Files
Odin/core/mem/allocators.odin
2021-06-14 11:43:35 +01:00

1014 lines
25 KiB
Odin

package mem
import "intrinsics"
import "core:runtime"
nil_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
return nil, nil;
}
nil_allocator :: proc() -> Allocator {
return Allocator{
procedure = nil_allocator_proc,
data = nil,
};
}
// Custom allocators
Arena :: struct {
data: []byte,
offset: int,
peak_used: int,
temp_count: int,
}
Arena_Temp_Memory :: struct {
arena: ^Arena,
prev_offset: int,
}
init_arena :: proc(a: ^Arena, data: []byte) {
a.data = data;
a.offset = 0;
a.peak_used = 0;
a.temp_count = 0;
}
arena_allocator :: proc(arena: ^Arena) -> Allocator {
return Allocator{
procedure = arena_allocator_proc,
data = arena,
};
}
arena_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, location := #caller_location) -> ([]byte, Allocator_Error) {
arena := cast(^Arena)allocator_data;
switch mode {
case .Alloc:
total_size := size + alignment;
if arena.offset + total_size > len(arena.data) {
return nil, .Out_Of_Memory;
}
#no_bounds_check end := &arena.data[arena.offset];
ptr := align_forward(end, uintptr(alignment));
arena.offset += total_size;
arena.peak_used = max(arena.peak_used, arena.offset);
zero(ptr, size);
return byte_slice(ptr, size), nil;
case .Free:
// NOTE(bill): Free all at once
// Use Arena_Temp_Memory if you want to free a block
case .Free_All:
arena.offset = 0;
case .Resize:
return default_resize_bytes_align(byte_slice(old_memory, old_size), size, alignment, arena_allocator(arena));
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory);
if set != nil {
set^ = {.Alloc, .Free_All, .Resize, .Query_Features};
}
return nil, nil;
case .Query_Info:
return nil, nil;
}
return nil, nil;
}
begin_arena_temp_memory :: proc(a: ^Arena) -> Arena_Temp_Memory {
tmp: Arena_Temp_Memory;
tmp.arena = a;
tmp.prev_offset = a.offset;
a.temp_count += 1;
return tmp;
}
end_arena_temp_memory :: proc(using tmp: Arena_Temp_Memory) {
assert(arena.offset >= prev_offset);
assert(arena.temp_count > 0);
arena.offset = prev_offset;
arena.temp_count -= 1;
}
Scratch_Allocator :: struct {
data: []byte,
curr_offset: int,
prev_allocation: rawptr,
backup_allocator: Allocator,
leaked_allocations: [dynamic][]byte,
}
scratch_allocator_init :: proc(s: ^Scratch_Allocator, size: int, backup_allocator := context.allocator) {
s.data = make_aligned([]byte, size, 2*align_of(rawptr), backup_allocator);
s.curr_offset = 0;
s.prev_allocation = nil;
s.backup_allocator = backup_allocator;
s.leaked_allocations.allocator = backup_allocator;
}
scratch_allocator_destroy :: proc(s: ^Scratch_Allocator) {
if s == nil {
return;
}
for ptr in s.leaked_allocations {
free_bytes(ptr, s.backup_allocator);
}
delete(s.leaked_allocations);
delete(s.data, s.backup_allocator);
s^ = {};
}
scratch_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
s := (^Scratch_Allocator)(allocator_data);
if s.data == nil {
DEFAULT_BACKING_SIZE :: 1<<22;
if !(context.allocator.procedure != scratch_allocator_proc &&
context.allocator.data != allocator_data) {
panic("cyclic initialization of the scratch allocator with itself");
}
scratch_allocator_init(s, DEFAULT_BACKING_SIZE);
}
size := size;
switch mode {
case .Alloc:
size = align_forward_int(size, alignment);
switch {
case s.curr_offset+size <= len(s.data):
start := uintptr(raw_data(s.data));
ptr := start + uintptr(s.curr_offset);
ptr = align_forward_uintptr(ptr, uintptr(alignment));
zero(rawptr(ptr), size);
s.prev_allocation = rawptr(ptr);
offset := int(ptr - start);
s.curr_offset = offset + size;
return byte_slice(rawptr(ptr), size), nil;
case size <= len(s.data):
start := uintptr(raw_data(s.data));
ptr := align_forward_uintptr(start, uintptr(alignment));
zero(rawptr(ptr), size);
s.prev_allocation = rawptr(ptr);
