Files
Odin/src/check_stmt.cpp

1970 lines
52 KiB
C++

void check_stmt_list(CheckerContext *ctx, Array<Ast *> const &stmts, u32 flags) {
if (stmts.count == 0) {
return;
}
if (flags&Stmt_CheckScopeDecls) {
check_scope_decls(ctx, stmts, cast(isize)(1.2*stmts.count));
}
bool ft_ok = (flags & Stmt_FallthroughAllowed) != 0;
flags &= ~Stmt_FallthroughAllowed;
isize max = stmts.count;
for (isize i = stmts.count-1; i >= 0; i--) {
if (stmts[i]->kind != Ast_EmptyStmt) {
break;
}
max--;
}
for (isize i = 0; i < max; i++) {
Ast *n = stmts[i];
if (n->kind == Ast_EmptyStmt) {
continue;
}
u32 new_flags = flags;
if (ft_ok && i+1 == max) {
new_flags |= Stmt_FallthroughAllowed;
}
if (i+1 < max) {
switch (n->kind) {
case Ast_ReturnStmt:
error(n, "Statements after this 'return' are never execu");
break;
case Ast_BranchStmt:
error(n, "Statements after this '%.*s' are never executed", LIT(n->BranchStmt.token.string));
break;
}
}
check_stmt(ctx, n, new_flags);
}
}
bool check_is_terminating_list(Array<Ast *> const &stmts) {
// Iterate backwards
for (isize n = stmts.count-1; n >= 0; n--) {
Ast *stmt = stmts[n];
if (stmt->kind != Ast_EmptyStmt) {
return check_is_terminating(stmt);
}
}
return false;
}
bool check_has_break_list(Array<Ast *> const &stmts, bool implicit) {
for_array(i, stmts) {
Ast *stmt = stmts[i];
if (check_has_break(stmt, implicit)) {
return true;
}
}
return false;
}
bool check_has_break(Ast *stmt, bool implicit) {
switch (stmt->kind) {
case Ast_BranchStmt:
if (stmt->BranchStmt.token.kind == Token_break) {
return implicit;
}
break;
case Ast_BlockStmt:
return check_has_break_list(stmt->BlockStmt.stmts, implicit);
case Ast_IfStmt:
if (check_has_break(stmt->IfStmt.body, implicit) ||
(stmt->IfStmt.else_stmt != nullptr && check_has_break(stmt->IfStmt.else_stmt, implicit))) {
return true;
}
break;
case Ast_CaseClause:
return check_has_break_list(stmt->CaseClause.stmts, implicit);
}
return false;
}
// NOTE(bill): The last expression has to be a 'return' statement
// TODO(bill): This is a mild hack and should be probably handled properly
bool check_is_terminating(Ast *node) {
switch (node->kind) {
case_ast_node(rs, ReturnStmt, node);
return true;
case_end;
case_ast_node(bs, BlockStmt, node);
return check_is_terminating_list(bs->stmts);
case_end;
case_ast_node(es, ExprStmt, node);
return check_is_terminating(es->expr);
case_end;
case_ast_node(is, IfStmt, node);
if (is->else_stmt != nullptr) {
if (check_is_terminating(is->body) &&
check_is_terminating(is->else_stmt)) {
return true;
}
}
case_end;
case_ast_node(ws, WhenStmt, node);
if (ws->else_stmt != nullptr) {
if (check_is_terminating(ws->body) &&
check_is_terminating(ws->else_stmt)) {
return true;
}
}
case_end;
case_ast_node(fs, ForStmt, node);
if (fs->cond == nullptr && !check_has_break(fs->body, true)) {
return check_is_terminating(fs->body);
}
case_end;
case_ast_node(rs, InlineRangeStmt, node);
return false;
case_end;
case_ast_node(rs, RangeStmt, node);
return false;
case_end;
case_ast_node(ss, SwitchStmt, node);
bool has_default = false;
for_array(i, ss->body->BlockStmt.stmts) {
Ast *clause = ss->body->BlockStmt.stmts[i];
ast_node(cc, CaseClause, clause);
