Files
Odin/core/runtime/core_builtin.odin
2022-11-14 11:47:56 +00:00

727 lines
18 KiB
Odin

package runtime
import "core:intrinsics"
@builtin
Maybe :: union($T: typeid) {T}
@builtin
container_of :: #force_inline proc "contextless" (ptr: $P/^$Field_Type, $T: typeid, $field_name: string) -> ^T
where intrinsics.type_has_field(T, field_name),
intrinsics.type_field_type(T, field_name) == Field_Type {
offset :: offset_of_by_string(T, field_name)
return (^T)(uintptr(ptr) - offset) if ptr != nil else nil
}
@thread_local global_default_temp_allocator_data: Default_Temp_Allocator
@builtin
init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) {
default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator)
}
@builtin
copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int {
n := max(0, min(len(dst), len(src)))
if n > 0 {
intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E))
}
return n
}
@builtin
copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int {
n := max(0, min(len(dst), len(src)))
if n > 0 {
intrinsics.mem_copy(raw_data(dst), raw_data(src), n)
}
return n
}
@builtin
copy :: proc{copy_slice, copy_from_string}
@builtin
unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check {
bounds_check_error_loc(loc, index, len(array))
n := len(array)-1
if index != n {
array[index] = array[n]
}
(^Raw_Dynamic_Array)(array).len -= 1
}
@builtin
ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check {
bounds_check_error_loc(loc, index, len(array))
if index+1 < len(array) {
copy(array[index:], array[index+1:])
}
(^Raw_Dynamic_Array)(array).len -= 1
}
@builtin
remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) #no_bounds_check {
slice_expr_error_lo_hi_loc(loc, lo, hi, len(array))
n := max(hi-lo, 0)
if n > 0 {
if hi != len(array) {
copy(array[lo:], array[hi:])
}
(^Raw_Dynamic_Array)(array).len -= n
}
}
@builtin
pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
assert(len(array) > 0, "", loc)
res = array[len(array)-1]
(^Raw_Dynamic_Array)(array).len -= 1
return res
}
@builtin
pop_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
if len(array) == 0 {
return
}
res, ok = array[len(array)-1], true
(^Raw_Dynamic_Array)(array).len -= 1
return
}
@builtin
pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
assert(len(array) > 0, "", loc)
res = array[0]
if len(array) > 1 {
copy(array[0:], array[1:])
}
(^Raw_Dynamic_Array)(array).len -= 1
return res
}
@builtin
pop_front_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
if len(array) == 0 {
return
}
res, ok = array[0], true
if len(array) > 1 {
copy(array[0:], array[1:])
}
(^Raw_Dynamic_Array)(array).len -= 1
return
}
@builtin
clear :: proc{clear_dynamic_array, clear_map}
@builtin
reserve :: proc{reserve_dynamic_array, reserve_map}
@builtin
resize :: proc{resize_dynamic_array}
// Shrinks the capacity of a dynamic array or map down to the current length, or the given capacity.
