Files
Odin/core/strings/strings.odin
Jeroen van Rijn c21c993646 [strings] fix.
2022-04-02 01:54:35 +02:00

1812 lines
44 KiB
Odin

// simple procedures to manipulate UTF-8 encoded strings
package strings
import "core:io"
import "core:mem"
import "core:slice"
import "core:unicode"
import "core:unicode/utf8"
// returns a clone of the string `s` allocated using the `allocator`
clone :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> string {
c := make([]byte, len(s), allocator, loc)
copy(c, s)
return string(c[:len(s)])
}
// returns a clone of the string `s` allocated using the `allocator` as a cstring
// a nul byte is appended to the clone, to make the cstring safe
clone_to_cstring :: proc(s: string, allocator := context.allocator, loc := #caller_location) -> cstring {
c := make([]byte, len(s)+1, allocator, loc)
copy(c, s)
c[len(s)] = 0
return cstring(&c[0])
}
// returns a string from a byte pointer `ptr` and byte length `len`
// the string is valid as long as the parameters stay alive
string_from_ptr :: proc(ptr: ^byte, len: int) -> string {
return transmute(string)mem.Raw_String{ptr, len}
}
// returns a string from a byte pointer `ptr and byte length `len`
// searches for a nul byte from 0..<len, otherwhise `len` will be the end size
string_from_nul_terminated_ptr :: proc(ptr: ^byte, len: int) -> string {
s := transmute(string)mem.Raw_String{ptr, len}
s = truncate_to_byte(s, 0)
return s
}
// returns the raw ^byte start of the string `str`
ptr_from_string :: proc(str: string) -> ^byte {
d := transmute(mem.Raw_String)str
return d.data
}
// returns the transmute of string `str` to a cstring
// not safe since the origin string may not contain a nul byte
unsafe_string_to_cstring :: proc(str: string) -> cstring {
d := transmute(mem.Raw_String)str
return cstring(d.data)
}
// returns a string truncated to the first time it finds the byte `b`
// uses the `len` of the string `str` when it couldn't find the input
truncate_to_byte :: proc(str: string, b: byte) -> string {
n := index_byte(str, b)
if n < 0 {
n = len(str)
}
return str[:n]
}
// returns a string truncated to the first time it finds the rune `r`
// uses the `len` of the string `str` when it couldn't find the input
truncate_to_rune :: proc(str: string, r: rune) -> string {
n := index_rune(str, r)
if n < 0 {
n = len(str)
}
return str[:n]
}
// returns a cloned string of the byte array `s` using the `allocator`
// appends a leading nul byte
clone_from_bytes :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> string {
c := make([]byte, len(s)+1, allocator, loc)
copy(c, s)
c[len(s)] = 0
return string(c[:len(s)])
}
// returns a clone of the cstring `s` using the `allocator` as a string
clone_from_cstring :: proc(s: cstring, allocator := context.allocator, loc := #caller_location) -> string {
return clone(string(s), allocator, loc)
}
// returns a cloned string from the pointer `ptr` and a byte length `len` using the `allocator`
// same to `string_from_ptr` but allocates
clone_from_ptr :: proc(ptr: ^byte, len: int, allocator := context.allocator, loc := #caller_location) -> string {
s := string_from_ptr(ptr, len)
return clone(s, allocator, loc)
}
// overload to clone from a `string`, `[]byte`, `cstring` or a `^byte + length` to a string
clone_from :: proc{
clone,
clone_from_bytes,
clone_from_cstring,
clone_from_ptr,
}
// returns a cloned string from the cstring `ptr` and a byte length `len` using the `allocator`
// truncates till the first nul byte it finds or the byte len
clone_from_cstring_bounded :: proc(ptr: cstring, len: int, allocator := context.allocator, loc := #caller_location) -> string {
s := string_from_ptr((^u8)(ptr), len)
s = truncate_to_byte(s, 0)
return clone(s, allocator, loc)
}
// Compares two strings, returning a value representing which one comes first lexiographically.
// -1 for `lhs`; 1 for `rhs`, or 0 if they are equal.
compare :: proc(lhs, rhs: string) -> int {
return mem.compare(transmute([]byte)lhs, transmute([]byte)rhs)
}
// returns the byte offset of the rune `r` in the string `s`, -1 when not found
contains_rune :: proc(s: string, r: rune) -> int {
for c, offset in s {
if c == r {
return offset
}
}
return -1
}
/*
returns true when the string `substr` is contained inside the string `s`
strings.contains("testing", "test") -> true
strings.contains("testing", "ing") -> true
strings.contains("testing", "text") -> false
*/
contains :: proc(s, substr: string) -> bool {
return index(s, substr) >= 0
}
/*
returns true when the string `s` contains any of the characters inside the string `chars`
strings.contains_any("test", "test") -> true
strings.contains_any("test", "ts") -> true
strings.contains_any("test", "et") -> true
strings.contains_any("test", "a") -> false
*/
contains_any :: proc(s, chars: string) -> bool {
return index_any(s, chars) >= 0
}
/*
returns the utf8 rune count of the string `s`
strings.rune_count("test") -> 4
strings.rune_count("testö") -> 5, where len("testö") -> 6
*/
rune_count :: proc(s: string) -> int {
return utf8.rune_count_in_string(s)
}
/*
returns wether the strings `u` and `v` are the same alpha characters
works with utf8 string content and ignores different casings
strings.equal_fold("test", "test") -> true
strings.equal_fold("Test", "test") -> true
strings.equal_fold("Test", "tEsT") -> true
strings.equal_fold("test", "tes") -> false
*/
