Files
Odin/core/sync/sync2/primitives_atomic.odin
2021-06-08 18:26:38 +01:00

407 lines
9.8 KiB
Odin

package sync2
import "core:time"
Atomic_Mutex_State :: enum i32 {
Unlocked = 0,
Locked = 1,
Waiting = 2,
}
// An Atomic_Mutex is a mutual exclusion lock
// The zero value for a Atomic_Mutex is an unlocked mutex
//
// An Atomic_Mutex must not be copied after first use
Atomic_Mutex :: struct {
state: Atomic_Mutex_State,
}
// atomic_mutex_lock locks m
atomic_mutex_lock :: proc(m: ^Atomic_Mutex) {
@(cold)
lock_slow :: proc(m: ^Atomic_Mutex, curr_state: Atomic_Mutex_State) {
new_state := curr_state; // Make a copy of it
spin_lock: for spin in 0..<i32(100) {
state, ok := atomic_compare_exchange_weak_acquire(&m.state, .Unlocked, new_state);
if ok {
return;
}
if state == .Waiting {
break spin_lock;
}
for i := min(spin+1, 32); i > 0; i -= 1 {
cpu_relax();
}
}
for {
if atomic_exchange_acquire(&m.state, .Waiting) == .Unlocked {
return;
}
// TODO(bill): Use a Futex here for Linux to improve performance and error handling
cpu_relax();
}
}
switch v := atomic_exchange_acquire(&m.state, .Locked); v {
case .Unlocked:
// Okay
case: fallthrough;
case .Locked, .Waiting:
lock_slow(m, v);
}
}
// atomic_mutex_unlock unlocks m
atomic_mutex_unlock :: proc(m: ^Atomic_Mutex) {
@(cold)
unlock_slow :: proc(m: ^Atomic_Mutex) {
// TODO(bill): Use a Futex here for Linux to improve performance and error handling
}
switch atomic_exchange_release(&m.state, .Unlocked) {
case .Unlocked:
unreachable();
case .Locked:
// Okay
case .Waiting:
unlock_slow(m);
}
}
// atomic_mutex_try_lock tries to lock m, will return true on success, and false on failure
atomic_mutex_try_lock :: proc(m: ^Atomic_Mutex) -> bool {
_, ok := atomic_compare_exchange_strong_acquire(&m.state, .Unlocked, .Locked);
return ok;
}
// Example:
//
// if atomic_mutex_guard(&m) {
// ...
// }
//
@(deferred_in=atomic_mutex_unlock)
atomic_mutex_guard :: proc(m: ^Atomic_Mutex) -> bool {
atomic_mutex_lock(m);
return true;
}
Atomic_RW_Mutex_State :: distinct uint;
Atomic_RW_Mutex_State_Half_Width :: size_of(Atomic_RW_Mutex_State)*8/2;
Atomic_RW_Mutex_State_Is_Writing :: Atomic_RW_Mutex_State(1);
Atomic_RW_Mutex_State_Writer :: Atomic_RW_Mutex_State(1)<<1;
Atomic_RW_Mutex_State_Reader :: Atomic_RW_Mutex_State(1)<<Atomic_RW_Mutex_State_Half_Width;
Atomic_RW_Mutex_State_Writer_Mask :: Atomic_RW_Mutex_State(1<<(Atomic_RW_Mutex_State_Half_Width-1) - 1) << 1;
Atomic_RW_Mutex_State_Reader_Mask :: Atomic_RW_Mutex_State(1<<(Atomic_RW_Mutex_State_Half_Width-1) - 1) << Atomic_RW_Mutex_State_Half_Width;
// An Atomic_RW_Mutex is a reader/writer mutual exclusion lock
// The lock can be held by any arbitrary number of readers or a single writer
// The zero value for an Atomic_RW_Mutex is an unlocked mutex
//
// An Atomic_RW_Mutex must not be copied after first use
Atomic_RW_Mutex :: struct {
state: Atomic_RW_Mutex_State,
mutex: Atomic_Mutex,
sema: Atomic_Sema,
}
// atomic_rw_mutex_lock locks rw for writing (with a single writer)
// If the mutex is already locked for reading or writing, the mutex blocks until the mutex is available.