if (cc->list.count == 0) {
has_default = true;
}
if (!check_is_terminating_list(cc->stmts) ||
check_has_break_list(cc->stmts, true)) {
return false;
}
}
return has_default;
case_end;
case_ast_node(ss, TypeSwitchStmt, node);
bool has_default = false;
for_array(i, ss->body->BlockStmt.stmts) {
Ast *clause = ss->body->BlockStmt.stmts[i];
ast_node(cc, CaseClause, clause);
if (cc->list.count == 0) {
has_default = true;
}
if (!check_is_terminating_list(cc->stmts) ||
check_has_break_list(cc->stmts, true)) {
return false;
}
}
return has_default;
case_end;
}
return false;
}
Type *check_assignment_variable(CheckerContext *ctx, Operand *lhs, Operand *rhs) {
if (rhs->mode == Addressing_Invalid) {
return nullptr;
}
if (rhs->type == t_invalid &&
rhs->mode != Addressing_ProcGroup &&
rhs->mode != Addressing_Builtin) {
return nullptr;
}
Ast *node = unparen_expr(lhs->expr);
// NOTE(bill): Ignore assignments to '_'
if (is_blank_ident(node)) {
check_assignment(ctx, rhs, nullptr, str_lit("assignment to '_' identifier"));
if (rhs->mode == Addressing_Invalid) {
return nullptr;
}
return rhs->type;
}
Entity *e = nullptr;
bool used = false;
if (lhs->mode == Addressing_Invalid ||
(lhs->type == t_invalid &&
lhs->mode != Addressing_ProcGroup &&
lhs->mode != Addressing_Builtin)) {
return nullptr;
}
if (rhs->mode == Addressing_ProcGroup) {
Array<Entity *> procs = proc_group_entities(ctx, *rhs);
GB_ASSERT(procs.count > 0);
// NOTE(bill): These should be done
for_array(i, procs) {
Type *t = base_type(procs[i]->type);
if (t == t_invalid) {
continue;
}
Operand x = {};
x.mode = Addressing_Value;
x.type = t;
if (check_is_assignable_to(ctx, &x, lhs->type)) {
e = procs[i];
add_entity_use(ctx, rhs->expr, e);
break;
}
}
if (e != nullptr) {
// HACK TODO(bill): Should the entities be freed as it's technically a leak
rhs->mode = Addressing_Value;
rhs->type = e->type;
rhs->proc_group = nullptr;
}
} else {
if (node->kind == Ast_Ident) {
ast_node(i, Ident, node);
e = scope_lookup(ctx->scope, i->token.string);
if (e != nullptr && e->kind == Entity_Variable) {
used = (e->flags & EntityFlag_Used) != 0; // TODO(bill): Make backup just in case
}
}
}
if (e != nullptr && used) {
e->flags |= EntityFlag_Used;
}
Type *assignment_type = lhs->type;
switch (lhs->mode) {
case Addressing_Invalid:
return nullptr;
case Addressing_Variable:
if (is_type_bit_field_value(lhs->type)) {
Type *res = check_assignment_bit_field(ctx, rhs, lhs->type);
if (res == nullptr) {
gbString lhs_expr = expr_to_string(lhs->expr);
gbString rhs_expr = expr_to_string(rhs->expr);
error(rhs->expr, "Cannot assign '%s' to bit field '%s'", rhs_expr, lhs_expr);
gb_string_free(rhs_expr);
gb_string_free(lhs_expr);
}
return res;
}
break;
case Addressing_MapIndex: {
Ast *ln = unparen_expr(lhs->expr);
if (ln->kind == Ast_IndexExpr) {
Ast *x = ln->IndexExpr.expr;
TypeAndValue tav = x->tav;
GB_ASSERT(tav.mode != Addressing_Invalid);
if (tav.mode != Addressing_Variable) {
if (!is_type_pointer(tav.type)) {
gbString str = expr_to_string(lhs->expr);
error(lhs->expr, "Cannot assign to the value of a map '%s'", str);
gb_string_free(str);
return nullptr;
}
}
}
break;
}
case Addressing_Context: {