equal_fold :: proc(u, v: string) -> bool {
s, t := u, v
loop: for s != "" && t != "" {
sr, tr: rune
if s[0] < utf8.RUNE_SELF {
sr, s = rune(s[0]), s[1:]
} else {
r, size := utf8.decode_rune_in_string(s)
sr, s = r, s[size:]
}
if t[0] < utf8.RUNE_SELF {
tr, t = rune(t[0]), t[1:]
} else {
r, size := utf8.decode_rune_in_string(t)
tr, t = r, t[size:]
}
if tr == sr { // easy case
continue loop
}
if tr < sr {
tr, sr = sr, tr
}
if tr < utf8.RUNE_SELF {
switch sr {
case 'A'..='Z':
if tr == (sr+'a')-'A' {
continue loop
}
}
return false
}
// TODO(bill): Unicode folding
return false
}
return s == t
}
/*
return true when the string `prefix` is contained at the start of the string `s`
strings.has_prefix("testing", "test") -> true
strings.has_prefix("testing", "te") -> true
strings.has_prefix("telephone", "te") -> true
strings.has_prefix("testing", "est") -> false
*/
has_prefix :: proc(s, prefix: string) -> bool {
return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
}
/*
returns true when the string `suffix` is contained at the end of the string `s`
good example to use this is for file extensions
strings.has_suffix("todo.txt", ".txt") -> true
strings.has_suffix("todo.doc", ".txt") -> false
strings.has_suffix("todo.doc.txt", ".txt") -> true
*/
has_suffix :: proc(s, suffix: string) -> bool {
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
}
/*
returns a combined string from the slice of strings `a` seperated with the `sep` string
allocates the string using the `allocator`
a := [?]string { "a", "b", "c" }
b := strings.join(a[:], " ") -> "a b c"
c := strings.join(a[:], "-") -> "a-b-c"
d := strings.join(a[:], "...") -> "a...b...c"
*/
join :: proc(a: []string, sep: string, allocator := context.allocator) -> string {
if len(a) == 0 {
return ""
}
n := len(sep) * (len(a) - 1)
for s in a {
n += len(s)
}
b := make([]byte, n, allocator)
i := copy(b, a[0])
for s in a[1:] {
i += copy(b[i:], sep)
i += copy(b[i:], s)
}
return string(b)
}
/*
returns a combined string from the slice of strings `a` without a seperator
allocates the string using the `allocator`
a := [?]string { "a", "b", "c" }
b := strings.concatenate(a[:]) -> "abc"
*/
concatenate :: proc(a: []string, allocator := context.allocator) -> string {
if len(a) == 0 {
return ""
}
n := 0
for s in a {
n += len(s)
}
b := make([]byte, n, allocator)
i := 0
for s in a {
i += copy(b[i:], s)
}
return string(b)
}
/*
`rune_offset` and `rune_length` are in runes, not bytes.
If `rune_length` <= 0, then it'll return the remainder of the string starting at `rune_offset`.
strings.cut("some example text", 0, 4) -> "some"
strings.cut("some example text", 2, 2) -> "me"
strings.cut("some example text", 5, 7) -> "example"
*/
cut :: proc(s: string, rune_offset := int(0), rune_length := int(0), allocator := context.allocator) -> (res: string) {
s := s; rune_length := rune_length
context.allocator = allocator
// If we signal that we want the entire remainder (length <= 0) *and*
// the offset is zero, then we can early out by cloning the input
if rune_offset == 0 && rune_length <= 0 {
return clone(s)
}
// We need to know if we have enough runes to cover offset + length.
rune_count := utf8.rune_count_in_string(s)
// We're asking for a substring starting after the end of the input string.
// That's just an empty string.
if rune_offset >= rune_count {
return ""
}
// If we don't specify the length of the substring, use the remainder.
if rune_length <= 0 {
rune_length = rune_count - rune_offset
}
// We don't yet know how many bytes we need exactly.
// But we do know it's bounded by the number of runes * 4 bytes,
// and can be no more than the size of the input string.
bytes_needed := min(rune_length * 4, len(s))
buf := make([]u8, bytes_needed)
byte_offset := 0
for i := 0; i < rune_count; i += 1 {
_, w := utf8.decode_rune_in_string(s)
// If the rune is part of the substring, copy it to the output buffer.
if i >= rune_offset {
for j := 0; j < w; j += 1 {
buf[byte_offset+j] = s[j]
}
byte_offset += w
}
// We're done if we reach the end of the input string, *or*
// if we've reached a specified length in runes.
if rune_length > 0 {
if i == rune_offset + rune_length - 1 { break }
}
s = s[w:]
}
return string(buf[:byte_offset])
}
@private
_split :: proc(s_, sep: string, sep_save, n_: int, allocator := context.allocator) -> []string {
s, n := s_, n_
if n == 0 {
return nil
}
if sep == "" {
l := utf8.rune_count_in_string(s)
if n < 0 || n > l {
n = l
}
res := make([dynamic]string, n, allocator)
for i := 0; i < n-1; i += 1 {
_, w := utf8.decode_rune_in_string(s)
res[i] = s[:w]
s = s[w:]
}
if n > 0 {
res[n-1] = s
}
return res[:]
}
if n < 0 {
n = count(s, sep) + 1
}
res := make([dynamic]string, n, allocator)
n -= 1
i := 0
for ; i < n; i += 1 {
m := index(s, sep)
if m < 0 {
break
}
res[i] = s[:m+sep_save]
s = s[m+len(sep):]
}
res[i] = s
return res[:i+1]
}
/*
Splits a string into parts, based on a separator.
Returned strings are substrings of 's'.
```
s := "aaa.bbb.ccc.ddd.eee" // 5 parts
ss := split(s, ".")
fmt.println(ss) // [aaa, bbb, ccc, ddd, eee]
```
*/
split :: proc(s, sep: string, allocator := context.allocator) -> []string {
return _split(s, sep, 0, -1, allocator)
}
/*
Splits a string into a total of 'n' parts, based on a separator.
Returns fewer parts if there wasn't enough occurrences of the separator.
Returned strings are substrings of 's'.
