Files
Odin/code/math.odin
2016-09-12 14:41:36 +01:00

156 lines
4.1 KiB
Odin

MATH_TAU :: 6.28318530717958647692528676655900576
MATH_PI :: 3.14159265358979323846264338327950288
MATH_ONE_OVER_TAU :: 0.636619772367581343075535053490057448
MATH_ONE_OVER_PI :: 0.159154943091895335768883763372514362
MATH_E :: 2.71828182845904523536
MATH_SQRT_TWO :: 1.41421356237309504880168872420969808
MATH_SQRT_THREE :: 1.73205080756887729352744634150587236
MATH_SQRT_FIVE :: 2.23606797749978969640917366873127623
MATH_LOG_TWO :: 0.693147180559945309417232121458176568
MATH_LOG_TEN :: 2.30258509299404568401799145468436421
MATH_EPSILON :: 1.19209290e-7
τ :: MATH_TAU
π :: MATH_PI
Vec2 :: type {2}f32
Vec3 :: type {3}f32
Vec4 :: type {4}f32
Mat2 :: type {4}f32
Mat3 :: type {9}f32
Mat4 :: type {16}f32
fsqrt :: proc(x: f32) -> f32 #foreign "llvm.sqrt.f32"
fsin :: proc(x: f32) -> f32 #foreign "llvm.sin.f32"
fcos :: proc(x: f32) -> f32 #foreign "llvm.cos.f32"
flerp :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t }
fclamp :: proc(x, lower, upper: f32) -> f32 { return min(max(x, lower), upper) }
fclamp01 :: proc(x: f32) -> f32 { return fclamp(x, 0, 1) }
fsign :: proc(x: f32) -> f32 { if x >= 0 { return +1 } return -1 }
copy_sign :: proc(x, y: f32) -> f32 {
ix := x transmute u32
iy := y transmute u32
ix &= 0x7fffffff
ix |= iy & 0x80000000
return ix transmute f32
}
round :: proc(x: f32) -> f32 {
if x >= 0 {
return floor(x + 0.5)
}
return ceil(x - 0.5)
}
floor :: proc(x: f32) -> f32 {
if x >= 0 {
return x as int as f32
}
return (x-0.5) as int as f32
}
ceil :: proc(x: f32) -> f32 {
if x < 0 {
return x as int as f32
}
return ((x as int)+1) as f32
}
remainder :: proc(x, y: f32) -> f32 {
return x - round(x/y) * y
}
fmod :: proc(x, y: f32) -> f32 {
y = abs(y)
result := remainder(abs(x), y)
if fsign(result) < 0 {
result += y
}
return copy_sign(result, x)
}
to_radians :: proc(degrees: f32) -> f32 { return degrees * MATH_TAU / 360 }
to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / MATH_TAU }
dot2 :: proc(a, b: Vec2) -> f32 { c := a*b; return c[0] + c[1] }
dot3 :: proc(a, b: Vec3) -> f32 { c := a*b; return c[0] + c[1] + c[2] }
dot4 :: proc(a, b: Vec4) -> f32 { c := a*b; return c[0] + c[1] + c[2] + c[3] }
cross :: proc(x, y: Vec3) -> Vec3 {
a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1)
b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0)
return a - b
}
vec2_mag :: proc(v: Vec2) -> f32 { return fsqrt(dot2(v, v)) }
vec3_mag :: proc(v: Vec3) -> f32 { return fsqrt(dot3(v, v)) }
vec4_mag :: proc(v: Vec4) -> f32 { return fsqrt(dot4(v, v)) }
vec2_norm :: proc(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)} }
vec3_norm :: proc(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)} }
vec4_norm :: proc(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)} }
vec2_norm0 :: proc(v: Vec2) -> Vec2 {
m := vec2_mag(v)
if m == 0 {
return Vec2{0}
}
return v / Vec2{m}
}
vec3_norm0 :: proc(v: Vec3) -> Vec3 {
m := vec3_mag(v)
if m == 0 {
return Vec3{0}
}
return v / Vec3{m}
}
vec4_norm0 :: proc(v: Vec4) -> Vec4 {
m := vec4_mag(v)
if m == 0 {
return Vec4{0}
}
return v / Vec4{m}
}
F32_DIG :: 6
F32_EPSILON :: 1.192092896e-07
F32_GUARD :: 0
F32_MANT_DIG :: 24
F32_MAX :: 3.402823466e+38
F32_MAX_10_EXP :: 38
F32_MAX_EXP :: 128
F32_MIN :: 1.175494351e-38
F32_MIN_10_EXP :: -37
F32_MIN_EXP :: -125
F32_NORMALIZE :: 0
F32_RADIX :: 2
F32_ROUNDS :: 1
F64_DIG :: 15 // # of decimal digits of precision
F64_EPSILON :: 2.2204460492503131e-016 // smallest such that 1.0+F64_EPSILON != 1.0
F64_MANT_DIG :: 53 // # of bits in mantissa
F64_MAX :: 1.7976931348623158e+308 // max value
F64_MAX_10_EXP :: 308 // max decimal exponent
F64_MAX_EXP :: 1024 // max binary exponent
F64_MIN :: 2.2250738585072014e-308 // min positive value
F64_MIN_10_EXP :: -307 // min decimal exponent
F64_MIN_EXP :: -1021 // min binary exponent
F64_RADIX :: 2 // exponent radix
F64_ROUNDS :: 1 // addition rounding: near