Files
Odin/code/demo.odin
2017-07-10 14:52:58 +01:00

421 lines
9.5 KiB
Odin

import (
"fmt.odin";
"atomics.odin";
"bits.odin";
"decimal.odin";
"hash.odin";
"math.odin";
"mem.odin";
"opengl.odin";
"os.odin";
"raw.odin";
"strconv.odin";
"strings.odin";
"sync.odin";
"sort.odin";
"types.odin";
"utf8.odin";
"utf16.odin";
/*
*/
)
general_stuff :: proc() {
// Complex numbers
a := 3 + 4i;
b: complex64 = 3 + 4i;
c: complex128 = 3 + 4i;
d := complex(2, 3);
e := a / conj(a);
fmt.println("(3+4i)/(3-4i) =", e);
fmt.println(real(e), "+", imag(e), "i");
// C-style variadic procedures
foreign __llvm_core {
// The variadic part allows for extra type checking too which C does not provide
c_printf :: proc(fmt: ^u8, #c_vararg args: ...any) -> i32 #link_name "printf" ---;
}
str := "%d\n\x00";
// c_printf(&str[0], i32(789456123));
Foo :: struct {
x: int;
y: f32;
z: string;
}
foo := Foo{123, 0.513, "A string"};
x, y, z := expand_to_tuple(foo);
fmt.println(x, y, z);
compile_assert(type_of(x) == int);
compile_assert(type_of(y) == f32);
compile_assert(type_of(z) == string);
// By default, all variables are zeroed
// This can be overridden with the "uninitialized value"
// This is similar to `nil` but applied to everything
undef_int: int = ---;
// Context system is now implemented using Implicit Parameter Passing (IPP)
// The previous implementation was Thread Local Storage (TLS)
// IPP has the advantage that it works on systems without TLS and that you can
// link the context to the stack frame and thus look at previous contexts
//
// It does mean that a pointer is implicitly passed procedures with the default
// Odin calling convention (#cc_odin)
// This can be overridden with something like #cc_contextless or #cc_c if performance
// is worried about
}
foreign_blocks :: proc() {
// See sys/windows.odin
}
default_arguments :: proc() {
hello :: proc(a: int = 9, b: int = 9) do fmt.printf("a is %d; b is %d\n", a, b);
fmt.println("\nTesting default arguments:");
hello(1, 2);
hello(1);
hello();
}
named_arguments :: proc() {
Colour :: enum {
Red,
Orange,
Yellow,
Green,
Blue,
Octarine,
};
using Colour;
make_character :: proc(name, catch_phrase: string, favourite_colour, least_favourite_colour: Colour) {
fmt.println();
fmt.printf("My name is %v and I like %v. %v\n", name, favourite_colour, catch_phrase);
}
make_character("Frank", "¡Ay, caramba!", Blue, Green);
// As the procedures have more and more parameters, it is very easy
// to get many of the arguments in the wrong order especialy if the
// types are the same
make_character("¡Ay, caramba!", "Frank", Green, Blue);
// Named arguments help to disambiguate this problem
make_character(catch_phrase = "¡Ay, caramba!", name = "Frank",
least_favourite_colour = Green, favourite_colour = Blue);
// The named arguments can be specifed in any order.
make_character(favourite_colour = Octarine, catch_phrase = "U wot m8!",
least_favourite_colour = Green, name = "Dennis");
// NOTE: You cannot mix named arguments with normal values
/*
make_character("Dennis",
favourite_colour = Octarine, catch_phrase = "U wot m8!",
least_favourite_colour = Green);
*/
// Named arguments can also aid with default arguments
numerous_things :: proc(s: string, a := 1, b := 2, c := 3.14,
d := "The Best String!", e := false, f := 10.3/3.1, g := false) {
g_str := g ? "true" : "false";
fmt.printf("How many?! %s: %v\n", s, g_str);
}
numerous_things("First");
numerous_things(s = "Second", g = true);
// Default values can be placed anywhere, not just at the end like in other languages
weird :: proc(pre: string, mid: int = 0, post: string) {
fmt.println(pre, mid, post);
}
weird("How many things", 42, "huh?");
weird(pre = "Prefix", post = "Pat");
}
default_return_values :: proc() {
foo :: proc(x: int) -> (first: string = "Hellope", second := "world!") {
match x {
case 0: return;
case 1: return "Goodbye";
case 2: return "Goodbye", "cruel world...";
case 3: return second = "cruel world...", first = "Goodbye";
}
return second = "my old friend.";
}
fmt.printf("%s %s\n", foo(0));
fmt.printf("%s %s\n", foo(1));
fmt.printf("%s %s\n", foo(2));
fmt.printf("%s %s\n", foo(3));
fmt.printf("%s %s\n", foo(4));
fmt.println();
// A more "real" example
Error :: enum {
None,
WhyTheNumberThree,
TenIsTooBig,
};
Entity :: struct {
name: string;
id: u32;
}
some_thing :: proc(input: int) -> (result: ^Entity = nil, err := Error.None) {
match {
case input == 3: return err = Error.WhyTheNumberThree;
case input >= 10: return err = Error.TenIsTooBig;
}
e := new(Entity);
e.id = u32(input);
return result = e;
}
}
call_location :: proc() {
amazing :: proc(n: int, using loc := #caller_location) {
fmt.printf("%s(%d:%d) just asked to do something amazing.\n",
fully_pathed_filename, line, column);
fmt.printf("Normal -> %d\n", n);
fmt.printf("Amazing -> %d\n", n+1);
fmt.println();
}
loc := #location(main);
fmt.println("`main` is located at", loc);
fmt.println("This line is located at", #location());
fmt.println();
amazing(3);
amazing(4, #location(call_location));
// See _preload.odin for the implementations of `assert` and `panic`
}
explicit_parametric_polymorphic_procedures :: proc() {
// This is how `new` is actually implemented, see _preload.odin
alloc_type :: proc(T: type) -> ^T do return ^T(alloc(size_of(T), align_of(T)));
int_ptr := alloc_type(int);
defer free(int_ptr);
int_ptr^ = 137;
fmt.println(int_ptr, int_ptr^);
// Named arguments work too!
