break;
}
return false;
}
gb_internal Type *default_type(Type *type) {
if (type == nullptr) {
return t_invalid;
}
if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_UntypedBool: return t_bool;
case Basic_UntypedInteger: return t_int;
case Basic_UntypedFloat: return t_f64;
case Basic_UntypedComplex: return t_complex128;
case Basic_UntypedQuaternion: return t_quaternion256;
case Basic_UntypedString: return t_string;
case Basic_UntypedRune: return t_rune;
}
} else if (type->kind == Type_Generic) {
if (type->Generic.specialized) {
return default_type(type->Generic.specialized);
}
}
return type;
}
// See https://en.cppreference.com/w/c/language/conversion#Default_argument_promotions
gb_internal Type *c_vararg_promote_type(Type *type) {
GB_ASSERT(type != nullptr);
Type *core = core_type(type);
GB_ASSERT(core->kind != Type_BitSet);
if (core->kind == Type_Basic) {
switch (core->Basic.kind) {
case Basic_f16:
case Basic_f32:
case Basic_UntypedFloat:
return t_f64;
case Basic_f16le:
case Basic_f32le:
return t_f64le;
case Basic_f16be:
case Basic_f32be:
return t_f64be;
case Basic_UntypedBool:
case Basic_bool:
case Basic_b8:
case Basic_b16:
case Basic_i8:
case Basic_i16:
case Basic_u8:
case Basic_u16:
return t_i32;
case Basic_i16le:
case Basic_u16le:
return t_i32le;
case Basic_i16be:
case Basic_u16be:
return t_i32be;
}
}
return type;
}
gb_internal bool union_variant_index_types_equal(Type *v, Type *vt) {
if (are_types_identical(v, vt)) {
return true;
}
if (is_type_proc(v) && is_type_proc(vt)) {
return are_types_identical(base_type(v), base_type(vt));
}
return false;
}
gb_internal i64 union_variant_index(Type *u, Type *v) {
u = base_type(u);
GB_ASSERT(u->kind == Type_Union);
for_array(i, u->Union.variants) {
Type *vt = u->Union.variants[i];
if (union_variant_index_types_equal(v, vt)) {
if (u->Union.kind == UnionType_no_nil) {
return cast(i64)(i+0);
} else {
return cast(i64)(i+1);
}
}
}
return 0;
}
gb_internal i64 union_tag_size(Type *u) {
u = base_type(u);
GB_ASSERT(u->kind == Type_Union);
if (u->Union.tag_size > 0) {
return u->Union.tag_size;
}
u64 n = cast(u64)u->Union.variants.count;
if (n == 0) {
return 0;
}
i64 max_align = 1;
if (u->Union.variants.count < 1ull<<8) {
max_align = 1;
} else if (u->Union.variants.count < 1ull<<16) {
max_align = 2;
} else if (u->Union.variants.count < 1ull<<32) {
max_align = 4;
} else {
compiler_error("how many variants do you have?! %lld", cast(long long)u->Union.variants.count);
}
if (u->Union.custom_align > 0) {
max_align = gb_max(max_align, u->Union.custom_align);
} else {
for_array(i, u->Union.variants) {
Type *variant_type = u->Union.variants[i];
i64 align = type_align_of(variant_type);
if (max_align < align) {
max_align = align;
}
}
}
u->Union.tag_size = cast(i16)gb_min3(max_align, build_context.max_align, 8);
return u->Union.tag_size;
}
gb_internal Type *union_tag_type(Type *u) {
i64 s = union_tag_size(u);
switch (s) {
case 0: return t_u8;
case 1: return t_u8;
case 2: return t_u16;
case 4: return t_u32;
case 8: return t_u64;
}
GB_PANIC("Invalid union_tag_size");
return t_uint;
}
gb_internal int matched_target_features(TypeProc *t) {
if (t->require_target_feature.len == 0) {
return 0;
}
int matches = 0;
String_Iterator it = {t->require_target_feature, 0};
for (;;) {
String str = string_split_iterator(&it, ',');
if (str == "") break;
if (check_target_feature_is_valid_for_target_arch(str, nullptr)) {
matches += 1;
}
}
return matches;
}
enum ProcTypeOverloadKind {
ProcOverload_Identical, // The types are identical
ProcOverload_CallingConvention,
ProcOverload_ParamCount,
ProcOverload_ParamVariadic,
ProcOverload_ParamTypes,
ProcOverload_ResultCount,
ProcOverload_ResultTypes,
ProcOverload_Polymorphic,
ProcOverload_TargetFeatures,
ProcOverload_NotProcedure,
};
gb_internal ProcTypeOverloadKind are_proc_types_overload_safe(Type *x, Type *y) {
if (x == nullptr && y == nullptr) return ProcOverload_NotProcedure;
if (x == nullptr && y != nullptr) return ProcOverload_NotProcedure;
if (x != nullptr && y == nullptr) return ProcOverload_NotProcedure;
if (!is_type_proc(x)) return ProcOverload_NotProcedure;
if (!is_type_proc(y)) return ProcOverload_NotProcedure;
TypeProc px = base_type(x)->Proc;
TypeProc py = base_type(y)->Proc;
// if (px.calling_convention != py.calling_convention) {
// return ProcOverload_CallingConvention;
// }
// if (px.is_polymorphic != py.is_polymorphic) {
// return ProcOverload_Polymorphic;
// }
if (px.param_count != py.param_count) {
return ProcOverload_ParamCount;
}
for (isize i = 0; i < px.param_count; i++) {
Entity *ex = px.params->Tuple.variables[i];
Entity *ey = py.params->Tuple.variables[i];
if (!are_types_identical(ex->type, ey->type)) {
return ProcOverload_ParamTypes;
}
}
// IMPORTANT TODO(bill): Determine the rules for overloading procedures with variadic parameters
if (px.variadic != py.variadic) {
return ProcOverload_ParamVariadic;
}
if (px.is_polymorphic != py.is_polymorphic) {
return ProcOverload_Polymorphic;
}
if (px.result_count != py.result_count) {
return ProcOverload_ResultCount;
}
for (isize i = 0; i < px.result_count; i++) {
Entity *ex = px.results->Tuple.variables[i];
Entity *ey = py.results->Tuple.variables[i];
if (!are_types_identical(ex->type, ey->type)) {
return ProcOverload_ResultTypes;
}
}
if (matched_target_features(&px) != matched_target_features(&py)) {
return ProcOverload_TargetFeatures;
}
if (px.params != nullptr && py.params != nullptr) {
Entity *ex = px.params->Tuple.variables[0];
Entity *ey = py.params->Tuple.variables[0];
bool ok = are_types_identical(ex->type, ey->type);
if (ok) {
}
}
return ProcOverload_Identical;
}
gb_internal Selection lookup_field_with_selection(Type *type_, String field_name, bool is_type, Selection sel, bool allow_blank_ident=false);
gb_internal Selection lookup_field(Type *type_, String field_name, bool is_type, bool allow_blank_ident=false) {
return lookup_field_with_selection(type_, field_name, is_type, empty_selection, allow_blank_ident);
}
gb_internal Selection lookup_field_from_index(Type *type, i64 index) {
GB_ASSERT(is_type_struct(type) || is_type_union(type) || is_type_tuple(type));
type = base_type(type);
gbAllocator a = permanent_allocator();
isize max_count = 0;
switch (type->kind) {
case Type_Struct:
wait_signal_until_available(&type->Struct.fields_wait_signal);
max_count = type->Struct.fields.count;
break;
case Type_Tuple: max_count = type->Tuple.variables.count; break;
}
if (index >= max_count) {
return empty_selection;
}
switch (type->kind) {
case Type_Struct: {
wait_signal_until_available(&type->Struct.fields_wait_signal);
