Files
Odin/core/crypto/ripemd/ripemd.odin
2023-06-08 16:38:57 +01:00

920 lines
26 KiB
Odin

package ripemd
/*
Copyright 2021 zhibog
Made available under the BSD-3 license.
List of contributors:
zhibog, dotbmp: Initial implementation.
Implementation for the RIPEMD hashing algorithm as defined in <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
*/
import "core:os"
import "core:io"
import "../util"
/*
High level API
*/
DIGEST_SIZE_128 :: 16
DIGEST_SIZE_160 :: 20
DIGEST_SIZE_256 :: 32
DIGEST_SIZE_320 :: 40
// hash_string_128 will hash the given input and return the
// computed hash
hash_string_128 :: proc(data: string) -> [DIGEST_SIZE_128]byte {
return hash_bytes_128(transmute([]byte)(data))
}
// hash_bytes_128 will hash the given input and return the
// computed hash
hash_bytes_128 :: proc(data: []byte) -> [DIGEST_SIZE_128]byte {
hash: [DIGEST_SIZE_128]byte
ctx: Ripemd128_Context
init(&ctx)
update(&ctx, data)
final(&ctx, hash[:])
return hash
}
// hash_string_to_buffer_128 will hash the given input and assign the
// computed hash to the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_string_to_buffer_128 :: proc(data: string, hash: []byte) {
hash_bytes_to_buffer_128(transmute([]byte)(data), hash)
}
// hash_bytes_to_buffer_128 will hash the given input and write the
// computed hash into the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_bytes_to_buffer_128 :: proc(data, hash: []byte) {
assert(len(hash) >= DIGEST_SIZE_128, "Size of destination buffer is smaller than the digest size")
ctx: Ripemd128_Context
init(&ctx)
update(&ctx, data)
final(&ctx, hash)
}
// hash_stream_128 will read the stream in chunks and compute a
// hash from its contents
hash_stream_128 :: proc(s: io.Stream) -> ([DIGEST_SIZE_128]byte, bool) {
hash: [DIGEST_SIZE_128]byte
ctx: Ripemd128_Context
init(&ctx)
buf := make([]byte, 512)
defer delete(buf)
read := 1
for read > 0 {
read, _ = io.read(s, buf)
if read > 0 {
update(&ctx, buf[:read])
}
}
final(&ctx, hash[:])
return hash, true
}
// hash_file_128 will read the file provided by the given handle
// and compute a hash
hash_file_128 :: proc(hd: os.Handle, load_at_once := false) -> ([DIGEST_SIZE_128]byte, bool) {
if !load_at_once {
return hash_stream_128(os.stream_from_handle(hd))
} else {
if buf, ok := os.read_entire_file(hd); ok {
return hash_bytes_128(buf[:]), ok
}
}
return [DIGEST_SIZE_128]byte{}, false
}
hash_128 :: proc {
hash_stream_128,
hash_file_128,
hash_bytes_128,
hash_string_128,
hash_bytes_to_buffer_128,
hash_string_to_buffer_128,
}
// hash_string_160 will hash the given input and return the
// computed hash
hash_string_160 :: proc(data: string) -> [DIGEST_SIZE_160]byte {
return hash_bytes_160(transmute([]byte)(data))
}
// hash_bytes_160 will hash the given input and return the
// computed hash
hash_bytes_160 :: proc(data: []byte) -> [DIGEST_SIZE_160]byte {
hash: [DIGEST_SIZE_160]byte
ctx: Ripemd160_Context
