Files
Odin/core/bufio/reader.odin
2021-01-09 23:43:34 +00:00

475 lines
10 KiB
Odin

package bufio
import "core:io"
import "core:mem"
import "core:unicode/utf8"
import "core:bytes"
// Reader is a buffered wrapper for an io.Reader
Reader :: struct {
buf: []byte,
buf_allocator: mem.Allocator,
rd: io.Reader, // reader
r, w: int, // read and write positions for buf
err: io.Error,
last_byte: int, // last byte read, invalid is -1
last_rune_size: int, // size of last rune read, invalid is -1
}
DEFAULT_BUF_SIZE :: 4096;
@(private)
MIN_READ_BUFFER_SIZE :: 16;
@(private)
MAX_CONSECUTIVE_EMPTY_READS :: 128;
reader_init :: proc(b: ^Reader, rd: io.Reader, size: int = DEFAULT_BUF_SIZE, allocator := context.allocator) {
size := size;
size = max(size, MIN_READ_BUFFER_SIZE);
reader_reset(b, rd);
b.buf_allocator = allocator;
b.buf = make([]byte, size, allocator);
}
reader_init_with_buf :: proc(b: ^Reader, rd: io.Reader, buf: []byte) {
reader_reset(b, rd);
b.buf_allocator = {};
b.buf = buf;
}
// reader_destroy destroys the underlying buffer with its associated allocator IFF that allocator has been set
reader_destroy :: proc(b: ^Reader) {
delete(b.buf, b.buf_allocator);
b^ = {};
}
reader_size :: proc(b: ^Reader) -> int {
return len(b.buf);
}
reader_reset :: proc(b: ^Reader, r: io.Reader) {
b.rd = r;
b.r, b.w = 0, 0;
b.err = nil;
b.last_byte = -1;
b.last_rune_size = -1;
}
@(private)
_reader_read_new_chunk :: proc(b: ^Reader) -> io.Error {
if b.r > 0 {
copy(b.buf, b.buf[b.r:b.w]);
b.w -= b.r;
b.r = 0;
}
if b.w >= len(b.buf) {
return .Buffer_Full;
}
// read new data, and try a limited number of times
for i := MAX_CONSECUTIVE_EMPTY_READS; i > 0; i -= 1 {
n, err := io.read(b.rd, b.buf[b.w:]);
if n < 0 {
return .Negative_Read;
}
b.w += n;
if err != nil {
b.err = err;
return nil;
}
if n > 0 {
return nil;
}
}
b.err = .No_Progress;
return nil;
}
@(private)
_reader_consume_err :: proc(b: ^Reader) -> io.Error {
err := b.err;
b.err = nil;
return err;
}
// reader_peek returns the next n bytes without advancing the reader
// The bytes stop being valid on the next read call
// If reader_peek returns fewer than n bytes, it also return an error
// explaining why the read is short
// The error will be .Buffer_Full if n is larger than the internal buffer size
reader_peek :: proc(b: ^Reader, n: int) -> (data: []byte, err: io.Error) {
n := n;
if n < 0 {
return nil, .Negative_Count;
}
b.last_byte = -1;
b.last_rune_size = -1;
for b.w-b.r < n && b.w-b.r < len(b.buf) && b.err == nil {
if fill_err := _reader_read_new_chunk(b); fill_err != nil {
return nil, fill_err;
}
}
if n > len(b.buf) {
return b.buf[b.r : b.w], .Buffer_Full;
}
if available := b.w - b.r; available < n {
n = available;
err = _reader_consume_err(b);
if err == nil {
err = .Buffer_Full;
}
}
return b.buf[b.r : b.r+n], err;
}
// reader_buffered returns the number of bytes that can be read from the current buffer
reader_buffered :: proc(b: ^Reader) -> int {
return b.w - b.r;
}
// reader_discard skips the next n bytes, and returns the number of bytes that were discarded
reader_discard :: proc(b: ^Reader, n: int) -> (discarded: int, err: io.Error) {
if n < 0 {
return 0, .Negative_Count;
}
if n == 0 {
return;
}
remaining := n;
for {
skip := reader_buffered(b);
if skip == 0 {
if fill_err := _reader_read_new_chunk(b); fill_err != nil {
return 0, fill_err;
}
skip = reader_buffered(b);
}
skip = min(skip, remaining);
