Files
Odin/src/array.cpp

487 lines
14 KiB
C++

#define ARRAY_GROW_FORMULA(x) (gb_max(((x)+1)*3 >> 1, 8))
GB_STATIC_ASSERT(ARRAY_GROW_FORMULA(0) > 0);
template <typename T>
struct Array {
gbAllocator allocator;
T * data;
isize count;
isize capacity;
T &operator[](isize index) {
#if !defined(NO_ARRAY_BOUNDS_CHECK)
GB_ASSERT_MSG(cast(usize)index < cast(usize)count, "Index %td is out of bounds ranges 0..<%td", index, count);
#endif
return data[index];
}
T const &operator[](isize index) const {
#if !defined(NO_ARRAY_BOUNDS_CHECK)
GB_ASSERT_MSG(cast(usize)index < cast(usize)count, "Index %td is out of bounds ranges 0..<%td", index, count);
#endif
return data[index];
}
};
template <typename T> gb_internal void array_init (Array<T> *array, gbAllocator const &a);
template <typename T> gb_internal void array_init (Array<T> *array, gbAllocator const &a, isize count);
template <typename T> gb_internal void array_init (Array<T> *array, gbAllocator const &a, isize count, isize capacity);
template <typename T> gb_internal Array<T> array_make (gbAllocator const &a);
template <typename T> gb_internal Array<T> array_make (gbAllocator const &a, isize count);
template <typename T> gb_internal Array<T> array_make (gbAllocator const &a, isize count, isize capacity);
template <typename T> gb_internal Array<T> array_make_from_ptr (T *data, isize count, isize capacity);
template <typename T> gb_internal void array_free (Array<T> *array);
template <typename T> gb_internal void array_add (Array<T> *array, T const &t);
template <typename T> gb_internal T * array_add_and_get (Array<T> *array);
template <typename T> gb_internal void array_add_elems (Array<T> *array, T const *elems, isize elem_count);
template <typename T> gb_internal T array_pop (Array<T> *array);
template <typename T> gb_internal void array_clear (Array<T> *array);
template <typename T> gb_internal void array_reserve (Array<T> *array, isize capacity);
template <typename T> gb_internal void array_resize (Array<T> *array, isize count);
template <typename T> gb_internal void array_set_capacity (Array<T> *array, isize capacity);
template <typename T> gb_internal Array<T> array_slice (Array<T> const &array, isize lo, isize hi);
template <typename T> gb_internal Array<T> array_clone (gbAllocator const &a, Array<T> const &array);
template <typename T> gb_internal void array_ordered_remove (Array<T> *array, isize index);
template <typename T> gb_internal void array_unordered_remove(Array<T> *array, isize index);
template <typename T> gb_internal void array_copy(Array<T> *array, Array<T> const &data, isize offset);
template <typename T> gb_internal void array_copy(Array<T> *array, Array<T> const &data, isize offset, isize count);
template <typename T> gb_internal T *array_end_ptr(Array<T> *array);
template <typename T>
gb_internal void array_sort(Array<T> &array, gbCompareProc compare_proc) {
gb_sort_array(array.data, array.count, compare_proc);
}
template <typename T>
struct Slice {
T *data;
isize count;
gb_inline T &operator[](isize index) {
#if !defined(NO_ARRAY_BOUNDS_CHECK)
GB_ASSERT_MSG(cast(usize)index < cast(usize)count, "Index %td is out of bounds ranges 0..<%td", index, count);
#endif
return data[index];
}
gb_inline T const &operator[](isize index) const {
#if !defined(NO_ARRAY_BOUNDS_CHECK)
GB_ASSERT_MSG(cast(usize)index < cast(usize)count, "Index %td is out of bounds ranges 0..<%td", index, count);
#endif
return data[index];
}
};
template <typename T> gb_internal Slice<T> slice_from_array(Array<T> const &a);
template <typename T>
gb_internal Slice<T> slice_make(gbAllocator const &allocator, isize count) {
GB_ASSERT(count >= 0);
Slice<T> s = {};
s.data = gb_alloc_array(allocator, T, count);
if (count > 0) {
GB_ASSERT(s.data != nullptr);
}
s.count = count;
return s;
}
template <typename T>
gb_internal void slice_init(Slice<T> *s, gbAllocator const &allocator, isize count) {
GB_ASSERT(count >= 0);
s->data = gb_alloc_array(allocator, T, count);
if (count > 0) {
GB_ASSERT(s->data != nullptr);
}
s->count = count;
}
template <typename T>
gb_internal void slice_free(Slice<T> *s, gbAllocator const &allocator) {
gb_free(allocator, s->data);
}
template <typename T>
gb_internal void slice_resize(Slice<T> *s, gbAllocator const &allocator, isize new_count) {
resize_array_raw(&s->data, allocator, s->count, new_count);
s->count = new_count;
}
template <typename T>
gb_internal Slice<T> slice_from_array(Array<T> const &a) {
return {a.data, a.count};
}
template <typename T>
gb_internal Slice<T> slice_array(Array<T> const &array, isize lo, isize hi) {