init(&ctx)
update(&ctx, data)
final(&ctx, hash[:])
return hash
}
// hash_string_to_buffer_160 will hash the given input and assign the
// computed hash to the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_string_to_buffer_160 :: proc(data: string, hash: []byte) {
hash_bytes_to_buffer_160(transmute([]byte)(data), hash)
}
// hash_bytes_to_buffer_160 will hash the given input and write the
// computed hash into the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_bytes_to_buffer_160 :: proc(data, hash: []byte) {
assert(len(hash) >= DIGEST_SIZE_160, "Size of destination buffer is smaller than the digest size")
ctx: Ripemd160_Context
init(&ctx)
update(&ctx, data)
final(&ctx, hash)
}
// hash_stream_160 will read the stream in chunks and compute a
// hash from its contents
hash_stream_160 :: proc(s: io.Stream) -> ([DIGEST_SIZE_160]byte, bool) {
hash: [DIGEST_SIZE_160]byte
ctx: Ripemd160_Context
init(&ctx)
buf := make([]byte, 512)
defer delete(buf)
read := 1
for read > 0 {
read, _ = io.read(s, buf)
if read > 0 {
update(&ctx, buf[:read])
}
}
final(&ctx, hash[:])
return hash, true
}
// hash_file_160 will read the file provided by the given handle
// and compute a hash
hash_file_160 :: proc(hd: os.Handle, load_at_once := false) -> ([DIGEST_SIZE_160]byte, bool) {
if !load_at_once {
return hash_stream_160(os.stream_from_handle(hd))
} else {
if buf, ok := os.read_entire_file(hd); ok {
return hash_bytes_160(buf[:]), ok
}
}
return [DIGEST_SIZE_160]byte{}, false
}
hash_160 :: proc {
hash_stream_160,
hash_file_160,
hash_bytes_160,
hash_string_160,
hash_bytes_to_buffer_160,
hash_string_to_buffer_160,
}
// hash_string_256 will hash the given input and return the
// computed hash
hash_string_256 :: proc(data: string) -> [DIGEST_SIZE_256]byte {
return hash_bytes_256(transmute([]byte)(data))
}
// hash_bytes_256 will hash the given input and return the
// computed hash
hash_bytes_256 :: proc(data: []byte) -> [DIGEST_SIZE_256]byte {
hash: [DIGEST_SIZE_256]byte
ctx: Ripemd256_Context
init(&ctx)
update(&ctx, data)
final(&ctx, hash[:])
return hash
}
// hash_string_to_buffer_256 will hash the given input and assign the
// computed hash to the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_string_to_buffer_256 :: proc(data: string, hash: []byte) {
hash_bytes_to_buffer_256(transmute([]byte)(data), hash)
}
// hash_bytes_to_buffer_256 will hash the given input and write the
// computed hash into the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_bytes_to_buffer_256 :: proc(data, hash: []byte) {
assert(len(hash) >= DIGEST_SIZE_256, "Size of destination buffer is smaller than the digest size")
ctx: Ripemd256_Context
init(&ctx)
update(&ctx, data)
final(&ctx, hash)
}
// hash_stream_256 will read the stream in chunks and compute a
// hash from its contents
hash_stream_256 :: proc(s: io.Stream) -> ([DIGEST_SIZE_256]byte, bool) {
hash: [DIGEST_SIZE_256]byte
