Files
Odin/core/math/big/basic.odin
Jeroen van Rijn cd0ce7b76e big: Add choose.
2021-08-11 20:59:52 +02:00

1587 lines
40 KiB
Odin

package big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-2 license.
An arbitrary precision mathematics implementation in Odin.
For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
This file contains basic arithmetic operations like `add`, `sub`, `mul`, `div`, ...
*/
import "core:mem"
import "core:intrinsics"
/*
===========================
User-level routines
===========================
*/
/*
High-level addition. Handles sign.
*/
int_add :: proc(dest, a, b: ^Int) -> (err: Error) {
dest := dest; x := a; y := b;
if err = clear_if_uninitialized(x); err != .None { return err; }
if err = clear_if_uninitialized(y); err != .None { return err; }
if err = clear_if_uninitialized(dest); err != .None { return err; }
/*
All parameters have been initialized.
We can now safely ignore errors from comparison routines.
*/
/*
Handle both negative or both positive.
*/
if x.sign == y.sign {
dest.sign = x.sign;
return _int_add(dest, x, y);
}
/*
One positive, the other negative.
Subtract the one with the greater magnitude from the other.
The result gets the sign of the one with the greater magnitude.
*/
if c, _ := cmp_mag(a, b); c == -1 {
x, y = y, x;
}
dest.sign = x.sign;
return _int_sub(dest, x, y);
}
/*
Adds the unsigned `DIGIT` immediate to an `Int`,
such that the `DIGIT` doesn't have to be turned into an `Int` first.
dest = a + digit;
*/
int_add_digit :: proc(dest, a: ^Int, digit: DIGIT) -> (err: Error) {
dest := dest; digit := digit;
if err = clear_if_uninitialized(a); err != .None {
return err;
}
/*
Grow destination as required.
*/
if err = grow(dest, a.used + 1); err != .None {
return err;
}
/*
All parameters have been initialized.
We can now safely ignore errors from comparison routines.
*/
/*
Fast paths for destination and input Int being the same.
*/
if dest == a {
/*
Fast path for dest.digit[0] + digit fits in dest.digit[0] without overflow.
*/
if p, _ := is_pos(dest); p && (dest.digit[0] + digit < _DIGIT_MAX) {
dest.digit[0] += digit;
dest.used += 1;
return clamp(dest);
}
/*
Can be subtracted from dest.digit[0] without underflow.
*/
if n, _ := is_neg(a); n && (dest.digit[0] > digit) {
dest.digit[0] -= digit;
dest.used += 1;
return clamp(dest);
}
}
/*
If `a` is negative and `|a|` >= `digit`, call `dest = |a| - digit`
*/
if n, _ := is_neg(a); n && (a.used > 1 || a.digit[0] >= digit) {
/*
Temporarily fix `a`'s sign.
*/
a.sign = .Zero_or_Positive;
/*
dest = |a| - digit
*/
if err = sub(dest, a, digit); err != .None {
/*
Restore a's sign.
*/
a.sign = .Negative;
return err;
}
/*
Restore sign and set `dest` sign.
*/
a.sign = .Negative;
dest.sign = .Negative;
return clamp(dest);
}
/*
Remember the currently used number of digits in `dest`.
*/
old_used := dest.used;
/*
If `a` is positive
*/
if p, _ := is_pos(a); p {
/*
Add digits, use `carry`.
*/
i: int;
carry := digit;
for i = 0; i < a.used; i += 1 {
dest.digit[i] = a.digit[i] + carry;
carry = dest.digit[i] >> _DIGIT_BITS;
dest.digit[i] &= _MASK;
}
/*
Set final carry.
*/
dest.digit[i] = carry;
/*
Set `dest` size.
*/
dest.used = a.used + 1;
} else {
/*
`a` was negative and |a| < digit.
*/
dest.used = 1;
/*
The result is a single DIGIT.
*/
dest.digit[0] = digit - a.digit[0] if a.used == 1 else digit;
}
/*
Sign is always positive.
*/
dest.sign = .Zero_or_Positive;
zero_count := old_used - dest.used;
/*
Zero remainder.
*/
if zero_count > 0 {
mem.zero_slice(dest.digit[dest.used:][:zero_count]);
}
/*
Adjust dest.used based on leading zeroes.
*/
return clamp(dest);
}
/*
High-level subtraction, dest = number - decrease. Handles signs.
*/
int_sub :: proc(dest, number, decrease: ^Int) -> (err: Error) {
dest := dest; x := number; y := decrease;
if err = clear_if_uninitialized(dest); err != .None {
return err;
}
if err = clear_if_uninitialized(x); err != .None {
return err;
}
if err = clear_if_uninitialized(y); err != .None {
return err;
}
/*
All parameters have been initialized.
We can now safely ignore errors from comparison routines.
*/
if x.sign != y.sign {
/*
Subtract a negative from a positive, OR subtract a positive from a negative.
In either case, ADD their magnitudes and use the sign of the first number.
*/
dest.sign = x.sign;
return _int_add(dest, x, y);
}
/*
Subtract a positive from a positive, OR negative from a negative.
First, take the difference between their magnitudes, then...
*/
if c, _ := cmp_mag(x, y); c == -1 {
/*
The second has a larger magnitude.
The result has the *opposite* sign from the first number.