@builtin
shrink :: proc{shrink_dynamic_array, shrink_map}
@builtin
free :: proc{mem_free}
@builtin
free_all :: proc{mem_free_all}
@builtin
delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
return mem_free_with_size(raw_data(str), len(str), allocator, loc)
}
@builtin
delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
return mem_free((^byte)(str), allocator, loc)
}
@builtin
delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error {
return mem_free_with_size(raw_data(array), cap(array)*size_of(E), array.allocator, loc)
}
@builtin
delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
return mem_free_with_size(raw_data(array), len(array)*size_of(E), allocator, loc)
}
@builtin
delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error {
return map_free_dynamic(transmute(Raw_Map)m, map_info(T), loc)
}
@builtin
delete :: proc{
delete_string,
delete_cstring,
delete_dynamic_array,
delete_slice,
delete_map,
}
// The new built-in procedure allocates memory. The first argument is a type, not a value, and the value
// return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator
@builtin
new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_allocator_error {
return new_aligned(T, align_of(T), allocator, loc)
}
new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) {
data := mem_alloc_bytes(size_of(T), alignment, allocator, loc) or_return
t = (^T)(raw_data(data))
return
}
@builtin
new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error {
t_data := mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return
t = (^T)(raw_data(t_data))
if t != nil {
t^ = data
}
return
}
DEFAULT_RESERVE_CAPACITY :: 16
make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
make_slice_error_loc(loc, len)
data, err := mem_alloc_bytes(size_of(E)*len, alignment, allocator, loc)
if data == nil && size_of(E) != 0 {
return nil, err
}
s := Raw_Slice{raw_data(data), len}
return transmute(T)s, err
}
@(builtin)
make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
return make_aligned(T, len, align_of(E), allocator, loc)
}
@(builtin)
make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
return make_dynamic_array_len_cap(T, 0, DEFAULT_RESERVE_CAPACITY, allocator, loc)
}
@(builtin)
make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
return make_dynamic_array_len_cap(T, len, len, allocator, loc)
}
@(builtin)
make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error {
make_dynamic_array_error_loc(loc, len, cap)
data := mem_alloc_bytes(size_of(E)*cap, align_of(E), allocator, loc) or_return
s := Raw_Dynamic_Array{raw_data(data), len, cap, allocator}
if data == nil && size_of(E) != 0 {
s.len, s.cap = 0, 0
}
array = transmute(T)s
return
}
@(builtin)
make_map :: proc($T: typeid/map[$K]$E, #any_int capacity: int = 1<<MAP_MIN_LOG2_CAPACITY, allocator := context.allocator, loc := #caller_location) -> T {
make_map_expr_error_loc(loc, capacity)
context.allocator = allocator
m: T
reserve_map(&m, capacity, loc)
return m
}
@(builtin)
make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) #optional_allocator_error {
make_slice_error_loc(loc, len)
data := mem_alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return
if data == nil && size_of(E) != 0 {
return
}
mp = cast(T)raw_data(data)
return
}
// The make built-in procedure allocates and initializes a value of type slice, dynamic array, or map (only)
// Similar to new, the first argument is a type, not a value. Unlike new, make's return type is the same as the
// type of its argument, not a pointer to it.
// Make uses the specified allocator, default is context.allocator, default is context.allocator
@builtin
make :: proc{
make_slice,
make_dynamic_array,
make_dynamic_array_len,
make_dynamic_array_len_cap,
make_map,
make_multi_pointer,
}
@builtin
clear_map :: proc "contextless" (m: ^$T/map[$K]$V) {
if m == nil {
return
}
map_clear_dynamic((^Raw_Map)(m), map_info(T))
}
@builtin
reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int, loc := #caller_location) {
if m != nil {
__dynamic_map_reserve((^Raw_Map)(m), map_info(T), uint(capacity), loc)
}
}
/*
Shrinks the capacity of a map down to the current length.
*/
@builtin
shrink_map :: proc(m: ^$T/map[$K]$V, loc := #caller_location) -> (did_shrink: bool) {
if m != nil {
err := map_shrink_dynamic((^Raw_Map)(m), map_info(T), loc)
did_shrink = err == nil
}
return
}
// The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map.
