Files
Odin/core/os/os2/heap_linux.odin
2023-08-15 14:55:02 +01:00

723 lines
23 KiB
Odin

//+private
package os2
import "core:sys/unix"
import "core:sync"
import "core:mem"
// NOTEs
//
// All allocations below DIRECT_MMAP_THRESHOLD exist inside of memory "Regions." A region
// consists of a Region_Header and the memory that will be divided into allocations to
// send to the user. The memory is an array of "Allocation_Headers" which are 8 bytes.
// Allocation_Headers are used to navigate the memory in the region. The "next" member of
// the Allocation_Header points to the next header, and the space between the headers
// can be used to send to the user. This space between is referred to as "blocks" in the
// code. The indexes in the header refer to these blocks instead of bytes. This allows us
// to index all the memory in the region with a u16.
//
// When an allocation request is made, it will use the first free block that can contain
// the entire block. If there is an excess number of blocks (as specified by the constant
// BLOCK_SEGMENT_THRESHOLD), this extra space will be segmented and left in the free_list.
//
// To keep the implementation simple, there can never exist 2 free blocks adjacent to each
// other. Any freeing will result in attempting to merge the blocks before and after the
// newly free'd blocks.
//
// Any request for size above the DIRECT_MMAP_THRESHOLD will result in the allocation
// getting its own individual mmap. Individual mmaps will still get an Allocation_Header
// that contains the size with the last bit set to 1 to indicate it is indeed a direct
// mmap allocation.
// Why not brk?
// glibc's malloc utilizes a mix of the brk and mmap system calls. This implementation
// does *not* utilize the brk system call to avoid possible conflicts with foreign C
// code. Just because we aren't directly using libc, there is nothing stopping the user
// from doing it.
// What's with all the #no_bounds_check?
// When memory is returned from mmap, it technically doesn't get written ... well ... anywhere
// until that region is written to by *you*. So, when a new region is created, we call mmap
// to get a pointer to some memory, and we claim that memory is a ^Region. Therefor, the
// region itself is never formally initialized by the compiler as this would result in writing
// zeros to memory that we can already assume are 0. This would also have the effect of
// actually commiting this data to memory whether it gets used or not.
//
// Some variables to play with
//
// Minimum blocks used for any one allocation
MINIMUM_BLOCK_COUNT :: 2
// Number of extra blocks beyond the requested amount where we would segment.
// E.g. (blocks) |H0123456| 7 available
// |H01H0123| Ask for 2, now 4 available
BLOCK_SEGMENT_THRESHOLD :: 4
// Anything above this threshold will get its own memory map. Since regions
// are indexed by 16 bit integers, this value should not surpass max(u16) * 6
DIRECT_MMAP_THRESHOLD_USER :: int(max(u16))
// The point at which we convert direct mmap to region. This should be a decent
// amount less than DIRECT_MMAP_THRESHOLD to avoid jumping in and out of regions.
MMAP_TO_REGION_SHRINK_THRESHOLD :: DIRECT_MMAP_THRESHOLD - PAGE_SIZE * 4
// free_list is dynamic and is initialized in the begining of the region memory
// when the region is initialized. Once resized, it can be moved anywhere.
FREE_LIST_DEFAULT_CAP :: 32
//
// Other constants that should not be touched
//
// This universally seems to be 4096 outside of uncommon archs.
PAGE_SIZE :: 4096
// just rounding up to nearest PAGE_SIZE
DIRECT_MMAP_THRESHOLD :: (DIRECT_MMAP_THRESHOLD_USER-1) + PAGE_SIZE - (DIRECT_MMAP_THRESHOLD_USER-1) % PAGE_SIZE
// Regions must be big enough to hold DIRECT_MMAP_THRESHOLD - 1 as well
// as end right on a page boundary as to not waste space.
SIZE_OF_REGION :: DIRECT_MMAP_THRESHOLD + 4 * int(PAGE_SIZE)
// size of user memory blocks
BLOCK_SIZE :: size_of(Allocation_Header)
// number of allocation sections (call them blocks) of the region used for allocations
BLOCKS_PER_REGION :: u16((SIZE_OF_REGION - size_of(Region_Header)) / BLOCK_SIZE)
// minimum amount of space that can used by any individual allocation (includes header)
MINIMUM_ALLOCATION :: (MINIMUM_BLOCK_COUNT * BLOCK_SIZE) + BLOCK_SIZE
// This is used as a boolean value for Region_Header.local_addr.