```
s := "aaa.bbb.ccc.ddd.eee" // 5 parts present
ss := split_n(s, ".", 3) // total of 3 wanted
fmt.println(ss) // [aaa, bbb, ccc.ddd.eee]
```
*/
split_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
return _split(s, sep, 0, n, allocator)
}
/*
splits the string `s` after the seperator string `sep` appears
returns the slice of split strings allocated using `allocator`
a := "aaa.bbb.ccc.ddd.eee"
aa := strings.split_after(a, ".")
fmt.eprintln(aa) // [aaa., bbb., ccc., ddd., eee]
*/
split_after :: proc(s, sep: string, allocator := context.allocator) -> []string {
return _split(s, sep, len(sep), -1, allocator)
}
/*
splits the string `s` after the seperator string `sep` appears into a total of `n` parts
returns the slice of split strings allocated using `allocator`
a := "aaa.bbb.ccc.ddd.eee"
aa := strings.split_after(a, ".")
fmt.eprintln(aa) // [aaa., bbb., ccc., ddd., eee]
*/
split_after_n :: proc(s, sep: string, n: int, allocator := context.allocator) -> []string {
return _split(s, sep, len(sep), n, allocator)
}
@private
_split_iterator :: proc(s: ^string, sep: string, sep_save: int) -> (res: string, ok: bool) {
// stop once the string is empty or nil
if s == nil || len(s^) == 0 {
return
}
if sep == "" {
res = s[:]
ok = true
s^ = s[len(s):]
return
}
m := index(s^, sep)
if m < 0 {
// not found
res = s[:]
ok = res != ""
s^ = s[len(s):]
} else {
res = s[:m+sep_save]
ok = true
s^ = s[m+len(sep):]
}
return
}
/*
split the ^string `s` by the byte seperator `sep` in an iterator fashion
consumes the original string till the end, leaving the string `s` with len == 0
text := "a.b.c.d.e"
for str in strings.split_by_byte_iterator(&text, '.') {
fmt.eprintln(str) // every loop -> a b c d e
}
*/
split_by_byte_iterator :: proc(s: ^string, sep: u8) -> (res: string, ok: bool) {
m := index_byte(s^, sep)
if m < 0 {
// not found
res = s[:]
ok = res != ""
s^ = {}
} else {
res = s[:m]
ok = true
s^ = s[m+1:]
}
return
}
/*
split the ^string `s` by the seperator string `sep` in an iterator fashion
consumes the original string till the end
text := "a.b.c.d.e"
for str in strings.split_iterator(&text, ".") {
fmt.eprintln(str) // every loop -> a b c d e
}
*/
split_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
return _split_iterator(s, sep, 0)
}
/*
split the ^string `s` after every seperator string `sep` in an iterator fashion
consumes the original string till the end
text := "a.b.c.d.e"
for str in strings.split_after_iterator(&text, ".") {
fmt.eprintln(str) // every loop -> a. b. c. d. e
}
*/
split_after_iterator :: proc(s: ^string, sep: string) -> (string, bool) {
return _split_iterator(s, sep, len(sep))
}
@(private)
_trim_cr :: proc(s: string) -> string {
n := len(s)
if n > 0 {
if s[n-1] == '\r' {
return s[:n-1]
}
}
return s
}
/*
split the string `s` at every line break '\n'
return an allocated slice of strings
a := "a\nb\nc\nd\ne"
b := strings.split_lines(a)
fmt.eprintln(b) // [a, b, c, d, e]
*/
split_lines :: proc(s: string, allocator := context.allocator) -> []string {
sep :: "\n"
lines := _split(s, sep, 0, -1, allocator)
for line in &lines {
line = _trim_cr(line)
}
return lines
}
/*
split the string `s` at every line break '\n' for `n` parts
return an allocated slice of strings
a := "a\nb\nc\nd\ne"
b := strings.split_lines_n(a, 3)
fmt.eprintln(b) // [a, b, c, d\ne\n]
*/
split_lines_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
sep :: "\n"
lines := _split(s, sep, 0, n, allocator)
for line in &lines {
line = _trim_cr(line)
}
return lines
}
/*
split the string `s` at every line break '\n' leaving the '\n' in the resulting strings
return an allocated slice of strings
a := "a\nb\nc\nd\ne"
b := strings.split_lines_after(a)
fmt.eprintln(b) // [a\n, b\n, c\n, d\n, e\n]
*/
split_lines_after :: proc(s: string, allocator := context.allocator) -> []string {
sep :: "\n"
lines := _split(s, sep, len(sep), -1, allocator)
for line in &lines {
line = _trim_cr(line)
}
return lines
}
/*
split the string `s` at every line break '\n' leaving the '\n' in the resulting strings
only runs for `n` parts
return an allocated slice of strings
a := "a\nb\nc\nd\ne"
b := strings.split_lines_after_n(a, 3)
fmt.eprintln(b) // [a\n, b\n, c\n, d\ne\n]
*/
split_lines_after_n :: proc(s: string, n: int, allocator := context.allocator) -> []string {
sep :: "\n"
lines := _split(s, sep, len(sep), n, allocator)
for line in &lines {
line = _trim_cr(line)
}
return lines
}
/*
split the string `s` at every line break '\n'
returns the current split string every iteration till the string is consumed
text := "a\nb\nc\nd\ne"
for str in strings.split_lines_iterator(&text) {
fmt.eprintln(text) // every loop -> a b c d e
}
*/
split_lines_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
sep :: "\n"
line = _split_iterator(s, sep, 0) or_return
return _trim_cr(line), true
}
/*
split the string `s` at every line break '\n'
returns the current split string every iteration till the string is consumed
text := "a\nb\nc\nd\ne"
for str in strings.split_lines_after_iterator(&text) {
fmt.eprintln(text) // every loop -> a\n b\n c\n d\n e\n
}
*/
split_lines_after_iterator :: proc(s: ^string) -> (line: string, ok: bool) {
sep :: "\n"
line = _split_iterator(s, sep, len(sep)) or_return
return _trim_cr(line), true
