mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 17:34:34 +00:00
2368 lines
69 KiB
Odin
2368 lines
69 KiB
Odin
package mem
|
|
|
|
import "base:intrinsics"
|
|
import "base:runtime"
|
|
import "base:sanitizer"
|
|
|
|
/*
|
|
Nil allocator.
|
|
|
|
The `nil` allocator returns `nil` on every allocation attempt. This type of
|
|
allocator can be used in scenarios where memory doesn't need to be allocated,
|
|
but an attempt to allocate memory is not an error.
|
|
*/
|
|
@(require_results)
|
|
nil_allocator :: proc() -> Allocator {
|
|
return Allocator{
|
|
procedure = nil_allocator_proc,
|
|
data = nil,
|
|
}
|
|
}
|
|
|
|
nil_allocator_proc :: proc(
|
|
allocator_data: rawptr,
|
|
mode: Allocator_Mode,
|
|
size, alignment: int,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
return nil, nil
|
|
}
|
|
|
|
|
|
/*
|
|
Panic allocator.
|
|
|
|
The panic allocator is a type of allocator that panics on any allocation
|
|
attempt. This type of allocator can be used in scenarios where memory should
|
|
not be allocated, and an attempt to allocate memory is an error.
|
|
*/
|
|
@(require_results)
|
|
panic_allocator :: proc() -> Allocator {
|
|
return Allocator{
|
|
procedure = panic_allocator_proc,
|
|
data = nil,
|
|
}
|
|
}
|
|
|
|
panic_allocator_proc :: proc(
|
|
allocator_data: rawptr,
|
|
mode: Allocator_Mode,
|
|
size, alignment: int,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
switch mode {
|
|
case .Alloc:
|
|
if size > 0 {
|
|
panic("mem: panic allocator, .Alloc called", loc=loc)
|
|
}
|
|
case .Alloc_Non_Zeroed:
|
|
if size > 0 {
|
|
panic("mem: panic allocator, .Alloc_Non_Zeroed called", loc=loc)
|
|
}
|
|
case .Resize:
|
|
if size > 0 {
|
|
panic("mem: panic allocator, .Resize called", loc=loc)
|
|
}
|
|
case .Resize_Non_Zeroed:
|
|
if size > 0 {
|
|
panic("mem: panic allocator, .Resize_Non_Zeroed called", loc=loc)
|
|
}
|
|
case .Free:
|
|
if old_memory != nil {
|
|
panic("mem: panic allocator, .Free called", loc=loc)
|
|
}
|
|
case .Free_All:
|
|
panic("mem: panic allocator, .Free_All called", loc=loc)
|
|
case .Query_Features:
|
|
set := (^Allocator_Mode_Set)(old_memory)
|
|
if set != nil {
|
|
set^ = {.Query_Features}
|
|
}
|
|
return nil, nil
|
|
|
|
case .Query_Info:
|
|
panic("mem: panic allocator, .Query_Info called", loc=loc)
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
|
|
/*
|
|
Arena allocator data.
|
|
*/
|
|
Arena :: struct {
|
|
data: []byte,
|
|
offset: int,
|
|
peak_used: int,
|
|
temp_count: int,
|
|
}
|
|
|
|
/*
|
|
Arena allocator.
|
|
|
|
The arena allocator (also known as a linear allocator, bump allocator,
|
|
region allocator) is an allocator that uses a single backing buffer for
|
|
allocations.
|
|
|
|
The buffer is being used contiguously, from start by end. Each subsequent
|
|
allocation occupies the next adjacent region of memory in the buffer. Since
|
|
arena allocator does not keep track of any metadata associated with the
|
|
allocations and their locations, it is impossible to free individual
|
|
allocations.
|
|
|
|
The arena allocator can be used for temporary allocations in frame-based memory
|
|
management. Games are one example of such applications. A global arena can be
|
|
used for any temporary memory allocations, and at the end of each frame all
|
|
temporary allocations are freed. Since no temporary object is going to live
|
|
longer than a frame, no lifetimes are violated.
|
|
*/
|
|
@(require_results)
|
|
arena_allocator :: proc(arena: ^Arena) -> Allocator {
|
|
return Allocator{
|
|
procedure = arena_allocator_proc,
|
|
data = arena,
|
|
}
|
|
}
|
|
|
|
/*
|
|
Initialize an arena.
|
|
|
|
This procedure initializes the arena `a` with memory region `data` as it's
|
|
backing buffer.
|
|
*/
|
|
arena_init :: proc(a: ^Arena, data: []byte) {
|
|
a.data = data
|
|
a.offset = 0
|
|
a.peak_used = 0
|
|
a.temp_count = 0
|
|
sanitizer.address_poison(a.data)
|
|
}
|
|
|
|
/*
|
|
Allocate memory from an arena.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment` from an arena `a`. The allocated memory is zero-initialized.
|
|
This procedure returns a pointer to the newly allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
arena_alloc :: proc(
|
|
a: ^Arena,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := arena_alloc_bytes(a, size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from an arena.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment` from an arena `a`. The allocated memory is zero-initialized.
|
|
This procedure returns a slice of the newly allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
arena_alloc_bytes :: proc(
|
|
a: ^Arena,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
bytes, err := arena_alloc_bytes_non_zeroed(a, size, alignment, loc)
|
|
if bytes != nil {
|
|
zero_slice(bytes)
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Allocate non-initialized memory from an arena.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment` from an arena `a`. The allocated memory is not explicitly
|
|
zero-initialized. This procedure returns a pointer to the newly allocated
|
|
memory region.
|
|
*/
|
|
@(require_results)
|
|
arena_alloc_non_zeroed :: proc(
|
|
a: ^Arena,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := arena_alloc_bytes_non_zeroed(a, size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate non-initialized memory from an arena.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment` from an arena `a`. The allocated memory is not explicitly
|
|
zero-initialized. This procedure returns a slice of the newly allocated
|
|
memory region.
|
|
*/
|
|
@(require_results)
|
|
arena_alloc_bytes_non_zeroed :: proc(
|
|
a: ^Arena,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location
|
|
) -> ([]byte, Allocator_Error) {
|
|
if a.data == nil {
|
|
panic("Arena is not initialized", loc)
|
|
}
|
|
#no_bounds_check end := &a.data[a.offset]
|
|
ptr := align_forward(end, uintptr(alignment))
|
|
total_size := size + ptr_sub((^byte)(ptr), (^byte)(end))
|
|
if a.offset + total_size > len(a.data) {
|
|
return nil, .Out_Of_Memory
|
|
}
|
|
a.offset += total_size
|
|
a.peak_used = max(a.peak_used, a.offset)
|
|
result := byte_slice(ptr, size)
|
|
sanitizer.address_unpoison(result)
|
|
return result, nil
|
|
}
|
|
|
|
/*
|
|
Free all memory to an arena.
|
|
*/
|
|
arena_free_all :: proc(a: ^Arena) {
|
|
a.offset = 0
|
|
sanitizer.address_poison(a.data)
|
|
}
|
|
|
|
arena_allocator_proc :: proc(
|
|
allocator_data: rawptr,
|
|
mode: Allocator_Mode,
|
|
size: int,
|
|
alignment: int,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
arena := cast(^Arena)allocator_data
|
|
switch mode {
|
|
case .Alloc:
|
|
return arena_alloc_bytes(arena, size, alignment, loc)
|
|
case .Alloc_Non_Zeroed:
|
|
return arena_alloc_bytes_non_zeroed(arena, size, alignment, loc)
|
|
case .Free:
|
|
return nil, .Mode_Not_Implemented
|
|
case .Free_All:
|
|
arena_free_all(arena)
|
|
case .Resize:
|
|
return default_resize_bytes_align(byte_slice(old_memory, old_size), size, alignment, arena_allocator(arena), loc)
|
|
case .Resize_Non_Zeroed:
|
|
return default_resize_bytes_align_non_zeroed(byte_slice(old_memory, old_size), size, alignment, arena_allocator(arena), loc)
|
|
case .Query_Features:
|
|
set := (^Allocator_Mode_Set)(old_memory)
|
|
if set != nil {
|
|
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features}
|
|
}
|
|
return nil, nil
|
|
case .Query_Info:
|
|
return nil, .Mode_Not_Implemented
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
/*
|
|
Temporary memory region of arena.
|
|
|
|
Temporary memory regions of arena act as "savepoints" for arena. When one is
|
|
created, the subsequent allocations are done inside the temporary memory
|
|
region. When `end_arena_temp_memory` is called, the arena is rolled back, and
|
|
all of the memory that was allocated from the arena will be freed.
|
|
|
|
Multiple temporary memory regions can exist at the same time for an arena.
|
|
*/
|
|
Arena_Temp_Memory :: struct {
|
|
arena: ^Arena,
|
|
prev_offset: int,
|
|
}
|
|
|
|
/*
|
|
Start a temporary memory region.
|
|
|
|
This procedure creates a temporary memory region. After a temporary memory
|
|
region is created, all allocations are said to be *inside* the temporary memory
|
|
region, until `end_arena_temp_memory` is called.
|
|
*/
|
|
@(require_results)
|
|
begin_arena_temp_memory :: proc(a: ^Arena) -> Arena_Temp_Memory {
|
|
tmp: Arena_Temp_Memory
|
|
tmp.arena = a
|
|
tmp.prev_offset = a.offset
|
|
a.temp_count += 1
|
|
return tmp
|
|
}
|
|
|
|
/*
|
|
End a temporary memory region.