for (isize i = 0; i < max_count; i++) {
Entity *f = type->Struct.fields[i];
if (f->kind == Entity_Variable) {
if (f->Variable.field_index == index) {
auto sel_array = array_make<i32>(a, 1);
sel_array[0] = cast(i32)i;
return make_selection(f, sel_array, false);
}
}
}
} break;
case Type_Tuple:
for (isize i = 0; i < max_count; i++) {
Entity *f = type->Tuple.variables[i];
if (i == index) {
auto sel_array = array_make<i32>(a, 1);
sel_array[0] = cast(i32)i;
return make_selection(f, sel_array, false);
}
}
break;
}
GB_PANIC("Illegal index");
return empty_selection;
}
gb_internal Entity *scope_lookup_current(Scope *s, String const &name);
gb_internal bool has_type_got_objc_class_attribute(Type *t);
gb_internal Selection lookup_field_with_selection(Type *type_, String field_name, bool is_type, Selection sel, bool allow_blank_ident) {
GB_ASSERT(type_ != nullptr);
if (!allow_blank_ident && is_blank_ident(field_name)) {
return empty_selection;
}
Type *type = type_deref(type_);
bool is_ptr = type != type_;
sel.indirect = sel.indirect || is_ptr;
Type *original_type = type;
type = base_type(type);
if (is_type) {
if (has_type_got_objc_class_attribute(original_type) && original_type->kind == Type_Named) {
Entity *e = original_type->Named.type_name;
GB_ASSERT(e->kind == Entity_TypeName);
if (e->TypeName.objc_metadata) {
auto *md = e->TypeName.objc_metadata;
mutex_lock(md->mutex);
defer (mutex_unlock(md->mutex));
for (TypeNameObjCMetadataEntry const &entry : md->type_entries) {
GB_ASSERT(entry.entity->kind == Entity_Procedure || entry.entity->kind == Entity_ProcGroup);
if (entry.name == field_name) {
sel.entity = entry.entity;
sel.pseudo_field = true;
return sel;
}
}
}
if (type->kind == Type_Struct) {
// wait_signal_until_available(&type->Struct.fields_wait_signal);
isize field_count = type->Struct.fields.count;
if (field_count != 0) for_array(i, type->Struct.fields) {
Entity *f = type->Struct.fields[i];
if (f->flags&EntityFlag_Using) {
sel = lookup_field_with_selection(f->type, field_name, is_type, sel, allow_blank_ident);
if (sel.entity) {
return sel;
}
}
}
}
}
if (is_type_enum(type)) {
// NOTE(bill): These may not have been added yet, so check in case
for_array(i, type->Enum.fields) {
Entity *f = type->Enum.fields[i];
GB_ASSERT(f->kind == Entity_Constant);
String str = f->token.string;
if (field_name == str) {
sel.entity = f;
// selection_add_index(&sel, i);
return sel;
}
}
}
if (type->kind == Type_Struct) {
// wait_signal_until_available(&type->Struct.fields_wait_signal);
Scope *s = type->Struct.scope;
if (s != nullptr) {
Entity *found = scope_lookup_current(s, field_name);
if (found != nullptr && found->kind != Entity_Variable) {
sel.entity = found;
return sel;
}
}
} else if (type->kind == Type_Union) {
Scope *s = type->Union.scope;
if (s != nullptr) {
Entity *found = scope_lookup_current(s, field_name);
if (found != nullptr && found->kind != Entity_Variable) {
sel.entity = found;
return sel;
}
}
} else if (type->kind == Type_BitSet) {
return lookup_field_with_selection(type->BitSet.elem, field_name, true, sel, allow_blank_ident);
}
if (type->kind == Type_Generic && type->Generic.specialized != nullptr) {
Type *specialized = type->Generic.specialized;
return lookup_field_with_selection(specialized, field_name, is_type, sel, allow_blank_ident);
}
} else if (type->kind == Type_Union) {
} else if (type->kind == Type_Struct) {
if (has_type_got_objc_class_attribute(original_type) && original_type->kind == Type_Named) {
Entity *e = original_type->Named.type_name;
GB_ASSERT(e->kind == Entity_TypeName);
if (e->TypeName.objc_metadata) {
auto *md = e->TypeName.objc_metadata;
mutex_lock(md->mutex);
defer (mutex_unlock(md->mutex));
for (TypeNameObjCMetadataEntry const &entry : md->value_entries) {
GB_ASSERT(entry.entity->kind == Entity_Procedure || entry.entity->kind == Entity_ProcGroup);
if (entry.name == field_name) {
sel.entity = entry.entity;
sel.pseudo_field = true;
return sel;
}
}
}
Type *objc_ivar_type = e->TypeName.objc_ivar;
if (objc_ivar_type != nullptr) {
sel = lookup_field_with_selection(objc_ivar_type, field_name, false, sel, allow_blank_ident);
if (sel.entity != nullptr) {
sel.pseudo_field = true;
return sel;
}
}
}
if (is_type_polymorphic(type)) {
// NOTE(bill): A polymorphic struct has no fields, this only hits in the case of an error
return sel;
}
wait_signal_until_available(&type->Struct.fields_wait_signal);
isize field_count = type->Struct.fields.count;
if (field_count != 0) for_array(i, type->Struct.fields) {
Entity *f = type->Struct.fields[i];
if (f->kind != Entity_Variable || (f->flags & EntityFlag_Field) == 0) {
continue;
}
String str = f->token.string;
if (field_name == str) {
selection_add_index(&sel, i); // HACK(bill): Leaky memory
sel.entity = f;
return sel;
}
if (f->flags & EntityFlag_Using) {
isize prev_count = sel.index.count;
bool prev_indirect = sel.indirect;
selection_add_index(&sel, i); // HACK(bill): Leaky memory
sel = lookup_field_with_selection(f->type, field_name, is_type, sel, allow_blank_ident);
if (sel.entity != nullptr) {
if (is_type_pointer(f->type)) {
sel.indirect = true;
}
return sel;
}
sel.index.count = prev_count;
sel.indirect = prev_indirect;
}
}
bool is_soa = type->Struct.soa_kind != StructSoa_None;
bool is_soa_of_array = is_soa && is_type_array(type->Struct.soa_elem);
if (is_soa_of_array) {
String mapped_field_name = {};
if (field_name == "r") mapped_field_name = str_lit("x");
else if (field_name == "g") mapped_field_name = str_lit("y");
else if (field_name == "b") mapped_field_name = str_lit("z");
else if (field_name == "a") mapped_field_name = str_lit("w");
return lookup_field_with_selection(type, mapped_field_name, is_type, sel, allow_blank_ident);
}
} else if (type->kind == Type_BitField) {
for_array(i, type->BitField.fields) {
Entity *f = type->BitField.fields[i];
if (f->kind != Entity_Variable || (f->flags & EntityFlag_Field) == 0) {
continue;
}
String str = f->token.string;
if (field_name == str) {
selection_add_index(&sel, i); // HACK(bill): Leaky memory
sel.entity = f;
sel.is_bit_field = true;
return sel;
}
}
} else if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_any: {
#if 1
String data_str = str_lit("data");
String id_str = str_lit("id");
gb_local_persist Entity *entity__any_data = alloc_entity_field(nullptr, make_token_ident(data_str), t_rawptr, false, 0);
gb_local_persist Entity *entity__any_id = alloc_entity_field(nullptr, make_token_ident(id_str), t_typeid, false, 1);
if (field_name == data_str) {
selection_add_index(&sel, 0);
sel.entity = entity__any_data;