}
/*
returns the byte offset of the first byte `c` in the string `s` it finds, -1 when not found
can't find utf8 based runes
strings.index_byte("test", 't') -> 0
strings.index_byte("test", 'e') -> 1
strings.index_byte("test", 'x') -> -1
strings.index_byte("teäst", 'ä') -> -1
*/
index_byte :: proc(s: string, c: byte) -> int {
for i := 0; i < len(s); i += 1 {
if s[i] == c {
return i
}
}
return -1
}
/*
returns the byte offset of the last byte `c` in the string `s` it finds, -1 when not found
can't find utf8 based runes
strings.index_byte("test", 't') -> 3
strings.index_byte("test", 'e') -> 1
strings.index_byte("test", 'x') -> -1
strings.index_byte("teäst", 'ä') -> -1
*/
last_index_byte :: proc(s: string, c: byte) -> int {
for i := len(s)-1; i >= 0; i -= 1 {
if s[i] == c {
return i
}
}
return -1
}
/*
returns the byte offset of the first rune `r` in the string `s` it finds, -1 when not found
avoids invalid runes
strings.index_rune("abcädef", 'x') -> -1
strings.index_rune("abcädef", 'a') -> 0
strings.index_rune("abcädef", 'b') -> 1
strings.index_rune("abcädef", 'c') -> 2
strings.index_rune("abcädef", 'ä') -> 3
strings.index_rune("abcädef", 'd') -> 5
strings.index_rune("abcädef", 'e') -> 6
strings.index_rune("abcädef", 'f') -> 7
*/
index_rune :: proc(s: string, r: rune) -> int {
switch {
case 0 <= r && r < utf8.RUNE_SELF:
return index_byte(s, byte(r))
case r == utf8.RUNE_ERROR:
for c, i in s {
if c == utf8.RUNE_ERROR {
return i
}
}
return -1
case !utf8.valid_rune(r):
return -1
}
b, w := utf8.encode_rune(r)
return index(s, string(b[:w]))
}
@private PRIME_RABIN_KARP :: 16777619
/*
returns the byte offset of the string `substr` in the string `s`, -1 when not found
strings.index("test", "t") -> 0
strings.index("test", "te") -> 0
strings.index("test", "st") -> 2
strings.index("test", "tt") -> -1
*/
index :: proc(s, substr: string) -> int {
hash_str_rabin_karp :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
for i := 0; i < len(s); i += 1 {
hash = hash*PRIME_RABIN_KARP + u32(s[i])
}
sq := u32(PRIME_RABIN_KARP)
for i := len(s); i > 0; i >>= 1 {
if (i & 1) != 0 {
pow *= sq
}
sq *= sq
}
return
}
n := len(substr)
switch {
case n == 0:
return 0
case n == 1:
return index_byte(s, substr[0])
case n == len(s):
if s == substr {
return 0
}
return -1
case n > len(s):
return -1
}
hash, pow := hash_str_rabin_karp(substr)
h: u32
for i := 0; i < n; i += 1 {
h = h*PRIME_RABIN_KARP + u32(s[i])
}
if h == hash && s[:n] == substr {
return 0
}
for i := n; i < len(s); /**/ {
h *= PRIME_RABIN_KARP
h += u32(s[i])
h -= pow * u32(s[i-n])
i += 1
if h == hash && s[i-n:i] == substr {
return i - n
}
}
return -1
}
/*
returns the last byte offset of the string `substr` in the string `s`, -1 when not found
strings.index("test", "t") -> 3
strings.index("test", "te") -> 0
strings.index("test", "st") -> 2
strings.index("test", "tt") -> -1
*/
last_index :: proc(s, substr: string) -> int {
hash_str_rabin_karp_reverse :: proc(s: string) -> (hash: u32 = 0, pow: u32 = 1) {
for i := len(s) - 1; i >= 0; i -= 1 {
hash = hash*PRIME_RABIN_KARP + u32(s[i])
}
sq := u32(PRIME_RABIN_KARP)
for i := len(s); i > 0; i >>= 1 {
if (i & 1) != 0 {
pow *= sq
}
sq *= sq
}
return
}
n := len(substr)
switch {
case n == 0:
return len(s)
case n == 1:
return last_index_byte(s, substr[0])
case n == len(s):
return 0 if substr == s else -1
case n > len(s):
return -1
}
hash, pow := hash_str_rabin_karp_reverse(substr)
last := len(s) - n
h: u32
for i := len(s)-1; i >= last; i -= 1 {
h = h*PRIME_RABIN_KARP + u32(s[i])
}
if h == hash && s[last:] == substr {
return last
}
for i := last-1; i >= 0; i -= 1 {
h *= PRIME_RABIN_KARP
h += u32(s[i])
h -= pow * u32(s[i+n])
if h == hash && s[i:i+n] == substr {
return i
}
}
return -1
}
/*
returns the index of any first char of `chars` found in `s`, -1 if not found
strings.index_any("test", "s") -> 2
strings.index_any("test", "se") -> 1
strings.index_any("test", "et") -> 0
strings.index_any("test", "set") -> 0
strings.index_any("test", "x") -> -1
*/
index_any :: proc(s, chars: string) -> int {
if chars == "" {
return -1
}
if len(chars) == 1 {
r := rune(chars[0])
if r >= utf8.RUNE_SELF {
r = utf8.RUNE_ERROR
}
return index_rune(s, r)
}
if len(s) > 8 {
if as, ok := ascii_set_make(chars); ok {
for i in 0..<len(s) {
if ascii_set_contains(as, s[i]) {
return i
}
}
return -1
}
}
for c, i in s {
if index_rune(chars, c) >= 0 {
return i
}
}
return -1
}
/*
returns the index of any first char of `chars` found in `s`, -1 if not found
iterates the string in reverse
strings.index_any("test", "s") -> 2
strings.index_any("test", "se") -> 2
strings.index_any("test", "et") -> 1
strings.index_any("test", "set") -> 3
strings.index_any("test", "x") -> -1
*/
last_index_any :: proc(s, chars: string) -> int {
if chars == "" {
return -1
}
if len(s) == 1 {
r := rune(s[0])
if r >= utf8.RUNE_SELF {
r = utf8.RUNE_ERROR
}
return index_rune(chars, r)
}
if len(s) > 8 {
if as, ok := ascii_set_make(chars); ok {
for i := len(s)-1; i >= 0; i -= 1 {
if ascii_set_contains(as, s[i]) {
return i
}
}
return -1
}
}
if len(chars) == 1 {
r := rune(chars[0])
if r >= utf8.RUNE_SELF {
r = utf8.RUNE_ERROR
}
for i := len(s); i > 0; /**/ {
c, w := utf8.decode_last_rune_in_string(s[:i])
i -= w
if c == r {
return i
}
}
return -1