// If m is nil, or there is no such element, this procedure is a no-op
@builtin
delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) {
if m != nil {
key := key
old_k, old_v, ok := map_erase_dynamic((^Raw_Map)(m), map_info(T), uintptr(&key))
if ok {
deleted_key = (^K)(old_k)^
deleted_value = (^V)(old_v)^
}
}
return
}
@builtin
append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> int {
if array == nil {
return 0
}
when size_of(E) == 0 {
array.len += 1
return 1
} else {
if cap(array) < len(array)+1 {
cap := 2 * cap(array) + max(8, 1)
_ = reserve(array, cap, loc)
}
if cap(array)-len(array) > 0 {
a := (^Raw_Dynamic_Array)(array)
when size_of(E) != 0 {
data := ([^]E)(a.data)
assert(condition=data != nil, loc=loc)
data[a.len] = arg
}
a.len += 1
return 1
}
return 0
}
}
@builtin
append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> int {
if array == nil {
return 0
}
arg_len := len(args)
if arg_len <= 0 {
return 0
}
when size_of(E) == 0 {
array.len += arg_len
return arg_len
} else {
if cap(array) < len(array)+arg_len {
cap := 2 * cap(array) + max(8, arg_len)
_ = reserve(array, cap, loc)
}
arg_len = min(cap(array)-len(array), arg_len)
if arg_len > 0 {
a := (^Raw_Dynamic_Array)(array)
when size_of(E) != 0 {
data := ([^]E)(a.data)
assert(condition=data != nil, loc=loc)
intrinsics.mem_copy(&data[a.len], raw_data(args), size_of(E) * arg_len)
}
a.len += arg_len
}
return arg_len
}
}
// The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type
@builtin
append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> int {
args := transmute([]E)arg
return append_elems(array=array, args=args, loc=loc)
}
// The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type
@builtin
append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) -> (n: int) {
for arg in args {
n += append(array = array, args = transmute([]E)(arg), loc = loc)
}
return
}
// The append built-in procedure appends elements to the end of a dynamic array
@builtin append :: proc{append_elem, append_elems, append_elem_string}
@builtin
append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> int {
if array == nil {
return 0
}
prev_len := len(array)
resize(array, len(array)+1)
return len(array)-prev_len
}
@builtin
inject_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if array == nil {
return
}
n := max(len(array), index)
m :: 1
new_size := n + m
if resize(array, new_size, loc) {
when size_of(E) != 0 {
copy(array[index + m:], array[index:])
array[index] = arg
}
ok = true
}
return
}
@builtin
inject_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if array == nil {
return
}
if len(args) == 0 {
ok = true
return
}
n := max(len(array), index)
m := len(args)
new_size := n + m
if resize(array, new_size, loc) {
when size_of(E) != 0 {
copy(array[index + m:], array[index:])
copy(array[index:], args)
}
ok = true
}
return
}
@builtin
inject_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if array == nil {
return
}
if len(arg) == 0 {
ok = true
return
}
n := max(len(array), index)
m := len(arg)
new_size := n + m
if resize(array, new_size, loc) {
copy(array[index+m:], array[index:])
copy(array[index:], arg)
ok = true
}
return
}
@builtin inject_at :: proc{inject_at_elem, inject_at_elems, inject_at_elem_string}
@builtin
assign_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if index < len(array) {
array[index] = arg
ok = true
} else if resize(array, index+1, loc) {
array[index] = arg
ok = true
}
return
}
@builtin
assign_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if index+len(args) < len(array) {
copy(array[index:], args)
ok = true
} else if resize(array, index+1+len(args), loc) {
copy(array[index:], args)
ok = true
}
return
}
@builtin
assign_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool) #no_bounds_check {
if len(args) == 0 {
ok = true
} else if index+len(args) < len(array) {
copy(array[index:], args)
ok = true
} else if resize(array, index+1+len(args), loc) {
copy(array[index:], args)
ok = true
}
return
}
@builtin assign_at :: proc{assign_at_elem, assign_at_elems, assign_at_elem_string}
@builtin
clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) {
if array != nil {
(^Raw_Dynamic_Array)(array).len = 0
}
}
@builtin
reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> bool {
if array == nil {
return false
}
a := (^Raw_Dynamic_Array)(array)
if capacity <= a.cap {
return true
}
if a.allocator.procedure == nil {
a.allocator = context.allocator
}
assert(a.allocator.procedure != nil)
old_size := a.cap * size_of(E)
new_size := capacity * size_of(E)
allocator := a.allocator
new_data, err := mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc)
if new_data == nil || err != nil {
return false
}
a.data = raw_data(new_data)
a.cap = capacity
return true
}
@builtin
resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> bool {
if array == nil {
return false
}
a := (^Raw_Dynamic_Array)(array)
if length <= a.cap {
a.len = max(length, 0)
return true
}
if a.allocator.procedure == nil {
a.allocator = context.allocator
}
assert(a.allocator.procedure != nil)
old_size := a.cap * size_of(E)
new_size := length * size_of(E)
allocator := a.allocator
new_data, err := mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc)
if new_data == nil || err != nil {
return false
}
a.data = raw_data(new_data)
a.len = length
a.cap = length
return true
}
/*
Shrinks the capacity of a dynamic array down to the current length, or the given capacity.