break;
}
default: {
if (lhs->expr->kind == Ast_SelectorExpr) {
// NOTE(bill): Extra error checks
Operand op_c = {Addressing_Invalid};
ast_node(se, SelectorExpr, lhs->expr);
check_expr(ctx, &op_c, se->expr);
if (op_c.mode == Addressing_MapIndex) {
gbString str = expr_to_string(lhs->expr);
error(lhs->expr, "Cannot assign to struct field '%s' in map", str);
gb_string_free(str);
return nullptr;
}
}
Entity *e = entity_of_ident(lhs->expr);
gbString str = expr_to_string(lhs->expr);
if (lhs->mode == Addressing_Immutable) {
error(lhs->expr, "Cannot assign to an immutable: '%s'", str);
} else if (e != nullptr && e->flags & EntityFlag_Param) {
error(lhs->expr, "Cannot assign to '%s' which is a procedure parameter", str);
} else {
error(lhs->expr, "Cannot assign to '%s'", str);
}
gb_string_free(str);
break;
}
}
check_assignment(ctx, rhs, assignment_type, str_lit("assignment"));
if (rhs->mode == Addressing_Invalid) {
return nullptr;
}
return rhs->type;
}
void check_stmt_internal(CheckerContext *ctx, Ast *node, u32 flags);
void check_stmt(CheckerContext *ctx, Ast *node, u32 flags) {
u32 prev_stmt_state_flags = ctx->stmt_state_flags;
if (node->stmt_state_flags != 0) {
u32 in = node->stmt_state_flags;
u32 out = ctx->stmt_state_flags;
if (in & StmtStateFlag_no_bounds_check) {
out |= StmtStateFlag_no_bounds_check;
out &= ~StmtStateFlag_bounds_check;
} else {
// if (in & StmtStateFlag_bounds_check) {
out |= StmtStateFlag_bounds_check;
out &= ~StmtStateFlag_no_bounds_check;
}
ctx->stmt_state_flags = out;
}
check_stmt_internal(ctx, node, flags);
ctx->stmt_state_flags = prev_stmt_state_flags;
}
void check_when_stmt(CheckerContext *ctx, AstWhenStmt *ws, u32 flags) {
Operand operand = {Addressing_Invalid};
check_expr(ctx, &operand, ws->cond);
if (operand.mode != Addressing_Constant || !is_type_boolean(operand.type)) {
error(ws->cond, "Non-constant boolean 'when' condition");
return;
}
if (ws->body == nullptr || ws->body->kind != Ast_BlockStmt) {
error(ws->cond, "Invalid body for 'when' statement");
return;
}
if (operand.value.kind == ExactValue_Bool &&
operand.value.value_bool) {
check_stmt_list(ctx, ws->body->BlockStmt.stmts, flags);
} else if (ws->else_stmt) {
switch (ws->else_stmt->kind) {
case Ast_BlockStmt:
check_stmt_list(ctx, ws->else_stmt->BlockStmt.stmts, flags);
break;
case Ast_WhenStmt:
check_when_stmt(ctx, &ws->else_stmt->WhenStmt, flags);
break;
default:
error(ws->else_stmt, "Invalid 'else' statement in 'when' statement");
break;
}
}
}
void check_label(CheckerContext *ctx, Ast *label, Ast *parent) {
if (label == nullptr) {
return;
}
ast_node(l, Label, label);
if (l->name->kind != Ast_Ident) {
error(l->name, "A label's name must be an identifier");
return;
}
String name = l->name->Ident.token.string;
if (is_blank_ident(name)) {
error(l->name, "A label's name cannot be a blank identifier");
return;
}
if (ctx->curr_proc_decl == nullptr) {
error(l->name, "A label is only allowed within a procedure");
return;
}
GB_ASSERT(ctx->decl != nullptr);
bool ok = true;
for_array(i, ctx->decl->labels) {
BlockLabel bl = ctx->decl->labels[i];
if (bl.name == name) {
error(label, "Duplicate label with the name '%.*s'", LIT(name));