}
for i := len(s); i > 0; /**/ {
r, w := utf8.decode_last_rune_in_string(s[:i])
i -= w
if index_rune(chars, r) >= 0 {
return i
}
}
return -1
}
/*
returns the count of the string `substr` found in the string `s`
returns the rune_count + 1 of the string `s` on empty `substr`
strings.count("abbccc", "a") -> 1
strings.count("abbccc", "b") -> 2
strings.count("abbccc", "c") -> 3
strings.count("abbccc", "ab") -> 1
strings.count("abbccc", " ") -> 0
*/
count :: proc(s, substr: string) -> int {
if len(substr) == 0 { // special case
return rune_count(s) + 1
}
if len(substr) == 1 {
c := substr[0]
switch len(s) {
case 0:
return 0
case 1:
return int(s[0] == c)
}
n := 0
for i := 0; i < len(s); i += 1 {
if s[i] == c {
n += 1
}
}
return n
}
// TODO(bill): Use a non-brute for approach
n := 0
str := s
for {
i := index(str, substr)
if i == -1 {
return n
}
n += 1
str = str[i+len(substr):]
}
return n
}
/*
repeats the string `s` multiple `count` times and returns the allocated string
panics when `count` is below 0
strings.repeat("abc", 2) -> "abcabc"
*/
repeat :: proc(s: string, count: int, allocator := context.allocator) -> string {
if count < 0 {
panic("strings: negative repeat count")
} else if count > 0 && (len(s)*count)/count != len(s) {
panic("strings: repeat count will cause an overflow")
}
b := make([]byte, len(s)*count, allocator)
i := copy(b, s)
for i < len(b) { // 2^N trick to reduce the need to copy
copy(b[i:], b[:i])
i *= 2
}
return string(b)
}
/*
replaces all instances of `old` in the string `s` with the `new` string
returns the `output` string and true when an a allocation through a replace happened
strings.replace_all("xyzxyz", "xyz", "abc") -> "abcabc", true
strings.replace_all("xyzxyz", "abc", "xyz") -> "xyzxyz", false
strings.replace_all("xyzxyz", "xy", "z") -> "zzzz", true
*/
replace_all :: proc(s, old, new: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
return replace(s, old, new, -1, allocator)
}
/*
replaces `n` instances of `old` in the string `s` with the `new` string
if n < 0, no limit on the number of replacements
returns the `output` string and true when an a allocation through a replace happened
strings.replace("xyzxyz", "xyz", "abc", 2) -> "abcabc", true
strings.replace("xyzxyz", "xyz", "abc", 1) -> "abcxyz", true
strings.replace("xyzxyz", "abc", "xyz", -1) -> "xyzxyz", false
strings.replace("xyzxyz", "xy", "z", -1) -> "zzzz", true
*/
replace :: proc(s, old, new: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
if old == new || n == 0 {
was_allocation = false
output = s
return
}
byte_count := n
if m := count(s, old); m == 0 {
was_allocation = false
output = s
return
} else if n < 0 || m < n {
byte_count = m
}
t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator)
was_allocation = true
w := 0
start := 0
for i := 0; i < byte_count; i += 1 {
j := start
if len(old) == 0 {
if i > 0 {
_, width := utf8.decode_rune_in_string(s[start:])
j += width
}
} else {
j += index(s[start:], old)
}
w += copy(t[w:], s[start:j])
w += copy(t[w:], new)
start = j + len(old)
}
w += copy(t[w:], s[start:])
output = string(t[0:w])
return
}
/*
removes the `key` string `n` times from the `s` string
if n < 0, no limit on the number of removes
returns the `output` string and true when an a allocation through a remove happened
strings.remove("abcabc", "abc", 1) -> "abc", true
strings.remove("abcabc", "abc", -1) -> "", true
strings.remove("abcabc", "a", -1) -> "bcbc", true
strings.remove("abcabc", "x", -1) -> "abcabc", false
*/
remove :: proc(s, key: string, n: int, allocator := context.allocator) -> (output: string, was_allocation: bool) {
return replace(s, key, "", n, allocator)
}
/*
removes all the `key` string instanes from the `s` string
returns the `output` string and true when an a allocation through a remove happened
strings.remove("abcabc", "abc") -> "", true
strings.remove("abcabc", "a") -> "bcbc", true
strings.remove("abcabc", "x") -> "abcabc", false
*/
remove_all :: proc(s, key: string, allocator := context.allocator) -> (output: string, was_allocation: bool) {
return remove(s, key, -1, allocator)
}
@(private) _ascii_space := [256]bool{'\t' = true, '\n' = true, '\v' = true, '\f' = true, '\r' = true, ' ' = true}
// return true when the `r` rune is '\t', '\n', '\v', '\f', '\r' or ' '
is_ascii_space :: proc(r: rune) -> bool {
if r < utf8.RUNE_SELF {
return _ascii_space[u8(r)]
}
return false
}
// returns true when the `r` rune is any asci or utf8 based whitespace
is_space :: proc(r: rune) -> bool {
if r < 0x2000 {
switch r {
case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680:
return true
}
} else {
if r <= 0x200a {
return true
}
switch r {
case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000:
return true
}
}
return false
}
// returns true when the `r` rune is a nul byte
is_null :: proc(r: rune) -> bool {
return r == 0x0000
}
/*
runs trough the `s` string linearly and watches wether the `p` procedure matches the `truth` bool
returns the rune offset or -1 when no match was found
call :: proc(r: rune) -> bool {
return r == 'a'
}
strings.index_proc("abcabc", call) -> 0
strings.index_proc("cbacba", call) -> 2
strings.index_proc("cbacba", call, false) -> 0
strings.index_proc("abcabc", call, false) -> 1
strings.index_proc("xyz", call) -> -1