atomic_rw_mutex_lock :: proc(rw: ^Atomic_RW_Mutex) {
_ = atomic_add(&rw.state, Atomic_RW_Mutex_State_Writer);
atomic_mutex_lock(&rw.mutex);
state := atomic_or(&rw.state, Atomic_RW_Mutex_State_Writer);
if state & Atomic_RW_Mutex_State_Reader_Mask != 0 {
atomic_sema_wait(&rw.sema);
}
}
// atomic_rw_mutex_unlock unlocks rw for writing (with a single writer)
atomic_rw_mutex_unlock :: proc(rw: ^Atomic_RW_Mutex) {
_ = atomic_and(&rw.state, ~Atomic_RW_Mutex_State_Is_Writing);
atomic_mutex_unlock(&rw.mutex);
}
// atomic_rw_mutex_try_lock tries to lock rw for writing (with a single writer)
atomic_rw_mutex_try_lock :: proc(rw: ^Atomic_RW_Mutex) -> bool {
if atomic_mutex_try_lock(&rw.mutex) {
state := atomic_load(&rw.state);
if state & Atomic_RW_Mutex_State_Reader_Mask == 0 {
_ = atomic_or(&rw.state, Atomic_RW_Mutex_State_Is_Writing);
return true;
}
atomic_mutex_unlock(&rw.mutex);
}
return false;
}
// atomic_rw_mutex_shared_lock locks rw for reading (with arbitrary number of readers)
atomic_rw_mutex_shared_lock :: proc(rw: ^Atomic_RW_Mutex) {
state := atomic_load(&rw.state);
for state & (Atomic_RW_Mutex_State_Is_Writing|Atomic_RW_Mutex_State_Writer_Mask) == 0 {
ok: bool;
state, ok = atomic_compare_exchange_weak(&rw.state, state, state + Atomic_RW_Mutex_State_Reader);
if ok {
return;
}
}
atomic_mutex_lock(&rw.mutex);
_ = atomic_add(&rw.state, Atomic_RW_Mutex_State_Reader);
atomic_mutex_unlock(&rw.mutex);
}
// atomic_rw_mutex_shared_unlock unlocks rw for reading (with arbitrary number of readers)
atomic_rw_mutex_shared_unlock :: proc(rw: ^Atomic_RW_Mutex) {
state := atomic_sub(&rw.state, Atomic_RW_Mutex_State_Reader);
if (state & Atomic_RW_Mutex_State_Reader_Mask == Atomic_RW_Mutex_State_Reader) &&
(state & Atomic_RW_Mutex_State_Is_Writing != 0) {
atomic_sema_post(&rw.sema);
}
}
// atomic_rw_mutex_try_shared_lock tries to lock rw for reading (with arbitrary number of readers)
atomic_rw_mutex_try_shared_lock :: proc(rw: ^Atomic_RW_Mutex) -> bool {
state := atomic_load(&rw.state);
if state & (Atomic_RW_Mutex_State_Is_Writing|Atomic_RW_Mutex_State_Writer_Mask) == 0 {
_, ok := atomic_compare_exchange_strong(&rw.state, state, state + Atomic_RW_Mutex_State_Reader);
if ok {
return true;
}
}
if atomic_mutex_try_lock(&rw.mutex) {
_ = atomic_add(&rw.state, Atomic_RW_Mutex_State_Reader);
atomic_mutex_unlock(&rw.mutex);
return true;
}
return false;
}
// Example:
//
// if atomic_rw_mutex_guard(&m) {
// ...
// }
//
@(deferred_in=atomic_rw_mutex_unlock)
atomic_rw_mutex_guard :: proc(m: ^Atomic_RW_Mutex) -> bool {
atomic_rw_mutex_lock(m);
return true;
}
// Example:
//
// if atomic_rw_mutex_shared_guard(&m) {
// ...
// }
//
@(deferred_in=atomic_rw_mutex_shared_unlock)
atomic_rw_mutex_shared_guard :: proc(m: ^Atomic_RW_Mutex) -> bool {
atomic_rw_mutex_shared_lock(m);
return true;
}
// An Atomic_Recursive_Mutex is a recursive mutual exclusion lock
// The zero value for a Recursive_Mutex is an unlocked mutex
//
// An Atomic_Recursive_Mutex must not be copied after first use
Atomic_Recursive_Mutex :: struct {
owner: int,
recursion: int,
mutex: Mutex,
}
atomic_recursive_mutex_lock :: proc(m: ^Atomic_Recursive_Mutex) {
tid := current_thread_id();
if tid != m.owner {
mutex_lock(&m.mutex);
}
// inside the lock
m.owner = tid;
m.recursion += 1;
}
atomic_recursive_mutex_unlock :: proc(m: ^Atomic_Recursive_Mutex) {
tid := current_thread_id();
assert(tid == m.owner);
m.recursion -= 1;
recursion := m.recursion;
if recursion == 0 {
m.owner = 0;
}
if recursion == 0 {
mutex_unlock(&m.mutex);
}
// outside the lock
}
atomic_recursive_mutex_try_lock :: proc(m: ^Atomic_Recursive_Mutex) -> bool {
tid := current_thread_id();
if m.owner == tid {
return mutex_try_lock(&m.mutex);
}
if !mutex_try_lock(&m.mutex) {
return false;
}
// inside the lock
m.owner = tid;
m.recursion += 1;
return true;
}
// Example:
//
// if atomic_recursive_mutex_guard(&m) {
// ...