offset := int(ptr - start);
s.curr_offset = offset + size;
return byte_slice(rawptr(ptr), size), nil;
}
a := s.backup_allocator;
if a.procedure == nil {
a = context.allocator;
s.backup_allocator = a;
}
ptr, err := alloc_bytes(size, alignment, a, loc);
if err != nil {
return ptr, err;
}
if s.leaked_allocations == nil {
s.leaked_allocations = make([dynamic][]byte, a);
}
append(&s.leaked_allocations, ptr);
if logger := context.logger; logger.lowest_level <= .Warning {
if logger.procedure != nil {
logger.procedure(logger.data, .Warning, "mem.Scratch_Allocator resorted to backup_allocator" , logger.options, loc);
}
}
return ptr, err;
case .Free:
start := uintptr(raw_data(s.data));
end := start + uintptr(len(s.data));
old_ptr := uintptr(old_memory);
if s.prev_allocation == old_memory {
s.curr_offset = int(uintptr(s.prev_allocation) - start);
s.prev_allocation = nil;
return nil, nil;
}
if start <= old_ptr && old_ptr < end {
// NOTE(bill): Cannot free this pointer but it is valid
return nil, nil;
}
if len(s.leaked_allocations) != 0 {
for data, i in s.leaked_allocations {
ptr := raw_data(data);
if ptr == old_memory {
free_bytes(data, s.backup_allocator);
ordered_remove(&s.leaked_allocations, i);
return nil, nil;
}
}
}
return nil, .Invalid_Pointer;
// panic("invalid pointer passed to default_temp_allocator");
case .Free_All:
s.curr_offset = 0;
s.prev_allocation = nil;
for ptr in s.leaked_allocations {
free_bytes(ptr, s.backup_allocator);
}
clear(&s.leaked_allocations);
case .Resize:
begin := uintptr(raw_data(s.data));
end := begin + uintptr(len(s.data));
old_ptr := uintptr(old_memory);
if begin <= old_ptr && old_ptr < end && old_ptr+uintptr(size) < end {
s.curr_offset = int(old_ptr-begin)+size;
return byte_slice(old_memory, size), nil;
}
data, err := scratch_allocator_proc(allocator_data, .Alloc, size, alignment, old_memory, old_size, loc);
if err != nil {
return data, err;
}
runtime.copy(data, byte_slice(old_memory, old_size));
_, err = scratch_allocator_proc(allocator_data, .Free, 0, alignment, old_memory, old_size, loc);
return data, err;
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory);
if set != nil {
set^ = {.Alloc, .Free, .Free_All, .Resize, .Query_Features};
}
return nil, nil;
case .Query_Info:
return nil, nil;
}
return nil, nil;
}
scratch_allocator :: proc(allocator: ^Scratch_Allocator) -> Allocator {
return Allocator{
procedure = scratch_allocator_proc,
data = allocator,
};
}
Stack_Allocation_Header :: struct {
prev_offset: int,
padding: int,
}
// Stack is a stack-like allocator which has a strict memory freeing order
Stack :: struct {
data: []byte,
prev_offset: int,
curr_offset: int,
peak_used: int,
}
init_stack :: proc(s: ^Stack, data: []byte) {
s.data = data;
s.prev_offset = 0;
s.curr_offset = 0;
s.peak_used = 0;
}
stack_allocator :: proc(stack: ^Stack) -> Allocator {
return Allocator{
procedure = stack_allocator_proc,
data = stack,
};
}
stack_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, location := #caller_location) -> ([]byte, Allocator_Error) {
s := cast(^Stack)allocator_data;
if s.data == nil {
return nil, .Invalid_Argument;
}
raw_alloc :: proc(s: ^Stack, size, alignment: int) -> ([]byte, Allocator_Error) {
curr_addr := uintptr(raw_data(s.data)) + uintptr(s.curr_offset);
padding := calc_padding_with_header(curr_addr, uintptr(alignment), size_of(Stack_Allocation_Header));
if s.curr_offset + padding + size > len(s.data) {
return nil, .Out_Of_Memory;
}
s.prev_offset = s.curr_offset;
s.curr_offset += padding;
next_addr := curr_addr + uintptr(padding);
header := (^Stack_Allocation_Header)(next_addr - size_of(Stack_Allocation_Header));
header.padding = padding;
header.prev_offset = s.prev_offset;
s.curr_offset += size;
s.peak_used = max(s.peak_used, s.curr_offset);
