mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-30 01:44:36 +00:00
339 lines
9.3 KiB
Odin
339 lines
9.3 KiB
Odin
package rand
|
|
|
|
import "core:math"
|
|
|
|
float64_uniform :: float64_range
|
|
float32_uniform :: float32_range
|
|
|
|
// Triangular Distribution
|
|
// See: http://wikipedia.org/wiki/Triangular_distribution
|
|
@(require_results)
|
|
float64_triangular :: proc(lo, hi: f64, mode: Maybe(f64), r: ^Rand = nil) -> f64 {
|
|
if hi-lo == 0 {
|
|
return lo
|
|
}
|
|
lo, hi := lo, hi
|
|
u := float64(r)
|
|
c := f64(0.5) if mode == nil else clamp((mode.?-lo) / (hi-lo), 0, 1)
|
|
if u > c {
|
|
u = 1-u
|
|
c = 1-c
|
|
lo, hi = hi, lo
|
|
}
|
|
return lo + (hi - lo) * math.sqrt(u * c)
|
|
|
|
}
|
|
// Triangular Distribution
|
|
// See: http://wikipedia.org/wiki/Triangular_distribution
|
|
@(require_results)
|
|
float32_triangular :: proc(lo, hi: f32, mode: Maybe(f32), r: ^Rand = nil) -> f32 {
|
|
if hi-lo == 0 {
|
|
return lo
|
|
}
|
|
lo, hi := lo, hi
|
|
u := float32(r)
|
|
c := f32(0.5) if mode == nil else clamp((mode.?-lo) / (hi-lo), 0, 1)
|
|
if u > c {
|
|
u = 1-u
|
|
c = 1-c
|
|
lo, hi = hi, lo
|
|
}
|
|
return lo + (hi - lo) * math.sqrt(u * c)
|
|
}
|
|
|
|
|
|
// Normal/Gaussian Distribution
|
|
@(require_results)
|
|
float64_normal :: proc(mean, stddev: f64, r: ^Rand = nil) -> f64 {
|
|
return norm_float64(r) * stddev + mean
|
|
}
|
|
// Normal/Gaussian Distribution
|
|
@(require_results)
|
|
float32_normal :: proc(mean, stddev: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_normal(f64(mean), f64(stddev), r))
|
|
}
|
|
|
|
|
|
// Log Normal Distribution
|
|
@(require_results)
|
|
float64_log_normal :: proc(mean, stddev: f64, r: ^Rand = nil) -> f64 {
|
|
return math.exp(float64_normal(mean, stddev, r))
|
|
}
|
|
// Log Normal Distribution
|
|
@(require_results)
|
|
float32_log_normal :: proc(mean, stddev: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_log_normal(f64(mean), f64(stddev), r))
|
|
}
|
|
|
|
|
|
// Exponential Distribution
|
|
// `lambda` is 1.0/(desired mean). It should be non-zero.
|
|
// Return values range from
|
|
// 0 to positive infinity if lambda > 0
|
|
// negative infinity to 0 if lambda <= 0
|
|
@(require_results)
|
|
float64_exponential :: proc(lambda: f64, r: ^Rand = nil) -> f64 {
|
|
return - math.ln(1 - float64(r)) / lambda
|
|
}
|
|
// Exponential Distribution
|
|
// `lambda` is 1.0/(desired mean). It should be non-zero.
|
|
// Return values range from
|
|
// 0 to positive infinity if lambda > 0
|
|
// negative infinity to 0 if lambda <= 0
|
|
@(require_results)
|
|
float32_exponential :: proc(lambda: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_exponential(f64(lambda), r))
|
|
}
|
|
|
|
|
|
// Gamma Distribution (NOT THE GAMMA FUNCTION)
|
|
//
|
|
// Required: alpha > 0 and beta > 0
|
|
//
|
|
// math.pow(x, alpha-1) * math.exp(-x / beta)
|
|
// pdf(x) = --------------------------------------------
|
|
// math.gamma(alpha) * math.pow(beta, alpha)
|
|
//
|
|
// mean is alpha*beta, variance is math.pow(alpha*beta, 2)
|
|
@(require_results)
|
|
float64_gamma :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 {
|
|
if alpha <= 0 || beta <= 0 {
|
|
panic(#procedure + ": alpha and beta must be > 0.0")
|
|
}
|
|
|
|
LOG4 :: 1.3862943611198906188344642429163531361510002687205105082413600189
|
|
SG_MAGIC_CONST :: 2.5040773967762740733732583523868748412194809812852436493487
|
|
|
|
switch {
|
|
case alpha > 1:
|
|
// R.C.H. Cheng, "The generation of Gamma variables with non-integral shape parameters", Applied Statistics, (1977), 26, No. 1, p71-74
|
|
|
|
ainv := math.sqrt(2 * alpha - 1)
|
|
bbb := alpha - LOG4