b.r += skip;
remaining -= skip;
if remaining == 0 {
return n, nil;
}
if b.err != nil {
return n - remaining, _reader_consume_err(b);
}
}
return;
}
// reader_read reads data into p
// The bytes are taken from at most one read on the underlying Reader, which means n may be less than len(p)
reader_read :: proc(b: ^Reader, p: []byte) -> (n: int, err: io.Error) {
n = len(p);
if n == 0 {
if reader_buffered(b) > 0 {
return 0, nil;
}
return 0, _reader_consume_err(b);
}
if b.r == b.w {
if b.err != nil {
return 0, _reader_consume_err(b);
}
if len(p) >= len(b.buf) {
n, b.err = io.read(b.rd, p);
if n < 0 {
return 0, .Negative_Read;
}
if n > 0 {
b.last_byte = int(p[n-1]);
b.last_rune_size = -1;
}
return n, _reader_consume_err(b);
}
b.r, b.w = 0, 0;
n, b.err = io.read(b.rd, b.buf);
if n < 0 {
return 0, .Negative_Read;
}
if n == 0 {
return 0, _reader_consume_err(b);
}
b.w += n;
}
n = copy(p, b.buf[b.r:b.w]);
b.r += n;
b.last_byte = int(b.buf[b.r-1]);
b.last_rune_size = -1;
return n, nil;
}
// reader_read_byte reads and returns a single byte
// If no byte is available, it return an error
reader_read_byte :: proc(b: ^Reader) -> (byte, io.Error) {
b.last_rune_size = -1;
for b.r == b.w {
if b.err != nil {
return 0, _reader_consume_err(b);
}
if err := _reader_read_new_chunk(b); err != nil {
return 0, err;
}
}
c := b.buf[b.r];
b.r += 1;
b.last_byte = int(c);
return c, nil;
}
// reader_unread_byte unreads the last byte. Only the most recently read byte can be unread
reader_unread_byte :: proc(b: ^Reader) -> io.Error {
if b.last_byte < 0 || b.r == 0 && b.w > 0 {
return .Invalid_Unread;
}
if b.r > 0 {
b.r -= 1;
} else {
// b.r == 0 && b.w == 0
b.w = 1;
}
b.buf[b.r] = byte(b.last_byte);
b.last_byte = -1;
b.last_rune_size = -1;
return nil;
}
// reader_read_rune reads a single UTF-8 encoded unicode character
// and returns the rune and its size in bytes
// If the encoded rune is invalid, it consumes one byte and returns utf8.RUNE_ERROR (U+FFFD) with a size of 1
reader_read_rune :: proc(b: ^Reader) -> (r: rune, size: int, err: io.Error) {
for b.r+utf8.UTF_MAX > b.w &&
!utf8.full_rune(b.buf[b.r:b.w]) &&
b.err == nil &&
b.w-b.w < len(b.buf) {
if err = _reader_read_new_chunk(b); err != nil {
return;
}
}
b.last_rune_size = -1;
if b.r == b.w {
err = _reader_consume_err(b);
return;
}
r, size = rune(b.buf[b.r]), 1;
if r >= utf8.RUNE_SELF {
r, size = utf8.decode_rune(b.buf[b.r : b.w]);
}
b.r += size;
b.last_byte = int(b.buf[b.r-1]);
b.last_rune_size = size;
return;
}
// reader_unread_rune unreads the last rune. Only the most recently read rune can be unread
reader_unread_rune :: proc(b: ^Reader) -> io.Error {
if b.last_rune_size < 0 || b.r < b.last_rune_size {
return .Invalid_Unread;
}
b.r -= b.last_rune_size;
b.last_byte = -1;
b.last_rune_size = -1;
return nil;
}
reader_write_to :: proc(b: ^Reader, w: io.Writer) -> (n: i64, err: io.Error) {
write_buf :: proc(b: ^Reader, w: io.Writer) -> (i64, io.Error) {
n, err := io.write(w, b.buf[b.r:b.w]);
if n < 0 {
return 0, .Negative_Write;
}
b.r += n;
return i64(n), err;
}
n, err = write_buf(b, w);
if err != nil {
return;
}
m: i64;
if nr, ok := io.to_writer_to(b.rd); ok {
m, err = io.write_to(nr, w);
n += m;
return n, err;
}
if nw, ok := io.to_reader_from(w); ok {
m, err = io.read_from(nw, b.rd);
n += m;
return n, err;
}
if b.w-b.r < len(b.buf) {
if err = _reader_read_new_chunk(b); err != nil {
return;
}
}
for b.r < b.w {