ok = false;
break;
}
}
Entity *e = alloc_entity_label(ctx->scope, l->name->Ident.token, t_invalid, label, parent);
add_entity(ctx->checker, ctx->scope, l->name, e);
e->parent_proc_decl = ctx->curr_proc_decl;
if (ok) {
BlockLabel bl = {name, label};
array_add(&ctx->decl->labels, bl);
}
}
// Returns 'true' for 'continue', 'false' for 'return'
bool check_using_stmt_entity(CheckerContext *ctx, AstUsingStmt *us, Ast *expr, bool is_selector, Entity *e) {
if (e == nullptr) {
error(us->token, "'using' applied to an unknown entity");
return true;
}
add_entity_use(ctx, expr, e);
switch (e->kind) {
case Entity_TypeName: {
Type *t = base_type(e->type);
if (t->kind == Type_Enum) {
for_array(i, t->Enum.fields) {
Entity *f = t->Enum.fields[i];
if (!is_entity_exported(f)) continue;
Entity *found = scope_insert(ctx->scope, f);
if (found != nullptr) {
gbString expr_str = expr_to_string(expr);
error(us->token, "Namespace collision while 'using' '%s' of: %.*s", expr_str, LIT(found->token.string));
gb_string_free(expr_str);
return false;
}
f->using_parent = e;
}
} else {
error(us->token, "'using' can be only applied to enum type entities");
}
break;
}
case Entity_ImportName: {
Scope *scope = e->ImportName.scope;
for_array(i, scope->elements.entries) {
String name = scope->elements.entries[i].key.string;
Entity *decl = scope->elements.entries[i].value;
if (!is_entity_exported(decl)) continue;
Entity *found = scope_insert_with_name(ctx->scope, name, decl);
if (found != nullptr) {
gbString expr_str = expr_to_string(expr);
error(us->token,
"Namespace collision while 'using' '%s' of: %.*s\n"
"\tat %.*s(%td:%td)\n"
"\tat %.*s(%td:%td)",
expr_str, LIT(found->token.string),
LIT(found->token.pos.file), found->token.pos.line, found->token.pos.column,
LIT(decl->token.pos.file), decl->token.pos.line, decl->token.pos.column
);
gb_string_free(expr_str);
return false;
}
}
break;
}
case Entity_Variable: {
Type *t = base_type(type_deref(e->type));
if (t->kind == Type_Struct) {
// TODO(bill): Make it work for unions too
Scope *found = scope_of_node(t->Struct.node);
for_array(i, found->elements.entries) {
Entity *f = found->elements.entries[i].value;
if (f->kind == Entity_Variable) {
Entity *uvar = alloc_entity_using_variable(e, f->token, f->type, expr);
Entity *prev = scope_insert(ctx->scope, uvar);
if (prev != nullptr) {
gbString expr_str = expr_to_string(expr);
error(us->token, "Namespace collision while using '%s' of: '%.*s'", expr_str, LIT(prev->token.string));
gb_string_free(expr_str);
return false;
}
}
}
} else {
error(us->token, "'using' can only be applied to variables of type 'struct'");
return false;
}
break;
}
case Entity_Constant:
error(us->token, "'using' cannot be applied to a constant");
break;
case Entity_Procedure:
case Entity_ProcGroup:
case Entity_Builtin:
error(us->token, "'using' cannot be applied to a procedure");
break;
case Entity_Nil:
error(us->token, "'using' cannot be applied to 'nil'");
break;
case Entity_Label:
error(us->token, "'using' cannot be applied to a label");
break;
case Entity_Invalid:
error(us->token, "'using' cannot be applied to an invalid entity");
break;
default:
GB_PANIC("TODO(bill): 'using' other expressions?");
}
return true;
}
struct TypeAndToken {
Type *type;
Token token;
};
void add_constant_switch_case(CheckerContext *ctx, Map<TypeAndToken> *seen, Operand operand, bool use_expr = true) {
if (operand.mode != Addressing_Constant) {
return;
}
if (operand.value.kind == ExactValue_Invalid) {
return;
}
HashKey key = hash_exact_value(operand.value);
TypeAndToken *found = map_get(seen, key);
if (found != nullptr) {
isize count = multi_map_count(seen, key);
TypeAndToken *taps = gb_alloc_array(ctx->allocator, TypeAndToken, count);
defer (gb_free(ctx->allocator, taps));
multi_map_get_all(seen, key, taps);
for (isize i = 0; i < count; i++) {
TypeAndToken tap = taps[i];
if (are_types_identical(operand.type, tap.type)) {
TokenPos pos = tap.token.pos;
if (use_expr) {
gbString expr_str = expr_to_string(operand.expr);
error(operand.expr,
"Duplicate case '%s'\n"
"\tprevious case at %.*s(%td:%td)",
expr_str,
LIT(pos.file), pos.line, pos.column);
gb_string_free(expr_str);
} else {
error(operand.expr,
"Duplicate case found with previous case at %.*s(%td:%td)",
LIT(pos.file), pos.line, pos.column);
}
return;
}
}
}
TypeAndToken tap = {operand.type, ast_token(operand.expr)};
multi_map_insert(seen, key, tap);
}
void check_inline_range_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(irs, InlineRangeStmt, node);
check_open_scope(ctx, node);
Type *val0 = nullptr;
Type *val1 = nullptr;
Entity *entities[2] = {};
isize entity_count = 0;
Ast *expr = unparen_expr(irs->expr);
ExactValue inline_for_depth = exact_value_i64(0);
if (is_ast_range(expr)) {
ast_node(ie, BinaryExpr, expr);
Operand x = {};
Operand y = {};
bool ok = check_range(ctx, expr, &x, &y, &inline_for_depth);
if (!ok) {
goto skip_expr;
}
val0 = x.type;
val1 = t_int;
} else {
Operand operand = {Addressing_Invalid};
check_expr_or_type(ctx, &operand, irs->expr);
if (operand.mode == Addressing_Type) {
if (!is_type_enum(operand.type)) {
gbString t = type_to_string(operand.type);
error(operand.expr, "Cannot iterate over the type '%s'", t);
gb_string_free(t);
goto skip_expr;
} else {
val0 = operand.type;
val1 = t_int;
add_type_info_type(ctx, operand.type);
Type *bt = base_type(operand.type);
inline_for_depth = exact_value_i64(bt->Enum.fields.count);
goto skip_expr;
}
} else if (operand.mode != Addressing_Invalid) {
Type *t = base_type(operand.type);
switch (t->kind) {
case Type_Basic:
if (is_type_string(t) && t->Basic.kind != Basic_cstring) {
val0 = t_rune;
val1 = t_int;
inline_for_depth = exact_value_i64(operand.value.value_string.len);
}
break;
case Type_Array:
val0 = t->Array.elem;
val1 = t_int;
inline_for_depth = exact_value_i64(t->Array.count);
break;
}
}
if (val0 == nullptr) {
gbString s = expr_to_string(operand.expr);
gbString t = type_to_string(operand.type);
error(operand.expr, "Cannot iterate over '%s' of type '%s' in an 'inline for' statement", s, t);
gb_string_free(t);
gb_string_free(s);
} else if (operand.mode != Addressing_Constant) {
error(operand.expr, "An 'inline for' expression must be known at compile time");
}
}
skip_expr:; // NOTE(zhiayang): again, declaring a variable immediately after a label... weird.