ctx: Ripemd256_Context
init(&ctx)
buf := make([]byte, 512)
defer delete(buf)
read := 1
for read > 0 {
read, _ = io.read(s, buf)
if read > 0 {
update(&ctx, buf[:read])
}
}
final(&ctx, hash[:])
return hash, true
}
// hash_file_256 will read the file provided by the given handle
// and compute a hash
hash_file_256 :: proc(hd: os.Handle, load_at_once := false) -> ([DIGEST_SIZE_256]byte, bool) {
if !load_at_once {
return hash_stream_256(os.stream_from_handle(hd))
} else {
if buf, ok := os.read_entire_file(hd); ok {
return hash_bytes_256(buf[:]), ok
}
}
return [DIGEST_SIZE_256]byte{}, false
}
hash_256 :: proc {
hash_stream_256,
hash_file_256,
hash_bytes_256,
hash_string_256,
hash_bytes_to_buffer_256,
hash_string_to_buffer_256,
}
// hash_string_320 will hash the given input and return the
// computed hash
hash_string_320 :: proc(data: string) -> [DIGEST_SIZE_320]byte {
return hash_bytes_320(transmute([]byte)(data))
}
// hash_bytes_320 will hash the given input and return the
// computed hash
hash_bytes_320 :: proc(data: []byte) -> [DIGEST_SIZE_320]byte {
hash: [DIGEST_SIZE_320]byte
ctx: Ripemd320_Context
init(&ctx)
update(&ctx, data)
final(&ctx, hash[:])
return hash
}
// hash_string_to_buffer_320 will hash the given input and assign the
// computed hash to the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_string_to_buffer_320 :: proc(data: string, hash: []byte) {
hash_bytes_to_buffer_320(transmute([]byte)(data), hash)
}
// hash_bytes_to_buffer_320 will hash the given input and write the
// computed hash into the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_bytes_to_buffer_320 :: proc(data, hash: []byte) {
assert(len(hash) >= DIGEST_SIZE_320, "Size of destination buffer is smaller than the digest size")
ctx: Ripemd320_Context
init(&ctx)
update(&ctx, data)
final(&ctx, hash)
}
// hash_stream_320 will read the stream in chunks and compute a
// hash from its contents
hash_stream_320 :: proc(s: io.Stream) -> ([DIGEST_SIZE_320]byte, bool) {
hash: [DIGEST_SIZE_320]byte
ctx: Ripemd320_Context
init(&ctx)
buf := make([]byte, 512)
defer delete(buf)
read := 1
for read > 0 {
read, _ = io.read(s, buf)
if read > 0 {
update(&ctx, buf[:read])
}
}
final(&ctx, hash[:])
return hash, true
}
// hash_file_320 will read the file provided by the given handle
// and compute a hash
hash_file_320 :: proc(hd: os.Handle, load_at_once := false) -> ([DIGEST_SIZE_320]byte, bool) {
if !load_at_once {
return hash_stream_320(os.stream_from_handle(hd))
} else {
if buf, ok := os.read_entire_file(hd); ok {
return hash_bytes_320(buf[:]), ok
}
}
return [DIGEST_SIZE_320]byte{}, false
}
hash_320 :: proc {
hash_stream_320,
hash_file_320,
hash_bytes_320,
hash_string_320,
hash_bytes_to_buffer_320,
hash_string_to_buffer_320,
}
/*
Low level API
*/
init :: proc(ctx: ^$T) {
when T == Ripemd128_Context {
ctx.s[0], ctx.s[1], ctx.s[2], ctx.s[3] = S0, S1, S2, S3