*/
if p, _ := is_pos(x); p {
dest.sign = .Negative;
} else {
dest.sign = .Zero_or_Positive;
}
x, y = y, x;
} else {
/*
The first has a larger or equal magnitude.
Copy the sign from the first.
*/
dest.sign = x.sign;
}
return _int_sub(dest, x, y);
}
/*
Adds the unsigned `DIGIT` immediate to an `Int`,
such that the `DIGIT` doesn't have to be turned into an `Int` first.
dest = a - digit;
*/
int_sub_digit :: proc(dest, a: ^Int, digit: DIGIT) -> (err: Error) {
dest := dest; digit := digit;
if err = clear_if_uninitialized(dest); err != .None {
return err;
}
/*
Grow destination as required.
*/
if dest != a {
if err = grow(dest, a.used + 1); err != .None {
return err;
}
}
/*
All parameters have been initialized.
We can now safely ignore errors from comparison routines.
*/
/*
Fast paths for destination and input Int being the same.
*/
if dest == a {
/*
Fast path for `dest` is negative and unsigned addition doesn't overflow the lowest digit.
*/
if n, _ := is_neg(dest); n && (dest.digit[0] + digit < _DIGIT_MAX) {
dest.digit[0] += digit;
return .None;
}
/*
Can be subtracted from dest.digit[0] without underflow.
*/
if p, _ := is_pos(a); p && (dest.digit[0] > digit) {
dest.digit[0] -= digit;
return .None;
}
}
/*
If `a` is negative, just do an unsigned addition (with fudged signs).
*/
if n, _ := is_neg(a); n {
t := a;
t.sign = .Zero_or_Positive;
err = add(dest, t, digit);
dest.sign = .Negative;
clamp(dest);
return err;
}
old_used := dest.used;
/*
if `a`<= digit, simply fix the single digit.
*/
z, _ := is_zero(a);
if a.used == 1 && (a.digit[0] <= digit) || z {
dest.digit[0] = digit - a.digit[0] if a.used == 1 else digit;
dest.sign = .Negative;
dest.used = 1;
} else {
dest.sign = .Zero_or_Positive;
dest.used = a.used;
/*
Subtract with carry.
*/
carry := digit;
for i := 0; i < a.used; i += 1 {
dest.digit[i] = a.digit[i] - carry;
carry := dest.digit[i] >> ((size_of(DIGIT) * 8) - 1);
dest.digit[i] &= _MASK;
}
}
zero_count := old_used - dest.used;
/*
Zero remainder.
*/
if zero_count > 0 {
mem.zero_slice(dest.digit[dest.used:][:zero_count]);
}
/*
Adjust dest.used based on leading zeroes.
*/
return clamp(dest);
}
/*
dest = src / 2
dest = src >> 1
*/
int_halve :: proc(dest, src: ^Int) -> (err: Error) {
dest := dest; src := src;
if err = clear_if_uninitialized(dest); err != .None {
return err;
}
/*
Grow destination as required.
*/
if dest != src {
if err = grow(dest, src.used); err != .None {
return err;
}
}
old_used := dest.used;
dest.used = src.used;
/*
Carry
*/
fwd_carry := DIGIT(0);
for x := dest.used - 1; x >= 0; x -= 1 {
/*
Get the carry for the next iteration.
*/
src_digit := src.digit[x];
carry := src_digit & 1;
/*
Shift the current digit, add in carry and store.
*/
dest.digit[x] = (src_digit >> 1) | (fwd_carry << (_DIGIT_BITS - 1));
/*
Forward carry to next iteration.
*/
fwd_carry = carry;
}
zero_count := old_used - dest.used;
/*
Zero remainder.
*/
if zero_count > 0 {
mem.zero_slice(dest.digit[dest.used:][:zero_count]);
}
/*
Adjust dest.used based on leading zeroes.
*/
dest.sign = src.sign;
return clamp(dest);
}
halve :: proc { int_halve, };
shr1 :: halve;
/*
dest = src * 2
dest = src << 1
*/
int_double :: proc(dest, src: ^Int) -> (err: Error) {
dest := dest; src := src;
if err = clear_if_uninitialized(dest); err != .None {
return err;
}
/*
Grow destination as required.
*/
if dest != src {
if err = grow(dest, src.used + 1); err != .None {
return err;
}
}
old_used := dest.used;
dest.used = src.used + 1;
/*
Forward carry
*/
carry := DIGIT(0);
for x := 0; x < src.used; x += 1 {
/*
Get what will be the *next* carry bit from the MSB of the current digit.
*/
src_digit := src.digit[x];
fwd_carry := src_digit >> (_DIGIT_BITS - 1);
/*
Now shift up this digit, add in the carry [from the previous]
*/
dest.digit[x] = (src_digit << 1 | carry) & _MASK;
/*
Update carry
*/
carry = fwd_carry;
}
/*
New leading digit?
*/
if carry != 0 {
/*
Add a MSB which is always 1 at this point.
*/
dest.digit[dest.used] = 1;
}
zero_count := old_used - dest.used;
/*
Zero remainder.
*/
if zero_count > 0 {
mem.zero_slice(dest.digit[dest.used:][:zero_count]);
}
/*
Adjust dest.used based on leading zeroes.