|
|
|
|
This procedure ends the temporary memory region for an arena. All of the
|
|
allocations *inside* the temporary memory region will be freed to the arena.
|
|
*/
|
|
end_arena_temp_memory :: proc(tmp: Arena_Temp_Memory) {
|
|
assert(tmp.arena.offset >= tmp.prev_offset)
|
|
assert(tmp.arena.temp_count > 0)
|
|
sanitizer.address_poison(tmp.arena.data[tmp.prev_offset:tmp.arena.offset])
|
|
tmp.arena.offset = tmp.prev_offset
|
|
tmp.arena.temp_count -= 1
|
|
}
|
|
|
|
/* Preserved for compatibility */
|
|
Scratch_Allocator :: Scratch
|
|
scratch_allocator_init :: scratch_init
|
|
scratch_allocator_destroy :: scratch_destroy
|
|
|
|
/*
|
|
Scratch allocator data.
|
|
*/
|
|
Scratch :: struct {
|
|
data: []byte,
|
|
curr_offset: int,
|
|
prev_allocation: rawptr,
|
|
backup_allocator: Allocator,
|
|
leaked_allocations: [dynamic][]byte,
|
|
}
|
|
|
|
/*
|
|
Scratch allocator.
|
|
|
|
The scratch allocator works in a similar way to the `Arena` allocator. The
|
|
scratch allocator has a backing buffer, that is being allocated in
|
|
contiguous regions, from start to end.
|
|
|
|
Each subsequent allocation will be the next adjacent region of memory in the
|
|
backing buffer. If the allocation doesn't fit into the remaining space of the
|
|
backing buffer, this allocation is put at the start of the buffer, and all
|
|
previous allocations will become invalidated. If the allocation doesn't fit
|
|
into the backing buffer as a whole, it will be allocated using a backing
|
|
allocator, and pointer to the allocated memory region will be put into the
|
|
`leaked_allocations` array.
|
|
|
|
The `leaked_allocations` array is managed by the `context` allocator.
|
|
*/
|
|
@(require_results)
|
|
scratch_allocator :: proc(allocator: ^Scratch) -> Allocator {
|
|
return Allocator{
|
|
procedure = scratch_allocator_proc,
|
|
data = allocator,
|
|
}
|
|
}
|
|
|
|
/*
|
|
Initialize scratch allocator.
|
|
*/
|
|
scratch_init :: proc(s: ^Scratch, size: int, backup_allocator := context.allocator) -> Allocator_Error {
|
|
s.data = make_aligned([]byte, size, 2*align_of(rawptr), backup_allocator) or_return
|
|
s.curr_offset = 0
|
|
s.prev_allocation = nil
|
|
s.backup_allocator = backup_allocator
|
|
s.leaked_allocations.allocator = backup_allocator
|
|
sanitizer.address_poison(s.data)
|
|
return nil
|
|
}
|
|
|
|
/*
|
|
Free all data associated with a scratch allocator.
|
|
*/
|
|
scratch_destroy :: proc(s: ^Scratch) {
|
|
if s == nil {
|
|
return
|
|
}
|
|
for ptr in s.leaked_allocations {
|
|
free_bytes(ptr, s.backup_allocator)
|
|
}
|
|
delete(s.leaked_allocations)
|
|
sanitizer.address_unpoison(s.data)
|
|
delete(s.data, s.backup_allocator)
|
|
s^ = {}
|
|
}
|
|
|
|
/*
|
|
Allocate memory from scratch allocator.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment`. The allocated memory region is zero-initialized. This procedure
|
|
returns a pointer to the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
scratch_alloc :: proc(
|
|
s: ^Scratch,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := scratch_alloc_bytes(s, size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from scratch allocator.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment`. The allocated memory region is zero-initialized. This procedure
|
|
returns a slice of the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
scratch_alloc_bytes :: proc(
|
|
s: ^Scratch,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
bytes, err := scratch_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
if bytes != nil {
|
|
zero_slice(bytes)
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Allocate non-initialized memory from scratch allocator.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment`. The allocated memory region is not explicitly zero-initialized.
|
|
This procedure returns a pointer to the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
scratch_alloc_non_zeroed :: proc(
|
|
s: ^Scratch,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := scratch_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate non-initialized memory from scratch allocator.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment`. The allocated memory region is not explicitly zero-initialized.
|
|
This procedure returns a slice of the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
scratch_alloc_bytes_non_zeroed :: proc(
|
|
s: ^Scratch,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
if s.data == nil {
|
|
DEFAULT_BACKING_SIZE :: 4 * Megabyte
|
|
if !(context.allocator.procedure != scratch_allocator_proc && context.allocator.data != s) {
|
|
panic("cyclic initialization of the scratch allocator with itself", loc)
|
|
}
|
|
scratch_init(s, DEFAULT_BACKING_SIZE)
|
|
}
|
|
size := size
|
|
size = align_forward_int(size, alignment)
|
|
if size <= len(s.data) {
|
|
offset := uintptr(0)
|
|
if s.curr_offset+size <= len(s.data) {
|
|
offset = uintptr(s.curr_offset)
|
|
} else {
|
|
offset = 0
|
|
}
|
|
start := uintptr(raw_data(s.data))
|
|
ptr := align_forward_uintptr(offset+start, uintptr(alignment))
|
|
s.prev_allocation = rawptr(ptr)
|
|
s.curr_offset = int(offset) + size
|
|
result := byte_slice(rawptr(ptr), size)
|
|
sanitizer.address_unpoison(result)
|
|
return result, nil
|
|
} else {
|
|
a := s.backup_allocator
|
|
if a.procedure == nil {
|
|
a = context.allocator
|
|
s.backup_allocator = a
|
|
}
|
|
ptr, err := alloc_bytes_non_zeroed(size, alignment, a, loc)
|
|
if err != nil {
|
|
return ptr, err
|
|
}
|
|
if s.leaked_allocations == nil {
|
|
s.leaked_allocations, err = make([dynamic][]byte, a)
|
|
}
|
|
append(&s.leaked_allocations, ptr)
|
|
if logger := context.logger; logger.lowest_level <= .Warning {
|
|
if logger.procedure != nil {
|
|
logger.procedure(logger.data, .Warning, "mem.Scratch resorted to backup_allocator" , logger.options, loc)
|
|
}
|
|
}
|
|
return ptr, err
|
|
}
|
|
}
|
|
|
|
/*
|
|
Free memory to the scratch allocator.
|
|
|
|
This procedure frees the memory region allocated at pointer `ptr`.
|
|
|
|
If `ptr` is not the latest allocation and is not a leaked allocation, this
|
|
operation is a no-op.
|
|
*/
|
|
scratch_free :: proc(s: ^Scratch, ptr: rawptr, loc := #caller_location) -> Allocator_Error {
|
|
if s.data == nil {
|
|
panic("Free on an uninitialized scratch allocator", loc)
|
|
}
|
|
if ptr == nil {
|
|
return nil
|
|
}
|
|
start := uintptr(raw_data(s.data))
|
|
end := start + uintptr(len(s.data))
|
|
old_ptr := uintptr(ptr)
|
|
if s.prev_allocation == ptr {
|
|
s.curr_offset = int(uintptr(s.prev_allocation) - start)
|
|
sanitizer.address_poison(s.data[s.curr_offset:])
|
|
s.prev_allocation = nil
|
|
return nil
|
|
}
|
|
if start <= old_ptr && old_ptr < end {
|
|
// NOTE(bill): Cannot free this pointer but it is valid
|
|
return nil
|
|
}
|
|
if len(s.leaked_allocations) != 0 {
|
|
for data, i in s.leaked_allocations {
|
|
ptr := raw_data(data)
|
|
if ptr == ptr {
|
|
free_bytes(data, s.backup_allocator, loc)
|
|
ordered_remove(&s.leaked_allocations, i, loc)
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
return .Invalid_Pointer
|
|
}
|
|
|
|
/*
|
|
Free all memory to the scratch allocator.
|
|
*/
|
|
scratch_free_all :: proc(s: ^Scratch, loc := #caller_location) {
|
|
s.curr_offset = 0
|
|
s.prev_allocation = nil
|
|
for ptr in s.leaked_allocations {
|
|
free_bytes(ptr, s.backup_allocator, loc)
|
|
}
|
|
clear(&s.leaked_allocations)
|
|
sanitizer.address_poison(s.data)
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, defined by its location, `old_memory`,
|
|
and its size, `old_size` to have a size `size` and alignment `alignment`. The
|
|
newly allocated memory, if any is zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `scratch_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `scratch_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the pointer to the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
scratch_resize :: proc(
|
|
s: ^Scratch,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := scratch_resize_bytes(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, specified by `old_data`, to have a size
|
|
`size` and alignment `alignment`. The newly allocated memory, if any is
|
|
zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `scratch_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `scratch_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the slice of the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
scratch_resize_bytes :: proc(
|
|
s: ^Scratch,
|
|
old_data: []byte,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location
|
|
) -> ([]byte, Allocator_Error) {
|
|
bytes, err := scratch_resize_bytes_non_zeroed(s, old_data, size, alignment, loc)
|
|
if bytes != nil && size > len(old_data) {
|
|
zero_slice(bytes[size:])
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation without zero-initialization.