} else when T == Ripemd160_Context {
ctx.s[0], ctx.s[1], ctx.s[2], ctx.s[3], ctx.s[4] = S0, S1, S2, S3, S4
} else when T == Ripemd256_Context {
ctx.s[0], ctx.s[1], ctx.s[2], ctx.s[3] = S0, S1, S2, S3
ctx.s[4], ctx.s[5], ctx.s[6], ctx.s[7] = S5, S6, S7, S8
} else when T == Ripemd320_Context {
ctx.s[0], ctx.s[1], ctx.s[2], ctx.s[3], ctx.s[4] = S0, S1, S2, S3, S4
ctx.s[5], ctx.s[6], ctx.s[7], ctx.s[8], ctx.s[9] = S5, S6, S7, S8, S9
}
}
update :: proc(ctx: ^$T, data: []byte) {
ctx.tc += u64(len(data))
data := data
if ctx.nx > 0 {
n := len(data)
when T == Ripemd128_Context {
if n > RIPEMD_128_BLOCK_SIZE - ctx.nx {
n = RIPEMD_128_BLOCK_SIZE - ctx.nx
}
} else when T == Ripemd160_Context {
if n > RIPEMD_160_BLOCK_SIZE - ctx.nx {
n = RIPEMD_160_BLOCK_SIZE - ctx.nx
}
} else when T == Ripemd256_Context{
if n > RIPEMD_256_BLOCK_SIZE - ctx.nx {
n = RIPEMD_256_BLOCK_SIZE - ctx.nx
}
} else when T == Ripemd320_Context{
if n > RIPEMD_320_BLOCK_SIZE - ctx.nx {
n = RIPEMD_320_BLOCK_SIZE - ctx.nx
}
}
for i := 0; i < n; i += 1 {
ctx.x[ctx.nx + i] = data[i]
}
ctx.nx += n
when T == Ripemd128_Context {
if ctx.nx == RIPEMD_128_BLOCK_SIZE {
block(ctx, ctx.x[0:])
ctx.nx = 0
}
} else when T == Ripemd160_Context {
if ctx.nx == RIPEMD_160_BLOCK_SIZE {
block(ctx, ctx.x[0:])
ctx.nx = 0
}
} else when T == Ripemd256_Context{
if ctx.nx == RIPEMD_256_BLOCK_SIZE {
block(ctx, ctx.x[0:])
ctx.nx = 0
}
} else when T == Ripemd320_Context{
if ctx.nx == RIPEMD_320_BLOCK_SIZE {
block(ctx, ctx.x[0:])
ctx.nx = 0
}
}
data = data[n:]
}
n := block(ctx, data)
data = data[n:]
if len(data) > 0 {
ctx.nx = copy(ctx.x[:], data)
}
}
final :: proc(ctx: ^$T, hash: []byte) {
d := ctx
tc := d.tc
tmp: [64]byte
tmp[0] = 0x80
if tc % 64 < 56 {
update(d, tmp[0:56 - tc % 64])
} else {
update(d, tmp[0:64 + 56 - tc % 64])
}
tc <<= 3
for i : u32 = 0; i < 8; i += 1 {
tmp[i] = byte(tc >> (8 * i))
}
update(d, tmp[0:8])
when T == Ripemd128_Context {
size :: RIPEMD_128_SIZE
} else when T == Ripemd160_Context {
size :: RIPEMD_160_SIZE
} else when T == Ripemd256_Context{
size :: RIPEMD_256_SIZE
} else when T == Ripemd320_Context{
size :: RIPEMD_320_SIZE
}
digest: [size]byte
for s, i in d.s {
digest[i * 4] = byte(s)
digest[i * 4 + 1] = byte(s >> 8)
digest[i * 4 + 2] = byte(s >> 16)
digest[i * 4 + 3] = byte(s >> 24)
}
copy(hash[:], digest[:])
}
/*
RIPEMD implementation
*/
Ripemd128_Context :: struct {
s: [4]u32,
x: [RIPEMD_128_BLOCK_SIZE]byte,
nx: int,
tc: u64,
}
Ripemd160_Context :: struct {
s: [5]u32,
x: [RIPEMD_160_BLOCK_SIZE]byte,
nx: int,
tc: u64,
}
Ripemd256_Context :: struct {
s: [8]u32,
x: [RIPEMD_256_BLOCK_SIZE]byte,
nx: int,
tc: u64,
}
Ripemd320_Context :: struct {
s: [10]u32,
x: [RIPEMD_320_BLOCK_SIZE]byte,
nx: int,
tc: u64,
}
RIPEMD_128_SIZE :: 16
RIPEMD_128_BLOCK_SIZE :: 64
RIPEMD_160_SIZE :: 20
RIPEMD_160_BLOCK_SIZE :: 64
RIPEMD_256_SIZE :: 32
RIPEMD_256_BLOCK_SIZE :: 64
RIPEMD_320_SIZE :: 40
RIPEMD_320_BLOCK_SIZE :: 64