CURRENTLY_ACTIVE :: (^^Region)(~uintptr(0))
FREE_LIST_ENTRIES_PER_BLOCK :: BLOCK_SIZE / size_of(u16)
MMAP_FLAGS :: unix.MAP_ANONYMOUS | unix.MAP_PRIVATE
MMAP_PROT :: unix.PROT_READ | unix.PROT_WRITE
@thread_local _local_region: ^Region
global_regions: ^Region
// There is no way of correctly setting the last bit of free_idx or
// the last bit of requested, so we can safely use it as a flag to
// determine if we are interacting with a direct mmap.
REQUESTED_MASK :: 0x7FFFFFFFFFFFFFFF
IS_DIRECT_MMAP :: 0x8000000000000000
// Special free_idx value that does not index the free_list.
NOT_FREE :: 0x7FFF
Allocation_Header :: struct #raw_union {
using _: struct {
// Block indicies
idx: u16,
prev: u16,
next: u16,
free_idx: u16,
},
requested: u64,
}
Region_Header :: struct #align(16) {
next_region: ^Region, // points to next region in global_heap (linked list)
local_addr: ^^Region, // tracks region ownership via address of _local_region
reset_addr: ^^Region, // tracks old local addr for reset
free_list: []u16,
free_list_len: u16,
free_blocks: u16, // number of free blocks in region (includes headers)
last_used: u16, // farthest back block that has been used (need zeroing?)
_reserved: u16,
}
Region :: struct {
hdr: Region_Header,
memory: [BLOCKS_PER_REGION]Allocation_Header,
}
_heap_allocator_proc :: proc(allocator_data: rawptr, mode: mem.Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, mem.Allocator_Error) {
//
// NOTE(tetra, 2020-01-14): The heap doesn't respect alignment.
// Instead, we overallocate by `alignment + size_of(rawptr) - 1`, and insert
// padding. We also store the original pointer returned by heap_alloc right before
// the pointer we return to the user.
//
aligned_alloc :: proc(size, alignment: int, old_ptr: rawptr = nil) -> ([]byte, mem.Allocator_Error) {
a := max(alignment, align_of(rawptr))
space := size + a - 1
allocated_mem: rawptr
if old_ptr != nil {
original_old_ptr := mem.ptr_offset((^rawptr)(old_ptr), -1)^
allocated_mem = heap_resize(original_old_ptr, space+size_of(rawptr))
} else {
allocated_mem = heap_alloc(space+size_of(rawptr))
}
aligned_mem := rawptr(mem.ptr_offset((^u8)(allocated_mem), size_of(rawptr)))
ptr := uintptr(aligned_mem)
aligned_ptr := (ptr - 1 + uintptr(a)) & -uintptr(a)
diff := int(aligned_ptr - ptr)
if (size + diff) > space || allocated_mem == nil {
return nil, .Out_Of_Memory
}
aligned_mem = rawptr(aligned_ptr)
mem.ptr_offset((^rawptr)(aligned_mem), -1)^ = allocated_mem
return mem.byte_slice(aligned_mem, size), nil
}
aligned_free :: proc(p: rawptr) {
if p != nil {
heap_free(mem.ptr_offset((^rawptr)(p), -1)^)
}
}
aligned_resize :: proc(p: rawptr, old_size: int, new_size: int, new_alignment: int) -> (new_memory: []byte, err: mem.Allocator_Error) {
if p == nil {
return nil, nil
}
return aligned_alloc(new_size, new_alignment, p)
}
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
return aligned_alloc(size, alignment)
case .Free:
aligned_free(old_memory)
case .Free_All:
return nil, .Mode_Not_Implemented
case .Resize:
if old_memory == nil {
return aligned_alloc(size, alignment)
}
return aligned_resize(old_memory, old_size, size, alignment)
case .Query_Features:
set := (^mem.Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Alloc, .Free, .Resize, .Query_Features}
}
return nil, nil
case .Query_Info:
return nil, .Mode_Not_Implemented
}
return nil, nil
}
heap_alloc :: proc(size: int) -> rawptr {
if size >= DIRECT_MMAP_THRESHOLD {
return _direct_mmap_alloc(size)
}
// atomically check if the local region has been stolen
if _local_region != nil {
res := sync.atomic_compare_exchange_strong_explicit(
&_local_region.hdr.local_addr,
&_local_region,
CURRENTLY_ACTIVE,
.Acquire,
.Relaxed,
)
if res != &_local_region {
// At this point, the region has been stolen and res contains the unexpected value
expected := res
if res != CURRENTLY_ACTIVE {
expected = res
res = sync.atomic_compare_exchange_strong_explicit(
&_local_region.hdr.local_addr,
expected,
CURRENTLY_ACTIVE,
.Acquire,
.Relaxed,
)
}
if res != expected {
_local_region = nil
}
}
}
size := size
size = _round_up_to_nearest(size, BLOCK_SIZE)
blocks_needed := u16(max(MINIMUM_BLOCK_COUNT, size / BLOCK_SIZE))
// retrieve a region if new thread or stolen