m, err = write_buf(b, w);
n += m;
if err != nil {
return;
}
if err = _reader_read_new_chunk(b); err != nil {
return;
}
}
if b.err == .EOF {
b.err = nil;
}
err = _reader_consume_err(b);
return;
}
// reader_to_stream converts a Reader into an io.Stream
reader_to_stream :: proc(b: ^Reader) -> (s: io.Stream) {
s.stream_data = b;
s.stream_vtable = _reader_vtable;
return;
}
@(private)
_reader_vtable := &io.Stream_VTable{
impl_destroy = proc(s: io.Stream) -> io.Error {
b := (^Reader)(s.stream_data);
reader_destroy(b);
return nil;
},
impl_read = proc(s: io.Stream, p: []byte) -> (n: int, err: io.Error) {
b := (^Reader)(s.stream_data);
return reader_read(b, p);
},
impl_read_byte = proc(s: io.Stream) -> (c: byte, err: io.Error) {
b := (^Reader)(s.stream_data);
return reader_read_byte(b);
},
impl_unread_byte = proc(s: io.Stream) -> io.Error {
b := (^Reader)(s.stream_data);
return reader_unread_byte(b);
},
impl_read_rune = proc(s: io.Stream) -> (r: rune, size: int, err: io.Error) {
b := (^Reader)(s.stream_data);
return reader_read_rune(b);
},
impl_unread_rune = proc(s: io.Stream) -> io.Error {
b := (^Reader)(s.stream_data);
return reader_unread_rune(b);
},
impl_write_to = proc(s: io.Stream, w: io.Writer) -> (n: i64, err: io.Error) {
b := (^Reader)(s.stream_data);
return reader_write_to(b, w);
},
};
//
// Utility procedures
//
// reader_read_slice reads until the first occurrence of delim from the reader
// It returns a slice pointing at the bytes in the buffer
// The bytes stop being valid at the next read
// If reader_read_slice encounters an error before finding a delimiter
// reader_read_slice fails with error .Buffer_Full if the buffer fills without a delim
// Because the data returned from reader_read_slice will be overwritten on the
// next IO operation, reader_read_bytes or reader_read_string is usually preferred
//
// reader_read_slice returns err != nil if and only if line does not end in delim
//
reader_read_slice :: proc(b: ^Reader, delim: byte) -> (line: []byte, err: io.Error) {
s := 0;
for {
if i := bytes.index_byte(b.buf[b.r+s : b.w], delim); i >= 0 {
i += s;
line = b.buf[b.r:][:i+1];
b.r += i + 1;
break;
}
if b.err != nil {
line = b.buf[b.r : b.w];
b.r = b.w;
err = _reader_consume_err(b);
break;
}
if reader_buffered(b) >= len(b.buf) {
b.r = b.w;
line = b.buf;
err = .Buffer_Full;
break;
}
s = b.w - b.r;
if err = _reader_read_new_chunk(b); err != nil {
break;
}
}
if i := len(line)-1; i >= 0 {
b.last_byte = int(line[i]);
b.last_rune_size = -1;
}
return;
}
// reader_read_bytes reads until the first occurrence of delim from the Reader
// It returns an allocated slice containing the data up to and including the delimiter
reader_read_bytes :: proc(b: ^Reader, delim: byte, allocator := context.allocator) -> (buf: []byte, err: io.Error) {
full: [dynamic]byte;
full.allocator = allocator;
frag: []byte;
for {
e: io.Error;
frag, e = reader_read_slice(b, delim);
if e == nil {
break;
}
if e != .Buffer_Full {
err = e;
break;
}
append(&full, ..frag);
}
append(&full, ..frag);
return full[:], err;
}
// reader_read_string reads until the first occurrence of delim from the Reader
// It returns an allocated string containing the data up to and including the delimiter
reader_read_string :: proc(b: ^Reader, delim: byte, allocator := context.allocator) -> (string, io.Error) {
buf, err := reader_read_bytes(b, delim, allocator);
return string(buf), err;
}