zero(rawptr(next_addr), size);
return byte_slice(rawptr(next_addr), size), nil;
}
switch mode {
case .Alloc:
return raw_alloc(s, size, alignment);
case .Free:
if old_memory == nil {
return nil, nil;
}
start := uintptr(raw_data(s.data));
end := start + uintptr(len(s.data));
curr_addr := uintptr(old_memory);
if !(start <= curr_addr && curr_addr < end) {
panic("Out of bounds memory address passed to stack allocator (free)");
}
if curr_addr >= start+uintptr(s.curr_offset) {
// NOTE(bill): Allow double frees
return nil, nil;
}
header := (^Stack_Allocation_Header)(curr_addr - size_of(Stack_Allocation_Header));
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(raw_data(s.data)));
if old_offset != header.prev_offset {
// panic("Out of order stack allocator free");
return nil, .Invalid_Pointer;
}
s.curr_offset = old_offset;
s.prev_offset = header.prev_offset;
case .Free_All:
s.prev_offset = 0;
s.curr_offset = 0;
case .Resize:
if old_memory == nil {
return raw_alloc(s, size, alignment);
}
if size == 0 {
return nil, nil;
}
start := uintptr(raw_data(s.data));
end := start + uintptr(len(s.data));
curr_addr := uintptr(old_memory);
if !(start <= curr_addr && curr_addr < end) {
panic("Out of bounds memory address passed to stack allocator (resize)");
}
if curr_addr >= start+uintptr(s.curr_offset) {
// NOTE(bill): Allow double frees
return nil, nil;
}
if old_size == size {
return byte_slice(old_memory, size), nil;
}
header := (^Stack_Allocation_Header)(curr_addr - size_of(Stack_Allocation_Header));
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(raw_data(s.data)));
if old_offset != header.prev_offset {
data, err := raw_alloc(s, size, alignment);
if err == nil {
runtime.copy(data, byte_slice(old_memory, old_size));
}
return data, err;
}
old_memory_size := uintptr(s.curr_offset) - (curr_addr - start);
assert(old_memory_size == uintptr(old_size));
diff := size - old_size;
s.curr_offset += diff; // works for smaller sizes too
if diff > 0 {
zero(rawptr(curr_addr + uintptr(diff)), diff);
}
return byte_slice(old_memory, size), nil;
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory);
if set != nil {
set^ = {.Alloc, .Free, .Free_All, .Resize, .Query_Features};
}
return nil, nil;
case .Query_Info:
return nil, nil;
}
return nil, nil;
}
Small_Stack_Allocation_Header :: struct {
padding: u8,
}
// Small_Stack is a stack-like allocator which uses the smallest possible header but at the cost of non-strict memory freeing order
Small_Stack :: struct {
data: []byte,
offset: int,
peak_used: int,
}
init_small_stack :: proc(s: ^Small_Stack, data: []byte) {
s.data = data;
s.offset = 0;
s.peak_used = 0;
}
small_stack_allocator :: proc(stack: ^Small_Stack) -> Allocator {
return Allocator{
procedure = small_stack_allocator_proc,
data = stack,
};
}
small_stack_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, ocation := #caller_location) -> ([]byte, Allocator_Error) {
s := cast(^Small_Stack)allocator_data;
if s.data == nil {
return nil, .Invalid_Argument;
}
align := clamp(alignment, 1, 8*size_of(Stack_Allocation_Header{}.padding)/2);
raw_alloc :: proc(s: ^Small_Stack, size, alignment: int) -> ([]byte, Allocator_Error) {
curr_addr := uintptr(raw_data(s.data)) + uintptr(s.offset);
padding := calc_padding_with_header(curr_addr, uintptr(alignment), size_of(Small_Stack_Allocation_Header));
if s.offset + padding + size > len(s.data) {
return nil, .Out_Of_Memory;
}
s.offset += padding;
next_addr := curr_addr + uintptr(padding);
header := (^Small_Stack_Allocation_Header)(next_addr - size_of(Small_Stack_Allocation_Header));
header.padding = auto_cast padding;
s.offset += size;
s.peak_used = max(s.peak_used, s.offset);
zero(rawptr(next_addr), size);
return byte_slice(rawptr(next_addr), size), nil;