*/
dest.sign = src.sign;
return clamp(dest);
}
double :: proc { int_double, };
shl1 :: double;
/*
remainder = numerator % (1 << bits)
*/
int_mod_bits :: proc(remainder, numerator: ^Int, bits: int) -> (err: Error) {
if err = clear_if_uninitialized(remainder); err != .None { return err; }
if err = clear_if_uninitialized(numerator); err != .None { return err; }
if bits < 0 { return .Invalid_Argument; }
if bits == 0 { return zero(remainder); }
/*
If the modulus is larger than the value, return the value.
*/
err = copy(remainder, numerator);
if bits >= (numerator.used * _DIGIT_BITS) || err != .None {
return;
}
/*
Zero digits above the last digit of the modulus.
*/
zero_count := (bits / _DIGIT_BITS) + 0 if (bits % _DIGIT_BITS == 0) else 1;
/*
Zero remainder.
*/
if zero_count > 0 {
mem.zero_slice(remainder.digit[zero_count:]);
}
/*
Clear the digit that is not completely outside/inside the modulus.
*/
remainder.digit[bits / _DIGIT_BITS] &= DIGIT(1 << DIGIT(bits % _DIGIT_BITS)) - DIGIT(1);
return clamp(remainder);
}
mod_bits :: proc { int_mod_bits, };
/*
Multiply by a DIGIT.
*/
int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT) -> (err: Error) {
if err = clear_if_uninitialized(src ); err != .None { return err; }
if err = clear_if_uninitialized(dest); err != .None { return err; }
if multiplier == 0 {
return zero(dest);
}
if multiplier == 1 {
return copy(dest, src);
}
/*
Power of two?
*/
if multiplier == 2 {
return double(dest, src);
}
if is_power_of_two(int(multiplier)) {
ix: int;
if ix, err = log(multiplier, 2); err != .None { return err; }
return shl(dest, src, ix);
}
/*
Ensure `dest` is big enough to hold `src` * `multiplier`.
*/
if err = grow(dest, max(src.used + 1, _DEFAULT_DIGIT_COUNT)); err != .None { return err; }
/*
Save the original used count.
*/
old_used := dest.used;
/*
Set the sign.
*/
dest.sign = src.sign;
/*
Set up carry.
*/
carry := _WORD(0);
/*
Compute columns.
*/
ix := 0;
for ; ix < src.used; ix += 1 {
/*
Compute product and carry sum for this term
*/
product := carry + _WORD(src.digit[ix]) * _WORD(multiplier);
/*
Mask off higher bits to get a single DIGIT.
*/
dest.digit[ix] = DIGIT(product & _WORD(_MASK));
/*
Send carry into next iteration
*/
carry = product >> _DIGIT_BITS;
}
/*
Store final carry [if any] and increment used.
*/
dest.digit[ix] = DIGIT(carry);
dest.used = src.used + 1;
/*
Zero unused digits.
*/
zero_count := old_used - dest.used;
if zero_count > 0 {
mem.zero_slice(dest.digit[zero_count:]);
}
return clamp(dest);
}
/*
High level multiplication (handles sign).
*/
int_mul :: proc(dest, src, multiplier: ^Int) -> (err: Error) {
if err = clear_if_uninitialized(src); err != .None { return err; }
if err = clear_if_uninitialized(dest); err != .None { return err; }
if err = clear_if_uninitialized(multiplier); err != .None { return err; }
/*
Early out for `multiplier` is zero; Set `dest` to zero.
*/
if z, _ := is_zero(multiplier); z {
return zero(dest);
}
min_used := min(src.used, multiplier.used);
max_used := max(src.used, multiplier.used);
digits := src.used + multiplier.used + 1;
neg := src.sign != multiplier.sign;
if src == multiplier {
/*
Do we need to square?
*/
if false && src.used >= _SQR_TOOM_CUTOFF {
/* Use Toom-Cook? */
// err = s_mp_sqr_toom(a, c);
} else if false && src.used >= _SQR_KARATSUBA_CUTOFF {
/* Karatsuba? */
// err = s_mp_sqr_karatsuba(a, c);
} else if false && ((src.used * 2) + 1) < _WARRAY &&
src.used < (_MAX_COMBA / 2) {
/* Fast comba? */
// err = s_mp_sqr_comba(a, c);
} else {
err = _int_sqr(dest, src);
}
} else {
/*
Can we use the balance method? Check sizes.
* The smaller one needs to be larger than the Karatsuba cut-off.
* The bigger one needs to be at least about one `_MUL_KARATSUBA_CUTOFF` bigger
* to make some sense, but it depends on architecture, OS, position of the
* stars... so YMMV.
* Using it to cut the input into slices small enough for _mul_comba
* was actually slower on the author's machine, but YMMV.
*/
if false && min_used >= _MUL_KARATSUBA_CUTOFF &&
max_used / 2 >= _MUL_KARATSUBA_CUTOFF &&
/*
Not much effect was observed below a ratio of 1:2, but again: YMMV.
*/
max_used >= 2 * min_used {
// err = s_mp_mul_balance(a,b,c);
} else if false && min_used >= _MUL_TOOM_CUTOFF {
// err = s_mp_mul_toom(a, b, c);
} else if false && min_used >= _MUL_KARATSUBA_CUTOFF {
// err = s_mp_mul_karatsuba(a, b, c);
} else if false && digits < _WARRAY && min_used <= _MAX_COMBA {
/*
Can we use the fast multiplier?