|
|
|
|
This procedure resizes a memory region, defined by its location, `old_memory`,
|
|
and its size, `old_size` to have a size `size` and alignment `alignment`. The
|
|
newly allocated memory, if any is not explicitly zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `scratch_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `scratch_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the pointer to the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
scratch_resize_non_zeroed :: proc(
|
|
s: ^Scratch,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := scratch_resize_bytes_non_zeroed(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, specified by `old_data`, to have a size
|
|
`size` and alignment `alignment`. The newly allocated memory, if any is not
|
|
explicitly zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `scratch_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `scratch_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the slice of the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
scratch_resize_bytes_non_zeroed :: proc(
|
|
s: ^Scratch,
|
|
old_data: []byte,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location
|
|
) -> ([]byte, Allocator_Error) {
|
|
old_memory := raw_data(old_data)
|
|
old_size := len(old_data)
|
|
if s.data == nil {
|
|
DEFAULT_BACKING_SIZE :: 4 * Megabyte
|
|
if !(context.allocator.procedure != scratch_allocator_proc && context.allocator.data != s) {
|
|
panic("cyclic initialization of the scratch allocator with itself", loc)
|
|
}
|
|
scratch_init(s, DEFAULT_BACKING_SIZE)
|
|
}
|
|
begin := uintptr(raw_data(s.data))
|
|
end := begin + uintptr(len(s.data))
|
|
old_ptr := uintptr(old_memory)
|
|
if begin <= old_ptr && old_ptr < end && old_ptr+uintptr(size) < end {
|
|
s.curr_offset = int(old_ptr-begin)+size
|
|
result := byte_slice(old_memory, size)
|
|
sanitizer.address_unpoison(result)
|
|
return result, nil
|
|
}
|
|
data, err := scratch_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
if err != nil {
|
|
return data, err
|
|
}
|
|
runtime.copy(data, byte_slice(old_memory, old_size))
|
|
err = scratch_free(s, old_memory, loc)
|
|
return data, err
|
|
}
|
|
|
|
scratch_allocator_proc :: proc(
|
|
allocator_data: rawptr,
|
|
mode: Allocator_Mode,
|
|
size, alignment: int,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
s := (^Scratch)(allocator_data)
|
|
size := size
|
|
switch mode {
|
|
case .Alloc:
|
|
return scratch_alloc_bytes(s, size, alignment, loc)
|
|
case .Alloc_Non_Zeroed:
|
|
return scratch_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
case .Free:
|
|
return nil, scratch_free(s, old_memory, loc)
|
|
case .Free_All:
|
|
scratch_free_all(s, loc)
|
|
case .Resize:
|
|
return scratch_resize_bytes(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
case .Resize_Non_Zeroed:
|
|
return scratch_resize_bytes_non_zeroed(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
case .Query_Features:
|
|
set := (^Allocator_Mode_Set)(old_memory)
|
|
if set != nil {
|
|
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features}
|
|
}
|
|
return nil, nil
|
|
case .Query_Info:
|
|
return nil, .Mode_Not_Implemented
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Stack allocator data.
|
|
*/
|
|
Stack :: struct {
|
|
data: []byte,
|
|
prev_offset: int,
|
|
curr_offset: int,
|
|
peak_used: int,
|
|
}
|
|
|
|
/*
|
|
Header of a stack allocation.
|
|
*/
|
|
Stack_Allocation_Header :: struct {
|
|
prev_offset: int,
|
|
padding: int,
|
|
}
|
|
|
|
/*
|
|
Stack allocator.
|
|
|
|
The stack allocator is an allocator that allocates data in the backing buffer
|
|
linearly, from start to end. Each subsequent allocation will get the next
|
|
adjacent memory region.
|
|
|
|
Unlike arena allocator, the stack allocator saves allocation metadata and has
|
|
a strict freeing order. Only the last allocated element can be freed. After the
|
|
last allocated element is freed, the next previous allocated element becomes
|
|
available for freeing.
|
|
|
|
The metadata is stored in the allocation headers, that are located before the
|
|
start of each allocated memory region. Each header points to the start of the
|
|
previous allocation header.
|
|
*/
|
|
@(require_results)
|
|
stack_allocator :: proc(stack: ^Stack) -> Allocator {
|
|
return Allocator{
|
|
procedure = stack_allocator_proc,
|
|
data = stack,
|
|
}
|
|
}
|
|
|
|
/*
|
|
Initialize the stack allocator.
|
|
|
|
This procedure initializes the stack allocator with a backing buffer specified
|
|
by `data` parameter.
|
|
*/
|
|
stack_init :: proc(s: ^Stack, data: []byte) {
|
|
s.data = data
|
|
s.prev_offset = 0
|
|
s.curr_offset = 0
|
|
s.peak_used = 0
|
|
sanitizer.address_poison(data)
|
|
}
|
|
|
|
/*
|
|
Allocate memory from stack.
|
|
|
|
This procedure allocates `size` bytes of memory, aligned to the boundary
|
|
specified by `alignment`. The allocated memory is zero-initialized. This
|
|
procedure returns the pointer to the allocated memory.
|
|
*/
|
|
@(require_results)
|
|
stack_alloc :: proc(
|
|
s: ^Stack,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := stack_alloc_bytes(s, size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from stack.
|
|
|
|
This procedure allocates `size` bytes of memory, aligned to the boundary
|
|
specified by `alignment`. The allocated memory is zero-initialized. This
|
|
procedure returns the slice of the allocated memory.
|
|
*/
|
|
@(require_results)
|
|
stack_alloc_bytes :: proc(
|
|
s: ^Stack,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location
|
|
) -> ([]byte, Allocator_Error) {
|
|
bytes, err := stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
if bytes != nil {
|
|
zero_slice(bytes)
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from stack.
|
|
|
|
This procedure allocates `size` bytes of memory, aligned to the boundary
|
|
specified by `alignment`. The allocated memory is not explicitly
|
|
zero-initialized. This procedure returns the pointer to the allocated memory.
|
|
*/
|
|
@(require_results)
|
|
stack_alloc_non_zeroed :: proc(
|
|
s: ^Stack,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from stack.
|
|
|
|
This procedure allocates `size` bytes of memory, aligned to the boundary
|
|
specified by `alignment`. The allocated memory is not explicitly
|
|
zero-initialized. This procedure returns the slice of the allocated memory.
|
|
*/
|
|
@(require_results)
|
|
stack_alloc_bytes_non_zeroed :: proc(
|
|
s: ^Stack,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location
|
|
) -> ([]byte, Allocator_Error) {
|
|
if s.data == nil {
|
|
panic("Stack allocation on an uninitialized stack allocator", loc)
|
|
}
|
|
curr_addr := uintptr(raw_data(s.data)) + uintptr(s.curr_offset)
|
|
padding := calc_padding_with_header(
|
|
curr_addr,
|
|
uintptr(alignment),
|
|
size_of(Stack_Allocation_Header),
|
|
)
|
|
if s.curr_offset + padding + size > len(s.data) {
|
|
return nil, .Out_Of_Memory
|
|
}
|
|
old_offset := s.prev_offset
|
|
s.prev_offset = s.curr_offset
|
|
s.curr_offset += padding
|
|
next_addr := curr_addr + uintptr(padding)
|
|
header := (^Stack_Allocation_Header)(next_addr - size_of(Stack_Allocation_Header))
|
|
sanitizer.address_unpoison(header)
|
|
header.padding = padding
|
|
header.prev_offset = old_offset
|
|
s.curr_offset += size
|
|
s.peak_used = max(s.peak_used, s.curr_offset)
|
|
result := byte_slice(rawptr(next_addr), size)
|
|
sanitizer.address_unpoison(result)
|
|
return result, nil
|
|
}
|
|
|
|
/*
|
|
Free memory to the stack.
|
|
|
|
This procedure frees the memory region starting at `old_memory` to the stack.
|
|
If the freeing does is an out of order freeing, the `.Invalid_Pointer` error
|
|
is returned.
|
|
*/
|
|
stack_free :: proc(
|
|
s: ^Stack,
|
|
old_memory: rawptr,
|
|
loc := #caller_location,
|
|
) -> (Allocator_Error) {
|
|
if s.data == nil {
|
|
panic("Stack free on an uninitialized stack allocator", loc)
|
|
}
|
|
if old_memory == nil {
|
|
return nil
|
|
}
|
|
start := uintptr(raw_data(s.data))
|
|
end := start + uintptr(len(s.data))
|
|
curr_addr := uintptr(old_memory)
|
|
if !(start <= curr_addr && curr_addr < end) {
|
|
panic("Out of bounds memory address passed to stack allocator (free)", loc)
|
|
}
|
|
if curr_addr >= start+uintptr(s.curr_offset) {
|
|
// NOTE(bill): Allow double frees
|
|
return nil
|
|
}
|
|
header := (^Stack_Allocation_Header)(curr_addr - size_of(Stack_Allocation_Header))
|
|
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(raw_data(s.data)))
|
|
if old_offset != s.prev_offset {
|
|
// panic("Out of order stack allocator free");
|
|
return .Invalid_Pointer
|
|
}
|
|
|
|
s.prev_offset = header.prev_offset
|
|
sanitizer.address_poison(s.data[old_offset:s.curr_offset])
|
|
s.curr_offset = old_offset
|
|
|
|
return nil
|
|
}
|
|
|
|
/*
|
|
Free all allocations to the stack.