return sel;
} else if (field_name == id_str) {
selection_add_index(&sel, 1);
sel.entity = entity__any_id;
return sel;
}
#endif
} break;
case Basic_quaternion64: {
// @QuaternionLayout
gb_local_persist String w = str_lit("w");
gb_local_persist String x = str_lit("x");
gb_local_persist String y = str_lit("y");
gb_local_persist String z = str_lit("z");
gb_local_persist Entity *entity__w = alloc_entity_field(nullptr, make_token_ident(w), t_f16, false, 3);
gb_local_persist Entity *entity__x = alloc_entity_field(nullptr, make_token_ident(x), t_f16, false, 0);
gb_local_persist Entity *entity__y = alloc_entity_field(nullptr, make_token_ident(y), t_f16, false, 1);
gb_local_persist Entity *entity__z = alloc_entity_field(nullptr, make_token_ident(z), t_f16, false, 2);
if (field_name == w) {
selection_add_index(&sel, 3);
sel.entity = entity__w;
return sel;
} else if (field_name == x) {
selection_add_index(&sel, 0);
sel.entity = entity__x;
return sel;
} else if (field_name == y) {
selection_add_index(&sel, 1);
sel.entity = entity__y;
return sel;
} else if (field_name == z) {
selection_add_index(&sel, 2);
sel.entity = entity__z;
return sel;
}
} break;
case Basic_quaternion128: {
// @QuaternionLayout
gb_local_persist String w = str_lit("w");
gb_local_persist String x = str_lit("x");
gb_local_persist String y = str_lit("y");
gb_local_persist String z = str_lit("z");
gb_local_persist Entity *entity__w = alloc_entity_field(nullptr, make_token_ident(w), t_f32, false, 3);
gb_local_persist Entity *entity__x = alloc_entity_field(nullptr, make_token_ident(x), t_f32, false, 0);
gb_local_persist Entity *entity__y = alloc_entity_field(nullptr, make_token_ident(y), t_f32, false, 1);
gb_local_persist Entity *entity__z = alloc_entity_field(nullptr, make_token_ident(z), t_f32, false, 2);
if (field_name == w) {
selection_add_index(&sel, 3);
sel.entity = entity__w;
return sel;
} else if (field_name == x) {
selection_add_index(&sel, 0);
sel.entity = entity__x;
return sel;
} else if (field_name == y) {
selection_add_index(&sel, 1);
sel.entity = entity__y;
return sel;
} else if (field_name == z) {
selection_add_index(&sel, 2);
sel.entity = entity__z;
return sel;
}
} break;
case Basic_quaternion256: {
// @QuaternionLayout
gb_local_persist String w = str_lit("w");
gb_local_persist String x = str_lit("x");
gb_local_persist String y = str_lit("y");
gb_local_persist String z = str_lit("z");
gb_local_persist Entity *entity__w = alloc_entity_field(nullptr, make_token_ident(w), t_f64, false, 3);
gb_local_persist Entity *entity__x = alloc_entity_field(nullptr, make_token_ident(x), t_f64, false, 0);
gb_local_persist Entity *entity__y = alloc_entity_field(nullptr, make_token_ident(y), t_f64, false, 1);
gb_local_persist Entity *entity__z = alloc_entity_field(nullptr, make_token_ident(z), t_f64, false, 2);
if (field_name == w) {
selection_add_index(&sel, 3);
sel.entity = entity__w;
return sel;
} else if (field_name == x) {
selection_add_index(&sel, 0);
sel.entity = entity__x;
return sel;
} else if (field_name == y) {
selection_add_index(&sel, 1);
sel.entity = entity__y;
return sel;
} else if (field_name == z) {
selection_add_index(&sel, 2);
sel.entity = entity__z;
return sel;
}
} break;
case Basic_UntypedQuaternion: {
// @QuaternionLayout
gb_local_persist String w = str_lit("w");
gb_local_persist String x = str_lit("x");
gb_local_persist String y = str_lit("y");
gb_local_persist String z = str_lit("z");
gb_local_persist Entity *entity__w = alloc_entity_field(nullptr, make_token_ident(w), t_untyped_float, false, 3);
gb_local_persist Entity *entity__x = alloc_entity_field(nullptr, make_token_ident(x), t_untyped_float, false, 0);
gb_local_persist Entity *entity__y = alloc_entity_field(nullptr, make_token_ident(y), t_untyped_float, false, 1);
gb_local_persist Entity *entity__z = alloc_entity_field(nullptr, make_token_ident(z), t_untyped_float, false, 2);
if (field_name == w) {
selection_add_index(&sel, 3);
sel.entity = entity__w;
return sel;
} else if (field_name == x) {
selection_add_index(&sel, 0);
sel.entity = entity__x;
return sel;
} else if (field_name == y) {
selection_add_index(&sel, 1);
sel.entity = entity__y;
return sel;
} else if (field_name == z) {
selection_add_index(&sel, 2);
sel.entity = entity__z;
return sel;
}
} break;
}
return sel;
} else if (type->kind == Type_DynamicArray) {
GB_ASSERT(t_allocator != nullptr);
String allocator_str = str_lit("allocator");
gb_local_persist Entity *entity__allocator = alloc_entity_field(nullptr, make_token_ident(allocator_str), t_allocator, false, 3);
if (field_name == allocator_str) {
selection_add_index(&sel, 3);
sel.entity = entity__allocator;
return sel;
}
} else if (type->kind == Type_Map) {
GB_ASSERT(t_allocator != nullptr);
String allocator_str = str_lit("allocator");
gb_local_persist Entity *entity__allocator = alloc_entity_field(nullptr, make_token_ident(allocator_str), t_allocator, false, 2);
if (field_name == allocator_str) {
selection_add_index(&sel, 2);
sel.entity = entity__allocator;
return sel;
}
#define _ARRAY_FIELD_CASE_IF(_length, _name) \
if (field_name == (_name)) { \
selection_add_index(&sel, (_length)-1); \
sel.entity = alloc_entity_array_elem(nullptr, make_token_ident(str_lit(_name)), elem, (_length)-1); \
return sel; \
}
#define _ARRAY_FIELD_CASE(_length, _name0, _name1) \
case (_length): \
_ARRAY_FIELD_CASE_IF(_length, _name0); \
_ARRAY_FIELD_CASE_IF(_length, _name1); \
/*fallthrough*/
} else if (type->kind == Type_Array) {
Type *elem = type->Array.elem;
if (type->Array.count <= 4) {
// HACK(bill): Memory leak
switch (type->Array.count) {
_ARRAY_FIELD_CASE(4, "w", "a");
_ARRAY_FIELD_CASE(3, "z", "b");
_ARRAY_FIELD_CASE(2, "y", "g");
_ARRAY_FIELD_CASE(1, "x", "r");
default: break;
}
}
} else if (type->kind == Type_SimdVector) {
Type *elem = type->SimdVector.elem;
if (type->SimdVector.count <= 4) {
// HACK(bill): Memory leak
switch (type->SimdVector.count) {
_ARRAY_FIELD_CASE(4, "w", "a");
_ARRAY_FIELD_CASE(3, "z", "b");
_ARRAY_FIELD_CASE(2, "y", "g");
_ARRAY_FIELD_CASE(1, "x", "r");
default: break;
}
}
}
#undef _ARRAY_FIELD_CASE
#undef _ARRAY_FIELD_CASE
return sel;
}
gb_internal bool are_struct_fields_reordered(Type *type) {
type = base_type(type);
GB_ASSERT(type->kind == Type_Struct);
type_set_offsets(type);
if (type->Struct.fields.count == 0) {
return false;
}
GB_ASSERT(type->Struct.offsets != nullptr);
i64 prev_offset = 0;
for_array(i, type->Struct.fields) {
i64 offset = type->Struct.offsets[i];
if (prev_offset > offset) {
return true;
}
prev_offset = offset;
}
return false;
}