* The fast multiplier can be used if the output will
* have less than MP_WARRAY digits and the number of
* digits won't affect carry propagation
*/
// err = s_mp_mul_comba(a, b, c, digs);
} else {
err = _int_mul(dest, src, multiplier, digits);
}
}
dest.sign = .Negative if dest.used > 0 && neg else .Zero_or_Positive;
return err;
}
mul :: proc { int_mul, int_mul_digit, };
sqr :: proc(dest, src: ^Int) -> (err: Error) {
return mul(dest, src, src);
}
/*
divmod.
Both the quotient and remainder are optional and may be passed a nil.
*/
int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
/*
Early out if neither of the results is wanted.
*/
if quotient == nil && remainder == nil { return .None; }
if err = clear_if_uninitialized(numerator); err != .None { return err; }
if err = clear_if_uninitialized(denominator); err != .None { return err; }
z: bool;
if z, err = is_zero(denominator); z { return .Division_by_Zero; }
/*
If numerator < denominator then quotient = 0, remainder = numerator.
*/
c: int;
if c, err = cmp_mag(numerator, denominator); c == -1 {
if remainder != nil {
if err = copy(remainder, numerator); err != .None { return err; }
}
if quotient != nil {
zero(quotient);
}
return .None;
}
if false && (denominator.used > 2 * _MUL_KARATSUBA_CUTOFF) && (denominator.used <= (numerator.used/3) * 2) {
// err = _int_div_recursive(quotient, remainder, numerator, denominator);
} else if false {
// err = _int_div_school(quotient, remainder, numerator, denominator);
} else {
err = _int_div_small(quotient, remainder, numerator, denominator);
}
return err;
}
divmod :: proc{ int_divmod, };
int_div :: proc(quotient, numerator, denominator: ^Int) -> (err: Error) {
return int_divmod(quotient, nil, numerator, denominator);
}
div :: proc { int_div, };
/*
remainder = numerator % denominator.
0 <= remainder < denominator if denominator > 0
denominator < remainder <= 0 if denominator < 0
*/
int_mod :: proc(remainder, numerator, denominator: ^Int) -> (err: Error) {
if err = divmod(nil, remainder, numerator, denominator); err != .None { return err; }
z: bool;
if z, err = is_zero(remainder); z || denominator.sign == remainder.sign { return .None; }
return add(remainder, remainder, numerator);
}
mod :: proc { int_mod, };
/*
remainder = (number + addend) % modulus.
*/
int_addmod :: proc(remainder, number, addend, modulus: ^Int) -> (err: Error) {
if err = add(remainder, number, addend); err != .None { return err; }
return mod(remainder, remainder, modulus);
}
addmod :: proc { int_addmod, };
/*
remainder = (number - decrease) % modulus.
*/
int_submod :: proc(remainder, number, decrease, modulus: ^Int) -> (err: Error) {
if err = add(remainder, number, decrease); err != .None { return err; }
return mod(remainder, remainder, modulus);
}
submod :: proc { int_submod, };
/*
remainder = (number * multiplicand) % modulus.
*/
int_mulmod :: proc(remainder, number, multiplicand, modulus: ^Int) -> (err: Error) {
if err = mul(remainder, number, multiplicand); err != .None { return err; }
return mod(remainder, remainder, modulus);
}
mulmod :: proc { int_mulmod, };
/*
remainder = (number * number) % modulus.
*/
int_sqrmod :: proc(remainder, number, modulus: ^Int) -> (err: Error) {
if err = sqr(remainder, number); err != .None { return err; }
return mod(remainder, remainder, modulus);
}
sqrmod :: proc { int_sqrmod, };
int_factorial :: proc(res: ^Int, n: DIGIT) -> (err: Error) {
if n < 0 { return .Invalid_Argument; }
i := DIGIT(len(_factorial_table));
if n < i {
return set(res, _factorial_table[n]);
}
a := &Int{};
defer destroy(a);
if err = set( a, i - 1); err != .None { return err; }
if err = set(res, _factorial_table[i - 1]); err != .None { return err; }
for {
if err = mul(res, res, DIGIT(i)); err != .None || i == n { return err; }
i += 1;
}
return .None;
}
factorial :: proc { int_factorial, };
/*
Number of ways to choose `k` items from `n` items.
Also known as the binomial coefficient.
TODO: Speed up.
Could be done faster by reusing code from factorial and reusing the common "prefix" results for n!, k! and n-k!
We know that n >= k, otherwise we early out with res = 0.
So:
n-k, keep result
n, start from previous result
k, start from previous result
*/
int_choose_digit :: proc(res: ^Int, n, k: DIGIT) -> (err: Error) {
if res == nil { return .Invalid_Pointer; }
if err = clear_if_uninitialized(res); err != .None { return err; }
if k > n { return zero(res); }
/*
res = n! / (k! * (n - k)!)
*/
n_fac, k_fac, n_minus_k_fac := &Int{}, &Int{}, &Int{};
defer destroy(n_fac, k_fac, n_minus_k_fac);
if err = factorial(n_minus_k_fac, n - k); err != .None { return err; }
if err = factorial(k_fac, k); err != .None { return err; }
if err = mul(k_fac, k_fac, n_minus_k_fac); err != .None { return err; }
if err = factorial(n_fac, n); err != .None { return err; }
if err = div(res, n_fac, k_fac); err != .None { return err; }
return err;
}
choose :: proc { int_choose_digit, };
/*
==========================
Low-level routines
==========================
*/
/*
Low-level addition, unsigned.