Ast * lhs[2] = {irs->val0, irs->val1};
Type *rhs[2] = {val0, val1};
for (isize i = 0; i < 2; i++) {
if (lhs[i] == nullptr) {
continue;
}
Ast * name = lhs[i];
Type *type = rhs[i];
Entity *entity = nullptr;
if (name->kind == Ast_Ident) {
Token token = name->Ident.token;
String str = token.string;
Entity *found = nullptr;
if (!is_blank_ident(str)) {
found = scope_lookup_current(ctx->scope, str);
}
if (found == nullptr) {
bool is_immutable = true;
entity = alloc_entity_variable(ctx->scope, token, type, is_immutable, EntityState_Resolved);
entity->flags |= EntityFlag_Value;
add_entity_definition(&ctx->checker->info, name, entity);
} else {
TokenPos pos = found->token.pos;
error(token,
"Redeclaration of '%.*s' in this scope\n"
"\tat %.*s(%td:%td)",
LIT(str), LIT(pos.file), pos.line, pos.column);
entity = found;
}
} else {
error(name, "A variable declaration must be an identifier");
}
if (entity == nullptr) {
entity = alloc_entity_dummy_variable(builtin_pkg->scope, ast_token(name));
}
entities[entity_count++] = entity;
if (type == nullptr) {
entity->type = t_invalid;
entity->flags |= EntityFlag_Used;
}
}
for (isize i = 0; i < entity_count; i++) {
add_entity(ctx->checker, ctx->scope, entities[i]->identifier, entities[i]);
}
// NOTE(bill): Minimize the amount of nesting of an 'inline for'
i64 prev_inline_for_depth = ctx->inline_for_depth;
defer (ctx->inline_for_depth = prev_inline_for_depth);
{
i64 v = exact_value_to_i64(inline_for_depth);
if (v <= 0) {
// Do nothing
} else {
ctx->inline_for_depth = gb_max(ctx->inline_for_depth, 1) * v;
}
if (ctx->inline_for_depth >= MAX_INLINE_FOR_DEPTH && prev_inline_for_depth < MAX_INLINE_FOR_DEPTH) {
if (prev_inline_for_depth > 0) {
error(node, "Nested 'inline for' loop cannot be inlined as it exceeds the maximum inline for depth (%lld levels >= %lld maximum levels)", v, MAX_INLINE_FOR_DEPTH);
} else {
error(node, "'inline for' loop cannot be inlined as it exceeds the maximum inline for depth (%lld levels >= %lld maximum levels)", v, MAX_INLINE_FOR_DEPTH);
}
error_line("\tUse a normal 'for' loop instead by removing the 'inline' prefix\n");
ctx->inline_for_depth = MAX_INLINE_FOR_DEPTH;
}
}
check_stmt(ctx, irs->body, mod_flags);
check_close_scope(ctx);
}
void check_switch_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(ss, SwitchStmt, node);
Operand x = {};
mod_flags |= Stmt_BreakAllowed | Stmt_FallthroughAllowed;
check_open_scope(ctx, node);
defer (check_close_scope(ctx));
check_label(ctx, ss->label, node); // TODO(bill): What should the label's "scope" be?
if (ss->init != nullptr) {
check_stmt(ctx, ss->init, 0);
}
if (ss->tag != nullptr) {
check_expr(ctx, &x, ss->tag);
check_assignment(ctx, &x, nullptr, str_lit("switch expression"));
} else {
x.mode = Addressing_Constant;
x.type = t_bool;
x.value = exact_value_bool(true);
Token token = {};
token.pos = ast_token(ss->body).pos;
token.string = str_lit("true");
x.expr = gb_alloc_item(ctx->allocator, Ast);
x.expr->kind = Ast_Ident;
x.expr->Ident.token = token;
}
// NOTE(bill): Check for multiple defaults
Ast *first_default = nullptr;
ast_node(bs, BlockStmt, ss->body);
for_array(i, bs->stmts) {
Ast *stmt = bs->stmts[i];
Ast *default_stmt = nullptr;
if (stmt->kind == Ast_CaseClause) {
ast_node(cc, CaseClause, stmt);
if (cc->list.count == 0) {
default_stmt = stmt;
}
} else {
error(stmt, "Invalid AST - expected case clause");
}
if (default_stmt != nullptr) {
if (first_default != nullptr) {
TokenPos pos = ast_token(first_default).pos;
error(stmt,
"multiple default clauses\n"
"\tfirst at %.*s(%td:%td)",
LIT(pos.file), pos.line, pos.column);
} else {
first_default = default_stmt;
}
}
}
bool complete = ss->complete;
if (complete) {
if (!is_type_enum(x.type)) {
error(x.expr, "#complete switch statement can be only used with an enum type");
complete = false;
}
}
Map<TypeAndToken> seen = {}; // NOTE(bill): Multimap, Key: ExactValue
map_init(&seen, heap_allocator());
defer (map_destroy(&seen));
for_array(stmt_index, bs->stmts) {
Ast *stmt = bs->stmts[stmt_index];
if (stmt->kind != Ast_CaseClause) {