gb_internal Slice<i32> struct_fields_index_by_increasing_offset(gbAllocator allocator, Type *type) {
type = base_type(type);
GB_ASSERT(type->kind == Type_Struct);
type_set_offsets(type);
if (type->Struct.fields.count == 0) {
return {};
}
GB_ASSERT(type->Struct.offsets != nullptr);
auto indices = slice_make<i32>(allocator, type->Struct.fields.count);
i64 prev_offset = 0;
bool is_ordered = true;
for_array(i, indices) {
indices.data[i] = cast(i32)i;
i64 offset = type->Struct.offsets[i];
if (is_ordered && prev_offset > offset) {
is_ordered = false;
}
prev_offset = offset;
}
if (!is_ordered) {
isize n = indices.count;
for (isize i = 1; i < n; i++) {
isize j = i;
while (j > 0 && type->Struct.offsets[indices[j-1]] > type->Struct.offsets[indices[j]]) {
gb_swap(i32, indices[j-1], indices[j]);
j -= 1;
}
}
}
return indices;
}
gb_internal i64 type_size_of(Type *t);
gb_internal i64 type_align_of(Type *t);
gb_internal i64 type_size_of_struct_pretend_is_packed(Type *ot) {
if (ot == nullptr) {
return 0;
}
Type *t = core_type(ot);
if (t->kind != Type_Struct) {
return type_size_of(ot);
}
if (t->Struct.is_packed) {
return type_size_of(ot);
}
i64 count = 0, size = 0, align = 1;
auto const &fields = t->Struct.fields;
count = fields.count;
if (count == 0) {
return 0;
}
for_array(i, fields) {
size += type_size_of(fields[i]->type);
}
return align_formula(size, align);
}
gb_internal i64 type_size_of(Type *t) {
if (t == nullptr) {
return 0;
}
i64 size = -1;
if (t->kind == Type_Basic) {
GB_ASSERT_MSG(is_type_typed(t), "%s", type_to_string(t));
switch (t->Basic.kind) {
case Basic_string: size = 2*build_context.int_size; break;
case Basic_cstring: size = build_context.ptr_size; break;
case Basic_string16: size = 2*build_context.int_size; break;
case Basic_cstring16: size = build_context.ptr_size; break;
case Basic_any: size = 16; break;
case Basic_typeid: size = 8; break;
case Basic_int: case Basic_uint:
size = build_context.int_size;
break;
case Basic_uintptr: case Basic_rawptr:
size = build_context.ptr_size;
break;
default:
size = t->Basic.size;
break;
}
t->cached_size.store(size);
return size;
} else if (t->kind != Type_Named && t->cached_size >= 0) {
return t->cached_size.load();
} else {
TypePath path{};
type_path_init(&path);
{
// MUTEX_GUARD(&g_type_mutex);
size = type_size_of_internal(t, &path);
t->cached_size.store(size);
}
type_path_free(&path);
return size;
}
}
gb_internal i64 type_align_of(Type *t) {
if (t == nullptr) {
return 1;
}
if (t->kind != Type_Named && t->cached_align > 0) {
return t->cached_align.load();
}
TypePath path{};
type_path_init(&path);
{
// MUTEX_GUARD(&g_type_mutex);
t->cached_align.store(type_align_of_internal(t, &path));
}
type_path_free(&path);
return t->cached_align.load();
}
gb_internal i64 type_align_of_internal(Type *t, TypePath *path) {
GB_ASSERT(path != nullptr);
if (t->failure) {
return FAILURE_ALIGNMENT;
}
t = base_type(t);
switch (t->kind) {
case Type_Basic: {
GB_ASSERT(is_type_typed(t));
switch (t->Basic.kind) {
case Basic_string: return build_context.int_size;
case Basic_cstring: return build_context.ptr_size;
case Basic_string16: return build_context.int_size;
case Basic_cstring16: return build_context.ptr_size;
case Basic_any: return 8;
case Basic_typeid: return 8;
case Basic_int: case Basic_uint:
return build_context.int_size;
case Basic_uintptr: case Basic_rawptr:
return build_context.ptr_size;
case Basic_complex32: case Basic_complex64: case Basic_complex128:
return type_size_of_internal(t, path) / 2;
case Basic_quaternion64: case Basic_quaternion128: case Basic_quaternion256:
return type_size_of_internal(t, path) / 4;
}
} break;
case Type_Array: {
Type *elem = t->Array.elem;
bool pop = type_path_push(path, elem);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(elem, path);
if (pop) type_path_pop(path);
return align;
}
case Type_EnumeratedArray: {
Type *elem = t->EnumeratedArray.elem;
bool pop = type_path_push(path, elem);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(elem, path);
if (pop) type_path_pop(path);
return align;
}
case Type_DynamicArray:
// data, count, capacity, allocator
return build_context.int_size;
case Type_Slice:
return build_context.int_size;
case Type_BitField:
return type_align_of_internal(t->BitField.backing_type, path);
case Type_Tuple: {
i64 max = 1;
for_array(i, t->Tuple.variables) {
i64 align = type_align_of_internal(t->Tuple.variables[i]->type, path);
if (max < align) {
max = align;
}
}
return max;
} break;
case Type_Map:
return build_context.ptr_size;
case Type_Enum:
return type_align_of_internal(t->Enum.base_type, path);
case Type_Union: {
if (t->Union.variants.count == 0) {
return 1;
}
if (t->Union.custom_align > 0) {
return gb_max(t->Union.custom_align, 1);
}
i64 max = 1;
for_array(i, t->Union.variants) {
Type *variant = t->Union.variants[i];
bool pop = type_path_push(path, variant);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(variant, path);
if (pop) type_path_pop(path);
if (max < align) {
max = align;
}
}
return max;
} break;
case Type_Struct: {
if (t->Struct.custom_align > 0) {
return gb_max(t->Struct.custom_align, 1);
}
if (t->Struct.is_packed) {
return 1;
}
type_set_offsets(t);
i64 max = 1;
for_array(i, t->Struct.fields) {
Type *field_type = t->Struct.fields[i]->type;
bool pop = type_path_push(path, field_type);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 align = type_align_of_internal(field_type, path);
if (pop) type_path_pop(path);
if (max < align) {
max = align;
}
}
if (t->Struct.custom_min_field_align > 0) {
max = gb_max(max, t->Struct.custom_min_field_align);
}
if (t->Struct.custom_max_field_align != 0 &&
t->Struct.custom_max_field_align > t->Struct.custom_min_field_align) {
max = gb_min(max, t->Struct.custom_max_field_align);
}
return max;
} break;
case Type_BitSet: {
if (t->BitSet.underlying != nullptr) {
return type_align_of(t->BitSet.underlying);
}
i64 bits = t->BitSet.upper - t->BitSet.lower + 1;
if (bits <= 8) return 1;
if (bits <= 16) return 2;
if (bits <= 32) return 4;
if (bits <= 64) return 8;
if (bits <= 128) return 16;
return 8; // NOTE(bill): Could be an invalid range so limit it for now
}
case Type_SimdVector: {
// IMPORTANT TODO(bill): Figure out the alignment of vector types
return gb_clamp(next_pow2(type_size_of_internal(t, path)), 1, build_context.max_simd_align*2);
}
case Type_Matrix:
return matrix_align_of(t, path);
case Type_SoaPointer:
return build_context.int_size;
}
// NOTE(bill): Things that are bigger than build_context.ptr_size, are actually comprised of smaller types
// TODO(bill): Is this correct for 128-bit types (integers)?