Handbook of Applied Cryptography, algorithm 14.7.
*/
_int_add :: proc(dest, a, b: ^Int) -> (err: Error) {
dest := dest; x := a; y := b;
old_used, min_used, max_used, i: int;
if x.used < y.used {
x, y = y, x;
assert(x.used >= y.used);
}
min_used = y.used;
max_used = x.used;
old_used = dest.used;
if err = grow(dest, max(max_used + 1, _DEFAULT_DIGIT_COUNT)); err != .None {
return err;
}
dest.used = max_used + 1;
/*
All parameters have been initialized.
*/
/* Zero the carry */
carry := DIGIT(0);
for i = 0; i < min_used; i += 1 {
/*
Compute the sum one _DIGIT at a time.
dest[i] = a[i] + b[i] + carry;
*/
dest.digit[i] = x.digit[i] + y.digit[i] + carry;
/*
Compute carry
*/
carry = dest.digit[i] >> _DIGIT_BITS;
/*
Mask away carry from result digit.
*/
dest.digit[i] &= _MASK;
}
if min_used != max_used {
/*
Now copy higher words, if any, in A+B.
If A or B has more digits, add those in.
*/
for ; i < max_used; i += 1 {
dest.digit[i] = x.digit[i] + carry;
/*
Compute carry
*/
carry = dest.digit[i] >> _DIGIT_BITS;
/*
Mask away carry from result digit.
*/
dest.digit[i] &= _MASK;
}
}
/*
Add remaining carry.
*/
dest.digit[i] = carry;
zero_count := old_used - dest.used;
/*
Zero remainder.
*/
if zero_count > 0 {
mem.zero_slice(dest.digit[dest.used:][:zero_count]);
}
/*
Adjust dest.used based on leading zeroes.
*/
return clamp(dest);
}
/*
Low-level subtraction, dest = number - decrease. Assumes |number| > |decrease|.
Handbook of Applied Cryptography, algorithm 14.9.
*/
_int_sub :: proc(dest, number, decrease: ^Int) -> (err: Error) {
dest := dest; x := number; y := decrease;
if err = clear_if_uninitialized(x); err != .None {
return err;
}
if err = clear_if_uninitialized(y); err != .None {
return err;
}
old_used := dest.used;
min_used := y.used;
max_used := x.used;
i: int;
if err = grow(dest, max(max_used, _DEFAULT_DIGIT_COUNT)); err != .None {
return err;
}
dest.used = max_used;
/*
All parameters have been initialized.
*/
borrow := DIGIT(0);
for i = 0; i < min_used; i += 1 {
dest.digit[i] = (x.digit[i] - y.digit[i] - borrow);
/*
borrow = carry bit of dest[i]
Note this saves performing an AND operation since if a carry does occur,
it will propagate all the way to the MSB.
As a result a single shift is enough to get the carry.
*/
borrow = dest.digit[i] >> ((size_of(DIGIT) * 8) - 1);
/*
Clear borrow from dest[i].
*/
dest.digit[i] &= _MASK;
}
/*
Now copy higher words if any, e.g. if A has more digits than B
*/
for ; i < max_used; i += 1 {
dest.digit[i] = x.digit[i] - borrow;
/*
borrow = carry bit of dest[i]
Note this saves performing an AND operation since if a carry does occur,
it will propagate all the way to the MSB.
As a result a single shift is enough to get the carry.
*/
borrow = dest.digit[i] >> ((size_of(DIGIT) * 8) - 1);
/*
Clear borrow from dest[i].
*/
dest.digit[i] &= _MASK;
}
zero_count := old_used - dest.used;
/*
Zero remainder.
*/
if zero_count > 0 {
mem.zero_slice(dest.digit[dest.used:][:zero_count]);
}
/*
Adjust dest.used based on leading zeroes.
*/
return clamp(dest);
}
/*
Multiplies |a| * |b| and only computes upto digs digits of result.
HAC pp. 595, Algorithm 14.12 Modified so you can control how
many digits of output are created.
*/
_int_mul :: proc(dest, a, b: ^Int, digits: int) -> (err: Error) {
/*
Can we use the fast multiplier?
*/
when false { // Have Comba?
if digits < _WARRAY && min(a.used, b.used) < _MAX_COMBA {
return _int_mul_comba(dest, a, b, digits);
}
}
/*
Set up temporary output `Int`, which we'll swap for `dest` when done.
*/
t := &Int{};
if err = grow(t, max(digits, _DEFAULT_DIGIT_COUNT)); err != .None { return err; }
t.used = digits;
/*
Compute the digits of the product directly.
*/
pa := a.used;
for ix := 0; ix < pa; ix += 1 {
/*
Limit ourselves to `digits` DIGITs of output.
*/
pb := min(b.used, digits - ix);
carry := _WORD(0);
iy := 0;
/*
Compute the column of the output and propagate the carry.
*/
for iy = 0; iy < pb; iy += 1 {
/*
Compute the column as a _WORD.