another_ptr := alloc_type(T = f32);
defer free(another_ptr);
add :: proc(T: type, args: ...T) -> T {
res: T;
for arg in args do res += arg;
return res;
}
fmt.println("add =", add(int, 1, 2, 3, 4, 5, 6));
swap :: proc(T: type, a, b: ^T) {
tmp := a^;
a^ = b^;
b^ = tmp;
}
a, b: int = 3, 4;
fmt.println("Pre-swap:", a, b);
swap(int, &a, &b);
fmt.println("Post-swap:", a, b);
a, b = b, a; // Or use this syntax for this silly example case
// A more complicated example using subtyping
// Something like this could be used in a game
Vector2 :: struct {x, y: f32;};
Entity :: struct {
using position: Vector2;
flags: u64;
id: u64;
batch_index: u32;
slot_index: u32;
portable_id: u32;
derived: any;
}
Rock :: struct {
using entity: ^Entity;
heavy: bool;
}
Door :: struct {
using entity: ^Entity;
open: bool;
}
Monster :: struct {
using entity: ^Entity;
is_robot: bool;
is_zombie: bool;
}
EntityManager :: struct {
batches: [dynamic]^EntityBatch;
next_portable_id: u32;
}
ENTITIES_PER_BATCH :: 16;
EntityBatch :: struct {
data: [ENTITIES_PER_BATCH]Entity;
occupied: [ENTITIES_PER_BATCH]bool;
batch_index: u32;
}
use_empty_slot :: proc(manager: ^EntityManager, batch: ^EntityBatch) -> ^Entity {
for ok, i in batch.occupied {
if ok do continue;
batch.occupied[i] = true;
e := &batch.data[i];
e.batch_index = u32(batch.batch_index);
e.slot_index = u32(i);
e.portable_id = manager.next_portable_id;
manager.next_portable_id++;
return e;
}
return nil;
}
gen_new_entity :: proc(manager: ^EntityManager) -> ^Entity {
for b in manager.batches {
e := use_empty_slot(manager, b);
if e != nil do return e;
}
new_batch := new(EntityBatch);
append(&manager.batches, new_batch);
new_batch.batch_index = u32(len(manager.batches)-1);
return use_empty_slot(manager, new_batch);
}
new_entity :: proc(manager: ^EntityManager, T: type, x, y: f32) -> ^T {
result := new(T);
result.entity = gen_new_entity(manager);
result.derived.data = result;
result.derived.type_info = type_info(T);
result.position.x = x;
result.position.y = y;
return result;
}
manager: EntityManager;
entities: [dynamic]^Entity;
rock := new_entity(&manager, Rock, 3, 5);
// Named arguments work too!
door := new_entity(manager = &manager, T = Door, x = 3, y = 6);
// And named arguments can be any order
monster := new_entity(
y = 1,
x = 2,
manager = &manager,
T = Monster,
);
append(&entities, rock, door, monster);
// An alternative to `union`s
for entity in entities {
match e in entity.derived {
case Rock: fmt.println("Rock", e.portable_id, e.x, e.y);
case Door: fmt.println("Door", e.portable_id, e.x, e.y);
case Monster: fmt.println("Monster", e.portable_id, e.x, e.y);
}
}
}
implicit_polymorphic_assignment :: proc() {
yep :: proc(p: proc(x: int)) {
p(123);
}
frank :: proc(x: $T) do fmt.println("frank ->", x);
tim :: proc(x, y: $T) do fmt.println("tim ->", x, y);
yep(frank);
// yep(tim);
}
main :: proc() {
foo :: proc(x: i64, y: f32) do fmt.println("#1", x, y);
foo :: proc(x: type, y: f32) do fmt.println("#2", type_info(x), y);
foo :: proc(x: type) do fmt.println("#3", type_info(x));
f :: foo;
f(y = 3785.1546, x = 123);
f(x = int, y = 897.513);
f(x = f32);
general_stuff();
foreign_blocks();
default_arguments();
named_arguments();
default_return_values();
call_location();
explicit_parametric_polymorphic_procedures();
implicit_polymorphic_assignment();
// Command line argument(s)!
// -opt=0,1,2,3
/*
program := "+ + * - /";
accumulator := 0;
for token in program {
match token {
case '+': accumulator += 1;
case '-': accumulator -= 1;
case '*': accumulator *= 2;
case '/': accumulator /= 2;
case: // Ignore everything else
}
}
fmt.printf("The program \"%s\" calculates the value %d\n",
program, accumulator);
*/
}