|
|
*/
|
|
stack_free_all :: proc(s: ^Stack, loc := #caller_location) {
|
|
s.prev_offset = 0
|
|
s.curr_offset = 0
|
|
sanitizer.address_poison(s.data)
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, defined by its location, `old_memory`,
|
|
and its size, `old_size` to have a size `size` and alignment `alignment`. The
|
|
newly allocated memory, if any is zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `stack_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `stack_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the pointer to the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
stack_resize :: proc(
|
|
s: ^Stack,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := stack_resize_bytes(s, byte_slice(old_memory, old_size), size, alignment)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, specified by the `old_data` parameter
|
|
to have a size `size` and alignment `alignment`. The newly allocated memory,
|
|
if any is zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `stack_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `stack_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the slice of the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
stack_resize_bytes :: proc(
|
|
s: ^Stack,
|
|
old_data: []byte,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
bytes, err := stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
if bytes != nil {
|
|
if old_data == nil {
|
|
zero_slice(bytes)
|
|
} else if size > len(old_data) {
|
|
zero_slice(bytes[len(old_data):])
|
|
}
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation without zero-initialization.
|
|
|
|
This procedure resizes a memory region, defined by its location, `old_memory`,
|
|
and its size, `old_size` to have a size `size` and alignment `alignment`. The
|
|
newly allocated memory, if any is not explicitly zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `stack_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `stack_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the pointer to the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
stack_resize_non_zeroed :: proc(
|
|
s: ^Stack,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := stack_resize_bytes_non_zeroed(s, byte_slice(old_memory, old_size), size, alignment)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation without zero-initialization.
|
|
|
|
This procedure resizes a memory region, specified by the `old_data` parameter
|
|
to have a size `size` and alignment `alignment`. The newly allocated memory,
|
|
if any is not explicitly zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `stack_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `stack_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the slice of the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
stack_resize_bytes_non_zeroed :: proc(
|
|
s: ^Stack,
|
|
old_data: []byte,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
old_memory := raw_data(old_data)
|
|
old_size := len(old_data)
|
|
if s.data == nil {
|
|
panic("Stack free all on an uninitialized stack allocator", loc)
|
|
}
|
|
if old_memory == nil {
|
|
return stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
}
|
|
if size == 0 {
|
|
return nil, nil
|
|
}
|
|
start := uintptr(raw_data(s.data))
|
|
end := start + uintptr(len(s.data))
|
|
curr_addr := uintptr(old_memory)
|
|
if !(start <= curr_addr && curr_addr < end) {
|
|
panic("Out of bounds memory address passed to stack allocator (resize)")
|
|
}
|
|
if curr_addr >= start+uintptr(s.curr_offset) {
|
|
// NOTE(bill): Allow double frees
|
|
return nil, nil
|
|
}
|
|
if old_size == size {
|
|
return byte_slice(old_memory, size), nil
|
|
}
|
|
header := (^Stack_Allocation_Header)(curr_addr - size_of(Stack_Allocation_Header))
|
|
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(raw_data(s.data)))
|
|
if old_offset != header.prev_offset {
|
|
data, err := stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
if err == nil {
|
|
runtime.copy(data, byte_slice(old_memory, old_size))
|
|
}
|
|
return data, err
|
|
}
|
|
old_memory_size := uintptr(s.curr_offset) - (curr_addr - start)
|
|
assert(old_memory_size == uintptr(old_size))
|
|
diff := size - old_size
|
|
s.curr_offset += diff // works for smaller sizes too
|
|
if diff > 0 {
|
|
zero(rawptr(curr_addr + uintptr(diff)), diff)
|
|
}
|
|
result := byte_slice(old_memory, size)
|
|
sanitizer.address_unpoison(result)
|
|
return result, nil
|
|
}
|
|
|
|
stack_allocator_proc :: proc(
|
|
allocator_data: rawptr,
|
|
mode: Allocator_Mode,
|
|
size: int,
|
|
alignment: int,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
s := cast(^Stack)allocator_data
|
|
if s.data == nil {
|
|
return nil, .Invalid_Argument
|
|
}
|
|
switch mode {
|
|
case .Alloc:
|
|
return stack_alloc_bytes(s, size, alignment, loc)
|
|
case .Alloc_Non_Zeroed:
|
|
return stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
case .Free:
|
|
return nil, stack_free(s, old_memory, loc)
|
|
case .Free_All:
|
|
stack_free_all(s, loc)
|
|
case .Resize:
|
|
return stack_resize_bytes(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
case .Resize_Non_Zeroed:
|
|
return stack_resize_bytes_non_zeroed(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
case .Query_Features:
|
|
set := (^Allocator_Mode_Set)(old_memory)
|
|
if set != nil {
|
|
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features}
|
|
}
|
|
return nil, nil
|
|
case .Query_Info:
|
|
return nil, .Mode_Not_Implemented
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
|
|
/*
|
|
Allocation header of the small stack allocator.
|
|
*/
|
|
Small_Stack_Allocation_Header :: struct {
|
|
padding: u8,
|
|
}
|
|
|
|
/*
|
|
Small stack allocator data.
|
|
*/
|
|
Small_Stack :: struct {
|
|
data: []byte,
|
|
offset: int,
|
|
peak_used: int,
|
|
}
|
|
|
|
/*
|
|
Initialize small stack.
|
|
|
|
This procedure initializes the small stack allocator with `data` as its backing
|
|
buffer.
|
|
*/
|
|
small_stack_init :: proc(s: ^Small_Stack, data: []byte) {
|
|
s.data = data
|
|
s.offset = 0
|
|
s.peak_used = 0
|
|
sanitizer.address_poison(data)
|
|
}
|
|
|
|
/*
|
|
Small stack allocator.
|
|
|
|
The small stack allocator is just like a stack allocator, with the only
|
|
difference being an extremely small header size. Unlike the stack allocator,
|
|
small stack allows out-of order freeing of memory.
|
|
|
|
The memory is allocated in the backing buffer linearly, from start to end.
|
|
Each subsequent allocation will get the next adjacent memory region.
|
|
|
|
The metadata is stored in the allocation headers, that are located before the
|
|
start of each allocated memory region. Each header contains the amount of
|
|
padding bytes between that header and end of the previous allocation.
|
|
*/
|
|
@(require_results)
|
|
small_stack_allocator :: proc(stack: ^Small_Stack) -> Allocator {
|
|
return Allocator{
|
|
procedure = small_stack_allocator_proc,
|
|
data = stack,
|
|
}
|
|
}
|
|
|
|
/*
|
|
Allocate memory from small stack.
|
|
|
|
This procedure allocates `size` bytes of memory aligned to a boundary specified
|
|
by `alignment`. The allocated memory is zero-initialized. This procedure
|
|
returns a pointer to the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
small_stack_alloc :: proc(
|
|
s: ^Small_Stack,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := small_stack_alloc_bytes(s, size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from small stack.
|
|
|
|
This procedure allocates `size` bytes of memory aligned to a boundary specified
|
|
by `alignment`. The allocated memory is zero-initialized. This procedure
|
|
returns a slice of the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
small_stack_alloc_bytes :: proc(
|
|
s: ^Small_Stack,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
bytes, err := small_stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
if bytes != nil {
|
|
zero_slice(bytes)
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from small stack.
|
|
|
|
This procedure allocates `size` bytes of memory aligned to a boundary specified
|
|
by `alignment`. The allocated memory is not explicitly zero-initialized. This
|
|
procedure returns a pointer to the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
small_stack_alloc_non_zeroed :: proc(
|
|
s: ^Small_Stack,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := small_stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from small stack.
|
|
|
|
This procedure allocates `size` bytes of memory aligned to a boundary specified
|
|
by `alignment`. The allocated memory is not explicitly zero-initialized. This
|
|
procedure returns a slice of the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
small_stack_alloc_bytes_non_zeroed :: proc(
|
|
s: ^Small_Stack,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
if s.data == nil {
|
|
panic("Small stack is not initialized", loc)
|
|
}
|
|
alignment := alignment
|
|
alignment = clamp(alignment, 1, 8*size_of(Stack_Allocation_Header{}.padding)/2)
|
|
curr_addr := uintptr(raw_data(s.data)) + uintptr(s.offset)
|
|
padding := calc_padding_with_header(curr_addr, uintptr(alignment), size_of(Small_Stack_Allocation_Header))
|
|
if s.offset + padding + size > len(s.data) {
|
|
return nil, .Out_Of_Memory
|
|
}
|
|
s.offset += padding
|
|
next_addr := curr_addr + uintptr(padding)
|
|
header := (^Small_Stack_Allocation_Header)(next_addr - size_of(Small_Stack_Allocation_Header))
|
|
sanitizer.address_unpoison(header)
|
|
header.padding = auto_cast padding
|
|
s.offset += size
|
|
s.peak_used = max(s.peak_used, s.offset)
|
|
result := byte_slice(rawptr(next_addr), size)
|
|
sanitizer.address_unpoison(result)
|
|
return result, nil
|
|
}
|
|
|
|
/*
|
|
Allocate memory from small stack.
|
|
|
|
This procedure allocates `size` bytes of memory aligned to a boundary specified
|
|
by `alignment`. The allocated memory is not explicitly zero-initialized. This
|
|
procedure returns a slice of the allocated memory region.