*/
index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
for r, i in s {
if p(r) == truth {
return i
}
}
return -1
}
// same as `index_proc` but with a `p` procedure taking a rawptr for state
index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
for r, i in s {
if p(state, r) == truth {
return i
}
}
return -1
}
// same as `index_proc` but runs through the string in reverse
last_index_proc :: proc(s: string, p: proc(rune) -> bool, truth := true) -> int {
// TODO(bill): Probably use Rabin-Karp Search
for i := len(s); i > 0; {
r, size := utf8.decode_last_rune_in_string(s[:i])
i -= size
if p(r) == truth {
return i
}
}
return -1
}
// same as `index_proc_with_state` but runs through the string in reverse
last_index_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
// TODO(bill): Probably use Rabin-Karp Search
for i := len(s); i > 0; {
r, size := utf8.decode_last_rune_in_string(s[:i])
i -= size
if p(state, r) == truth {
return i
}
}
return -1
}
/*
trims the input string `s` until the procedure `p` returns false
does not allocate - only returns a cut variant of the input string
returns an empty string when no match was found at all
find :: proc(r: rune) -> bool {
return r != 'i'
}
strings.trim_left_proc("testing", find) -> "ing"
*/
trim_left_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
i := index_proc(s, p, false)
if i == -1 {
return ""
}
return s[i:]
}
/*
trims the input string `s` until the procedure `p` with state returns false
returns an empty string when no match was found at all
*/
trim_left_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
i := index_proc_with_state(s, p, state, false)
if i == -1 {
return ""
}
return s[i:]
}
/*
trims the input string `s` from the right until the procedure `p` returns false
does not allocate - only returns a cut variant of the input string
returns an empty string when no match was found at all
find :: proc(r: rune) -> bool {
return r != 't'
}
strings.trim_left_proc("testing", find) -> "test"
*/
trim_right_proc :: proc(s: string, p: proc(rune) -> bool) -> string {
i := last_index_proc(s, p, false)
if i >= 0 && s[i] >= utf8.RUNE_SELF {
_, w := utf8.decode_rune_in_string(s[i:])
i += w
} else {
i += 1
}
return s[0:i]
}
/*
trims the input string `s` from the right until the procedure `p` with state returns false
returns an empty string when no match was found at all
*/
trim_right_proc_with_state :: proc(s: string, p: proc(rawptr, rune) -> bool, state: rawptr) -> string {
i := last_index_proc_with_state(s, p, state, false)
if i >= 0 && s[i] >= utf8.RUNE_SELF {
_, w := utf8.decode_rune_in_string(s[i:])
i += w
} else {
i += 1
}
return s[0:i]
}
// procedure for `trim_*_proc` variants, which has a string rawptr cast + rune comparison
is_in_cutset :: proc(state: rawptr, r: rune) -> bool {
if state == nil {
return false
}
cutset := (^string)(state)^
for c in cutset {
if r == c {
return true
}
}
return false
}
// trims the `cutset` string from the `s` string
trim_left :: proc(s: string, cutset: string) -> string {
if s == "" || cutset == "" {
return s
}
state := cutset
return trim_left_proc_with_state(s, is_in_cutset, &state)
}
// trims the `cutset` string from the `s` string from the right
trim_right :: proc(s: string, cutset: string) -> string {
if s == "" || cutset == "" {
return s
}
state := cutset
return trim_right_proc_with_state(s, is_in_cutset, &state)
}
// trims the `cutset` string from the `s` string, both from left and right
trim :: proc(s: string, cutset: string) -> string {
return trim_right(trim_left(s, cutset), cutset)
}
// trims until a valid non space rune: "\t\txyz\t\t" -> "xyz\t\t"
trim_left_space :: proc(s: string) -> string {
return trim_left_proc(s, is_space)
}
// trims from the right until a valid non space rune: "\t\txyz\t\t" -> "\t\txyz"
trim_right_space :: proc(s: string) -> string {
return trim_right_proc(s, is_space)
}
// trims from both sides until a valid non space rune: "\t\txyz\t\t" -> "xyz"
trim_space :: proc(s: string) -> string {
return trim_right_space(trim_left_space(s))
}
// trims nul runes from the left: "\x00\x00testing\x00\x00" -> "testing\x00\x00"
trim_left_null :: proc(s: string) -> string {
return trim_left_proc(s, is_null)
}
// trims nul runes from the right: "\x00\x00testing\x00\x00" -> "\x00\x00testing"
trim_right_null :: proc(s: string) -> string {
return trim_right_proc(s, is_null)
}
// trims nul runes from both sides: "\x00\x00testing\x00\x00" -> "testing"
trim_null :: proc(s: string) -> string {
return trim_right_null(trim_left_null(s))
}
/*
trims a `prefix` string from the start of the `s` string and returns the trimmed string
returns the input string `s` when no prefix was found
strings.trim_prefix("testing", "test") -> "ing"
strings.trim_prefix("testing", "abc") -> "testing"
*/
trim_prefix :: proc(s, prefix: string) -> string {
if has_prefix(s, prefix) {
return s[len(prefix):]
}
return s
}
/*
trims a `suffix` string from the end of the `s` string and returns the trimmed string
returns the input string `s` when no suffix was found
strings.trim_suffix("todo.txt", ".txt") -> "todo"
strings.trim_suffix("todo.doc", ".txt") -> "todo.doc"
*/
trim_suffix :: proc(s, suffix: string) -> string {
if has_suffix(s, suffix) {