return gb_clamp(next_pow2(type_size_of_internal(t, path)), 1, build_context.max_align);
}
gb_internal i64 *type_set_offsets_of(Slice<Entity *> const &fields, bool is_packed, bool is_raw_union, i64 min_field_align, i64 max_field_align) {
gbAllocator a = permanent_allocator();
auto offsets = gb_alloc_array(a, i64, fields.count);
i64 curr_offset = 0;
if (min_field_align == 0) {
min_field_align = 1;
}
TypePath path{};
type_path_init(&path);
defer (type_path_free(&path));
if (is_raw_union) {
for_array(i, fields) {
offsets[i] = 0;
}
} else if (is_packed) {
for_array(i, fields) {
if (fields[i]->kind != Entity_Variable) {
offsets[i] = -1;
} else {
i64 size = type_size_of_internal(fields[i]->type, &path);
offsets[i] = curr_offset;
curr_offset += size;
}
}
} else {
for_array(i, fields) {
if (fields[i]->kind != Entity_Variable) {
offsets[i] = -1;
} else {
Type *t = fields[i]->type;
i64 align = gb_max(type_align_of_internal(t, &path), min_field_align);
if (max_field_align > min_field_align) {
align = gb_min(align, max_field_align);
}
i64 size = gb_max(type_size_of_internal(t, &path), 0);
curr_offset = align_formula(curr_offset, align);
offsets[i] = curr_offset;
curr_offset += size;
}
}
}
return offsets;
}
gb_internal bool type_set_offsets(Type *t) {
t = base_type(t);
if (t->kind == Type_Struct) {
if (t->Struct.are_offsets_being_processed.load()) {
return true
}
MUTEX_GUARD(&t->Struct.offset_mutex);
if (!t->Struct.are_offsets_set) {
t->Struct.are_offsets_being_processed.store(true);
t->Struct.offsets = type_set_offsets_of(t->Struct.fields, t->Struct.is_packed, t->Struct.is_raw_union, t->Struct.custom_min_field_align, t->Struct.custom_max_field_align);
t->Struct.are_offsets_being_processed.store(false);
t->Struct.are_offsets_set = true;
return true;
}
} else if (is_type_tuple(t)) {
MUTEX_GUARD(&t->Tuple.mutex);
if (!t->Tuple.are_offsets_set) {
t->Tuple.are_offsets_being_processed.store(true);
t->Tuple.offsets = type_set_offsets_of(t->Tuple.variables, t->Tuple.is_packed, false, 1, 0);
t->Tuple.are_offsets_being_processed.store(false);
t->Tuple.are_offsets_set = true;
return true;
}
} else {
GB_PANIC("Invalid type for setting offsets");
}
return false;
}
gb_internal i64 type_size_of_internal(Type *t, TypePath *path) {
if (t->failure) {
return FAILURE_SIZE;
}
switch (t->kind) {
case Type_Named: {
bool pop = type_path_push(path, t);
if (path->failure) {
return FAILURE_ALIGNMENT;
}
i64 size = type_size_of_internal(t->Named.base, path);
if (pop) type_path_pop(path);
return size;
} break;
case Type_Basic: {
GB_ASSERT_MSG(is_type_typed(t), "%s", type_to_string(t));
BasicKind kind = t->Basic.kind;
i64 size = t->Basic.size;
if (size > 0) {
return size;
}
switch (kind) {
case Basic_string: return 2*build_context.int_size;
case Basic_cstring: return build_context.ptr_size;
case Basic_string16: return 2*build_context.int_size;
case Basic_cstring16: return build_context.ptr_size;
case Basic_any: return 16;
case Basic_typeid: return 8;
case Basic_int: case Basic_uint:
return build_context.int_size;
case Basic_uintptr: case Basic_rawptr:
return build_context.ptr_size;
}
} break;
case Type_Pointer:
return build_context.ptr_size;
case Type_MultiPointer:
return build_context.ptr_size;
case Type_SoaPointer:
return build_context.int_size*2;
case Type_Array: {
i64 count, align, size, alignment;
count = t->Array.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(t->Array.elem, path);
if (path->failure) {
return FAILURE_SIZE;
}
size = type_size_of_internal( t->Array.elem, path);
alignment = align_formula(size, align);
return alignment*(count-1) + size;
} break;
case Type_EnumeratedArray: {
i64 count, align, size, alignment;
count = t->EnumeratedArray.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(t->EnumeratedArray.elem, path);
if (path->failure) {
return FAILURE_SIZE;
}
size = type_size_of_internal( t->EnumeratedArray.elem, path);
alignment = align_formula(size, align);
return alignment*(count-1) + size;
} break;
case Type_Slice: // ptr + len
return 2 * build_context.int_size;
case Type_DynamicArray:
// data + len + cap + allocator(procedure+data)
return 3*build_context.int_size + 2*build_context.ptr_size;
case Type_Map:
/*
struct {
data: uintptr, // 1 word
size: uintptr, // 1 word
allocator: runtime.Allocator, // 2 words
}
*/
return (1 + 1 + 2)*build_context.ptr_size;
case Type_Tuple: {
i64 count, align, size;
count = t->Tuple.variables.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(t, path);
type_set_offsets(t);
size = t->Tuple.offsets[cast(isize)count-1] + type_size_of_internal(t->Tuple.variables[cast(isize)count-1]->type, path);
return align_formula(size, align);
} break;
case Type_Enum:
return type_size_of_internal(t->Enum.base_type, path);
case Type_Union: {
if (t->Union.variants.count == 0) {
return 0;
}
i64 align = type_align_of_internal(t, path);
if (path->failure) {
return FAILURE_SIZE;
}
i64 max = 0;
for_array(i, t->Union.variants) {
Type *variant_type = t->Union.variants[i];
i64 size = type_size_of_internal(variant_type, path);
if (max < size) {
max = size;
}
}
i64 size = 0;
if (is_type_union_maybe_pointer(t)) {
size = max;
t->Union.tag_size = 0;
t->Union.variant_block_size = size;
} else {
// NOTE(bill): Align to tag
i64 tag_size = union_tag_size(t);
size = align_formula(max, tag_size);
// NOTE(bill): Calculate the padding between the common fields and the tag
t->Union.tag_size = cast(i16)tag_size;
t->Union.variant_block_size = size;
size += tag_size;
}
return align_formula(size, align);
} break;
case Type_Struct: {
if (t->Struct.is_raw_union) {
i64 count = t->Struct.fields.count;
i64 align = type_align_of_internal(t, path);
if (path->failure) {
return FAILURE_SIZE;
}
i64 max = 0;
for (isize i = 0; i < count; i++) {
i64 size = type_size_of_internal(t->Struct.fields[i]->type, path);
if (max < size) {
max = size;
}
}
return align_formula(max, align);
} else {
i64 count = 0, size = 0, align = 0;
count = t->Struct.fields.count;
if (count == 0) {
return 0;
}
align = type_align_of_internal(t, path);
if (path->failure) {
return FAILURE_SIZE;
}
{
MUTEX_GUARD(&t->Struct.offset_mutex);
if (t->Struct.are_offsets_being_processed.load() && t->Struct.offsets == nullptr) {
type_path_print_illegal_cycle(path, path->path.count-1);
return FAILURE_SIZE;
}
}
type_set_offsets(t);
GB_ASSERT(t->Struct.fields.count == 0 || t->Struct.offsets != nullptr);
size = t->Struct.offsets[cast(isize)count-1] + type_size_of_internal(t->Struct.fields[cast(isize)count-1]->type, path);
return align_formula(size, align);
}
} break;
case Type_BitSet: {
if (t->BitSet.underlying != nullptr) {
return type_size_of(t->BitSet.underlying);
}
i64 bits = t->BitSet.upper - t->BitSet.lower + 1;
if (bits <= 8) return 1;
if (bits <= 16) return 2;
if (bits <= 32) return 4;
if (bits <= 64) return 8;
if (bits <= 128) return 16;
return 8; // NOTE(bill): Could be an invalid range so limit it for now
}
case Type_SimdVector: {
i64 count = t->SimdVector.count;
Type *elem = t->SimdVector.elem;
return count * type_size_of_internal(elem, path);
}
case Type_Matrix: {
i64 stride_in_bytes = matrix_type_stride_in_bytes(t, path);
if (t->Matrix.is_row_major) {
return stride_in_bytes * t->Matrix.row_count;
} else {
return stride_in_bytes * t->Matrix.column_count;
}
}
case Type_BitField:
return type_size_of_internal(t->BitField.backing_type, path);
}
// Catch all
return build_context.ptr_size;
}
gb_internal i64 type_offset_of(Type *t, i64 index, Type **field_type_) {
t = base_type(t);
switch (t->kind) {
case Type_Struct:
type_set_offsets(t);
if (gb_is_between(index, 0, t->Struct.fields.count-1)) {
GB_ASSERT(t->Struct.offsets != nullptr);
if (field_type_) *field_type_ = t->Struct.fields[index]->type;
return t->Struct.offsets[index];
}
break;
case Type_Tuple:
type_set_offsets(t);
if (gb_is_between(index, 0, t->Tuple.variables.count-1)) {
GB_ASSERT(t->Tuple.offsets != nullptr);
if (field_type_) *field_type_ = t->Tuple.variables[index]->type;
i64 offset = t->Tuple.offsets[index];
GB_ASSERT(offset >= 0);
return offset;
}
break;
case Type_Array:
GB_ASSERT(0 <= index && index < t->Array.count);
return index * type_size_of(t->Array.elem);