S0 :: 0x67452301
S1 :: 0xefcdab89
S2 :: 0x98badcfe
S3 :: 0x10325476
S4 :: 0xc3d2e1f0
S5 :: 0x76543210
S6 :: 0xfedcba98
S7 :: 0x89abcdef
S8 :: 0x01234567
S9 :: 0x3c2d1e0f
RIPEMD_128_N0 := [64]uint {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
}
RIPEMD_128_R0 := [64]uint {
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
}
RIPEMD_128_N1 := [64]uint {
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
}
RIPEMD_128_R1 := [64]uint {
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
}
RIPEMD_160_N0 := [80]uint {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13,
}
RIPEMD_160_R0 := [80]uint {
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6,
}
RIPEMD_160_N1 := [80]uint {
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11,
}
RIPEMD_160_R1 := [80]uint {
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11,
}
block :: #force_inline proc (ctx: ^$T, p: []byte) -> int {
when T == Ripemd128_Context {
return ripemd_128_block(ctx, p)
}
else when T == Ripemd160_Context {
return ripemd_160_block(ctx, p)
}
else when T == Ripemd256_Context {
return ripemd_256_block(ctx, p)
}
else when T == Ripemd320_Context {
return ripemd_320_block(ctx, p)
}
}
ripemd_128_block :: proc(ctx: ^$T, p: []byte) -> int {
n := 0
x: [16]u32 = ---
alpha: u32 = ---
p := p
for len(p) >= RIPEMD_128_BLOCK_SIZE {
a, b, c, d := ctx.s[0], ctx.s[1], ctx.s[2], ctx.s[3]
aa, bb, cc, dd := a, b, c, d
for i,j := 0, 0; i < 16; i, j = i+1, j+4 {
x[i] = u32(p[j]) | u32(p[j+1])<<8 | u32(p[j+2])<<16 | u32(p[j+3])<<24
}
i := 0
for i < 16 {
alpha = a + (b ~ c ~ d) + x[RIPEMD_128_N0[i]]
s := int(RIPEMD_128_R0[i])
alpha = util.ROTL32(alpha, s)
a, b, c, d = d, alpha, b, c
alpha = aa + (bb & dd | cc &~ dd) + x[RIPEMD_128_N1[i]] + 0x50a28be6
s = int(RIPEMD_128_R1[i])
alpha = util.ROTL32(alpha, s)
aa, bb, cc, dd= dd, alpha, bb, cc
i += 1
}
for i < 32 {
alpha = a + (d ~ (b & (c~d))) + x[RIPEMD_128_N0[i]] + 0x5a827999
s := int(RIPEMD_128_R0[i])
alpha = util.ROTL32(alpha, s)
a, b, c, d = d, alpha, b, c
alpha = aa + (dd ~ (bb | ~cc)) + x[RIPEMD_128_N1[i]] + 0x5c4dd124
s = int(RIPEMD_128_R1[i])
alpha = util.ROTL32(alpha, s)
aa, bb, cc, dd = dd, alpha, bb, cc
i += 1
}
for i < 48 {
alpha = a + (d ~ (b | ~c)) + x[RIPEMD_128_N0[i]] + 0x6ed9eba1
s := int(RIPEMD_128_R0[i])
alpha = util.ROTL32(alpha, s)
a, b, c, d = d, alpha, b, c
alpha = aa + (dd ~ (bb & (cc~dd))) + x[RIPEMD_128_N1[i]] + 0x6d703ef3
s = int(RIPEMD_128_R1[i])
alpha = util.ROTL32(alpha, s)
aa, bb, cc, dd = dd, alpha, bb, cc
i += 1
}
for i < 64 {
alpha = a + (c ~ (d & (b~c))) + x[RIPEMD_128_N0[i]] + 0x8f1bbcdc
s := int(RIPEMD_128_R0[i])
alpha = util.ROTL32(alpha, s)
a, b, c, d = d, alpha, b, c
alpha = aa + (bb ~ cc ~ dd) + x[RIPEMD_128_N1[i]]
s = int(RIPEMD_128_R1[i])
alpha = util.ROTL32(alpha, s)
aa, bb, cc, dd = dd, alpha, bb, cc
i += 1
}
c = ctx.s[1] + c + dd
ctx.s[1] = ctx.s[2] + d + aa
ctx.s[2] = ctx.s[3] + a + bb