return s[:len(s)-len(suffix)]
}
return s
}
/*
splits the input string `s` by all possible `substrs` []string
returns the allocated []string, nil on any empty substring or no matches
splits := [?]string { "---", "~~~", ".", "_", "," }
res := strings.split_multi("testing,this.out_nice---done~~~last", splits[:])
fmt.eprintln(res) // -> [testing, this, out, nice, done, last]
*/
split_multi :: proc(s: string, substrs: []string, allocator := context.allocator) -> (buf: []string) #no_bounds_check {
if s == "" || len(substrs) <= 0 {
return
}
// disallow "" substr
for substr in substrs {
if len(substr) == 0 {
return
}
}
// TODO maybe remove duplicate substrs
// sort substrings by string size, largest to smallest
temp_substrs := slice.clone(substrs, context.temp_allocator)
slice.sort_by(temp_substrs, proc(a, b: string) -> bool {
return len(a) > len(b)
})
substrings_found: int
temp := s
// count substr results found in string
first_pass: for len(temp) > 0 {
for substr in temp_substrs {
size := len(substr)
// check range and compare string to substr
if size <= len(temp) && temp[:size] == substr {
substrings_found += 1
temp = temp[size:]
continue first_pass
}
}
// step through string
_, skip := utf8.decode_rune_in_string(temp[:])
temp = temp[skip:]
}
// skip when no results
if substrings_found < 1 {
return
}
buf = make([]string, substrings_found + 1, allocator)
buf_index: int
temp = s
temp_old := temp
// gather results in the same fashion
second_pass: for len(temp) > 0 {
for substr in temp_substrs {
size := len(substr)
// check range and compare string to substr
if size <= len(temp) && temp[:size] == substr {
buf[buf_index] = temp_old[:len(temp_old) - len(temp)]
buf_index += 1
temp = temp[size:]
temp_old = temp
continue second_pass
}
}
// step through string
_, skip := utf8.decode_rune_in_string(temp[:])
temp = temp[skip:]
}
buf[buf_index] = temp_old[:]
return buf
}
// state for the split multi iterator
Split_Multi :: struct {
temp: string,
temp_old: string,
substrs: []string,
}
// returns split multi state with sorted `substrs`
split_multi_init :: proc(s: string, substrs: []string) -> Split_Multi {
// sort substrings, largest to smallest
temp_substrs := slice.clone(substrs, context.temp_allocator)
slice.sort_by(temp_substrs, proc(a, b: string) -> bool {
return len(a) > len(b)
})
return {
temp = s,
temp_old = s,
substrs = temp_substrs,
}
}
/*
splits the input string `s` by all possible `substrs` []string in an iterator fashion
returns the split string every iteration, the full string on no match
splits := [?]string { "---", "~~~", ".", "_", "," }
state := strings.split_multi_init("testing,this.out_nice---done~~~last", splits[:])
for str in strings.split_multi_iterate(&state) {
fmt.eprintln(str) // every iteration -> [testing, this, out, nice, done, last]
}
*/
split_multi_iterate :: proc(using sm: ^Split_Multi) -> (res: string, ok: bool) #no_bounds_check {
pass: for len(temp) > 0 {
for substr in substrs {
size := len(substr)
// check range and compare string to substr
if size <= len(temp) && temp[:size] == substr {
res = temp_old[:len(temp_old) - len(temp)]
temp = temp[size:]
temp_old = temp
ok = true
return
}
}
// step through string
_, skip := utf8.decode_rune_in_string(temp[:])
temp = temp[skip:]
}
// allow last iteration
if temp_old != "" {
res = temp_old[:]
ok = true
temp_old = ""
}
return
}
// scrub scruvs invalid utf-8 characters and replaces them with the replacement string
// Adjacent invalid bytes are only replaced once
scrub :: proc(s: string, replacement: string, allocator := context.allocator) -> string {
str := s
b: Builder
init_builder(&b, 0, len(s), allocator)
has_error := false
cursor := 0
origin := str
for len(str) > 0 {
r, w := utf8.decode_rune_in_string(str)
if r == utf8.RUNE_ERROR {
if !has_error {
has_error = true
write_string(&b, origin[:cursor])
}
} else if has_error {
has_error = false
write_string(&b, replacement)
origin = origin[cursor:]
cursor = 0
}
cursor += w
str = str[w:]
}
return to_string(b)
}
/*
returns a reversed version of the `s` string
a := "abcxyz"
b := strings.reverse(a)
fmt.eprintln(a, b) // abcxyz zyxcba
*/
reverse :: proc(s: string, allocator := context.allocator) -> string {
str := s
n := len(str)
buf := make([]byte, n)
i := n
for len(str) > 0 {
_, w := utf8.decode_rune_in_string(str)
i -= w
copy(buf[i:], str[:w])
str = str[w:]
}
return string(buf)
}
/*
expands the string to a grid spaced by `tab_size` whenever a `\t` character appears
returns the tabbed string, panics on tab_size <= 0
strings.expand_tabs("abc1\tabc2\tabc3", 4) -> abc1 abc2 abc3
strings.expand_tabs("abc1\tabc2\tabc3", 5) -> abc1 abc2 abc3
strings.expand_tabs("abc1\tabc2\tabc3", 6) -> abc1 abc2 abc3
*/
expand_tabs :: proc(s: string, tab_size: int, allocator := context.allocator) -> string {
if tab_size <= 0 {
panic("tab size must be positive")
}
if s == "" {
return ""
}
b: Builder
init_builder(&b, allocator)
writer := to_writer(&b)
str := s
column: int
for len(str) > 0 {
r, w := utf8.decode_rune_in_string(str)
if r == '\t' {
expand := tab_size - column%tab_size
for i := 0; i < expand; i += 1 {
io.write_byte(writer, ' ')
}
column += expand
} else {
if r == '\n' {
column = 0
} else {
column += w
}
io.write_rune(writer, r)
}
str = str[w:]
}
return to_string(b)