*/
column := _WORD(t.digit[ix + iy]) + _WORD(a.digit[ix]) * _WORD(b.digit[iy]) + carry;
/*
The new column is the lower part of the result.
*/
t.digit[ix + iy] = DIGIT(column & _WORD(_MASK));
/*
Get the carry word from the result.
*/
carry = column >> _DIGIT_BITS;
}
/*
Set carry if it is placed below digits
*/
if ix + iy < digits {
t.digit[ix + pb] = DIGIT(carry);
}
}
swap(dest, t);
destroy(t);
return clamp(dest);
}
/*
Low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16
*/
_int_sqr :: proc(dest, src: ^Int) -> (err: Error) {
pa := src.used;
t := &Int{}; ix, iy: int;
/*
Grow `t` to maximum needed size, or `_DEFAULT_DIGIT_COUNT`, whichever is bigger.
*/
if err = grow(t, max((2 * pa) + 1, _DEFAULT_DIGIT_COUNT)); err != .None { return err; }
t.used = (2 * pa) + 1;
for ix = 0; ix < pa; ix += 1 {
carry := DIGIT(0);
/*
First calculate the digit at 2*ix; calculate double precision result.
*/
r := _WORD(t.digit[ix+ix]) + (_WORD(src.digit[ix]) * _WORD(src.digit[ix]));
/*
Store lower part in result.
*/
t.digit[ix+ix] = DIGIT(r & _WORD(_MASK));
/*
Get the carry.
*/
carry = DIGIT(r >> _DIGIT_BITS);
for iy = ix + 1; iy < pa; iy += 1 {
/*
First calculate the product.
*/
r = _WORD(src.digit[ix]) * _WORD(src.digit[iy]);
/* Now calculate the double precision result. Nóte we use
* addition instead of *2 since it's easier to optimize
*/
r = _WORD(t.digit[ix+iy]) + r + r + _WORD(carry);
/*
Store lower part.
*/
t.digit[ix+iy] = DIGIT(r & _WORD(_MASK));
/*
Get carry.
*/
carry = DIGIT(r >> _DIGIT_BITS);
}
/*
Propagate upwards.
*/
for carry != 0 {
r = _WORD(t.digit[ix+iy]) + _WORD(carry);
t.digit[ix+iy] = DIGIT(r & _WORD(_MASK));
carry = DIGIT(r >> _WORD(_DIGIT_BITS));
iy += 1;
}
}
err = clamp(t);
swap(dest, t);
destroy(t);
return err;
}
/*
Divide by three (based on routine from MPI and the GMP manual).
*/
_int_div_3 :: proc(quotient, numerator: ^Int) -> (remainder: int, err: Error) {
/*
b = 2**MP_DIGIT_BIT / 3
*/
b := _WORD(1) << _WORD(_DIGIT_BITS) / _WORD(3);
q := &Int{};
if err = grow(q, numerator.used); err != .None { return -1, err; }
q.used = numerator.used;
q.sign = numerator.sign;
w, t: _WORD;
for ix := numerator.used; ix >= 0; ix -= 1 {
w = (w << _WORD(_DIGIT_BITS)) | _WORD(numerator.digit[ix]);
if w >= 3 {
/*
Multiply w by [1/3].
*/
t = (w * b) >> _WORD(_DIGIT_BITS);
/*
Now subtract 3 * [w/3] from w, to get the remainder.
*/
w -= t+t+t;
/*
Fixup the remainder as required since the optimization is not exact.
*/
for w >= 3 {
t += 1;
w -= 3;
}
} else {
t = 0;
}
q.digit[ix] = DIGIT(t);
}
remainder = int(w);
/*
[optional] store the quotient.
*/
if quotient != nil {
err = clamp(q);
swap(q, quotient);
}
destroy(q);
return remainder, .None;
}
/*
Slower bit-bang division... also smaller.
*/
_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
ta, tb, tq, q := &Int{}, &Int{}, &Int{}, &Int{};
c: int;
goto_end: for {
if err = one(tq); err != .None { break goto_end; }
num_bits, _ := count_bits(numerator);
den_bits, _ := count_bits(denominator);
n := num_bits - den_bits;
if err = abs(ta, numerator); err != .None { break goto_end; }
if err = abs(tb, denominator); err != .None { break goto_end; }
if err = shl(tb, tb, n); err != .None { break goto_end; }
if err = shl(tq, tq, n); err != .None { break goto_end; }
for n >= 0 {
if c, _ = cmp_mag(ta, tb); c == 0 || c == 1 {
// ta -= tb
if err = sub(ta, ta, tb); err != .None { break goto_end; }
// q += tq
if err = add( q, q, tq); err != .None { break goto_end; }
}
if err = shr1(tb, tb); err != .None { break goto_end; }
if err = shr1(tq, tq); err != .None { break goto_end; }
n -= 1;
}
/*
Now q == quotient and ta == remainder.
*/
neg := numerator.sign != denominator.sign;
if quotient != nil {
swap(quotient, q);
z, _ := is_zero(quotient);
quotient.sign = .Negative if neg && !z else .Zero_or_Positive;
}
if remainder != nil {
swap(remainder, ta);
z, _ := is_zero(numerator);
remainder.sign = .Zero_or_Positive if z else numerator.sign;
}
break goto_end;
}
destroy(ta, tb, tq, q);
return err;
}
/*
Single digit division (based on routine from MPI).