}
switch mode {
case .Alloc:
return raw_alloc(s, size, align);
case .Free:
if old_memory == nil {
return nil, nil;
}
start := uintptr(raw_data(s.data));
end := start + uintptr(len(s.data));
curr_addr := uintptr(old_memory);
if !(start <= curr_addr && curr_addr < end) {
// panic("Out of bounds memory address passed to stack allocator (free)");
return nil, .Invalid_Pointer;
}
if curr_addr >= start+uintptr(s.offset) {
// NOTE(bill): Allow double frees
return nil, nil;
}
header := (^Small_Stack_Allocation_Header)(curr_addr - size_of(Small_Stack_Allocation_Header));
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(raw_data(s.data)));
s.offset = old_offset;
case .Free_All:
s.offset = 0;
case .Resize:
if old_memory == nil {
return raw_alloc(s, size, align);
}
if size == 0 {
return nil, nil;
}
start := uintptr(raw_data(s.data));
end := start + uintptr(len(s.data));
curr_addr := uintptr(old_memory);
if !(start <= curr_addr && curr_addr < end) {
// panic("Out of bounds memory address passed to stack allocator (resize)");
return nil, .Invalid_Pointer;
}
if curr_addr >= start+uintptr(s.offset) {
// NOTE(bill): Treat as a double free
return nil, nil;
}
if old_size == size {
return byte_slice(old_memory, size), nil;
}
data, err := raw_alloc(s, size, align);
if err == nil {
runtime.copy(data, byte_slice(old_memory, old_size));
}
return data, err;
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory);
if set != nil {
set^ = {.Alloc, .Free, .Free_All, .Resize, .Query_Features};
}
return nil, nil;
case .Query_Info:
return nil, nil;
}
return nil, nil;
}
Dynamic_Pool :: struct {
block_size: int,
out_band_size: int,
alignment: int,
unused_blocks: [dynamic]rawptr,
used_blocks: [dynamic]rawptr,
out_band_allocations: [dynamic]rawptr,
current_block: rawptr,
current_pos: rawptr,
bytes_left: int,
block_allocator: Allocator,
}
DYNAMIC_POOL_BLOCK_SIZE_DEFAULT :: 65536;
DYNAMIC_POOL_OUT_OF_BAND_SIZE_DEFAULT :: 6554;
dynamic_pool_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
pool := (^Dynamic_Pool)(allocator_data);
switch mode {
case .Alloc:
return dynamic_pool_alloc_bytes(pool, size);
case .Free:
return nil, nil;
case .Free_All:
dynamic_pool_free_all(pool);
return nil, nil;
case .Resize:
if old_size >= size {
return byte_slice(old_memory, size), nil;
}
data, err := dynamic_pool_alloc_bytes(pool, size);
if err == nil {
runtime.copy(data, byte_slice(old_memory, old_size));
}
return data, err;
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory);
if set != nil {
set^ = {.Alloc, .Free_All, .Resize, .Query_Features, .Query_Info};
}
return nil, nil;
case .Query_Info:
info := (^Allocator_Query_Info)(old_memory);
if info != nil && info.pointer != nil {
info.size = pool.block_size;
info.alignment = pool.alignment;
return byte_slice(info, size_of(info^)), nil;
}
return nil, nil;
}
return nil, nil;
}
dynamic_pool_allocator :: proc(pool: ^Dynamic_Pool) -> Allocator {
return Allocator{
procedure = dynamic_pool_allocator_proc,
data = pool,
};
}
dynamic_pool_init :: proc(pool: ^Dynamic_Pool,
block_allocator := context.allocator,
array_allocator := context.allocator,
block_size := DYNAMIC_POOL_BLOCK_SIZE_DEFAULT,
out_band_size := DYNAMIC_POOL_OUT_OF_BAND_SIZE_DEFAULT,
alignment := 8) {
pool.block_size = block_size;
pool.out_band_size = out_band_size;
pool.alignment = alignment;
pool.block_allocator = block_allocator;
pool.out_band_allocations.allocator = array_allocator;
pool. unused_blocks.allocator = array_allocator;
pool. used_blocks.allocator = array_allocator;
}
dynamic_pool_destroy :: proc(using pool: ^Dynamic_Pool) {
dynamic_pool_free_all(pool);
delete(unused_blocks);
delete(used_blocks);
zero(pool, size_of(pool^));
}
dynamic_pool_alloc :: proc(pool: ^Dynamic_Pool, bytes: int) -> rawptr {