case Type_Basic:
if (t->Basic.kind == Basic_string) {
switch (index) {
case 0:
if (field_type_) *field_type_ = t_u8_ptr;
return 0; // data
case 1:
if (field_type_) *field_type_ = t_int;
return build_context.int_size; // len
}
} else if (t->Basic.kind == Basic_string16) {
switch (index) {
case 0:
if (field_type_) *field_type_ = t_u16_ptr;
return 0; // data
case 1:
if (field_type_) *field_type_ = t_int;
return build_context.int_size; // len
}
} else if (t->Basic.kind == Basic_any) {
switch (index) {
case 0:
if (field_type_) *field_type_ = t_rawptr;
return 0; // data
case 1:
if (field_type_) *field_type_ = t_typeid;
return 8; // id
default:
GB_PANIC("index > 1");
}
}
break;
case Type_Slice:
switch (index) {
case 0:
if (field_type_) *field_type_ = alloc_type_multi_pointer(t->Slice.elem);
return 0; // data
case 1:
if (field_type_) *field_type_ = t_int;
return 1*build_context.int_size; // len
}
break;
case Type_DynamicArray:
switch (index) {
case 0:
if (field_type_) *field_type_ = alloc_type_multi_pointer(t->DynamicArray.elem);
return 0; // data
case 1:
if (field_type_) *field_type_ = t_int;
return 1*build_context.int_size; // len
case 2:
if (field_type_) *field_type_ = t_int;
return 2*build_context.int_size; // cap
case 3:
if (field_type_) *field_type_ = t_allocator;
return 3*build_context.int_size; // allocator
}
break;
case Type_Union:
if (!is_type_union_maybe_pointer(t)) {
/* i64 s = */ type_size_of(t);
switch (index) {
case -1:
if (field_type_) *field_type_ = union_tag_type(t);
union_tag_size(t);
return t->Union.variant_block_size;
}
}
break;
}
GB_ASSERT(index == 0);
return 0;
}
gb_internal i64 type_offset_of_from_selection(Type *type, Selection sel) {
GB_ASSERT(sel.indirect == false);
Type *t = type;
i64 offset = 0;
for_array(i, sel.index) {
i32 index = sel.index[i];
t = base_type(t);
offset += type_offset_of(t, index);
if (t->kind == Type_Struct) {
t = t->Struct.fields[index]->type;
} else if (t->kind == Type_Array) {
t = t->Array.elem;
} else {
// NOTE(bill): No need to worry about custom types, just need the alignment
switch (t->kind) {
case Type_Basic:
if (t->Basic.kind == Basic_string) {
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
}
} else if (t->Basic.kind == Basic_string16) {
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
}
} else if (t->Basic.kind == Basic_any) {
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_typeid; break;
default: GB_PANIC("index > 1");
}
}
break;
case Type_Slice:
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
case 2: t = t_int; break;
}
break;
case Type_DynamicArray:
switch (index) {
case 0: t = t_rawptr; break;
case 1: t = t_int; break;
case 2: t = t_int; break;
case 3: t = t_allocator; break;
}
break;
}
}
}
return offset;
}
gb_internal isize check_is_assignable_to_using_subtype(Type *src, Type *dst, isize level = 0, bool src_is_ptr = false, bool allow_polymorphic=false) {
Type *prev_src = src;
src = type_deref(src);
if (!src_is_ptr) {
src_is_ptr = src != prev_src;
}
src = base_type(src);
if (!is_type_struct(src)) {
return 0;
}
bool dst_is_polymorphic = is_type_polymorphic(dst);
for_array(i, src->Struct.fields) {
Entity *f = src->Struct.fields[i];
if (f->kind != Entity_Variable || (f->flags&EntityFlags_IsSubtype) == 0) {
continue;
}
if (allow_polymorphic && dst_is_polymorphic) {
Type *fb = base_type(type_deref(f->type));
if (fb->kind == Type_Struct) {
if (fb->Struct.polymorphic_parent == dst) {
return true;
}
}
}
if (are_types_identical(f->type, dst)) {
return level+1;
}
if (src_is_ptr && is_type_pointer(dst)) {
if (are_types_identical(f->type, type_deref(dst))) {
return level+1;
}
}
isize nested_level = check_is_assignable_to_using_subtype(f->type, dst, level+1, src_is_ptr, allow_polymorphic);
if (nested_level > 0) {
return nested_level;
}
}
return 0;
}
gb_internal bool is_type_subtype_of(Type *src, Type *dst) {
if (are_types_identical(src, dst)) {
return true;
}
return 0 < check_is_assignable_to_using_subtype(src, dst, 0, is_type_pointer(src));
}
gb_internal bool is_type_subtype_of_and_allow_polymorphic(Type *src, Type *dst) {
if (are_types_identical(src, dst)) {
return true;
}
return 0 < check_is_assignable_to_using_subtype(src, dst, 0, is_type_pointer(src), true);
}
gb_internal bool has_type_got_objc_class_attribute(Type *t) {
return t->kind == Type_Named && t->Named.type_name != nullptr && t->Named.type_name->TypeName.objc_class_name != "";
}
gb_internal bool internal_check_is_assignable_to(Type *src, Type *dst);
gb_internal bool is_type_objc_object(Type *t) {
return internal_check_is_assignable_to(t, t_objc_object);
}
gb_internal bool is_type_objc_ptr_to_object(Type *t) {
// NOTE (harold): is_type_objc_object() returns true if it's a pointer to an object or the object itself.
// This returns true ONLY if Type is a shallow pointer to an Objective-C object.
Type *elem = type_deref(t);
return elem != t && elem->kind == Type_Named && is_type_objc_object(elem);
}
gb_internal Type *get_struct_field_type(Type *t, isize index) {
t = base_type(type_deref(t));
GB_ASSERT(t->kind == Type_Struct);
return t->Struct.fields[index]->type;
}
gb_internal Type *reduce_tuple_to_single_type(Type *original_type) {
if (original_type != nullptr) {
Type *t = core_type(original_type);
if (t->kind == Type_Tuple && t->Tuple.variables.count == 1) {
return t->Tuple.variables[0]->type;
}
}
return original_type;
}
gb_internal Type *alloc_type_tuple_from_field_types(Type **field_types, isize field_count, bool is_packed, bool must_be_tuple) {
if (field_count == 0) {
return nullptr;
}
if (!must_be_tuple && field_count == 1) {
return field_types[0];
}
Type *t = alloc_type_tuple();
t->Tuple.variables = slice_make<Entity *>(permanent_allocator(), field_count);
Scope *scope = nullptr;
for_array(i, t->Tuple.variables) {
t->Tuple.variables[i] = alloc_entity_param(scope, blank_token, field_types[i], false, false);
}
t->Tuple.is_packed = is_packed;
return t;
}
gb_internal Type *alloc_type_proc_from_types(Type **param_types, unsigned param_count, Type *results, bool is_c_vararg, ProcCallingConvention calling_convention) {
Type *params = alloc_type_tuple_from_field_types(param_types, param_count, false, true);
isize results_count = 0;
if (results != nullptr) {
if (results->kind != Type_Tuple) {
results = alloc_type_tuple_from_field_types(&results, 1, false, true);
}
results_count = results->Tuple.variables.count;
}
Scope *scope = nullptr;
Type *t = alloc_type_proc(scope, params, param_count, results, results_count, false, calling_convention);
t->Proc.c_vararg = is_c_vararg;
return t;
}
// gb_internal Type *type_from_selection(Type *type, Selection const &sel) {
// for (i32 index : sel.index) {
// Type *bt = base_type(type_deref(type));
// switch (bt->kind) {
// case Type_Struct:
// type = bt->Struct.fields[index]->type;
// break;
// case Type_Tuple:
// type = bt->Tuple.variables[index]->type;
// break;
// case Type_BitField:
// type = bt->BitField.fields[index]->type;
// break;
// case Type_Array:
// type = bt->Array.elem;
// break;
// case Type_EnumeratedArray:
// type = bt->Array.elem;
// break;
// case Type_Slice:
// switch (index) {
// case 0: type = alloc_type_multi_pointer(bt->Slice.elem); break;
// case 1: type = t_int; break;
// }
// break;
// case Type_DynamicArray:
// switch (index) {
// case 0: type = alloc_type_multi_pointer(bt->DynamicArray.elem); break;
// case 1: type = t_int; break;
// case 2: type = t_int; break;
// case 3: type = t_allocator; break;
// }
// break;
// case Type_Map:
// switch (index) {
// case 0: type = t_uintptr; break;
// case 1: type = t_int; break;
// case 2: type = t_allocator; break;
// }
// break;
// case Type_Basic:
// if (is_type_complex_or_quaternion(bt)) {
// type = base_complex_elem_type(bt);
// } else {
// switch (type->Basic.kind) {
// case Basic_any:
// switch (index) {
// case 0: type = t_rawptr; break;
// case 1: type = t_typeid; break;
// }
// break;
// case Basic_string:
// switch (index) {
// case 0: type = t_u8_multi_ptr; break;
// case 1: type = t_int; break;
// }
// break;
// }
// }
// break;
// }
// }
// return type;
// }
// Index a type that is internally a struct or array.