|
|
ccc := alpha + ainv
|
|
for {
|
|
u1 := float64(r)
|
|
if !(1e-7 < u1 && u1 < 0.9999999) {
|
|
continue
|
|
}
|
|
u2 := 1 - float64(r)
|
|
v := math.ln(u1 / (1 - u1)) / ainv
|
|
x := alpha * math.exp(v)
|
|
z := u1 * u1 * u2
|
|
t := bbb + ccc*v - x
|
|
if t + SG_MAGIC_CONST - 4.5 * z >= 0 || t >= math.ln(z) {
|
|
return x * beta
|
|
}
|
|
}
|
|
case alpha == 1:
|
|
// float64_exponential(1/beta)
|
|
return -math.ln(1 - float64(r)) * beta
|
|
case:
|
|
// ALGORITHM GS of Statistical Computing - Kennedy & Gentle
|
|
x: f64
|
|
for {
|
|
u := float64(r)
|
|
b := (math.e + alpha) / math.e
|
|
p := b * u
|
|
if p <= 1 {
|
|
x = math.pow(p, 1/alpha)
|
|
} else {
|
|
x = -math.ln((b - p) / alpha)
|
|
}
|
|
u1 := float64(r)
|
|
if p > 1 {
|
|
if u1 <= math.pow(x, alpha-1) {
|
|
break
|
|
}
|
|
} else if u1 <= math.exp(-x) {
|
|
break
|
|
}
|
|
}
|
|
return x * beta
|
|
}
|
|
}
|
|
// Gamma Distribution (NOT THE GAMMA FUNCTION)
|
|
//
|
|
// Required: alpha > 0 and beta > 0
|
|
//
|
|
// math.pow(x, alpha-1) * math.exp(-x / beta)
|
|
// pdf(x) = --------------------------------------------
|
|
// math.gamma(alpha) * math.pow(beta, alpha)
|
|
//
|
|
// mean is alpha*beta, variance is math.pow(alpha*beta, 2)
|
|
@(require_results)
|
|
float32_gamma :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_gamma(f64(alpha), f64(beta), r))
|
|
}
|
|
|
|
|
|
// Beta Distribution
|
|
//
|
|
// Required: alpha > 0 and beta > 0
|
|
//
|
|
// Return values range between 0 and 1
|
|
@(require_results)
|
|
float64_beta :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 {
|
|
if alpha <= 0 || beta <= 0 {
|
|
panic(#procedure + ": alpha and beta must be > 0.0")
|
|
}
|
|
// Knuth Vol 2 Ed 3 pg 134 "the beta distribution"
|
|
y := float64_gamma(alpha, 1.0, r)
|
|
if y != 0 {
|
|
return y / (y + float64_gamma(beta, 1.0, r))
|
|
}
|
|
return 0
|
|
}
|
|
// Beta Distribution
|
|
//
|
|
// Required: alpha > 0 and beta > 0
|
|
//
|
|
// Return values range between 0 and 1
|
|
@(require_results)
|
|
float32_beta :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_beta(f64(alpha), f64(beta), r))
|
|
}
|
|
|
|
|
|
// Pareto distribution, `alpha` is the shape parameter.
|
|
// https://wikipedia.org/wiki/Pareto_distribution
|
|
@(require_results)
|
|
float64_pareto :: proc(alpha: f64, r: ^Rand = nil) -> f64 {
|
|
return math.pow(1 - float64(r), -1.0 / alpha)
|
|
}
|
|
// Pareto distribution, `alpha` is the shape parameter.
|
|
// https://wikipedia.org/wiki/Pareto_distribution
|
|
@(require_results)
|
|
float32_pareto :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_pareto(f64(alpha), r))
|
|
}
|
|
|
|
|
|
// Weibull distribution, `alpha` is the scale parameter, `beta` is the shape parameter.
|
|
@(require_results)
|
|
float64_weibull :: proc(alpha, beta: f64, r: ^Rand = nil) -> f64 {
|
|
u := 1 - float64(r)
|
|
return alpha * math.pow(-math.ln(u), 1.0/beta)
|
|
}
|
|
// Weibull distribution, `alpha` is the scale parameter, `beta` is the shape parameter.
|
|
@(require_results)
|
|
float32_weibull :: proc(alpha, beta: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_weibull(f64(alpha), f64(beta), r))
|
|
}
|
|
|
|
|
|
// Circular Data (von Mises) Distribution
|
|
// `mean_angle` is the in mean angle between 0 and 2pi radians
|
|
// `kappa` is the concentration parameter which must be >= 0
|
|
// When `kappa` is zero, the Distribution is a uniform Distribution over the range 0 to 2pi
|
|
@(require_results)
|
|
float64_von_mises :: proc(mean_angle, kappa: f64, r: ^Rand = nil) -> f64 {
|
|
// Fisher, N.I., "Statistical Analysis of Circular Data", Cambridge University Press, 1993.