|
|
*/
|
|
small_stack_free :: proc(
|
|
s: ^Small_Stack,
|
|
old_memory: rawptr,
|
|
loc := #caller_location,
|
|
) -> Allocator_Error {
|
|
if s.data == nil {
|
|
panic("Small stack is not initialized", loc)
|
|
}
|
|
if old_memory == nil {
|
|
return nil
|
|
}
|
|
start := uintptr(raw_data(s.data))
|
|
end := start + uintptr(len(s.data))
|
|
curr_addr := uintptr(old_memory)
|
|
if !(start <= curr_addr && curr_addr < end) {
|
|
// panic("Out of bounds memory address passed to stack allocator (free)");
|
|
return .Invalid_Pointer
|
|
}
|
|
if curr_addr >= start+uintptr(s.offset) {
|
|
// NOTE(bill): Allow double frees
|
|
return nil
|
|
}
|
|
header := (^Small_Stack_Allocation_Header)(curr_addr - size_of(Small_Stack_Allocation_Header))
|
|
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(raw_data(s.data)))
|
|
sanitizer.address_poison(s.data[old_offset:s.offset])
|
|
s.offset = old_offset
|
|
return nil
|
|
}
|
|
|
|
/*
|
|
Free all memory to small stack.
|
|
*/
|
|
small_stack_free_all :: proc(s: ^Small_Stack) {
|
|
s.offset = 0
|
|
sanitizer.address_poison(s.data)
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, defined by its location, `old_memory`,
|
|
and its size, `old_size` to have a size `size` and alignment `alignment`. The
|
|
newly allocated memory, if any is zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `small_stack_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `small_stack_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the pointer to the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
small_stack_resize :: proc(
|
|
s: ^Small_Stack,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := small_stack_resize_bytes(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, specified by the `old_data` parameter
|
|
to have a size `size` and alignment `alignment`. The newly allocated memory,
|
|
if any is zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `small_stack_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `small_stack_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the slice of the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
small_stack_resize_bytes :: proc(
|
|
s: ^Small_Stack,
|
|
old_data: []byte,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
bytes, err := small_stack_resize_bytes_non_zeroed(s, old_data, size, alignment, loc)
|
|
if bytes != nil {
|
|
if old_data == nil {
|
|
zero_slice(bytes)
|
|
} else if size > len(old_data) {
|
|
zero_slice(bytes[len(old_data):])
|
|
}
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation without zero-initialization.
|
|
|
|
This procedure resizes a memory region, defined by its location, `old_memory`,
|
|
and its size, `old_size` to have a size `size` and alignment `alignment`. The
|
|
newly allocated memory, if any is not explicitly zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `small_stack_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `small_stack_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the pointer to the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
small_stack_resize_non_zeroed :: proc(
|
|
s: ^Small_Stack,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := small_stack_resize_bytes_non_zeroed(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation without zero-initialization.
|
|
|
|
This procedure resizes a memory region, specified by the `old_data` parameter
|
|
to have a size `size` and alignment `alignment`. The newly allocated memory,
|
|
if any is not explicitly zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `small_stack_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `small_stack_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the slice of the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
small_stack_resize_bytes_non_zeroed :: proc(
|
|
s: ^Small_Stack,
|
|
old_data: []byte,
|
|
size: int,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
if s.data == nil {
|
|
panic("Small stack is not initialized", loc)
|
|
}
|
|
old_memory := raw_data(old_data)
|
|
old_size := len(old_data)
|
|
alignment := alignment
|
|
alignment = clamp(alignment, 1, 8*size_of(Stack_Allocation_Header{}.padding)/2)
|
|
if old_memory == nil {
|
|
return small_stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
}
|
|
if size == 0 {
|
|
return nil, nil
|
|
}
|
|
start := uintptr(raw_data(s.data))
|
|
end := start + uintptr(len(s.data))
|
|
curr_addr := uintptr(old_memory)
|
|
if !(start <= curr_addr && curr_addr < end) {
|
|
// panic("Out of bounds memory address passed to stack allocator (resize)");
|
|
return nil, .Invalid_Pointer
|
|
}
|
|
if curr_addr >= start+uintptr(s.offset) {
|
|
// NOTE(bill): Treat as a double free
|
|
return nil, nil
|
|
}
|
|
if old_size == size {
|
|
result := byte_slice(old_memory, size)
|
|
sanitizer.address_unpoison(result)
|
|
return result, nil
|
|
}
|
|
data, err := small_stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
if err == nil {
|
|
runtime.copy(data, byte_slice(old_memory, old_size))
|
|
}
|
|
return data, err
|
|
|
|
}
|
|
|
|
small_stack_allocator_proc :: proc(
|
|
allocator_data: rawptr,
|
|
mode: Allocator_Mode,
|
|
size, alignment: int,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
s := cast(^Small_Stack)allocator_data
|
|
if s.data == nil {
|
|
return nil, .Invalid_Argument
|
|
}
|
|
switch mode {
|
|
case .Alloc:
|
|
return small_stack_alloc_bytes(s, size, alignment, loc)
|
|
case .Alloc_Non_Zeroed:
|
|
return small_stack_alloc_bytes_non_zeroed(s, size, alignment, loc)
|
|
case .Free:
|
|
return nil, small_stack_free(s, old_memory, loc)
|
|
case .Free_All:
|
|
small_stack_free_all(s)
|
|
case .Resize:
|
|
return small_stack_resize_bytes(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
case .Resize_Non_Zeroed:
|
|
return small_stack_resize_bytes_non_zeroed(s, byte_slice(old_memory, old_size), size, alignment, loc)
|
|
case .Query_Features:
|
|
set := (^Allocator_Mode_Set)(old_memory)
|
|
if set != nil {
|
|
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features}
|
|
}
|
|
return nil, nil
|
|
case .Query_Info:
|
|
return nil, .Mode_Not_Implemented
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
|
|
/* Preserved for compatibility */
|
|
Dynamic_Pool :: Dynamic_Arena
|
|
DYNAMIC_POOL_BLOCK_SIZE_DEFAULT :: DYNAMIC_ARENA_BLOCK_SIZE_DEFAULT
|
|
DYNAMIC_POOL_OUT_OF_BAND_SIZE_DEFAULT :: DYNAMIC_ARENA_OUT_OF_BAND_SIZE_DEFAULT
|
|
dynamic_pool_allocator_proc :: dynamic_arena_allocator_proc
|
|
dynamic_pool_free_all :: dynamic_arena_free_all
|
|
dynamic_pool_reset :: dynamic_arena_reset
|
|
dynamic_pool_alloc_bytes :: dynamic_arena_alloc_bytes
|
|
dynamic_pool_alloc :: dynamic_arena_alloc
|
|
dynamic_pool_init :: dynamic_arena_init
|
|
dynamic_pool_allocator :: dynamic_arena_allocator
|
|
dynamic_pool_destroy :: dynamic_arena_destroy
|
|
|
|
/*
|
|
Default block size for dynamic arena.
|
|
*/
|
|
DYNAMIC_ARENA_BLOCK_SIZE_DEFAULT :: 65536
|
|
|
|
/*
|
|
Default out-band size of the dynamic arena.
|
|
*/
|
|
DYNAMIC_ARENA_OUT_OF_BAND_SIZE_DEFAULT :: 6554
|
|
|
|
/*
|
|
Dynamic arena allocator data.
|
|
*/
|
|
Dynamic_Arena :: struct {
|
|
block_size: int,
|
|
out_band_size: int,
|
|
alignment: int,
|
|
unused_blocks: [dynamic]rawptr,
|
|
used_blocks: [dynamic]rawptr,
|
|
out_band_allocations: [dynamic]rawptr,
|
|
current_block: rawptr,
|
|
current_pos: rawptr,
|
|
bytes_left: int,
|
|
block_allocator: Allocator,
|
|
}
|
|
|
|
/*
|
|
Initialize a dynamic arena.
|
|
|
|
This procedure initializes a dynamic arena. The specified `block_allocator`
|
|
will be used to allocate arena blocks, and `array_allocator` to allocate
|
|
arrays of blocks and out-band blocks. The blocks have the default size of
|
|
`block_size` and out-band threshold will be `out_band_size`. All allocations
|
|
will be aligned to a boundary specified by `alignment`.
|
|
*/
|
|
dynamic_arena_init :: proc(
|
|
pool: ^Dynamic_Arena,
|
|
block_allocator := context.allocator,
|
|
array_allocator := context.allocator,
|
|
block_size := DYNAMIC_ARENA_BLOCK_SIZE_DEFAULT,
|
|
out_band_size := DYNAMIC_ARENA_OUT_OF_BAND_SIZE_DEFAULT,
|
|
alignment := DEFAULT_ALIGNMENT,
|
|
) {
|
|
pool.block_size = block_size
|
|
pool.out_band_size = out_band_size
|
|
pool.alignment = alignment
|
|
pool.block_allocator = block_allocator
|
|
pool.out_band_allocations.allocator = array_allocator
|
|
pool.unused_blocks.allocator = array_allocator
|
|
pool.used_blocks.allocator = array_allocator
|
|
}
|
|
|
|
/*
|
|
Dynamic arena allocator.