// NOTE(bill): error handled by above multiple default checker
continue;
}
ast_node(cc, CaseClause, stmt);
for_array(j, cc->list) {
Ast *expr = unparen_expr(cc->list[j]);
if (is_ast_range(expr)) {
ast_node(be, BinaryExpr, expr);
Operand lhs = {};
Operand rhs = {};
check_expr_with_type_hint(ctx, &lhs, be->left, x.type);
if (x.mode == Addressing_Invalid) {
continue;
}
if (lhs.mode == Addressing_Invalid) {
continue;
}
check_expr_with_type_hint(ctx, &rhs, be->right, x.type);
if (rhs.mode == Addressing_Invalid) {
continue;
}
if (!is_type_ordered(x.type)) {
gbString str = type_to_string(x.type);
error(expr, "Unordered type '%s', is invalid for an interval expression", str);
gb_string_free(str);
continue;
}
TokenKind upper_op = Token_Invalid;
switch (be->op.kind) {
case Token_Ellipsis: upper_op = Token_GtEq; break;
case Token_RangeHalf: upper_op = Token_Gt; break;
default: GB_PANIC("Invalid range operator"); break;
}
Operand a = lhs;
Operand b = rhs;
check_comparison(ctx, &a, &x, Token_LtEq);
if (a.mode == Addressing_Invalid) {
continue;
}
check_comparison(ctx, &b, &x, upper_op);
if (b.mode == Addressing_Invalid) {
continue;
}
Operand a1 = lhs;
Operand b1 = rhs;
check_comparison(ctx, &a1, &b1, Token_LtEq);
if (complete) {
error(lhs.expr, "#complete switch statement does not allow ranges");
}
add_constant_switch_case(ctx, &seen, lhs);
if (upper_op == Token_GtEq) {
add_constant_switch_case(ctx, &seen, rhs);
}
if (is_type_string(x.type)) {
// NOTE(bill): Force dependency for strings here
add_package_dependency(ctx, "runtime", "string_le");
add_package_dependency(ctx, "runtime", "string_lt");
}
} else {
Operand y = {};
if (is_type_typeid(x.type)) {
check_expr_or_type(ctx, &y, expr, x.type);
} else {
check_expr_with_type_hint(ctx, &y, expr, x.type);
}
if (x.mode == Addressing_Invalid ||
y.mode == Addressing_Invalid) {
continue;
}
if (y.mode == Addressing_Type) {
Type *t = y.type;
if (t == nullptr || t == t_invalid || is_type_polymorphic(t)) {
error(y.expr, "Invalid type for case clause");
continue;
}
t = default_type(t);
add_type_info_type(ctx, t);
} else {
convert_to_typed(ctx, &y, x.type);
if (y.mode == Addressing_Invalid) {
continue;
}
// NOTE(bill): the ordering here matters
Operand z = y;
check_comparison(ctx, &z, &x, Token_CmpEq);
if (z.mode == Addressing_Invalid) {
continue;
}
if (y.mode != Addressing_Constant) {
if (complete) {
error(y.expr, "#complete switch statement only allows constant case clauses");
}
continue;
}
add_constant_switch_case(ctx, &seen, y);
}
}
}
check_open_scope(ctx, stmt);
check_stmt_list(ctx, cc->stmts, mod_flags);
check_close_scope(ctx);
}
if (complete) {
Type *et = base_type(x.type);
GB_ASSERT(is_type_enum(et));
auto fields = et->Enum.fields;
auto unhandled = array_make<Entity *>(ctx->allocator, 0, fields.count);
defer (array_free(&unhandled));
for_array(i, fields) {
Entity *f = fields[i];
if (f->kind != Entity_Constant) {
continue;
}
ExactValue v = f->Constant.value;
HashKey key = hash_exact_value(v);
auto found = map_get(&seen, key);
if (!found) {
array_add(&unhandled, f);
}
}
if (unhandled.count > 0) {
begin_error_block();
defer (begin_error_block());
if (unhandled.count == 1) {
error_no_newline(node, "Unhandled switch case: ");
} else {
error_no_newline(node, "Unhandled switch cases: ");
}
for_array(i, unhandled) {
Entity *f = unhandled[i];
if (i > 0) {
error_line(", ");
}
error_line("%.*s", LIT(f->token.string));
}
error_line("\n");
}
}
}
enum TypeSwitchKind {
TypeSwitch_Invalid,
TypeSwitch_Union,
TypeSwitch_Any,
};
TypeSwitchKind check_valid_type_switch_type(Type *type) {
type = type_deref(type);
if (is_type_union(type)) {
return TypeSwitch_Union;
}
if (is_type_any(type)) {
return TypeSwitch_Any;
}
return TypeSwitch_Invalid;
}
void check_type_switch_stmt(CheckerContext *ctx, Ast *node, u32 mod_flags) {
ast_node(ss, TypeSwitchStmt, node);
Operand x = {};
mod_flags |= Stmt_BreakAllowed;
check_open_scope(ctx, node);
defer (check_close_scope(ctx));
check_label(ctx, ss->label, node); // TODO(bill): What should the label's "scope" be?
