Files
Odin/core/os/os.odin
2023-10-26 14:30:04 +02:00

268 lines
6.2 KiB
Odin

package os
import "core:mem"
import "core:strconv"
import "core:unicode/utf8"
OS :: ODIN_OS
ARCH :: ODIN_ARCH
ENDIAN :: ODIN_ENDIAN
SEEK_SET :: 0
SEEK_CUR :: 1
SEEK_END :: 2
write_string :: proc(fd: Handle, str: string) -> (int, Errno) {
return write(fd, transmute([]byte)str)
}
write_byte :: proc(fd: Handle, b: byte) -> (int, Errno) {
return write(fd, []byte{b})
}
write_rune :: proc(fd: Handle, r: rune) -> (int, Errno) {
if r < utf8.RUNE_SELF {
return write_byte(fd, byte(r))
}
b, n := utf8.encode_rune(r)
return write(fd, b[:n])
}
write_encoded_rune :: proc(fd: Handle, r: rune) {
write_byte(fd, '\'')
switch r {
case '\a': write_string(fd, "\\a")
case '\b': write_string(fd, "\\b")
case '\e': write_string(fd, "\\e")
case '\f': write_string(fd, "\\f")
case '\n': write_string(fd, "\\n")
case '\r': write_string(fd, "\\r")
case '\t': write_string(fd, "\\t")
case '\v': write_string(fd, "\\v")
case:
if r < 32 {
write_string(fd, "\\x")
b: [2]byte
s := strconv.append_bits(b[:], u64(r), 16, true, 64, strconv.digits, nil)
switch len(s) {
case 0: write_string(fd, "00")
case 1: write_rune(fd, '0')
case 2: write_string(fd, s)
}
} else {
write_rune(fd, r)
}
}
write_byte(fd, '\'')
}
read_at_least :: proc(fd: Handle, buf: []byte, min: int) -> (n: int, err: Errno) {
if len(buf) < min {
return 0, -1
}
nn := max(int)
for nn > 0 && n < min && err == 0 {
nn, err = read(fd, buf[n:])
n += nn
}
if n >= min {
err = 0
}
return
}
read_full :: proc(fd: Handle, buf: []byte) -> (n: int, err: Errno) {
return read_at_least(fd, buf, len(buf))
}
file_size_from_path :: proc(path: string) -> i64 {
fd, err := open(path, O_RDONLY, 0)
if err != 0 {
return -1
}
defer close(fd)
length: i64
if length, err = file_size(fd); err != 0 {
return -1
}
return length
}
read_entire_file_from_filename :: proc(name: string, allocator := context.allocator, loc := #caller_location) -> (data: []byte, success: bool) {
context.allocator = allocator
fd, err := open(name, O_RDONLY, 0)
if err != 0 {
return nil, false
}
defer close(fd)
return read_entire_file_from_handle(fd, allocator, loc)
}
read_entire_file_from_handle :: proc(fd: Handle, allocator := context.allocator, loc := #caller_location) -> (data: []byte, success: bool) {
context.allocator = allocator
length: i64
err: Errno
if length, err = file_size(fd); err != 0 {
return nil, false
}
if length <= 0 {
return nil, true
}
data = make([]byte, int(length), allocator, loc)
if data == nil {
return nil, false
}
bytes_read, read_err := read_full(fd, data)
if read_err != ERROR_NONE {
delete(data)
return nil, false
}
return data[:bytes_read], true
}
read_entire_file :: proc {
read_entire_file_from_filename,
read_entire_file_from_handle,
}
write_entire_file :: proc(name: string, data: []byte, truncate := true) -> (success: bool) {
flags: int = O_WRONLY|O_CREATE
if truncate {
flags |= O_TRUNC
}
mode: int = 0
when OS == .Linux || OS == .Darwin {
// NOTE(justasd): 644 (owner read, write; group read; others read)
mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH
}
fd, err := open(name, flags, mode)
if err != 0 {
return false
}
defer close(fd)
_, write_err := write(fd, data)
return write_err == 0
}
write_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) {
s := transmute([]byte)mem.Raw_Slice{data, len}
return write(fd, s)
}
read_ptr :: proc(fd: Handle, data: rawptr, len: int) -> (int, Errno) {
s := transmute([]byte)mem.Raw_Slice{data, len}
return read(fd, s)
}
heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, mem.Allocator_Error) {
//
// NOTE(tetra, 2020-01-14): The heap doesn't respect alignment.
// Instead, we overallocate by `alignment + size_of(rawptr) - 1`, and insert
// padding. We also store the original pointer returned by heap_alloc right before
// the pointer we return to the user.
//
aligned_alloc :: proc(size, alignment: int, old_ptr: rawptr = nil, zero_memory := true) -> ([]byte, mem.Allocator_Error) {
a := max(alignment, align_of(rawptr))
space := size + a - 1
allocated_mem: rawptr
if old_ptr != nil {
original_old_ptr := mem.ptr_offset((^rawptr)(old_ptr), -1)^
allocated_mem = heap_resize(original_old_ptr, space+size_of(rawptr))
} else {
allocated_mem = heap_alloc(space+size_of(rawptr), zero_memory)
}
aligned_mem := rawptr(mem.ptr_offset((^u8)(allocated_mem), size_of(rawptr)))
ptr := uintptr(aligned_mem)
aligned_ptr := (ptr - 1 + uintptr(a)) & -uintptr(a)
diff := int(aligned_ptr - ptr)
if (size + diff) > space || allocated_mem == nil {
return nil, .Out_Of_Memory
}
aligned_mem = rawptr(aligned_ptr)
mem.ptr_offset((^rawptr)(aligned_mem), -1)^ = allocated_mem
return mem.byte_slice(aligned_mem, size), nil
}
aligned_free :: proc(p: rawptr) {
if p != nil {
heap_free(mem.ptr_offset((^rawptr)(p), -1)^)
}
}
aligned_resize :: proc(p: rawptr, old_size: int, new_size: int, new_alignment: int) -> (new_memory: []byte, err: mem.Allocator_Error) {
if p == nil {
return nil, nil
}
new_memory = aligned_alloc(new_size, new_alignment, p) or_return
// NOTE: heap_resize does not zero the new memory, so we do it
if new_size > old_size {
new_region := mem.raw_data(new_memory[old_size:])
mem.zero(new_region, new_size - old_size)
}
return
}
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
return aligned_alloc(size, alignment, nil, mode == .Alloc)
case .Free:
aligned_free(old_memory)
case .Free_All:
return nil, .Mode_Not_Implemented
case .Resize:
if old_memory == nil {
return aligned_alloc(size, alignment)
}
return aligned_resize(old_memory, old_size, size, alignment)
case .Query_Features:
set := (^mem.Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free, .Resize, .Query_Features}
}
return nil, nil
case .Query_Info:
return nil, .Mode_Not_Implemented
}
return nil, nil
}
heap_allocator :: proc() -> mem.Allocator {
return mem.Allocator{
procedure = heap_allocator_proc,
data = nil,
}
}
processor_core_count :: proc() -> int {
return _processor_core_count()
}