*/
_int_div_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT) -> (remainder: int, err: Error) {
q := &Int{};
ix: int;
/*
Cannot divide by zero.
*/
if denominator == 0 {
return 0, .Division_by_Zero;
}
/*
Quick outs.
*/
if denominator == 1 || numerator.used == 0 {
err = .None;
if quotient != nil {
err = copy(quotient, numerator);
}
return 0, err;
}
/*
Power of two?
*/
if denominator == 2 {
if odd, _ := is_odd(numerator); odd {
remainder = 1;
}
if quotient == nil {
return remainder, .None;
}
return remainder, shr(quotient, numerator, 1);
}
if is_power_of_two(int(denominator)) {
ix = 1;
for ix < _DIGIT_BITS && denominator != (1 << uint(ix)) {
ix += 1;
}
remainder = int(numerator.digit[0]) & ((1 << uint(ix)) - 1);
if quotient == nil {
return remainder, .None;
}
return remainder, shr(quotient, numerator, int(ix));
}
/*
Three?
*/
if denominator == 3 {
return _int_div_3(quotient, numerator);
}
/*
No easy answer [c'est la vie]. Just division.
*/
if err = grow(q, numerator.used); err != .None { return 0, err; }
q.used = numerator.used;
q.sign = numerator.sign;
w := _WORD(0);
for ix = numerator.used - 1; ix >= 0; ix -= 1 {
t := DIGIT(0);
w = (w << _WORD(_DIGIT_BITS) | _WORD(numerator.digit[ix]));
if w >= _WORD(denominator) {
t = DIGIT(w / _WORD(denominator));
w -= _WORD(t) * _WORD(denominator);
}
q.digit[ix] = t;
}
remainder = int(w);
if quotient != nil {
clamp(q);
swap(q, quotient);
}
destroy(q);
return remainder, .None;
}
/*
Function computing both GCD and (if target isn't `nil`) also LCM.
*/
int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int) -> (err: Error) {
if err = clear_if_uninitialized(res_gcd, res_lcm, a, b); err != .None { return err; }
az, _ := is_zero(a); bz, _ := is_zero(b);
if az && bz {
if res_gcd != nil {
if err = zero(res_gcd); err != .None { return err; }
}
if res_lcm != nil {
if err = zero(res_lcm); err != .None { return err; }
}
return .None;
}
else if az {
if res_gcd != nil {
if err = abs(res_gcd, b); err != .None { return err; }
}
if res_lcm != nil {
if err = zero(res_lcm); err != .None { return err; }
}
return .None;
}
else if bz {
if res_gcd != nil {
if err = abs(res_gcd, a); err != .None { return err; }
}
if res_lcm != nil {
if err = zero(res_lcm); err != .None { return err; }
}
return .None;
}
return #force_inline _int_gcd_lcm(res_gcd, res_lcm, a, b);
}
gcd_lcm :: proc { int_gcd_lcm, };
/*
Greatest Common Divisor.
*/
int_gcd :: proc(res, a, b: ^Int) -> (err: Error) {
return #force_inline int_gcd_lcm(res, nil, a, b);
}
gcd :: proc { int_gcd, };
/*
Least Common Multiple.
*/
int_lcm :: proc(res, a, b: ^Int) -> (err: Error) {
return #force_inline int_gcd_lcm(nil, res, a, b);
}
lcm :: proc { int_lcm, };
/*
Internal function computing both GCD using the binary method,
and, if target isn't `nil`, also LCM.
Expects the arguments to have been initialized.
*/
_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int) -> (err: Error) {
/*
If both `a` and `b` are zero, return zero.
If either `a` or `b`, return the other one.
The `gcd` and `lcm` wrappers have already done this test,
but `gcd_lcm` wouldn't have, so we still need to perform it.
If neither result is wanted, we have nothing to do.
*/
if res_gcd == nil && res_lcm == nil { return .None; }
/*
We need a temporary because `res_gcd` is allowed to be `nil`.
*/
az, _ := is_zero(a); bz, _ := is_zero(b);
if az && bz {
/*
GCD(0, 0) and LCM(0, 0) are both 0.
*/
if res_gcd != nil {
if err = zero(res_gcd); err != .None { return err; }
}
if res_lcm != nil {
if err = zero(res_lcm); err != .None { return err; }
}
return .None;
} else if az {
/*
We can early out with GCD = B and LCM = 0
*/
if res_gcd != nil {
if err = abs(res_gcd, b); err != .None { return err; }
}
if res_lcm != nil {
if err = zero(res_lcm); err != .None { return err; }
}
return .None;
} else if bz {
/*
We can early out with GCD = A and LCM = 0
*/
if res_gcd != nil {
if err = abs(res_gcd, a); err != .None { return err; }
}
if res_lcm != nil {
if err = zero(res_lcm); err != .None { return err; }
}
return .None;
}
temp_gcd_res := &Int{};
defer destroy(temp_gcd_res);
/*
If neither `a` or `b` was zero, we need to compute `gcd`.
Get copies of `a` and `b` we can modify.
*/
u, v := &Int{}, &Int{};
defer destroy(u, v);
if err = copy(u, a); err != .None { return err; }
if err = copy(v, b); err != .None { return err; }
/*
Must be positive for the remainder of the algorithm.
