Files
Odin/src/timings.cpp
2022-12-18 21:17:07 +00:00

215 lines
5.8 KiB
C++

struct TimeStamp {
u64 start;
u64 finish;
String label;
};
struct Timings {
TimeStamp total;
Array<TimeStamp> sections;
u64 freq;
f64 total_time_seconds;
};
#if defined(GB_SYSTEM_WINDOWS)
gb_internal u64 win32_time_stamp_time_now(void) {
LARGE_INTEGER counter;
QueryPerformanceCounter(&counter);
return counter.QuadPart;
}
gb_internal u64 win32_time_stamp__freq(void) {
gb_local_persist LARGE_INTEGER win32_perf_count_freq = {0};
if (!win32_perf_count_freq.QuadPart) {
QueryPerformanceFrequency(&win32_perf_count_freq);
GB_ASSERT(win32_perf_count_freq.QuadPart != 0);
}
return win32_perf_count_freq.QuadPart;
}
#elif defined(GB_SYSTEM_OSX)
#include <mach/mach_time.h>
gb_internal u64 osx_time_stamp_time_now(void) {
return mach_absolute_time();
}
gb_internal u64 osx_time_stamp__freq(void) {
mach_timebase_info_data_t data;
data.numer = 0;
data.denom = 0;
mach_timebase_info(&data);
#if defined(GB_CPU_ARM)
// NOTE(bill, 2021-02-25): M1 Chip seems to have a different freq count
// TODO(bill): Is this truly correct?
return (1000000llu * cast(u64)data.numer) / cast(u64)data.denom;
#else
return (1000000000llu * cast(u64)data.numer) / cast(u64)data.denom;
#endif
}
#elif defined(GB_SYSTEM_UNIX)
#include <time.h>
gb_internal u64 unix_time_stamp_time_now(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (ts.tv_sec * 1000000000) + ts.tv_nsec;
}
gb_internal u64 unix_time_stamp__freq(void) {
gb_local_persist u64 freq = 0;
if (freq == 0) {
struct timespec ts;
clock_getres(CLOCK_MONOTONIC, &ts);
freq = cast(u64) ((1.0 / ts.tv_nsec) * 1000000000.0);
}
return freq;
}
#else
#error Implement system
#endif
gb_internal u64 time_stamp_time_now(void) {
#if defined(GB_SYSTEM_WINDOWS)
return win32_time_stamp_time_now();
#elif defined(GB_SYSTEM_OSX)
return osx_time_stamp_time_now();
#elif defined(GB_SYSTEM_UNIX)
return unix_time_stamp_time_now();
#else
#error time_stamp_time_now
#endif
}
gb_internal u64 time_stamp__freq(void) {
#if defined(GB_SYSTEM_WINDOWS)
return win32_time_stamp__freq();
#elif defined(GB_SYSTEM_OSX)
return osx_time_stamp__freq();
#elif defined(GB_SYSTEM_UNIX)
return unix_time_stamp__freq();
#else
#error time_stamp__freq
#endif
}
gb_internal TimeStamp make_time_stamp(String const &label) {
TimeStamp ts = {0};
ts.start = time_stamp_time_now();
ts.label = label;
return ts;
}
gb_internal void timings_init(Timings *t, String const &label, isize buffer_size) {
array_init(&t->sections, heap_allocator(), 0, buffer_size);
t->total = make_time_stamp(label);
t->freq = time_stamp__freq();
}
gb_internal void timings_destroy(Timings *t) {
array_free(&t->sections);
}
gb_internal void timings__stop_current_section(Timings *t) {
if (t->sections.count > 0) {
t->sections[t->sections.count-1].finish = time_stamp_time_now();
}
}
gb_internal void timings_start_section(Timings *t, String const &label) {
timings__stop_current_section(t);
array_add(&t->sections, make_time_stamp(label));
}
gb_internal f64 time_stamp_as_s(TimeStamp const &ts, u64 freq) {
GB_ASSERT_MSG(ts.finish >= ts.start, "time_stamp_as_ms - %.*s", LIT(ts.label));
return cast(f64)(ts.finish - ts.start) / cast(f64)freq;
}
gb_internal f64 time_stamp_as_ms(TimeStamp const &ts, u64 freq) {
return 1000.0*time_stamp_as_s(ts, freq);
}
gb_internal f64 time_stamp_as_us(TimeStamp const &ts, u64 freq) {
return 1000000.0*time_stamp_as_s(ts, freq);
}
#define MAIN_TIME_SECTION(str) do { debugf("[Section] %s\n", str); timings_start_section(&global_timings, str_lit(str)); } while (0)
#define TIME_SECTION(str) do { debugf("[Section] %s\n", str); if (build_context.show_more_timings) timings_start_section(&global_timings, str_lit(str)); } while (0)
#define TIME_SECTION_WITH_LEN(str, len) do { debugf("[Section] %s\n", str); if (build_context.show_more_timings) timings_start_section(&global_timings, make_string((u8 *)str, len)); } while (0)
enum TimingUnit {
TimingUnit_Second,
TimingUnit_Millisecond,
TimingUnit_Microsecond,
TimingUnit_COUNT,
};
char const *timing_unit_strings[TimingUnit_COUNT] = {"s", "ms", "us"};
gb_internal f64 time_stamp(TimeStamp const &ts, u64 freq, TimingUnit unit) {
switch (unit) {
case TimingUnit_Millisecond: return time_stamp_as_ms(ts, freq);
case TimingUnit_Microsecond: return time_stamp_as_us(ts, freq);
default: /*fallthrough*/
case TimingUnit_Second: return time_stamp_as_s (ts, freq);
}
}
gb_internal void timings_print_all(Timings *t, TimingUnit unit = TimingUnit_Millisecond, bool timings_are_finalized = false) {
isize const SPACES_LEN = 256;
char SPACES[SPACES_LEN+1] = {0};
gb_memset(SPACES, ' ', SPACES_LEN);
/*
NOTE(Jeroen): Whether we call `timings_print_all()`, then `timings_export_all()`, the other way around,
or just one of them, we only need to stop the clock once.
*/
if (!timings_are_finalized) {
timings__stop_current_section(t);
t->total.finish = time_stamp_time_now();
}
isize max_len = gb_min(36, t->total.label.len);
for_array(i, t->sections) {
TimeStamp ts = t->sections[i];
max_len = gb_max(max_len, ts.label.len);
}
GB_ASSERT(max_len <= SPACES_LEN);
t->total_time_seconds = time_stamp_as_s(t->total, t->freq);
f64 total_time = time_stamp(t->total, t->freq, unit);
gb_printf("%.*s%.*s - % 9.3f %s - %6.2f%%\n",
LIT(t->total.label),
cast(int)(max_len-t->total.label.len), SPACES,
total_time,
timing_unit_strings[unit],
cast(f64)100.0);
for_array(i, t->sections) {
TimeStamp ts = t->sections[i];
f64 section_time = time_stamp(ts, t->freq, unit);
gb_printf("%.*s%.*s - % 9.3f %s - %6.2f%%\n",
LIT(ts.label),
cast(int)(max_len-ts.label.len), SPACES,
section_time,
timing_unit_strings[unit],
100.0*section_time/total_time);
}
}