|
|
|
|
mu := mean_angle
|
|
if kappa <= 1e-6 {
|
|
return math.TAU * float64(r)
|
|
}
|
|
|
|
s := 0.5 / kappa
|
|
t := s + math.sqrt(1 + s*s)
|
|
z: f64
|
|
for {
|
|
u1 := float64(r)
|
|
z = math.cos(math.TAU * 0.5 * u1)
|
|
|
|
d := z / (t + z)
|
|
u2 := float64(r)
|
|
if u2 < 1 - d*d || u2 <= (1-d)*math.exp(d) {
|
|
break
|
|
}
|
|
}
|
|
|
|
q := 1.0 / t
|
|
f := (q + z) / (1 + q*z)
|
|
u3 := float64(r)
|
|
if u3 > 0.5 {
|
|
return math.mod(mu + math.acos(f), math.TAU)
|
|
} else {
|
|
return math.mod(mu - math.acos(f), math.TAU)
|
|
}
|
|
}
|
|
// Circular Data (von Mises) Distribution
|
|
// `mean_angle` is the in mean angle between 0 and 2pi radians
|
|
// `kappa` is the concentration parameter which must be >= 0
|
|
// When `kappa` is zero, the Distribution is a uniform Distribution over the range 0 to 2pi
|
|
@(require_results)
|
|
float32_von_mises :: proc(mean_angle, kappa: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_von_mises(f64(mean_angle), f64(kappa), r))
|
|
}
|
|
|
|
|
|
// Cauchy-Lorentz Distribution
|
|
// `x_0` is the location, `gamma` is the scale where `gamma` > 0
|
|
@(require_results)
|
|
float64_cauchy_lorentz :: proc(x_0, gamma: f64, r: ^Rand = nil) -> f64 {
|
|
assert(gamma > 0)
|
|
|
|
// Calculated from the inverse CDF
|
|
|
|
return math.tan(math.PI * (float64(r) - 0.5))*gamma + x_0
|
|
}
|
|
// Cauchy-Lorentz Distribution
|
|
// `x_0` is the location, `gamma` is the scale where `gamma` > 0
|
|
@(require_results)
|
|
float32_cauchy_lorentz :: proc(x_0, gamma: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_cauchy_lorentz(f64(x_0), f64(gamma), r))
|
|
}
|
|
|
|
|
|
// Log Cauchy-Lorentz Distribution
|
|
// `x_0` is the location, `gamma` is the scale where `gamma` > 0
|
|
@(require_results)
|
|
float64_log_cauchy_lorentz :: proc(x_0, gamma: f64, r: ^Rand = nil) -> f64 {
|
|
assert(gamma > 0)
|
|
return math.exp(math.tan(math.PI * (float64(r) - 0.5))*gamma + x_0)
|
|
}
|
|
// Log Cauchy-Lorentz Distribution
|
|
// `x_0` is the location, `gamma` is the scale where `gamma` > 0
|
|
@(require_results)
|
|
float32_log_cauchy_lorentz :: proc(x_0, gamma: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_log_cauchy_lorentz(f64(x_0), f64(gamma), r))
|
|
}
|
|
|
|
|
|
// Laplace Distribution
|
|
// `b` is the scale where `b` > 0
|
|
@(require_results)
|
|
float64_laplace :: proc(mean, b: f64, r: ^Rand = nil) -> f64 {
|
|
assert(b > 0)
|
|
p := float64(r)-0.5
|
|
return -math.sign(p)*math.ln(1 - 2*abs(p))*b + mean
|
|
}
|
|
// Laplace Distribution
|
|
// `b` is the scale where `b` > 0
|
|
@(require_results)
|
|
float32_laplace :: proc(mean, b: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_laplace(f64(mean), f64(b), r))
|
|
}
|
|
|
|
|
|
// Gompertz Distribution
|
|
// `eta` is the shape, `b` is the scale
|
|
// Both `eta` and `b` must be > 0
|
|
@(require_results)
|
|
float64_gompertz :: proc(eta, b: f64, r: ^Rand = nil) -> f64 {
|
|
if eta <= 0 || b <= 0 {
|
|
panic(#procedure + ": eta and b must be > 0.0")
|
|
}
|
|
|
|
p := float64(r)
|
|
return math.ln(1 - math.ln(1 - p)/eta)/b
|
|
}
|
|
// Gompertz Distribution
|
|
// `eta` is the shape, `b` is the scale
|
|
// Both `eta` and `b` must be > 0
|
|
@(require_results)
|
|
float32_gompertz :: proc(eta, b: f32, r: ^Rand = nil) -> f32 {
|
|
return f32(float64_gompertz(f64(eta), f64(b), r))
|
|
}
|