}
/*
splits the `str` string by the seperator `sep` string and returns 3 parts
`head`: before the split, `match`: the seperator, `tail`: the end of the split
returns the input string when the `sep` was not found
text := "testing this out"
strings.partition(text, " this ") -> head: "testing", match: " this ", tail: "out"
strings.partition(text, "hi") -> head: "testing t", match: "hi", tail: "s out"
strings.partition(text, "xyz") -> head: "testing this out", match: "", tail: ""
*/
partition :: proc(str, sep: string) -> (head, match, tail: string) {
i := index(str, sep)
if i == -1 {
head = str
return
}
head = str[:i]
match = str[i:i+len(sep)]
tail = str[i+len(sep):]
return
}
center_justify :: centre_justify // NOTE(bill): Because Americans exist
// centre_justify returns a string with a pad string at boths sides if the str's rune length is smaller than length
centre_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
n := rune_count(str)
if n >= length || pad == "" {
return clone(str, allocator)
}
remains := length-1
pad_len := rune_count(pad)
b: Builder
init_builder(&b, allocator)
grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad))
w := to_writer(&b)
write_pad_string(w, pad, pad_len, remains/2)
io.write_string(w, str)
write_pad_string(w, pad, pad_len, (remains+1)/2)
return to_string(b)
}
// left_justify returns a string with a pad string at left side if the str's rune length is smaller than length
left_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
n := rune_count(str)
if n >= length || pad == "" {
return clone(str, allocator)
}
remains := length-1
pad_len := rune_count(pad)
b: Builder
init_builder(&b, allocator)
grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad))
w := to_writer(&b)
io.write_string(w, str)
write_pad_string(w, pad, pad_len, remains)
return to_string(b)
}
// right_justify returns a string with a pad string at right side if the str's rune length is smaller than length
right_justify :: proc(str: string, length: int, pad: string, allocator := context.allocator) -> string {
n := rune_count(str)
if n >= length || pad == "" {
return clone(str, allocator)
}
remains := length-1
pad_len := rune_count(pad)
b: Builder
init_builder(&b, allocator)
grow_builder(&b, len(str) + (remains/pad_len + 1)*len(pad))
w := to_writer(&b)
write_pad_string(w, pad, pad_len, remains)
io.write_string(w, str)
return to_string(b)
}
@private
write_pad_string :: proc(w: io.Writer, pad: string, pad_len, remains: int) {
repeats := remains / pad_len
for i := 0; i < repeats; i += 1 {
io.write_string(w, pad)
}
n := remains % pad_len
p := pad
for i := 0; i < n; i += 1 {
r, width := utf8.decode_rune_in_string(p)
io.write_rune(w, r)
p = p[width:]
}
}
// fields splits the string s around each instance of one or more consecutive white space character, defined by unicode.is_space
// returning a slice of substrings of s or an empty slice if s only contains white space
fields :: proc(s: string, allocator := context.allocator) -> []string #no_bounds_check {
n := 0
was_space := 1
set_bits := u8(0)
// check to see
for i in 0..<len(s) {
r := s[i]
set_bits |= r
is_space := int(_ascii_space[r])
n += was_space & ~is_space
was_space = is_space
}
if set_bits >= utf8.RUNE_SELF {
return fields_proc(s, unicode.is_space, allocator)
}
if n == 0 {
return nil
}
a := make([]string, n, allocator)
na := 0
field_start := 0
i := 0
for i < len(s) && _ascii_space[s[i]] {
i += 1
}
field_start = i
for i < len(s) {
if !_ascii_space[s[i]] {
i += 1
continue
}
a[na] = s[field_start : i]
na += 1
i += 1
for i < len(s) && _ascii_space[s[i]] {
i += 1
}
field_start = i
}
if field_start < len(s) {
a[na] = s[field_start:]
}
return a
}
// fields_proc splits the string s at each run of unicode code points `ch` satisfying f(ch)
// returns a slice of substrings of s
// If all code points in s satisfy f(ch) or string is empty, an empty slice is returned
//
// fields_proc makes no guarantee about the order in which it calls f(ch)
// it assumes that `f` always returns the same value for a given ch
fields_proc :: proc(s: string, f: proc(rune) -> bool, allocator := context.allocator) -> []string #no_bounds_check {
substrings := make([dynamic]string, 0, 32, allocator)
start, end := -1, -1
for r, offset in s {
end = offset
if f(r) {
if start >= 0 {
append(&substrings, s[start : end])
// -1 could be used, but just speed it up through bitwise not
// gotta love 2's complement
start = ~start
}
} else {
if start < 0 {
start = end
}
}
}
if start >= 0 {
append(&substrings, s[start : len(s)])
}
return substrings[:]
}
// `fields_iterator` returns the first run of characters in `s` that does not contain white space, defined by `unicode.is_space`
// `s` will then start from any space after the substring, or be an empty string if the substring was the remaining characters
fields_iterator :: proc(s: ^string) -> (field: string, ok: bool) {
start, end := -1, -1
for r, offset in s {
end = offset
if unicode.is_space(r) {
if start >= 0 {
field = s[start : end]
ok = true
s^ = s[end:]
return
}
} else {
if start < 0 {
start = end
}
}
}
// if either of these are true, the string did not contain any characters
if end < 0 || start < 0 {
return "", false
}
field = s[start:]
ok = true
s^ = s[len(s):]
return
}