data, err := dynamic_pool_alloc_bytes(pool, bytes);
assert(err == nil);
return raw_data(data);
}
dynamic_pool_alloc_bytes :: proc(using pool: ^Dynamic_Pool, bytes: int) -> ([]byte, Allocator_Error) {
cycle_new_block :: proc(using pool: ^Dynamic_Pool) -> (err: Allocator_Error) {
if block_allocator.procedure == nil {
panic("You must call pool_init on a Pool before using it");
}
if current_block != nil {
append(&used_blocks, current_block);
}
new_block: rawptr;
if len(unused_blocks) > 0 {
new_block = pop(&unused_blocks);
} else {
data: []byte;
data, err = block_allocator.procedure(block_allocator.data, Allocator_Mode.Alloc,
block_size, alignment,
nil, 0);
new_block = raw_data(data);
}
bytes_left = block_size;
current_pos = new_block;
current_block = new_block;
return;
}
n := bytes;
extra := alignment - (n % alignment);
n += extra;
if n >= out_band_size {
assert(block_allocator.procedure != nil);
memory, err := block_allocator.procedure(block_allocator.data, Allocator_Mode.Alloc,
block_size, alignment,
nil, 0);
if memory != nil {
append(&out_band_allocations, raw_data(memory));
}
return memory, err;
}
if bytes_left < n {
err := cycle_new_block(pool);
if err != nil {
return nil, err;
}
if current_block == nil {
return nil, .Out_Of_Memory;
}
}
memory := current_pos;
current_pos = ptr_offset((^byte)(current_pos), n);
bytes_left -= n;
return byte_slice(memory, bytes), nil;
}
dynamic_pool_reset :: proc(using pool: ^Dynamic_Pool) {
if current_block != nil {
append(&unused_blocks, current_block);
current_block = nil;
}
for block in used_blocks {
append(&unused_blocks, block);
}
clear(&used_blocks);
for a in out_band_allocations {
free(a, block_allocator);
}
clear(&out_band_allocations);
}
dynamic_pool_free_all :: proc(using pool: ^Dynamic_Pool) {
dynamic_pool_reset(pool);
for block in unused_blocks {
free(block, block_allocator);
}
clear(&unused_blocks);
}
panic_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int,loc := #caller_location) -> ([]byte, Allocator_Error) {
switch mode {
case .Alloc:
if size > 0 {
panic("mem: panic allocator, .Alloc called");
}
case .Resize:
if size > 0 {
panic("mem: panic allocator, .Resize called");
}
case .Free:
if old_memory != nil {
panic("mem: panic allocator, .Free called");
}
case .Free_All:
panic("mem: panic allocator, .Free_All called");
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory);
if set != nil {
set^ = {.Query_Features};
}
return nil, nil;
case .Query_Info:
return nil, nil;
}
return nil, nil;
}
panic_allocator :: proc() -> Allocator {
return Allocator{
procedure = panic_allocator_proc,
data = nil,
};
}
Tracking_Allocator_Entry :: struct {
memory: rawptr,
size: int,
alignment: int,
err: Allocator_Error,
location: runtime.Source_Code_Location,
}
Tracking_Allocator_Bad_Free_Entry :: struct {
memory: rawptr,
location: runtime.Source_Code_Location,
}
Tracking_Allocator :: struct {
backing: Allocator,
allocation_map: map[rawptr]Tracking_Allocator_Entry,
bad_free_array: [dynamic]Tracking_Allocator_Bad_Free_Entry,
clear_on_free_all: bool,
}
tracking_allocator_init :: proc(t: ^Tracking_Allocator, backing_allocator: Allocator, internals_allocator := context.allocator) {
t.backing = backing_allocator;
t.allocation_map.allocator = internals_allocator;
t.bad_free_array.allocator = internals_allocator;
}
tracking_allocator_destroy :: proc(t: ^Tracking_Allocator) {
delete(t.allocation_map);
delete(t.bad_free_array);
}
tracking_allocator :: proc(data: ^Tracking_Allocator) -> Allocator {
return Allocator{
data = data,
procedure = tracking_allocator_proc,
};
}
tracking_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
data := (^Tracking_Allocator)(allocator_data);
if mode == .Query_Info {
info := (^Allocator_Query_Info)(old_memory);