if _local_region == nil {
_local_region, _ = _region_retrieve_with_space(blocks_needed)
if _local_region == nil {
return nil
}
}
defer sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release)
// At this point we have a usable region. Let's find the user some memory
idx: u16
local_region_idx := _region_get_local_idx()
back_idx := -1
infinite: for {
for i := 0; i < int(_local_region.hdr.free_list_len); i += 1 {
idx = _local_region.hdr.free_list[i]
#no_bounds_check if _get_block_count(_local_region.memory[idx]) >= blocks_needed {
break infinite
}
}
sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release)
_local_region, back_idx = _region_retrieve_with_space(blocks_needed, local_region_idx, back_idx)
}
user_ptr, used := _region_get_block(_local_region, idx, blocks_needed)
_local_region.hdr.free_blocks -= (used + 1)
// If this memory was ever used before, it now needs to be zero'd.
if idx < _local_region.hdr.last_used {
mem.zero(user_ptr, int(used) * BLOCK_SIZE)
} else {
_local_region.hdr.last_used = idx + used
}
return user_ptr
}
heap_resize :: proc(old_memory: rawptr, new_size: int) -> rawptr #no_bounds_check {
alloc := _get_allocation_header(old_memory)
if alloc.requested & IS_DIRECT_MMAP > 0 {
return _direct_mmap_resize(alloc, new_size)
}
if new_size > DIRECT_MMAP_THRESHOLD {
return _direct_mmap_from_region(alloc, new_size)
}
return _region_resize(alloc, new_size)
}
heap_free :: proc(memory: rawptr) {
alloc := _get_allocation_header(memory)
if alloc.requested & IS_DIRECT_MMAP == IS_DIRECT_MMAP {
_direct_mmap_free(alloc)
return
}
assert(alloc.free_idx == NOT_FREE)
_region_find_and_assign_local(alloc)
_region_local_free(alloc)
sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release)
}
//
// Regions
//
_new_region :: proc() -> ^Region #no_bounds_check {
res := unix.sys_mmap(nil, uint(SIZE_OF_REGION), MMAP_PROT, MMAP_FLAGS, -1, 0)
if res < 0 {
return nil
}
new_region := (^Region)(uintptr(res))
new_region.hdr.local_addr = CURRENTLY_ACTIVE
new_region.hdr.reset_addr = &_local_region
free_list_blocks := _round_up_to_nearest(FREE_LIST_DEFAULT_CAP, FREE_LIST_ENTRIES_PER_BLOCK)
_region_assign_free_list(new_region, &new_region.memory[1], u16(free_list_blocks) * FREE_LIST_ENTRIES_PER_BLOCK)
// + 2 to account for free_list's allocation header
first_user_block := len(new_region.hdr.free_list) / FREE_LIST_ENTRIES_PER_BLOCK + 2
// first allocation header (this is a free list)
new_region.memory[0].next = u16(first_user_block)
new_region.memory[0].free_idx = NOT_FREE
new_region.memory[first_user_block].idx = u16(first_user_block)
new_region.memory[first_user_block].next = BLOCKS_PER_REGION - 1
// add the first user block to the free list
new_region.hdr.free_list[0] = u16(first_user_block)
new_region.hdr.free_list_len = 1
new_region.hdr.free_blocks = _get_block_count(new_region.memory[first_user_block]) + 1
for r := sync.atomic_compare_exchange_strong(&global_regions, nil, new_region);
r != nil;
r = sync.atomic_compare_exchange_strong(&r.hdr.next_region, nil, new_region) {}
return new_region
}
_region_resize :: proc(alloc: ^Allocation_Header, new_size: int, alloc_is_free_list: bool = false) -> rawptr #no_bounds_check {
assert(alloc.free_idx == NOT_FREE)
old_memory := mem.ptr_offset(alloc, 1)
old_block_count := _get_block_count(alloc^)
new_block_count := u16(
max(MINIMUM_BLOCK_COUNT, _round_up_to_nearest(new_size, BLOCK_SIZE) / BLOCK_SIZE),
)
if new_block_count < old_block_count {
if new_block_count - old_block_count >= MINIMUM_BLOCK_COUNT {
_region_find_and_assign_local(alloc)
_region_segment(_local_region, alloc, new_block_count, alloc.free_idx)
new_block_count = _get_block_count(alloc^)
sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release)
}
// need to zero anything within the new block that that lies beyond new_size
extra_bytes := int(new_block_count * BLOCK_SIZE) - new_size
extra_bytes_ptr := mem.ptr_offset((^u8)(alloc), new_size + BLOCK_SIZE)
mem.zero(extra_bytes_ptr, extra_bytes)
return old_memory
}
if !alloc_is_free_list {
_region_find_and_assign_local(alloc)
}
defer if !alloc_is_free_list {
sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release)
}
// First, let's see if we can grow in place.