|
|
|
|
The dynamic arena allocator uses blocks of a specific size, allocated on-demand
|
|
using the block allocator. This allocator acts similarly to arena. All
|
|
allocations in a block happen contiguously, from start to end. If an allocation
|
|
does not fit into the remaining space of the block, and its size is smaller
|
|
than the specified out-band size, a new block is allocated using the
|
|
`block_allocator` and the allocation is performed from a newly-allocated block.
|
|
|
|
If an allocation has bigger size than the specified out-band size, a new block
|
|
is allocated such that the allocation fits into this new block. This is referred
|
|
to as an *out-band allocation*. The out-band blocks are kept separately from
|
|
normal blocks.
|
|
|
|
Just like arena, the dynamic arena does not support freeing of individual
|
|
objects.
|
|
*/
|
|
@(require_results)
|
|
dynamic_arena_allocator :: proc(a: ^Dynamic_Arena) -> Allocator {
|
|
return Allocator{
|
|
procedure = dynamic_arena_allocator_proc,
|
|
data = a,
|
|
}
|
|
}
|
|
|
|
/*
|
|
Destroy a dynamic arena.
|
|
|
|
This procedure frees all allocations, made on a dynamic arena, including the
|
|
unused blocks, as well as the arrays for storing blocks.
|
|
*/
|
|
dynamic_arena_destroy :: proc(a: ^Dynamic_Arena) {
|
|
dynamic_arena_free_all(a)
|
|
delete(a.unused_blocks)
|
|
delete(a.used_blocks)
|
|
delete(a.out_band_allocations)
|
|
zero(a, size_of(a^))
|
|
}
|
|
|
|
@(private="file")
|
|
_dynamic_arena_cycle_new_block :: proc(a: ^Dynamic_Arena, loc := #caller_location) -> (err: Allocator_Error) {
|
|
if a.block_allocator.procedure == nil {
|
|
panic("You must call arena_init on a Pool before using it", loc)
|
|
}
|
|
if a.current_block != nil {
|
|
append(&a.used_blocks, a.current_block, loc=loc)
|
|
}
|
|
new_block: rawptr
|
|
if len(a.unused_blocks) > 0 {
|
|
new_block = pop(&a.unused_blocks)
|
|
} else {
|
|
data: []byte
|
|
data, err = a.block_allocator.procedure(
|
|
a.block_allocator.data,
|
|
Allocator_Mode.Alloc,
|
|
a.block_size,
|
|
a.alignment,
|
|
nil,
|
|
0,
|
|
)
|
|
new_block = raw_data(data)
|
|
}
|
|
a.bytes_left = a.block_size
|
|
a.current_pos = new_block
|
|
a.current_block = new_block
|
|
return
|
|
}
|
|
|
|
/*
|
|
Allocate memory from a dynamic arena.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment` from a dynamic arena `a`. The allocated memory is
|
|
zero-initialized. This procedure returns a pointer to the newly allocated memory
|
|
region.
|
|
*/
|
|
@(private, require_results)
|
|
dynamic_arena_alloc :: proc(a: ^Dynamic_Arena, size: int, loc := #caller_location) -> (rawptr, Allocator_Error) {
|
|
data, err := dynamic_arena_alloc_bytes(a, size, loc)
|
|
return raw_data(data), err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from a dynamic arena.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment` from a dynamic arena `a`. The allocated memory is
|
|
zero-initialized. This procedure returns a slice of the newly allocated memory
|
|
region.
|
|
*/
|
|
@(require_results)
|
|
dynamic_arena_alloc_bytes :: proc(a: ^Dynamic_Arena, size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
|
|
bytes, err := dynamic_arena_alloc_bytes_non_zeroed(a, size, loc)
|
|
if bytes != nil {
|
|
zero_slice(bytes)
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Allocate non-initialized memory from a dynamic arena.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment` from a dynamic arena `a`. The allocated memory is not explicitly
|
|
zero-initialized. This procedure returns a pointer to the newly allocated
|
|
memory region.
|
|
*/
|
|
@(require_results)
|
|
dynamic_arena_alloc_non_zeroed :: proc(a: ^Dynamic_Arena, size: int, loc := #caller_location) -> (rawptr, Allocator_Error) {
|
|
data, err := dynamic_arena_alloc_bytes_non_zeroed(a, size, loc)
|
|
return raw_data(data), err
|
|
}
|
|
|
|
/*
|
|
Allocate non-initialized memory from a dynamic arena.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment` from a dynamic arena `a`. The allocated memory is not explicitly
|
|
zero-initialized. This procedure returns a slice of the newly allocated
|
|
memory region.
|
|
*/
|
|
@(require_results)
|
|
dynamic_arena_alloc_bytes_non_zeroed :: proc(a: ^Dynamic_Arena, size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
|
|
n := align_formula(size, a.alignment)
|
|
if n > a.block_size {
|
|
return nil, .Invalid_Argument
|
|
}
|
|
if n >= a.out_band_size {
|
|
assert(a.block_allocator.procedure != nil, "Backing block allocator must be initialized", loc=loc)
|
|
memory, err := alloc_bytes_non_zeroed(a.block_size, a.alignment, a.block_allocator, loc)
|
|
if memory != nil {
|
|
append(&a.out_band_allocations, raw_data(memory), loc = loc)
|
|
}
|
|
return memory, err
|
|
}
|
|
if a.bytes_left < n {
|
|
err := _dynamic_arena_cycle_new_block(a, loc)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if a.current_block == nil {
|
|
return nil, .Out_Of_Memory
|
|
}
|
|
}
|
|
memory := a.current_pos
|
|
a.current_pos = ([^]byte)(a.current_pos)[n:]
|
|
a.bytes_left -= n
|
|
return ([^]byte)(memory)[:size], nil
|
|
}
|
|
|
|
/*
|
|
Reset the dynamic arena.
|
|
|
|
This procedure frees all the allocations, owned by the dynamic arena, excluding
|
|
the unused blocks.
|
|
*/
|
|
dynamic_arena_reset :: proc(a: ^Dynamic_Arena, loc := #caller_location) {
|
|
if a.current_block != nil {
|
|
append(&a.unused_blocks, a.current_block, loc=loc)
|
|
a.current_block = nil
|
|
}
|
|
for block in a.used_blocks {
|
|
append(&a.unused_blocks, block, loc=loc)
|
|
}
|
|
clear(&a.used_blocks)
|
|
for allocation in a.out_band_allocations {
|
|
free(allocation, a.block_allocator, loc=loc)
|
|
}
|
|
clear(&a.out_band_allocations)
|
|
a.bytes_left = 0 // Make new allocations call `_dynamic_arena_cycle_new_block` again.
|
|
}
|
|
|
|
/*
|
|
Free all memory from a dynamic arena.
|
|
|
|
This procedure frees all the allocations, owned by the dynamic arena, including
|
|
the unused blocks.
|
|
*/
|
|
dynamic_arena_free_all :: proc(a: ^Dynamic_Arena, loc := #caller_location) {
|
|
dynamic_arena_reset(a)
|
|
for block in a.unused_blocks {
|
|
free(block, a.block_allocator, loc)
|
|
}
|
|
clear(&a.unused_blocks)
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, defined by its location, `old_memory`,
|
|
and its size, `old_size` to have a size `size` and alignment `alignment`. The
|
|
newly allocated memory, if any is zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `dynamic_arena_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `dynamic_arena_free()`, freeing
|
|
the memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the pointer to the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
dynamic_arena_resize :: proc(
|
|
a: ^Dynamic_Arena,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
size: int,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := dynamic_arena_resize_bytes(a, byte_slice(old_memory, old_size), size, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, specified by `old_data`, to have a size
|
|
`size` and alignment `alignment`. The newly allocated memory, if any is
|
|
zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `dynamic_arena_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `dynamic_arena_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the slice of the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
dynamic_arena_resize_bytes :: proc(
|
|
a: ^Dynamic_Arena,
|
|
old_data: []byte,
|
|
size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
bytes, err := dynamic_arena_resize_bytes_non_zeroed(a, old_data, size, loc)
|
|
if bytes != nil {
|
|
if old_data == nil {
|
|
zero_slice(bytes)
|
|
} else if size > len(old_data) {
|
|
zero_slice(bytes[len(old_data):])
|
|
}
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation without zero-initialization.
|
|
|
|
This procedure resizes a memory region, defined by its location, `old_memory`,
|
|
and its size, `old_size` to have a size `size` and alignment `alignment`. The
|
|
newly allocated memory, if any is not explicitly zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `dynamic_arena_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `dynamic_arena_free()`, freeing the
|
|
memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the pointer to the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
dynamic_arena_resize_non_zeroed :: proc(
|
|
a: ^Dynamic_Arena,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
size: int,
|
|
loc := #caller_location,
|
|
) -> (rawptr, Allocator_Error) {
|
|
bytes, err := dynamic_arena_resize_bytes_non_zeroed(a, byte_slice(old_memory, old_size), size, loc)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Resize an allocation.
|
|
|
|
This procedure resizes a memory region, specified by `old_data`, to have a size
|
|
`size` and alignment `alignment`. The newly allocated memory, if any is not
|
|
explicitly zero-initialized.
|
|
|
|
If `old_memory` is `nil`, this procedure acts just like `dynamic_arena_alloc()`,
|
|
allocating a memory region `size` bytes in size, aligned on a boundary specified
|
|
by `alignment`.
|
|
|
|
If `size` is 0, this procedure acts just like `dynamic_arena_free()`, freeing
|
|
the memory region located at an address specified by `old_memory`.