ctx.s[3] = ctx.s[0] + b + cc
ctx.s[0] = c
p = p[RIPEMD_128_BLOCK_SIZE:]
n += RIPEMD_128_BLOCK_SIZE
}
return n
}
ripemd_160_block :: proc(ctx: ^$T, p: []byte) -> int {
n := 0
x: [16]u32 = ---
alpha, beta: u32 = ---, ---
p := p
for len(p) >= RIPEMD_160_BLOCK_SIZE {
a, b, c, d, e := ctx.s[0], ctx.s[1], ctx.s[2], ctx.s[3], ctx.s[4]
aa, bb, cc, dd, ee := a, b, c, d, e
for i,j := 0, 0; i < 16; i, j = i+1, j+4 {
x[i] = u32(p[j]) | u32(p[j+1])<<8 | u32(p[j+2])<<16 | u32(p[j+3])<<24
}
i := 0
for i < 16 {
alpha = a + (b ~ c ~ d) + x[RIPEMD_160_N0[i]]
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb ~ (cc | ~dd)) + x[RIPEMD_160_N1[i]] + 0x50a28be6
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
for i < 32 {
alpha = a + (b&c | ~b&d) + x[RIPEMD_160_N0[i]] + 0x5a827999
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb&dd | cc&~dd) + x[RIPEMD_160_N1[i]] + 0x5c4dd124
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
for i < 48 {
alpha = a + (b | ~c ~ d) + x[RIPEMD_160_N0[i]] + 0x6ed9eba1
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb | ~cc ~ dd) + x[RIPEMD_160_N1[i]] + 0x6d703ef3
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
for i < 64 {
alpha = a + (b&d | c&~d) + x[RIPEMD_160_N0[i]] + 0x8f1bbcdc
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb&cc | ~bb&dd) + x[RIPEMD_160_N1[i]] + 0x7a6d76e9
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
for i < 80 {
alpha = a + (b ~ (c | ~d)) + x[RIPEMD_160_N0[i]] + 0xa953fd4e
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb ~ cc ~ dd) + x[RIPEMD_160_N1[i]]
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
dd += c + ctx.s[1]
ctx.s[1] = ctx.s[2] + d + ee
ctx.s[2] = ctx.s[3] + e + aa
ctx.s[3] = ctx.s[4] + a + bb
ctx.s[4] = ctx.s[0] + b + cc
ctx.s[0] = dd
p = p[RIPEMD_160_BLOCK_SIZE:]
n += RIPEMD_160_BLOCK_SIZE
}
return n
}
ripemd_256_block :: proc(ctx: ^$T, p: []byte) -> int {
n := 0
x: [16]u32 = ---
alpha: u32 = ---
p := p
for len(p) >= RIPEMD_256_BLOCK_SIZE {
a, b, c, d := ctx.s[0], ctx.s[1], ctx.s[2], ctx.s[3]
aa, bb, cc, dd := ctx.s[4], ctx.s[5], ctx.s[6], ctx.s[7]
for i,j := 0, 0; i < 16; i, j = i+1, j+4 {
x[i] = u32(p[j]) | u32(p[j+1])<<8 | u32(p[j+2])<<16 | u32(p[j+3])<<24
}
i := 0
for i < 16 {
alpha = a + (b ~ c ~ d) + x[RIPEMD_128_N0[i]]
s := int(RIPEMD_128_R0[i])
alpha = util.ROTL32(alpha, s)
a, b, c, d = d, alpha, b, c
alpha = aa + (bb & dd | cc &~ dd) + x[RIPEMD_128_N1[i]] + 0x50a28be6
s = int(RIPEMD_128_R1[i])
alpha = util.ROTL32(alpha, s)
aa, bb, cc, dd= dd, alpha, bb, cc
i += 1
}
t := a
a = aa
aa = t
for i < 32 {
alpha = a + (d ~ (b & (c~d))) + x[RIPEMD_128_N0[i]] + 0x5a827999
s := int(RIPEMD_128_R0[i])
alpha = util.ROTL32(alpha, s)
a, b, c, d = d, alpha, b, c
alpha = aa + (dd ~ (bb | ~cc)) + x[RIPEMD_128_N1[i]] + 0x5c4dd124
s = int(RIPEMD_128_R1[i])
alpha = util.ROTL32(alpha, s)
aa, bb, cc, dd = dd, alpha, bb, cc
i += 1
}
t = b
b = bb
bb = t