if alloc.next != BLOCKS_PER_REGION - 1 && _local_region.memory[alloc.next].free_idx != NOT_FREE {
next_alloc := _local_region.memory[alloc.next]
total_available := old_block_count + _get_block_count(next_alloc) + 1
if total_available >= new_block_count {
alloc.next = next_alloc.next
_local_region.memory[alloc.next].prev = alloc.idx
if total_available - new_block_count > BLOCK_SEGMENT_THRESHOLD {
_region_segment(_local_region, alloc, new_block_count, next_alloc.free_idx)
} else {
_region_free_list_remove(_local_region, next_alloc.free_idx)
}
mem.zero(&_local_region.memory[next_alloc.idx], int(alloc.next - next_alloc.idx) * BLOCK_SIZE)
_local_region.hdr.last_used = max(alloc.next, _local_region.hdr.last_used)
_local_region.hdr.free_blocks -= (_get_block_count(alloc^) - old_block_count)
if alloc_is_free_list {
_region_assign_free_list(_local_region, old_memory, _get_block_count(alloc^))
}
return old_memory
}
}
// If we made it this far, we need to resize, copy, zero and free.
region_iter := _local_region
local_region_idx := _region_get_local_idx()
back_idx := -1
idx: u16
infinite: for {
for i := 0; i < len(region_iter.hdr.free_list); i += 1 {
idx = region_iter.hdr.free_list[i]
if _get_block_count(region_iter.memory[idx]) >= new_block_count {
break infinite
}
}
if region_iter != _local_region {
sync.atomic_store_explicit(
&region_iter.hdr.local_addr,
region_iter.hdr.reset_addr,
.Release,
)
}
region_iter, back_idx = _region_retrieve_with_space(new_block_count, local_region_idx, back_idx)
}
if region_iter != _local_region {
sync.atomic_store_explicit(
&region_iter.hdr.local_addr,
region_iter.hdr.reset_addr,
.Release,
)
}
// copy from old memory
new_memory, used_blocks := _region_get_block(region_iter, idx, new_block_count)
mem.copy(new_memory, old_memory, int(old_block_count * BLOCK_SIZE))
// zero any new memory
addon_section := mem.ptr_offset((^Allocation_Header)(new_memory), old_block_count)
new_blocks := used_blocks - old_block_count
mem.zero(addon_section, int(new_blocks) * BLOCK_SIZE)
region_iter.hdr.free_blocks -= (used_blocks + 1)
// Set free_list before freeing.
if alloc_is_free_list {
_region_assign_free_list(_local_region, new_memory, used_blocks)
}
// free old memory
_region_local_free(alloc)
return new_memory
}
_region_local_free :: proc(alloc: ^Allocation_Header) #no_bounds_check {
alloc := alloc
add_to_free_list := true
_local_region.hdr.free_blocks += _get_block_count(alloc^) + 1
// try to merge with prev
if alloc.idx > 0 && _local_region.memory[alloc.prev].free_idx != NOT_FREE {
_local_region.memory[alloc.prev].next = alloc.next
_local_region.memory[alloc.next].prev = alloc.prev
alloc = &_local_region.memory[alloc.prev]
add_to_free_list = false
}
// try to merge with next
if alloc.next < BLOCKS_PER_REGION - 1 && _local_region.memory[alloc.next].free_idx != NOT_FREE {
old_next := alloc.next
alloc.next = _local_region.memory[old_next].next
_local_region.memory[alloc.next].prev = alloc.idx
if add_to_free_list {
_local_region.hdr.free_list[_local_region.memory[old_next].free_idx] = alloc.idx
alloc.free_idx = _local_region.memory[old_next].free_idx
} else {
// NOTE: We have aleady merged with prev, and now merged with next.
