Files
Odin/core/sync/sync2/extended.odin
2021-06-08 18:26:38 +01:00

268 lines
5.3 KiB
Odin

package sync2
// A Wait_Group waits for a collection of threads to finish
//
// A Wait_Group must not be copied after first use
Wait_Group :: struct {
counter: int,
mutex: Mutex,
cond: Cond,
}
wait_group_add :: proc(wg: ^Wait_Group, delta: int) {
if delta == 0 {
return;
}
mutex_lock(&wg.mutex);
defer mutex_unlock(&wg.mutex);
atomic_add(&wg.counter, delta);
if wg.counter < 0 {
panic("sync.Wait_Group negative counter");
}
if wg.counter == 0 {
cond_broadcast(&wg.cond);
if wg.counter != 0 {
panic("sync.Wait_Group misuse: sync.wait_group_add called concurrently with sync.wait_group_wait");
}
}
}
wait_group_done :: proc(wg: ^Wait_Group) {
wait_group_add(wg, -1);
}
wait_group_wait :: proc(wg: ^Wait_Group) {
mutex_lock(&wg.mutex);
defer mutex_unlock(&wg.mutex);
if wg.counter != 0 {
cond_wait(&wg.cond, &wg.mutex);
if wg.counter != 0 {
panic("sync.Wait_Group misuse: sync.wait_group_add called concurrently with sync.wait_group_wait");
}
}
}
// A barrier enabling multiple threads to synchronize the beginning of some computation
/*
* Example:
*
* package example
*
* import "core:fmt"
* import "core:sync"
* import "core:thread"
*
* barrier := &sync.Barrier{};
*
* main :: proc() {
* fmt.println("Start");
*
* THREAD_COUNT :: 4;
* threads: [THREAD_COUNT]^thread.Thread;
*
* sync.barrier_init(barrier, THREAD_COUNT);
* defer sync.barrier_destroy(barrier);
*
*
* for _, i in threads {
* threads[i] = thread.create_and_start(proc(t: ^thread.Thread) {
* // Same messages will be printed together but without any interleaving
* fmt.println("Getting ready!");
* sync.barrier_wait(barrier);
* fmt.println("Off their marks they go!");
* });
* }
*
* for t in threads {
* thread.destroy(t); // join and free thread
* }
* fmt.println("Finished");
* }
*
*/
Barrier :: struct {
mutex: Mutex,
cond: Cond,
index: int,
generation_id: int,
thread_count: int,
}
barrier_init :: proc(b: ^Barrier, thread_count: int) {
b.index = 0;
b.generation_id = 0;
b.thread_count = thread_count;
}
// Block the current thread until all threads have rendezvoused
// Barrier can be reused after all threads rendezvoused once, and can be used continuously
barrier_wait :: proc(b: ^Barrier) -> (is_leader: bool) {
mutex_lock(&b.mutex);
defer mutex_unlock(&b.mutex);
local_gen := b.generation_id;
b.index += 1;
if b.index < b.thread_count {
for local_gen == b.generation_id && b.index < b.thread_count {
cond_wait(&b.cond, &b.mutex);
}
return false;
}
b.index = 0;
b.generation_id += 1;
cond_broadcast(&b.cond);
return true;
}
Auto_Reset_Event :: struct {
// status == 0: Event is reset and no threads are waiting
// status == 1: Event is signaled
// status == -N: Event is reset and N threads are waiting
status: i32,
sema: Sema,
}
auto_reset_event_signal :: proc(e: ^Auto_Reset_Event) {
old_status := atomic_load_relaxed(&e.status);
for {
new_status := old_status + 1 if old_status < 1 else 1;
if _, ok := atomic_compare_exchange_weak_release(&e.status, old_status, new_status); ok {
break;
}
if old_status < 0 {
sema_post(&e.sema);
}
}
}
auto_reset_event_wait :: proc(e: ^Auto_Reset_Event) {
old_status := atomic_sub_acquire(&e.status, 1);
if old_status < 1 {
sema_wait(&e.sema);
}
}
Ticket_Mutex :: struct {
ticket: uint,
serving: uint,
}
ticket_mutex_lock :: #force_inline proc(m: ^Ticket_Mutex) {
ticket := atomic_add_relaxed(&m.ticket, 1);
for ticket != atomic_load_acquire(&m.serving) {
cpu_relax();
}
}
ticket_mutex_unlock :: #force_inline proc(m: ^Ticket_Mutex) {
atomic_add_relaxed(&m.serving, 1);
}
Benaphore :: struct {
counter: i32,
sema: Sema,
}
benaphore_lock :: proc(b: ^Benaphore) {
if atomic_add_acquire(&b.counter, 1) > 1 {
sema_wait(&b.sema);
}
}
benaphore_try_lock :: proc(b: ^Benaphore) -> bool {
v, _ := atomic_compare_exchange_strong_acquire(&b.counter, 1, 0);
return v == 0;
}
benaphore_unlock :: proc(b: ^Benaphore) {
if atomic_sub_release(&b.counter, 1) > 0 {
sema_post(&b.sema);
}
}
Recursive_Benaphore :: struct {
counter: int,
owner: int,
recursion: i32,
sema: Sema,
}
recursive_benaphore_lock :: proc(b: ^Recursive_Benaphore) {
tid := current_thread_id();
if atomic_add_acquire(&b.counter, 1) > 1 {
if tid != b.owner {
sema_wait(&b.sema);
}
}
// inside the lock
b.owner = tid;
b.recursion += 1;
}
recursive_benaphore_try_lock :: proc(b: ^Recursive_Benaphore) -> bool {
tid := current_thread_id();
if b.owner == tid {
atomic_add_acquire(&b.counter, 1);
}
if v, _ := atomic_compare_exchange_strong_acquire(&b.counter, 1, 0); v != 0 {
return false;
}
// inside the lock
b.owner = tid;
b.recursion += 1;
return true;
}
recursive_benaphore_unlock :: proc(b: ^Recursive_Benaphore) {
tid := current_thread_id();
assert(tid == b.owner);
b.recursion -= 1;
recursion := b.recursion;
if recursion == 0 {
b.owner = 0;
}
if atomic_sub_release(&b.counter, 1) > 0 {
if recursion == 0 {
sema_post(&b.sema);
}
}
// outside the lock
}
Once :: struct {
m: Mutex,
done: bool,
}
once_do :: proc(o: ^Once, fn: proc()) {
if atomic_load_acquire(&o.done) == false {
_once_do_slow(o, fn);
}
}
@(cold)
_once_do_slow :: proc(o: ^Once, fn: proc()) {
mutex_lock(&o.m);
defer mutex_unlock(&o.m);
if !o.done {
fn();
atomic_store_release(&o.done, true);
}
}