for i < 48 {
alpha = a + (d ~ (b | ~c)) + x[RIPEMD_128_N0[i]] + 0x6ed9eba1
s := int(RIPEMD_128_R0[i])
alpha = util.ROTL32(alpha, s)
a, b, c, d = d, alpha, b, c
alpha = aa + (dd ~ (bb & (cc~dd))) + x[RIPEMD_128_N1[i]] + 0x6d703ef3
s = int(RIPEMD_128_R1[i])
alpha = util.ROTL32(alpha, s)
aa, bb, cc, dd = dd, alpha, bb, cc
i += 1
}
t = c
c = cc
cc = t
for i < 64 {
alpha = a + (c ~ (d & (b~c))) + x[RIPEMD_128_N0[i]] + 0x8f1bbcdc
s := int(RIPEMD_128_R0[i])
alpha = util.ROTL32(alpha, s)
a, b, c, d = d, alpha, b, c
alpha = aa + (bb ~ cc ~ dd) + x[RIPEMD_128_N1[i]]
s = int(RIPEMD_128_R1[i])
alpha = util.ROTL32(alpha, s)
aa, bb, cc, dd = dd, alpha, bb, cc
i += 1
}
t = d
d = dd
dd = t
ctx.s[0] += a
ctx.s[1] += b
ctx.s[2] += c
ctx.s[3] += d
ctx.s[4] += aa
ctx.s[5] += bb
ctx.s[6] += cc
ctx.s[7] += dd
p = p[RIPEMD_256_BLOCK_SIZE:]
n += RIPEMD_256_BLOCK_SIZE
}
return n
}
ripemd_320_block :: proc(ctx: ^$T, p: []byte) -> int {
n := 0
x: [16]u32 = ---
alpha, beta: u32 = ---, ---
p := p
for len(p) >= RIPEMD_320_BLOCK_SIZE {
a, b, c, d, e := ctx.s[0], ctx.s[1], ctx.s[2], ctx.s[3], ctx.s[4]
aa, bb, cc, dd, ee := ctx.s[5], ctx.s[6], ctx.s[7], ctx.s[8], ctx.s[9]
for i,j := 0, 0; i < 16; i, j = i+1, j+4 {
x[i] = u32(p[j]) | u32(p[j+1])<<8 | u32(p[j+2])<<16 | u32(p[j+3])<<24
}
i := 0
for i < 16 {
alpha = a + (b ~ c ~ d) + x[RIPEMD_160_N0[i]]
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb ~ (cc | ~dd)) + x[RIPEMD_160_N1[i]] + 0x50a28be6
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
t := b
b = bb
bb = t
for i < 32 {
alpha = a + (b&c | ~b&d) + x[RIPEMD_160_N0[i]] + 0x5a827999
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb&dd | cc&~dd) + x[RIPEMD_160_N1[i]] + 0x5c4dd124
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
t = d
d = dd
dd = t
for i < 48 {
alpha = a + (b | ~c ~ d) + x[RIPEMD_160_N0[i]] + 0x6ed9eba1
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb | ~cc ~ dd) + x[RIPEMD_160_N1[i]] + 0x6d703ef3
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
t = a
a = aa
aa = t
for i < 64 {
alpha = a + (b&d | c&~d) + x[RIPEMD_160_N0[i]] + 0x8f1bbcdc
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb&cc | ~bb&dd) + x[RIPEMD_160_N1[i]] + 0x7a6d76e9
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
t = c
c = cc
cc = t
for i < 80 {
alpha = a + (b ~ (c | ~d)) + x[RIPEMD_160_N0[i]] + 0xa953fd4e
s := int(RIPEMD_160_R0[i])
alpha = util.ROTL32(alpha, s) + e
beta = util.ROTL32(c, 10)
a, b, c, d, e = e, alpha, b, beta, d
alpha = aa + (bb ~ cc ~ dd) + x[RIPEMD_160_N1[i]]
s = int(RIPEMD_160_R1[i])
alpha = util.ROTL32(alpha, s) + ee
beta = util.ROTL32(cc, 10)
aa, bb, cc, dd, ee = ee, alpha, bb, beta, dd
i += 1
}
t = e
e = ee
ee = t
ctx.s[0] += a
ctx.s[1] += b
ctx.s[2] += c
ctx.s[3] += d
ctx.s[4] += e
ctx.s[5] += aa
ctx.s[6] += bb
ctx.s[7] += cc
ctx.s[8] += dd
ctx.s[9] += ee
p = p[RIPEMD_320_BLOCK_SIZE:]
n += RIPEMD_320_BLOCK_SIZE
}
return n
}