// Now, we are actually going to remove from the free_list.
_region_free_list_remove(_local_region, _local_region.memory[old_next].free_idx)
}
add_to_free_list = false
}
// This is the only place where anything is appended to the free list.
if add_to_free_list {
fl := _local_region.hdr.free_list
alloc.free_idx = _local_region.hdr.free_list_len
fl[alloc.free_idx] = alloc.idx
_local_region.hdr.free_list_len += 1
if int(_local_region.hdr.free_list_len) == len(fl) {
free_alloc := _get_allocation_header(mem.raw_data(_local_region.hdr.free_list))
_region_resize(free_alloc, len(fl) * 2 * size_of(fl[0]), true)
}
}
}
_region_assign_free_list :: proc(region: ^Region, memory: rawptr, blocks: u16) {
raw_free_list := transmute(mem.Raw_Slice)region.hdr.free_list
raw_free_list.len = int(blocks) * FREE_LIST_ENTRIES_PER_BLOCK
raw_free_list.data = memory
region.hdr.free_list = transmute([]u16)(raw_free_list)
}
_region_retrieve_with_space :: proc(blocks: u16, local_idx: int = -1, back_idx: int = -1) -> (^Region, int) {
r: ^Region
idx: int
for r = global_regions; r != nil; r = r.hdr.next_region {
if idx == local_idx || idx < back_idx || r.hdr.free_blocks < blocks {
idx += 1
continue
}
idx += 1
local_addr: ^^Region = sync.atomic_load(&r.hdr.local_addr)
if local_addr != CURRENTLY_ACTIVE {
res := sync.atomic_compare_exchange_strong_explicit(
&r.hdr.local_addr,
local_addr,
CURRENTLY_ACTIVE,
.Acquire,
.Relaxed,
)
if res == local_addr {
r.hdr.reset_addr = local_addr
return r, idx
}
}
}
return _new_region(), idx
}
_region_retrieve_from_addr :: proc(addr: rawptr) -> ^Region {
r: ^Region
for r = global_regions; r != nil; r = r.hdr.next_region {
if _region_contains_mem(r, addr) {
return r
}
}
unreachable()
}
_region_get_block :: proc(region: ^Region, idx, blocks_needed: u16) -> (rawptr, u16) #no_bounds_check {
alloc := &region.memory[idx]
assert(alloc.free_idx != NOT_FREE)
assert(alloc.next > 0)
block_count := _get_block_count(alloc^)
if block_count - blocks_needed > BLOCK_SEGMENT_THRESHOLD {
_region_segment(region, alloc, blocks_needed, alloc.free_idx)
} else {
_region_free_list_remove(region, alloc.free_idx)
}
alloc.free_idx = NOT_FREE
return mem.ptr_offset(alloc, 1), _get_block_count(alloc^)
}
_region_segment :: proc(region: ^Region, alloc: ^Allocation_Header, blocks, new_free_idx: u16) #no_bounds_check {
old_next := alloc.next
alloc.next = alloc.idx + blocks + 1
region.memory[old_next].prev = alloc.next
// Initialize alloc.next allocation header here.
region.memory[alloc.next].prev = alloc.idx
region.memory[alloc.next].next = old_next
region.memory[alloc.next].idx = alloc.next
region.memory[alloc.next].free_idx = new_free_idx
// Replace our original spot in the free_list with new segment.