GB_ASSERT(0 <= lo && lo <= hi && hi <= array.count);
Slice<T> out = {};
isize len = hi-lo;
if (len > 0) {
out.data = array.data+lo;
out.count = len;
}
return out;
}
template <typename T>
gb_internal Slice<T> slice_clone(gbAllocator const &allocator, Slice<T> const &a) {
T *data = cast(T *)gb_alloc_copy_align(allocator, a.data, a.count*gb_size_of(T), gb_align_of(T));
return {data, a.count};
}
template <typename T>
gb_internal Slice<T> slice_clone_from_array(gbAllocator const &allocator, Array<T> const &a) {
auto c = array_clone(allocator, a);
return {c.data, c.count};
}
template <typename T>
gb_internal void slice_copy(Slice<T> *slice, Slice<T> const &data) {
isize n = gb_min(slice->count, data.count);
gb_memmove(slice->data, data.data, gb_size_of(T)*n);
}
template <typename T>
gb_internal void slice_copy(Slice<T> *slice, Slice<T> const &data, isize offset) {
isize n = gb_clamp(slice->count-offset, 0, data.count);
gb_memmove(slice->data+offset, data.data, gb_size_of(T)*n);
}
template <typename T>
gb_internal void slice_copy(Slice<T> *slice, Slice<T> const &data, isize offset, isize count) {
isize n = gb_clamp(slice->count-offset, 0, gb_min(data.count, count));
gb_memmove(slice->data+offset, data.data, gb_size_of(T)*n);
}
template <typename T>
gb_internal gb_inline Slice<T> slice(Slice<T> const &array, isize lo, isize hi) {
GB_ASSERT(0 <= lo && lo <= hi && hi <= array.count);
Slice<T> out = {};
isize len = hi-lo;
if (len > 0) {
out.data = array.data+lo;
out.count = len;
}
return out;
}
template <typename T>
gb_internal gb_inline Slice<T> slice(Array<T> const &array, isize lo, isize hi) {
GB_ASSERT(0 <= lo && lo <= hi && hi <= array.count);
Slice<T> out = {};
isize len = hi-lo;
if (len > 0) {
out.data = array.data+lo;
out.count = len;
}
return out;
}
template <typename T>
gb_internal void slice_ordered_remove(Slice<T> *array, isize index) {
GB_ASSERT(0 <= index && index < array->count);
isize bytes = gb_size_of(T) * (array->count-(index+1));
gb_memmove(array->data+index, array->data+index+1, bytes);
array->count -= 1;
}
template <typename T>
gb_internal void slice_unordered_remove(Slice<T> *array, isize index) {
GB_ASSERT(0 <= index && index < array->count);
isize n = array->count-1;
if (index != n) {
gb_memmove(array->data+index, array->data+n, gb_size_of(T));
}
array->count -= 1;
}
template <typename T>
gb_internal void array_copy(Array<T> *array, Array<T> const &data, isize offset) {
gb_memmove(array->data+offset, data.data, gb_size_of(T)*data.count);
}
template <typename T>
gb_internal void array_copy(Array<T> *array, Array<T> const &data, isize offset, isize count) {
gb_memmove(array->data+offset, data.data, gb_size_of(T)*gb_min(data.count, count));
}
template <typename T>
gb_internal T *array_end_ptr(Array<T> *array) {
if (array->count > 0) {
return &array->data[array->count-1];
}
return nullptr;
}
template <typename T>
gb_internal gb_inline void array_init(Array<T> *array, gbAllocator const &a) {
isize cap = ARRAY_GROW_FORMULA(0);
array_init(array, a, 0, cap);
}
template <typename T>
gb_internal gb_inline void array_init(Array<T> *array, gbAllocator const &a, isize count) {
array_init(array, a, count, count);
}
template <typename T>
gb_internal gb_inline void array_init(Array<T> *array, gbAllocator const &a, isize count, isize capacity) {
array->allocator = a;
array->data = nullptr;
if (capacity > 0) {
array->data = gb_alloc_array(a, T, capacity);
}
array->count = count;
array->capacity = capacity;
}
template <typename T>
gb_internal gb_inline Array<T> array_make_from_ptr(T *data, isize count, isize capacity) {
Array<T> a = {0};
a.data = data;
a.count = count;
a.capacity = capacity;
return a;
}
template <typename T>
gb_internal gb_inline Array<T> array_make(gbAllocator const &a) {
isize capacity = ARRAY_GROW_FORMULA(0);
Array<T> array = {};
array.allocator = a;
array.data = gb_alloc_array(a, T, capacity);
array.count = 0;
array.capacity = capacity;
return array;
}
template <typename T>
gb_internal gb_inline Array<T> array_make(gbAllocator const &a, isize count) {
Array<T> array = {};
array.allocator = a;
array.data = gb_alloc_array(a, T, count);
array.count = count;
array.capacity = count;
return array;
}
template <typename T>
gb_internal gb_inline Array<T> array_make(gbAllocator const &a, isize count, isize capacity) {
Array<T> array = {};
array.allocator = a;
array.data = gb_alloc_array(a, T, capacity);
array.count = count;
array.capacity = capacity;
return array;
}
template <typename T>
gb_internal gb_inline void array_free(Array<T> *array) {