|
|
|
|
This procedure returns the slice of the resized memory region.
|
|
*/
|
|
@(require_results)
|
|
dynamic_arena_resize_bytes_non_zeroed :: proc(
|
|
a: ^Dynamic_Arena,
|
|
old_data: []byte,
|
|
size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
old_memory := raw_data(old_data)
|
|
old_size := len(old_data)
|
|
if old_size >= size {
|
|
return byte_slice(old_memory, size), nil
|
|
}
|
|
data, err := dynamic_arena_alloc_bytes_non_zeroed(a, size, loc)
|
|
if err == nil {
|
|
runtime.copy(data, byte_slice(old_memory, old_size))
|
|
}
|
|
return data, err
|
|
}
|
|
|
|
dynamic_arena_allocator_proc :: proc(
|
|
allocator_data: rawptr,
|
|
mode: Allocator_Mode,
|
|
size: int,
|
|
alignment: int,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
arena := (^Dynamic_Arena)(allocator_data)
|
|
switch mode {
|
|
case .Alloc:
|
|
return dynamic_arena_alloc_bytes(arena, size, loc)
|
|
case .Alloc_Non_Zeroed:
|
|
return dynamic_arena_alloc_bytes_non_zeroed(arena, size, loc)
|
|
case .Free:
|
|
return nil, .Mode_Not_Implemented
|
|
case .Free_All:
|
|
dynamic_arena_free_all(arena, loc)
|
|
case .Resize:
|
|
return dynamic_arena_resize_bytes(arena, byte_slice(old_memory, old_size), size, loc)
|
|
case .Resize_Non_Zeroed:
|
|
return dynamic_arena_resize_bytes_non_zeroed(arena, byte_slice(old_memory, old_size), size, loc)
|
|
case .Query_Features:
|
|
set := (^Allocator_Mode_Set)(old_memory)
|
|
if set != nil {
|
|
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free_All, .Resize, .Resize_Non_Zeroed, .Query_Features, .Query_Info}
|
|
}
|
|
return nil, nil
|
|
case .Query_Info:
|
|
info := (^Allocator_Query_Info)(old_memory)
|
|
if info != nil && info.pointer != nil {
|
|
info.size = arena.block_size
|
|
info.alignment = arena.alignment
|
|
return byte_slice(info, size_of(info^)), nil
|
|
}
|
|
return nil, nil
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
|
|
/*
|
|
Header of the buddy block.
|
|
*/
|
|
Buddy_Block :: struct #align(align_of(uint)) {
|
|
size: uint,
|
|
is_free: bool,
|
|
}
|
|
|
|
/*
|
|
Obtain the next buddy block.
|
|
*/
|
|
@(require_results)
|
|
buddy_block_next :: proc(block: ^Buddy_Block) -> ^Buddy_Block {
|
|
return (^Buddy_Block)(([^]byte)(block)[block.size:])
|
|
}
|
|
|
|
/*
|
|
Split the block into two, by truncating the given block to a given size.
|
|
*/
|
|
@(require_results)
|
|
buddy_block_split :: proc(block: ^Buddy_Block, size: uint) -> ^Buddy_Block {
|
|
block := block
|
|
if block != nil && size != 0 {
|
|
// Recursive Split
|
|
for size < block.size {
|
|
sz := block.size >> 1
|
|
block.size = sz
|
|
block = buddy_block_next(block)
|
|
block.size = sz
|
|
block.is_free = true
|
|
}
|
|
if size <= block.size {
|
|
return block
|
|
}
|
|
}
|
|
// Block cannot fit the requested allocation size
|
|
return nil
|
|
}
|
|
|
|
/*
|
|
Coalesce contiguous blocks in a range of blocks into one.
|
|
*/
|
|
buddy_block_coalescence :: proc(head, tail: ^Buddy_Block) {
|
|
for {
|
|
// Keep looping until there are no more buddies to coalesce
|
|
block := head
|
|
buddy := buddy_block_next(block)
|
|
no_coalescence := true
|
|
for block < tail && buddy < tail { // make sure the buddies are within the range
|
|
if block.is_free && buddy.is_free && block.size == buddy.size {
|
|
// Coalesce buddies into one
|
|
block.size <<= 1
|
|
block = buddy_block_next(block)
|
|
if block < tail {
|
|
buddy = buddy_block_next(block)
|
|
no_coalescence = false
|
|
}
|
|
} else if block.size < buddy.size {
|
|
// The buddy block is split into smaller blocks
|
|
block = buddy
|
|
buddy = buddy_block_next(buddy)
|
|
} else {
|
|
block = buddy_block_next(buddy)
|
|
if block < tail {
|
|
// Leave the buddy block for the next iteration
|
|
buddy = buddy_block_next(block)
|
|
}
|
|
}
|
|
}
|
|
if no_coalescence {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Find the best block for storing a given size in a range of blocks.
|
|
*/
|
|
@(require_results)
|
|
buddy_block_find_best :: proc(head, tail: ^Buddy_Block, size: uint) -> ^Buddy_Block {
|
|
assert(size != 0)
|
|
best_block: ^Buddy_Block
|
|
block := head // left
|
|
buddy := buddy_block_next(block) // right
|
|
// The entire memory section between head and tail is free,
|
|
// just call 'buddy_block_split' to get the allocation
|
|
if buddy == tail && block.is_free {
|
|
return buddy_block_split(block, size)
|
|
}
|
|
// Find the block which is the 'best_block' to requested allocation sized
|
|
for block < tail && buddy < tail { // make sure the buddies are within the range
|
|
// If both buddies are free, coalesce them together
|
|
// NOTE: this is an optimization to reduce fragmentation
|
|
// this could be completely ignored
|
|
if block.is_free && buddy.is_free && block.size == buddy.size {
|
|
block.size <<= 1
|
|
if size <= block.size && (best_block == nil || block.size <= best_block.size) {
|
|
best_block = block
|
|
}
|
|
block = buddy_block_next(buddy)
|
|
if block < tail {
|
|
// Delay the buddy block for the next iteration
|
|
buddy = buddy_block_next(block)
|
|
}
|
|
continue
|
|
}
|
|
if block.is_free && size <= block.size &&
|
|
(best_block == nil || block.size <= best_block.size) {
|
|
best_block = block
|
|
}
|
|
if buddy.is_free && size <= buddy.size &&
|
|
(best_block == nil || buddy.size < best_block.size) {
|
|
// If each buddy are the same size, then it makes more sense
|
|
// to pick the buddy as it "bounces around" less
|
|
best_block = buddy
|
|
}
|
|
if block.size <= buddy.size {
|
|
block = buddy_block_next(buddy)
|
|
if (block < tail) {
|
|
// Delay the buddy block for the next iteration
|
|
buddy = buddy_block_next(block)
|
|
}
|
|
} else {
|
|
// Buddy was split into smaller blocks
|
|
block = buddy
|
|
buddy = buddy_block_next(buddy)
|
|
}
|
|
}
|
|
if best_block != nil {
|
|
// This will handle the case if the 'best_block' is also the perfect fit
|
|
return buddy_block_split(best_block, size)
|
|
}
|
|
// Maybe out of memory
|
|
return nil
|
|
}
|
|
|
|
/*
|
|
The buddy allocator data.
|
|
*/
|
|
Buddy_Allocator :: struct {
|
|
head: ^Buddy_Block,
|
|
tail: ^Buddy_Block,
|
|
alignment: uint,
|
|
}
|
|
|
|
/*
|
|
Buddy allocator.
|
|
|
|
The buddy allocator is a type of allocator that splits the backing buffer into
|
|
multiple regions called buddy blocks. Initially, the allocator only has one
|
|
block with the size of the backing buffer. Upon each allocation, the allocator
|
|
finds the smallest block that can fit the size of requested memory region, and
|
|
splits the block according to the allocation size. If no block can be found,
|
|
the contiguous free blocks are coalesced and the search is performed again.
|
|
*/
|
|
@(require_results)
|
|
buddy_allocator :: proc(b: ^Buddy_Allocator) -> Allocator {
|
|
return Allocator{
|
|
procedure = buddy_allocator_proc,
|
|
data = b,
|
|
}
|
|
}
|
|
|
|
/*
|
|
Initialize the buddy allocator.
|
|
|
|
This procedure initializes the buddy allocator `b` with a backing buffer `data`
|
|
and block alignment specified by `alignment`.
|
|
*/
|
|
buddy_allocator_init :: proc(b: ^Buddy_Allocator, data: []byte, alignment: uint, loc := #caller_location) {
|
|
assert(data != nil)
|
|
assert(is_power_of_two(uintptr(len(data))), "Size of the backing buffer must be power of two", loc)
|
|
assert(is_power_of_two(uintptr(alignment)), "Alignment must be a power of two", loc)
|
|
alignment := alignment
|
|
if alignment < size_of(Buddy_Block) {
|
|
alignment = size_of(Buddy_Block)
|
|
}
|
|
ptr := raw_data(data)
|
|
assert(uintptr(ptr) % uintptr(alignment) == 0, "data is not aligned to minimum alignment", loc)
|
|
b.head = (^Buddy_Block)(ptr)
|
|
b.head.size = len(data)
|
|
b.head.is_free = true
|
|
b.tail = buddy_block_next(b.head)
|
|
b.alignment = alignment
|
|
}
|
|
|
|
/*
|
|
Get required block size to fit in the allocation as well as the alignment padding.