If `new_cap` is negative, then `len(array)` is used.
Returns false if `cap(array) < new_cap`, or the allocator report failure.
If `len(array) < new_cap`, then `len(array)` will be left unchanged.
*/
shrink_dynamic_array :: proc(array: ^$T/[dynamic]$E, new_cap := -1, loc := #caller_location) -> (did_shrink: bool) {
if array == nil {
return
}
a := (^Raw_Dynamic_Array)(array)
new_cap := new_cap if new_cap >= 0 else a.len
if new_cap > a.cap {
return
}
if a.allocator.procedure == nil {
a.allocator = context.allocator
}
assert(a.allocator.procedure != nil)
old_size := a.cap * size_of(E)
new_size := new_cap * size_of(E)
new_data, err := mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc)
if err != nil {
return
}
a.data = raw_data(new_data)
a.len = min(new_cap, a.len)
a.cap = new_cap
return true
}
@builtin
map_insert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (ptr: ^V) {
key, value := key, value
return (^V)(__dynamic_map_set_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc))
}
@builtin
incl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) {
s^ |= {elem}
}
@builtin
incl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) {
for elem in elems {
s^ |= {elem}
}
}
@builtin
incl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) {
s^ |= other
}
@builtin
excl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) {
s^ &~= {elem}
}
@builtin
excl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) {
for elem in elems {
s^ &~= {elem}
}
}
@builtin
excl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) {
s^ &~= other
}
@builtin incl :: proc{incl_elem, incl_elems, incl_bit_set}
@builtin excl :: proc{excl_elem, excl_elems, excl_bit_set}
@builtin
card :: proc(s: $S/bit_set[$E; $U]) -> int {
when size_of(S) == 1 {
return int(intrinsics.count_ones(transmute(u8)s))
} else when size_of(S) == 2 {
return int(intrinsics.count_ones(transmute(u16)s))
} else when size_of(S) == 4 {
return int(intrinsics.count_ones(transmute(u32)s))
} else when size_of(S) == 8 {
return int(intrinsics.count_ones(transmute(u64)s))
} else when size_of(S) == 16 {
return int(intrinsics.count_ones(transmute(u128)s))
} else {
#panic("Unhandled card bit_set size")
}
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
assert :: proc(condition: bool, message := "", loc := #caller_location) {
if !condition {
// NOTE(bill): This is wrapped in a procedure call
// to improve performance to make the CPU not
// execute speculatively, making it about an order of
// magnitude faster
@(cold)
internal :: proc(message: string, loc: Source_Code_Location) {
p := context.assertion_failure_proc
if p == nil {
p = default_assertion_failure_proc
}
p("runtime assertion", message, loc)
}
internal(message, loc)
}
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
panic :: proc(message: string, loc := #caller_location) -> ! {
p := context.assertion_failure_proc
if p == nil {
p = default_assertion_failure_proc
}
p("panic", message, loc)
}
@builtin
@(disabled=ODIN_DISABLE_ASSERT)
unimplemented :: proc(message := "", loc := #caller_location) -> ! {
p := context.assertion_failure_proc
if p == nil {
p = default_assertion_failure_proc
}
p("not yet implemented", message, loc)
}