if info != nil && info.pointer != nil {
if entry, ok := data.allocation_map[info.pointer]; ok {
info.size = entry.size;
info.alignment = entry.alignment;
}
info.pointer = nil;
}
return nil, nil;
}
result: []byte;
err: Allocator_Error;
if mode == .Free && old_memory not_in data.allocation_map {
append(&data.bad_free_array, Tracking_Allocator_Bad_Free_Entry{
memory = old_memory,
location = loc,
});
} else {
result, err = data.backing.procedure(data.backing.data, mode, size, alignment, old_memory, old_size, loc);
if err != nil {
return result, err;
}
}
result_ptr := raw_data(result);
if data.allocation_map.allocator.procedure == nil {
data.allocation_map.allocator = context.allocator;
}
switch mode {
case .Alloc:
data.allocation_map[result_ptr] = Tracking_Allocator_Entry{
memory = result_ptr,
size = size,
alignment = alignment,
err = err,
location = loc,
};
case .Free:
delete_key(&data.allocation_map, old_memory);
case .Resize:
if old_memory != result_ptr {
delete_key(&data.allocation_map, old_memory);
}
data.allocation_map[result_ptr] = Tracking_Allocator_Entry{
memory = result_ptr,
size = size,
alignment = alignment,
err = err,
location = loc,
};
case .Free_All:
if data.clear_on_free_all {
clear_map(&data.allocation_map);
}
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory);
if set != nil {
set^ = {.Alloc, .Free, .Free_All, .Resize, .Query_Features, .Query_Info};
}
return nil, nil;
case .Query_Info:
return nil, nil;
}
return result, err;
}
// Small_Allocator primary allocates memory from its local buffer of size BUFFER_SIZE
// If that buffer's memory is exhausted, it will use the backing allocator (a scratch allocator is recommended)
// Memory allocated with Small_Allocator cannot be freed individually using 'free' and must be freed using 'free_all'
Small_Allocator :: struct($BUFFER_SIZE: int)
where
BUFFER_SIZE >= 2*size_of(uintptr),
BUFFER_SIZE & (BUFFER_SIZE-1) == 0 {
buffer: [BUFFER_SIZE]byte,
backing: Allocator,
start: uintptr,
curr: uintptr,
end: uintptr,
chunk_size: int,
}
small_allocator :: proc(s: ^$S/Small_Allocator, backing := context.allocator) -> (a: Allocator) {
if s.backing.procedure == nil {
s.backing = backing;
}
a.data = s;
a.procedure = proc(allocator_data: rawptr, mode: Allocator_Mode, size, alignment: int, old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr {
s := (^S)(allocator_data);
if s.chunk_size <= 0 {
s.chunk_size = 4*1024;
}
if s.start == 0 {
s.start = uintptr(&s.buffer[0]);
s.curr = s.start;
s.end = s.start + uintptr(S.BUFFER_SIZE);
(^rawptr)(s.start)^ = nil;
s.curr += size_of(rawptr);
}
switch mode {
case .Alloc:
s.curr = align_forward_uintptr(s.curr, uintptr(alignment));
if size > int(s.end - s.curr) {
to_allocate := size_of(rawptr) + size + alignment;
if to_allocate < s.chunk_size {
to_allocate = s.chunk_size;
}
s.chunk_size *= 2;
p := alloc(to_allocate, 16, s.backing, loc);
(^rawptr)(s.start)^ = p;
s.start = uintptr(p);
s.curr = s.start;
s.end = s.start + uintptr(to_allocate);
(^rawptr)(s.start)^ = nil;
s.curr += size_of(rawptr);
s.curr = align_forward_uintptr(s.curr, uintptr(alignment));
}
p := rawptr(s.curr);
s.curr += uintptr(size);
return mem_zero(p, size);
case .Free:
// NOP
return nil;
case .Resize:
// No need copying the code
return default_resize_align(old_memory, old_size, size, alignment, small_allocator(s, s.backing), loc);
case .Free_All:
p := (^rawptr)(&s.buffer[0])^;
for p != nil {
next := (^rawptr)(p)^;
free(next, s.backing, loc);
p = next;
}
// Reset to default
s.start = uintptr(&s.buffer[0]);
s.curr = s.start;
s.end = s.start + uintptr(S.BUFFER_SIZE);
(^rawptr)(s.start)^ = nil;
s.curr += size_of(rawptr);
case .Query_Features:
return nil, nil;
case .Query_Info:
return nil, nil;
}
return nil, nil;
};
return a;
}