|
|
*/
|
|
@(require_results)
|
|
buddy_block_size_required :: proc(b: ^Buddy_Allocator, size: uint) -> uint {
|
|
size := size
|
|
actual_size := b.alignment
|
|
size += size_of(Buddy_Block)
|
|
size = align_forward_uint(size, b.alignment)
|
|
for size > actual_size {
|
|
actual_size <<= 1
|
|
}
|
|
return actual_size
|
|
}
|
|
|
|
/*
|
|
Allocate memory from a buddy allocator.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment`. The allocated memory region is zero-initialized. This procedure
|
|
returns a pointer to the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
buddy_allocator_alloc :: proc(b: ^Buddy_Allocator, size: uint) -> (rawptr, Allocator_Error) {
|
|
bytes, err := buddy_allocator_alloc_bytes(b, size)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate memory from a buddy allocator.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment`. The allocated memory region is zero-initialized. This procedure
|
|
returns a slice of the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
buddy_allocator_alloc_bytes :: proc(b: ^Buddy_Allocator, size: uint) -> ([]byte, Allocator_Error) {
|
|
bytes, err := buddy_allocator_alloc_bytes_non_zeroed(b, size)
|
|
if bytes != nil {
|
|
zero_slice(bytes)
|
|
}
|
|
return bytes, err
|
|
}
|
|
|
|
/*
|
|
Allocate non-initialized memory from a buddy allocator.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment`. The allocated memory region is not explicitly zero-initialized.
|
|
This procedure returns a pointer to the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
buddy_allocator_alloc_non_zeroed :: proc(b: ^Buddy_Allocator, size: uint) -> (rawptr, Allocator_Error) {
|
|
bytes, err := buddy_allocator_alloc_bytes_non_zeroed(b, size)
|
|
return raw_data(bytes), err
|
|
}
|
|
|
|
/*
|
|
Allocate non-initialized memory from a buddy allocator.
|
|
|
|
This procedure allocates `size` bytes of memory aligned on a boundary specified
|
|
by `alignment`. The allocated memory region is not explicitly zero-initialized.
|
|
This procedure returns a slice of the allocated memory region.
|
|
*/
|
|
@(require_results)
|
|
buddy_allocator_alloc_bytes_non_zeroed :: proc(b: ^Buddy_Allocator, size: uint) -> ([]byte, Allocator_Error) {
|
|
if size != 0 {
|
|
actual_size := buddy_block_size_required(b, size)
|
|
found := buddy_block_find_best(b.head, b.tail, actual_size)
|
|
if found != nil {
|
|
// Try to coalesce all the free buddy blocks and then search again
|
|
buddy_block_coalescence(b.head, b.tail)
|
|
found = buddy_block_find_best(b.head, b.tail, actual_size)
|
|
}
|
|
if found == nil {
|
|
return nil, .Out_Of_Memory
|
|
}
|
|
found.is_free = false
|
|
data := ([^]byte)(found)[b.alignment:][:size]
|
|
return data, nil
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
/*
|
|
Free memory to the buddy allocator.
|
|
|
|
This procedure frees the memory region allocated at pointer `ptr`.
|
|
|
|
If `ptr` is not the latest allocation and is not a leaked allocation, this
|
|
operation is a no-op.
|
|
*/
|
|
buddy_allocator_free :: proc(b: ^Buddy_Allocator, ptr: rawptr) -> Allocator_Error {
|
|
if ptr != nil {
|
|
if !(b.head <= ptr && ptr <= b.tail) {
|
|
return .Invalid_Pointer
|
|
}
|
|
block := (^Buddy_Block)(([^]byte)(ptr)[-b.alignment:])
|
|
block.is_free = true
|
|
buddy_block_coalescence(b.head, b.tail)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
/*
|
|
Free all memory to the buddy allocator.
|
|
*/
|
|
buddy_allocator_free_all :: proc(b: ^Buddy_Allocator) {
|
|
alignment := b.alignment
|
|
head := ([^]byte)(b.head)
|
|
tail := ([^]byte)(b.tail)
|
|
data := head[:ptr_sub(tail, head)]
|
|
buddy_allocator_init(b, data, alignment)
|
|
}
|
|
|
|
buddy_allocator_proc :: proc(
|
|
allocator_data: rawptr,
|
|
mode: Allocator_Mode,
|
|
size, alignment: int,
|
|
old_memory: rawptr,
|
|
old_size: int,
|
|
loc := #caller_location,
|
|
) -> ([]byte, Allocator_Error) {
|
|
b := (^Buddy_Allocator)(allocator_data)
|
|
switch mode {
|
|
case .Alloc:
|
|
return buddy_allocator_alloc_bytes(b, uint(size))
|
|
case .Alloc_Non_Zeroed:
|
|
return buddy_allocator_alloc_bytes_non_zeroed(b, uint(size))
|
|
case .Resize:
|
|
return default_resize_bytes_align(byte_slice(old_memory, old_size), size, alignment, buddy_allocator(b), loc)
|
|
case .Resize_Non_Zeroed:
|
|
return default_resize_bytes_align_non_zeroed(byte_slice(old_memory, old_size), size, alignment, buddy_allocator(b), loc)
|
|
case .Free:
|
|
return nil, buddy_allocator_free(b, old_memory)
|
|
case .Free_All:
|
|
buddy_allocator_free_all(b)
|
|
case .Query_Features:
|
|
set := (^Allocator_Mode_Set)(old_memory)
|
|
if set != nil {
|
|
set^ = {.Query_Features, .Alloc, .Alloc_Non_Zeroed, .Resize, .Resize_Non_Zeroed, .Free, .Free_All, .Query_Info}
|
|
}
|
|
return nil, nil
|
|
case .Query_Info:
|
|
info := (^Allocator_Query_Info)(old_memory)
|
|
if info != nil && info.pointer != nil {
|
|
ptr := info.pointer
|
|
if !(b.head <= ptr && ptr <= b.tail) {
|
|
return nil, .Invalid_Pointer
|
|
}
|
|
block := (^Buddy_Block)(([^]byte)(ptr)[-b.alignment:])
|
|
info.size = int(block.size)
|
|
info.alignment = int(b.alignment)
|
|
return byte_slice(info, size_of(info^)), nil
|
|
}
|
|
return nil, nil
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
// An allocator that keeps track of allocation sizes and passes it along to resizes.
|
|
// This is useful if you are using a library that needs an equivalent of `realloc` but want to use
|
|
// the Odin allocator interface.
|
|
//
|
|
// You want to wrap your allocator into this one if you are trying to use any allocator that relies
|
|
// on the old size to work.
|
|
//
|
|
// The overhead of this allocator is an extra max(alignment, size_of(Header)) bytes allocated for each allocation, these bytes are
|
|
// used to store the size and original pointer.
|
|
Compat_Allocator :: struct {
|
|
parent: Allocator,
|
|
}
|
|
|
|
compat_allocator_init :: proc(rra: ^Compat_Allocator, allocator := context.allocator) {
|
|
rra.parent = allocator
|
|
}
|
|
|
|
compat_allocator :: proc(rra: ^Compat_Allocator) -> Allocator {
|
|
return Allocator{
|
|
data = rra,
|
|
procedure = compat_allocator_proc,
|
|
}
|
|
}
|
|
|
|
compat_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
|
|
size, alignment: int,
|
|
old_memory: rawptr, old_size: int,
|
|
location := #caller_location) -> (data: []byte, err: Allocator_Error) {
|
|
size, old_size := size, old_size
|
|
|
|
Header :: struct {
|
|
size: int,
|
|
ptr: rawptr,
|
|
}
|
|
|
|
rra := (^Compat_Allocator)(allocator_data)
|
|
switch mode {
|
|
case .Alloc, .Alloc_Non_Zeroed:
|
|
a := max(alignment, size_of(Header))
|
|
size += a
|
|
assert(size >= 0, "overflow")
|
|
|
|
allocation := rra.parent.procedure(rra.parent.data, mode, size, alignment, old_memory, old_size, location) or_return
|
|
#no_bounds_check data = allocation[a:]
|
|
|
|
([^]Header)(raw_data(data))[-1] = {
|
|
size = size,
|
|
ptr = raw_data(allocation),
|
|
}
|
|
return
|
|
|
|
case .Free:
|
|
header := ([^]Header)(old_memory)[-1]
|
|
return rra.parent.procedure(rra.parent.data, mode, size, alignment, header.ptr, header.size, location)
|
|
|
|
case .Resize, .Resize_Non_Zeroed:
|
|
header := ([^]Header)(old_memory)[-1]
|
|
|
|
a := max(alignment, size_of(header))
|
|
size += a
|
|
assert(size >= 0, "overflow")
|
|
|
|
allocation := rra.parent.procedure(rra.parent.data, mode, size, alignment, header.ptr, header.size, location) or_return
|
|
#no_bounds_check data = allocation[a:]
|
|
|
|
([^]Header)(raw_data(data))[-1] = {
|
|
size = size,
|
|
ptr = raw_data(allocation),
|
|
}
|
|
return
|
|
|
|
case .Free_All, .Query_Info, .Query_Features:
|
|
return rra.parent.procedure(rra.parent.data, mode, size, alignment, old_memory, old_size, location)
|
|
|
|
case: unreachable()
|
|
}
|
|
}
|