*/
u.sign = .Zero_or_Positive; v.sign = .Zero_or_Positive;
/*
B1. Find the common power of two for `u` and `v`.
*/
u_lsb, _ := count_lsb(u);
v_lsb, _ := count_lsb(v);
k := min(u_lsb, v_lsb);
if k > 0 {
/*
Divide the power of two out.
*/
if err = shr(u, u, k); err != .None { return err; }
if err = shr(v, v, k); err != .None { return err; }
}
/*
Divide any remaining factors of two out.
*/
if u_lsb != k {
if err = shr(u, u, u_lsb - k); err != .None { return err; }
}
if v_lsb != k {
if err = shr(v, v, v_lsb - k); err != .None { return err; }
}
for v.used != 0 {
/*
Make sure `v` is the largest.
*/
if c, _ := cmp_mag(u, v); c == 1 {
/*
Swap `u` and `v` to make sure `v` is >= `u`.
*/
swap(u, v);
}
/*
Subtract smallest from largest.
*/
if err = sub(v, v, u); err != .None { return err; }
/*
Divide out all factors of two.
*/
b, _ := count_lsb(v);
if err = shr(v, v, b); err != .None { return err; }
}
/*
Multiply by 2**k which we divided out at the beginning.
*/
if err = shl(temp_gcd_res, u, k); err != .None { return err; }
temp_gcd_res.sign = .Zero_or_Positive;
/*
We've computed `gcd`, either the long way, or because one of the inputs was zero.
If we don't want `lcm`, we're done.
*/
if res_lcm == nil {
swap(temp_gcd_res, res_gcd);
return .None;
}
/*
Computes least common multiple as `|a*b|/gcd(a,b)`
Divide the smallest by the GCD.
*/
if c, _ := cmp_mag(a, b); c == -1 {
/*
Store quotient in `t2` such that `t2 * b` is the LCM.
*/
if err = div(res_lcm, a, temp_gcd_res); err != .None { return err; }
err = mul(res_lcm, res_lcm, b);
} else {
/*
Store quotient in `t2` such that `t2 * a` is the LCM.
*/
if err = div(res_lcm, a, temp_gcd_res); err != .None { return err; }
err = mul(res_lcm, res_lcm, b);
}
if res_gcd != nil {
swap(temp_gcd_res, res_gcd);
}
/*
Fix the sign to positive and return.
*/
res_lcm.sign = .Zero_or_Positive;
return err;
}
when size_of(rawptr) == 8 {
_factorial_table := [35]_WORD{
/* f(00): */ 1,
/* f(01): */ 1,
/* f(02): */ 2,
/* f(03): */ 6,
/* f(04): */ 24,
/* f(05): */ 120,
/* f(06): */ 720,
/* f(07): */ 5_040,
/* f(08): */ 40_320,
/* f(09): */ 362_880,
/* f(10): */ 3_628_800,
/* f(11): */ 39_916_800,
/* f(12): */ 479_001_600,
/* f(13): */ 6_227_020_800,
/* f(14): */ 87_178_291_200,
/* f(15): */ 1_307_674_368_000,
/* f(16): */ 20_922_789_888_000,
/* f(17): */ 355_687_428_096_000,
/* f(18): */ 6_402_373_705_728_000,
/* f(19): */ 121_645_100_408_832_000,
/* f(20): */ 2_432_902_008_176_640_000,
/* f(21): */ 51_090_942_171_709_440_000,
/* f(22): */ 1_124_000_727_777_607_680_000,
/* f(23): */ 25_852_016_738_884_976_640_000,
/* f(24): */ 620_448_401_733_239_439_360_000,
/* f(25): */ 15_511_210_043_330_985_984_000_000,
/* f(26): */ 403_291_461_126_605_635_584_000_000,
/* f(27): */ 10_888_869_450_418_352_160_768_000_000,
/* f(28): */ 304_888_344_611_713_860_501_504_000_000,
/* f(29): */ 8_841_761_993_739_701_954_543_616_000_000,
/* f(30): */ 265_252_859_812_191_058_636_308_480_000_000,
/* f(31): */ 8_222_838_654_177_922_817_725_562_880_000_000,
/* f(32): */ 263_130_836_933_693_530_167_218_012_160_000_000,
/* f(33): */ 8_683_317_618_811_886_495_518_194_401_280_000_000,
/* f(34): */ 295_232_799_039_604_140_847_618_609_643_520_000_000,
};
} else {
_factorial_table := [21]_WORD{
/* f(00): */ 1,
/* f(01): */ 1,
/* f(02): */ 2,
/* f(03): */ 6,
/* f(04): */ 24,
/* f(05): */ 120,
/* f(06): */ 720,
/* f(07): */ 5_040,
/* f(08): */ 40_320,
/* f(09): */ 362_880,
/* f(10): */ 3_628_800,
/* f(11): */ 39_916_800,
/* f(12): */ 479_001_600,
/* f(13): */ 6_227_020_800,
/* f(14): */ 87_178_291_200,
/* f(15): */ 1_307_674_368_000,
/* f(16): */ 20_922_789_888_000,
/* f(17): */ 355_687_428_096_000,
/* f(18): */ 6_402_373_705_728_000,
/* f(19): */ 121_645_100_408_832_000,
/* f(20): */ 2_432_902_008_176_640_000,
};
};