if (array->allocator.proc != nullptr) {
gb_free(array->allocator, array->data);
}
array->count = 0;
array->capacity = 0;
}
template <typename T>
gb_internal void array__grow(Array<T> *array, isize min_capacity) {
isize new_capacity = ARRAY_GROW_FORMULA(array->capacity);
if (new_capacity < min_capacity) {
new_capacity = min_capacity;
}
array_set_capacity(array, new_capacity);
}
template <typename T>
gb_internal void array_add(Array<T> *array, T const &t) {
if (array->capacity < array->count+1) {
array__grow(array, 0);
}
array->data[array->count] = t;
array->count++;
}
gb_internal void array_add(Array<char const *> *array, char const *t) {
if (array->capacity < array->count+1) {
array__grow(array, 0);
}
array->data[array->count] = t;
array->count++;
}
template <typename T>
gb_internal T *array_add_and_get(Array<T> *array) {
if (array->count < array->capacity) {
return &array->data[array->count++];
}
if (array->capacity < array->count+1) {
array__grow(array, 0);
}
return &array->data[array->count++];
}
template <typename T>
gb_internal void array_add_elems(Array<T> *array, T const *elems, isize elem_count) {
GB_ASSERT(elem_count >= 0);
if (array->capacity < array->count+elem_count) {
array__grow(array, array->count+elem_count);
}
gb_memmove(array->data + array->count, elems, elem_count * gb_size_of(T));
array->count += elem_count;
}
template <typename T>
gb_internal gb_inline T array_pop(Array<T> *array) {
GB_ASSERT(array->count > 0);
array->count--;
return array->data[array->count];
}
template <typename T>
gb_internal void array_clear(Array<T> *array) {
array->count = 0;
}
template <typename T>
gb_internal void array_reserve(Array<T> *array, isize capacity) {
if (array->capacity < capacity) {
array_set_capacity(array, capacity);
}
}
template <typename T>
gb_internal void array_resize(Array<T> *array, isize count) {
if (array->capacity < count) {
array__grow(array, count);
}
array->count = count;
}
template <typename T>
gb_internal void array_set_capacity(Array<T> *array, isize capacity) {
if (capacity == array->capacity) {
return;
}
if (capacity < array->count) {
array_resize(array, capacity);
}
isize old_size = array->capacity * gb_size_of(T);
isize new_size = capacity * gb_size_of(T);
T *new_data = nullptr;
// NOTE(bill): try gb_resize_align first, and then fallback to alloc+memmove+free
new_data = cast(T *)gb_resize_align(array->allocator, array->data, old_size, new_size, gb_align_of(T));
if (new_data == nullptr) {
if (capacity > 0) {
new_data = gb_alloc_array(array->allocator, T, capacity);
GB_ASSERT(new_data != nullptr);
gb_memmove(new_data, array->data, old_size);
}
gb_free(array->allocator, array->data);
}
array->data = new_data;
array->capacity = capacity;
}
template <typename T>
gb_internal gb_inline Array<T> array_slice(Array<T> const &array, isize lo, isize hi) {
GB_ASSERT(0 <= lo && lo <= hi && hi <= array.count);
Array<T> out = {};
isize len = hi-lo;
if (len > 0) {
out.data = array.data+lo;
out.count = len;
out.capacity = len;
}
return out;
}
template <typename T>
gb_internal Array<T> array_clone(gbAllocator const &allocator, Array<T> const &array) {
auto clone = array_make<T>(allocator, array.count, array.count);
array_copy(&clone, array, 0);
return clone;
}
template <typename T>
gb_internal void array_ordered_remove(Array<T> *array, isize index) {
GB_ASSERT(0 <= index && index < array->count);
isize bytes = gb_size_of(T) * (array->count-(index+1));
gb_memmove(array->data+index, array->data+index+1, bytes);
array->count -= 1;
}
template <typename T>
gb_internal void array_unordered_remove(Array<T> *array, isize index) {
GB_ASSERT(0 <= index && index < array->count);
isize n = array->count-1;
if (index != n) {
gb_memmove(array->data+index, array->data+n, gb_size_of(T));
}
array_pop(array);
}
template <typename T>
gb_internal T *begin(Array<T> &array) {
return array.data;
}
template <typename T>
gb_internal T const *begin(Array<T> const &array) {
return array.data;
}
template <typename T>
gb_internal T *end(Array<T> &array) {
return array.data + array.count;
}
template <typename T>
gb_internal T const *end(Array<T> const &array) {
return array.data + array.count;
}
template <typename T>
gb_internal T *begin(Slice<T> &array) {
return array.data;
}
template <typename T>
gb_internal T const *begin(Slice<T> const &array) {
return array.data;
}
template <typename T>
gb_internal T *end(Slice<T> &array) {
return array.data + array.count;
}
template <typename T>
gb_internal T const *end(Slice<T> const &array) {
return array.data + array.count;
}