gb_internal Type *type_internal_index(Type *t, isize index) {
Type *bt = base_type(t);
if (bt == nullptr) {
return nullptr;
}
switch (bt->kind) {
case Type_Basic:
{
switch (bt->Basic.kind) {
case Basic_complex32: return t_f16;
case Basic_complex64: return t_f32;
case Basic_complex128: return t_f64;
case Basic_quaternion64: return t_f16;
case Basic_quaternion128: return t_f32;
case Basic_quaternion256: return t_f64;
case Basic_string:
{
GB_ASSERT(index == 0 || index == 1);
return index == 0 ? t_u8_ptr : t_int;
}
case Basic_string16:
{
GB_ASSERT(index == 0 || index == 1);
return index == 0 ? t_u16_ptr : t_int;
}
case Basic_any:
{
GB_ASSERT(index == 0 || index == 1);
return index == 0 ? t_rawptr : t_typeid;
}
}
}
break;
case Type_Array: return bt->Array.elem;
case Type_EnumeratedArray: return bt->EnumeratedArray.elem;
case Type_SimdVector: return bt->SimdVector.elem;
case Type_Slice:
{
GB_ASSERT(index == 0 || index == 1);
return index == 0 ? t_rawptr : t_int;
}
case Type_DynamicArray:
{
switch (index) {
case 0: return t_rawptr;
case 1: return t_int;
case 2: return t_int;
case 3: return t_allocator;
default: GB_PANIC("invalid raw dynamic array index");
};
}
case Type_Struct:
return get_struct_field_type(bt, index);
case Type_Union:
if (index < bt->Union.variants.count) {
return bt->Union.variants[index];
}
return union_tag_type(bt);
case Type_Tuple:
return bt->Tuple.variables[index]->type;
case Type_Matrix:
return bt->Matrix.elem;
case Type_SoaPointer:
{
GB_ASSERT(index == 0 || index == 1);
return index == 0 ? t_rawptr : t_int;
}
case Type_Map:
return type_internal_index(bt->Map.debug_metadata_type, index);
case Type_BitField:
return type_internal_index(bt->BitField.backing_type, index);
case Type_Generic:
return type_internal_index(bt->Generic.specialized, index);
};
GB_PANIC("Unhandled type %s", type_to_string(bt));
return nullptr;
};
gb_internal gbString write_type_to_string(gbString str, Type *type, bool shorthand=false, bool allow_polymorphic=false) {
if (type == nullptr) {
return gb_string_appendc(str, "<no type>");
}
switch (type->kind) {
case Type_Basic:
str = gb_string_append_length(str, type->Basic.name.text, type->Basic.name.len);
break;
case Type_Generic:
if (type->Generic.name.len == 0) {
if (type->Generic.entity != nullptr) {
String name = type->Generic.entity->token.string;
str = gb_string_append_rune(str, '$');
str = gb_string_append_length(str, name.text, name.len);
} else {
str = gb_string_appendc(str, "type");
}
} else {
String name = type->Generic.name;
str = gb_string_append_rune(str, '$');
str = gb_string_append_length(str, name.text, name.len);
if (type->Generic.specialized != nullptr) {
str = gb_string_append_rune(str, '/');
str = write_type_to_string(str, type->Generic.specialized, shorthand, allow_polymorphic);
}
}
break;
case Type_Pointer:
str = gb_string_append_rune(str, '^');
str = write_type_to_string(str, type->Pointer.elem, shorthand, allow_polymorphic);
break;
case Type_SoaPointer:
str = gb_string_appendc(str, "#soa ^");
str = write_type_to_string(str, type->SoaPointer.elem, shorthand, allow_polymorphic);
break;
case Type_MultiPointer:
str = gb_string_appendc(str, "[^]");
str = write_type_to_string(str, type->Pointer.elem, shorthand, allow_polymorphic);
break;
case Type_EnumeratedArray:
if (type->EnumeratedArray.is_sparse) {
str = gb_string_appendc(str, "#sparse");
}
str = gb_string_append_rune(str, '[');
str = write_type_to_string(str, type->EnumeratedArray.index, shorthand, allow_polymorphic);
str = gb_string_append_rune(str, ']');
str = write_type_to_string(str, type->EnumeratedArray.elem, shorthand, allow_polymorphic);
break;
case Type_Array:
str = gb_string_appendc(str, gb_bprintf("[%lld]", cast(long long)type->Array.count));
str = write_type_to_string(str, type->Array.elem, shorthand, allow_polymorphic);
break;
case Type_Slice:
str = gb_string_appendc(str, "[]");
str = write_type_to_string(str, type->Array.elem, shorthand, allow_polymorphic);
break;
case Type_DynamicArray:
str = gb_string_appendc(str, "[dynamic]");
str = write_type_to_string(str, type->DynamicArray.elem, shorthand, allow_polymorphic);
break;
case Type_Enum:
str = gb_string_appendc(str, "enum");
if (type->Enum.base_type != nullptr) {
str = gb_string_appendc(str, " ");
str = write_type_to_string(str, type->Enum.base_type, shorthand, allow_polymorphic);
}
str = gb_string_appendc(str, " {");
for_array(i, type->Enum.fields) {
Entity *f = type->Enum.fields[i];
GB_ASSERT(f->kind == Entity_Constant);
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = gb_string_append_length(str, f->token.string.text, f->token.string.len);
// str = gb_string_appendc(str, " = ");
}
str = gb_string_append_rune(str, '}');
break;
case Type_Union:
str = gb_string_appendc(str, "union");
if (allow_polymorphic && type->Struct.polymorphic_params) {
str = gb_string_appendc(str, "(");
str = write_type_to_string(str, type->Struct.polymorphic_params, shorthand, allow_polymorphic);
str = gb_string_appendc(str, ")");
}
switch (type->Union.kind) {
case UnionType_no_nil: str = gb_string_appendc(str, " #no_nil"); break;
case UnionType_shared_nil: str = gb_string_appendc(str, " #shared_nil"); break;
}
if (type->Union.custom_align != 0) str = gb_string_append_fmt(str, " #align %d", cast(int)type->Union.custom_align);
str = gb_string_appendc(str, " {");
for_array(i, type->Union.variants) {
Type *t = type->Union.variants[i];
if (i > 0) str = gb_string_appendc(str, ", ");
str = write_type_to_string(str, t, shorthand, allow_polymorphic);
}
str = gb_string_append_rune(str, '}');
break;
case Type_Struct: {
if (type->Struct.soa_kind != StructSoa_None) {
switch (type->Struct.soa_kind) {
case StructSoa_Fixed: str = gb_string_append_fmt(str, "#soa[%d]", cast(int)type->Struct.soa_count); break;
case StructSoa_Slice: str = gb_string_appendc(str, "#soa[]"); break;
case StructSoa_Dynamic: str = gb_string_appendc(str, "#soa[dynamic]"); break;
default: GB_PANIC("Unknown StructSoaKind"); break;
}
str = write_type_to_string(str, type->Struct.soa_elem, shorthand, allow_polymorphic);
break;
}
str = gb_string_appendc(str, "struct");
if (allow_polymorphic && type->Struct.polymorphic_params) {
str = gb_string_appendc(str, "(");
str = write_type_to_string(str, type->Struct.polymorphic_params, shorthand, allow_polymorphic);
str = gb_string_appendc(str, ")");
}
if (type->Struct.is_packed) str = gb_string_appendc(str, " #packed");
if (type->Struct.is_raw_union) str = gb_string_appendc(str, " #raw_union");
if (type->Struct.custom_align != 0) str = gb_string_append_fmt(str, " #align %d", cast(int)type->Struct.custom_align);
str = gb_string_appendc(str, " {");
if (shorthand && type->Struct.fields.count > 16) {
str = gb_string_append_fmt(str, "%lld fields...", cast(long long)type->Struct.fields.count);