region.hdr.free_list[new_free_idx] = alloc.next
}
_region_get_local_idx :: proc() -> int {
idx: int
for r := global_regions; r != nil; r = r.hdr.next_region {
if r == _local_region {
return idx
}
idx += 1
}
return -1
}
_region_find_and_assign_local :: proc(alloc: ^Allocation_Header) {
// Find the region that contains this memory
if !_region_contains_mem(_local_region, alloc) {
_local_region = _region_retrieve_from_addr(alloc)
}
// At this point, _local_region is set correctly. Spin until acquired
res: ^^Region
for res != &_local_region {
res = sync.atomic_compare_exchange_strong_explicit(
&_local_region.hdr.local_addr,
&_local_region,
CURRENTLY_ACTIVE,
.Acquire,
.Relaxed,
)
}
}
_region_contains_mem :: proc(r: ^Region, memory: rawptr) -> bool #no_bounds_check {
if r == nil {
return false
}
mem_int := uintptr(memory)
return mem_int >= uintptr(&r.memory[0]) && mem_int <= uintptr(&r.memory[BLOCKS_PER_REGION - 1])
}
_region_free_list_remove :: proc(region: ^Region, free_idx: u16) #no_bounds_check {
// pop, swap and update allocation hdr
if n := region.hdr.free_list_len - 1; free_idx != n {
region.hdr.free_list[free_idx] = region.hdr.free_list[n]
alloc_idx := region.hdr.free_list[free_idx]
region.memory[alloc_idx].free_idx = free_idx
}
region.hdr.free_list_len -= 1
}
//
// Direct mmap
//
_direct_mmap_alloc :: proc(size: int) -> rawptr {
mmap_size := _round_up_to_nearest(size + BLOCK_SIZE, PAGE_SIZE)
new_allocation := unix.sys_mmap(nil, uint(mmap_size), MMAP_PROT, MMAP_FLAGS, -1, 0)
if new_allocation < 0 && new_allocation > -4096 {
return nil
}
alloc := (^Allocation_Header)(uintptr(new_allocation))
alloc.requested = u64(size) // NOTE: requested = requested size
alloc.requested += IS_DIRECT_MMAP
return rawptr(mem.ptr_offset(alloc, 1))
}
_direct_mmap_resize :: proc(alloc: ^Allocation_Header, new_size: int) -> rawptr {
old_requested := int(alloc.requested & REQUESTED_MASK)
old_mmap_size := _round_up_to_nearest(old_requested + BLOCK_SIZE, PAGE_SIZE)
new_mmap_size := _round_up_to_nearest(new_size + BLOCK_SIZE, PAGE_SIZE)
if int(new_mmap_size) < MMAP_TO_REGION_SHRINK_THRESHOLD {
return _direct_mmap_to_region(alloc, new_size)
} else if old_requested == new_size {
return mem.ptr_offset(alloc, 1)
}
new_allocation := unix.sys_mremap(
alloc,
uint(old_mmap_size),
uint(new_mmap_size),
unix.MREMAP_MAYMOVE,
)
if new_allocation < 0 && new_allocation > -4096 {
return nil
}
new_header := (^Allocation_Header)(uintptr(new_allocation))
new_header.requested = u64(new_size)
new_header.requested += IS_DIRECT_MMAP
if new_mmap_size > old_mmap_size {
// new section may not be pointer aligned, so cast to ^u8
new_section := mem.ptr_offset((^u8)(new_header), old_requested + BLOCK_SIZE)
mem.zero(new_section, new_mmap_size - old_mmap_size)
}
return mem.ptr_offset(new_header, 1)
}
_direct_mmap_from_region :: proc(alloc: ^Allocation_Header, new_size: int) -> rawptr {
new_memory := _direct_mmap_alloc(new_size)
if new_memory != nil {
old_memory := mem.ptr_offset(alloc, 1)
mem.copy(new_memory, old_memory, int(_get_block_count(alloc^)) * BLOCK_SIZE)
}
_region_find_and_assign_local(alloc)
_region_local_free(alloc)
sync.atomic_store_explicit(&_local_region.hdr.local_addr, &_local_region, .Release)
return new_memory
}
_direct_mmap_to_region :: proc(alloc: ^Allocation_Header, new_size: int) -> rawptr {
new_memory := heap_alloc(new_size)
if new_memory != nil {
mem.copy(new_memory, mem.ptr_offset(alloc, -1), new_size)
_direct_mmap_free(alloc)
}
return new_memory
}
_direct_mmap_free :: proc(alloc: ^Allocation_Header) {
requested := int(alloc.requested & REQUESTED_MASK)
mmap_size := _round_up_to_nearest(requested + BLOCK_SIZE, PAGE_SIZE)
unix.sys_munmap(alloc, uint(mmap_size))
}
//
// Util
//
_get_block_count :: #force_inline proc(alloc: Allocation_Header) -> u16 {
return alloc.next - alloc.idx - 1
}
_get_allocation_header :: #force_inline proc(raw_mem: rawptr) -> ^Allocation_Header {
return mem.ptr_offset((^Allocation_Header)(raw_mem), -1)
}
_round_up_to_nearest :: #force_inline proc(size, round: int) -> int {
return (size-1) + round - (size-1) % round
}