// }
//
@(deferred_in=atomic_recursive_mutex_unlock)
atomic_recursive_mutex_guard :: proc(m: ^Atomic_Recursive_Mutex) -> bool {
atomic_recursive_mutex_lock(m);
return true;
}
@(private="file")
Queue_Item :: struct {
next: ^Queue_Item,
futex: i32,
}
@(private="file")
queue_item_wait :: proc(item: ^Queue_Item) {
for atomic_load_acquire(&item.futex) == 0 {
// TODO(bill): Use a Futex here for Linux to improve performance and error handling
cpu_relax();
}
}
@(private="file")
queue_item_signal :: proc(item: ^Queue_Item) {
atomic_store_release(&item.futex, 1);
// TODO(bill): Use a Futex here for Linux to improve performance and error handling
}
// Atomic_Cond implements a condition variable, a rendezvous point for threads
// waiting for signalling the occurence of an event
//
// An Atomic_Cond must not be copied after first use
Atomic_Cond :: struct {
queue_mutex: Atomic_Mutex,
queue_head: ^Queue_Item,
pending: bool,
}
atomic_cond_wait :: proc(c: ^Atomic_Cond, m: ^Atomic_Mutex) {
waiter := &Queue_Item{};
atomic_mutex_lock(&c.queue_mutex);
waiter.next = c.queue_head;
c.queue_head = waiter;
atomic_store(&c.pending, true);
atomic_mutex_unlock(&c.queue_mutex);
atomic_mutex_unlock(m);
queue_item_wait(waiter);
atomic_mutex_lock(m);
}
atomic_cond_wait_with_timeout :: proc(c: ^Atomic_Cond, m: ^Atomic_Mutex, timeout: time.Duration) -> bool {
// TODO(bill): _cond_wait_with_timeout for unix
return false;
}
atomic_cond_signal :: proc(c: ^Atomic_Cond) {
if !atomic_load(&c.pending) {
return;
}
atomic_mutex_lock(&c.queue_mutex);
waiter := c.queue_head;
if c.queue_head != nil {
c.queue_head = c.queue_head.next;
}
atomic_store(&c.pending, c.queue_head != nil);
atomic_mutex_unlock(&c.queue_mutex);
if waiter != nil {
queue_item_signal(waiter);
}
}
atomic_cond_broadcast :: proc(c: ^Atomic_Cond) {
if !atomic_load(&c.pending) {
return;
}
atomic_store(&c.pending, false);
atomic_mutex_lock(&c.queue_mutex);
waiters := c.queue_head;
c.queue_head = nil;
atomic_mutex_unlock(&c.queue_mutex);
for waiters != nil {
queue_item_signal(waiters);
waiters = waiters.next;
}
}
// When waited upon, blocks until the internal count is greater than zero, then subtracts one.
// Posting to the semaphore increases the count by one, or the provided amount.
//
// An Atomic_Sema must not be copied after first use
Atomic_Sema :: struct {
mutex: Atomic_Mutex,
cond: Atomic_Cond,
count: int,
}
atomic_sema_wait :: proc(s: ^Atomic_Sema) {
atomic_mutex_lock(&s.mutex);
defer atomic_mutex_unlock(&s.mutex);
for s.count == 0 {
atomic_cond_wait(&s.cond, &s.mutex);
}
s.count -= 1;
if s.count > 0 {
atomic_cond_signal(&s.cond);
}
}
atomic_sema_post :: proc(s: ^Atomic_Sema, count := 1) {
atomic_mutex_lock(&s.mutex);
defer atomic_mutex_unlock(&s.mutex);
s.count += count;
atomic_cond_signal(&s.cond);
}