} else {
for_array(i, type->Struct.fields) {
Entity *f = type->Struct.fields[i];
GB_ASSERT(f->kind == Entity_Variable);
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = gb_string_append_length(str, f->token.string.text, f->token.string.len);
str = gb_string_appendc(str, ": ");
str = write_type_to_string(str, f->type, shorthand, allow_polymorphic);
}
}
str = gb_string_append_rune(str, '}');
} break;
case Type_Map: {
str = gb_string_appendc(str, "map[");
str = write_type_to_string(str, type->Map.key, shorthand, allow_polymorphic);
str = gb_string_append_rune(str, ']');
str = write_type_to_string(str, type->Map.value, shorthand, allow_polymorphic);
} break;
case Type_Named:
if (type->Named.type_name != nullptr) {
str = gb_string_append_length(str, type->Named.name.text, type->Named.name.len);
} else {
// NOTE(bill): Just in case
str = gb_string_appendc(str, "<named type>");
}
break;
case Type_Tuple:
if (type->Tuple.variables.count > 0) {
isize comma_index = 0;
for_array(i, type->Tuple.variables) {
Entity *var = type->Tuple.variables[i];
if (var == nullptr) {
continue;
}
if (comma_index++ > 0) {
str = gb_string_appendc(str, ", ");
}
String name = var->token.string;
if (var->kind == Entity_Constant) {
str = gb_string_appendc(str, "$");
str = gb_string_append_length(str, name.text, name.len);
if (!is_type_untyped(var->type)) {
str = gb_string_appendc(str, ": ");
str = write_type_to_string(str, var->type, shorthand, allow_polymorphic);
if (var->Constant.value.kind) {
str = gb_string_appendc(str, " = ");
str = write_exact_value_to_string(str, var->Constant.value);
}
} else {
str = gb_string_appendc(str, " := ");
str = write_exact_value_to_string(str, var->Constant.value);
}
continue;
}
if (var->kind == Entity_Variable) {
if (var->flags&EntityFlag_CVarArg) {
str = gb_string_appendc(str, "#c_vararg ");
}
if (var->flags&EntityFlag_Ellipsis) {
Type *slice = base_type(var->type);
str = gb_string_appendc(str, "..");
GB_ASSERT(var->type->kind == Type_Slice);
str = write_type_to_string(str, slice->Slice.elem, shorthand, allow_polymorphic);
} else {
str = write_type_to_string(str, var->type, shorthand, allow_polymorphic);
}
} else {
GB_ASSERT(var->kind == Entity_TypeName);
if (var->type->kind == Type_Generic) {
if (var->token.string.len != 0) {
String name = var->token.string;
str = gb_string_appendc(str, "$");
str = gb_string_append_length(str, name.text, name.len);
str = gb_string_appendc(str, ": typeid");
if (var->type->Generic.specialized) {
str = gb_string_appendc(str, "/");
str = write_type_to_string(str, var->type->Generic.specialized, shorthand, allow_polymorphic);
}
} else {
str = gb_string_appendc(str, "typeid/");
str = write_type_to_string(str, var->type, shorthand, allow_polymorphic);
}
} else {
str = gb_string_appendc(str, "$");
str = gb_string_append_length(str, name.text, name.len);
str = gb_string_appendc(str, "=");
str = write_type_to_string(str, var->type, shorthand, allow_polymorphic);
}
}
}
}
break;
case Type_Proc:
str = gb_string_appendc(str, "proc");
switch (type->Proc.calling_convention) {
case ProcCC_Odin:
if (default_calling_convention() != ProcCC_Odin) {
str = gb_string_appendc(str, " \"odin\" ");
}
break;
case ProcCC_Contextless:
if (default_calling_convention() != ProcCC_Contextless) {
str = gb_string_appendc(str, " \"contextless\" ");
}
break;
case ProcCC_CDecl:
str = gb_string_appendc(str, " \"c\" ");
break;
case ProcCC_StdCall:
str = gb_string_appendc(str, " \"std\" ");
break;
case ProcCC_FastCall:
str = gb_string_appendc(str, " \"fastcall\" ");
break;
break;
case ProcCC_None:
str = gb_string_appendc(str, " \"none\" ");
break;
case ProcCC_Naked:
str = gb_string_appendc(str, " \"naked\" ");
break;
// case ProcCC_VectorCall:
// str = gb_string_appendc(str, " \"vectorcall\" ");
// break;
// case ProcCC_ClrCall:
// str = gb_string_appendc(str, " \"clrcall\" ");
// break;
}
str = gb_string_appendc(str, "(");
if (type->Proc.params) {
str = write_type_to_string(str, type->Proc.params, shorthand, allow_polymorphic);
}
str = gb_string_appendc(str, ")");
if (type->Proc.results) {
str = gb_string_appendc(str, " -> ");
if (type->Proc.results->Tuple.variables.count > 1) {
str = gb_string_appendc(str, "(");
}
str = write_type_to_string(str, type->Proc.results, shorthand, allow_polymorphic);
if (type->Proc.results->Tuple.variables.count > 1) {
str = gb_string_appendc(str, ")");
}
}
break;
case Type_BitSet:
str = gb_string_appendc(str, "bit_set[");
if (type->BitSet.elem == nullptr) {
str = gb_string_appendc(str, "<unresolved>");
} else if (is_type_enum(type->BitSet.elem)) {
str = write_type_to_string(str, type->BitSet.elem, shorthand, allow_polymorphic);
} else {
str = gb_string_append_fmt(str, "%lld", type->BitSet.lower);
str = gb_string_append_fmt(str, "..=");
str = gb_string_append_fmt(str, "%lld", type->BitSet.upper);
}
if (type->BitSet.underlying != nullptr) {
str = gb_string_appendc(str, "; ");
str = write_type_to_string(str, type->BitSet.underlying, shorthand, allow_polymorphic);
}
str = gb_string_appendc(str, "]");
break;
case Type_SimdVector:
str = gb_string_append_fmt(str, "#simd[%d]", cast(int)type->SimdVector.count);
str = write_type_to_string(str, type->SimdVector.elem, shorthand, allow_polymorphic);
break;
case Type_Matrix:
if (type->Matrix.is_row_major) {
str = gb_string_appendc(str, "#row_major ");
}
str = gb_string_appendc(str, gb_bprintf("matrix[%d, %d]", cast(int)type->Matrix.row_count, cast(int)type->Matrix.column_count));
str = write_type_to_string(str, type->Matrix.elem, shorthand, allow_polymorphic);
break;
case Type_BitField:
str = gb_string_appendc(str, "bit_field ");
str = write_type_to_string(str, type->BitField.backing_type, shorthand, allow_polymorphic);
str = gb_string_appendc(str, " {");
for (isize i = 0; i < type->BitField.fields.count; i++) {
Entity *f = type->BitField.fields[i];
if (i > 0) {
str = gb_string_appendc(str, ", ");
}
str = gb_string_append_length(str, f->token.string.text, f->token.string.len);
str = gb_string_appendc(str, ": ");
str = write_type_to_string(str, f->type, shorthand, allow_polymorphic);
str = gb_string_append_fmt(str, " | %u", type->BitField.bit_sizes[i]);
}
str = gb_string_appendc(str, " }");
break;
}
return str;
}
gb_internal gbString type_to_string(Type *type, gbAllocator allocator, bool shorthand) {
return write_type_to_string(gb_string_make(allocator, ""), type, shorthand);
}
gb_internal gbString type_to_string(Type *type, bool shorthand) {
return write_type_to_string(gb_string_make(heap_allocator(), ""), type, shorthand);
}
gb_internal gbString type_to_string_polymorphic(Type *type) {
return write_type_to_string(gb_string_make(heap_allocator(), ""), type, false, true);
}
gb_internal gbString type_to_string_shorthand(Type *type) {
return type_to_string(type, true);
}