if (ss->tag->kind != Ast_AssignStmt) {
error(ss->tag, "Expected an 'in' assignment for this type switch statement");
return;
}
ast_node(as, AssignStmt, ss->tag);
Token as_token = ast_token(ss->tag);
if (as->lhs.count != 1) {
syntax_error(as_token, "Expected 1 name before 'in'");
return;
}
if (as->rhs.count != 1) {
syntax_error(as_token, "Expected 1 expression after 'in'");
return;
}
Ast *lhs = as->lhs[0];
Ast *rhs = as->rhs[0];
check_expr(ctx, &x, rhs);
check_assignment(ctx, &x, nullptr, str_lit("type switch expression"));
add_type_info_type(ctx, x.type);
TypeSwitchKind switch_kind = check_valid_type_switch_type(x.type);
if (switch_kind == TypeSwitch_Invalid) {
gbString str = type_to_string(x.type);
error(x.expr, "Invalid type for this type switch expression, got '%s'", str);
gb_string_free(str);
return;
}
bool complete = ss->complete;
if (complete) {
if (switch_kind != TypeSwitch_Union) {
error(node, "#complete switch statement may only be used with a union");
complete = false;
}
}
bool is_ptr = is_type_pointer(x.type);
// NOTE(bill): Check for multiple defaults
Ast *first_default = nullptr;
ast_node(bs, BlockStmt, ss->body);
for_array(i, bs->stmts) {
Ast *stmt = bs->stmts[i];
Ast *default_stmt = nullptr;
if (stmt->kind == Ast_CaseClause) {
ast_node(cc, CaseClause, stmt);
if (cc->list.count == 0) {
default_stmt = stmt;
}
} else {
error(stmt, "Invalid AST - expected case clause");
}
if (default_stmt != nullptr) {
if (first_default != nullptr) {
TokenPos pos = ast_token(first_default).pos;
error(stmt,
"Multiple default clauses\n"
"\tfirst at %.*s(%td:%td)",
LIT(pos.file), pos.line, pos.column);
} else {
first_default = default_stmt;
}
}
}
if (lhs->kind != Ast_Ident) {
error(rhs, "Expected an identifier, got '%.*s'", LIT(ast_strings[rhs->kind]));
return;
}
PtrSet<Type *> seen = {};
ptr_set_init(&seen, heap_allocator());
defer (ptr_set_destroy(&seen));
for_array(i, bs->stmts) {
Ast *stmt = bs->stmts[i];
if (stmt->kind != Ast_CaseClause) {
// NOTE(bill): error handled by above multiple default checker
continue;
}
ast_node(cc, CaseClause, stmt);
// TODO(bill): Make robust
Type *bt = base_type(type_deref(x.type));
Type *case_type = nullptr;
for_array(type_index, cc->list) {
Ast *type_expr = cc->list[type_index];
if (type_expr != nullptr) { // Otherwise it's a default expression
Operand y = {};
check_expr_or_type(ctx, &y, type_expr);
if (switch_kind == TypeSwitch_Union) {
GB_ASSERT(is_type_union(bt));
bool tag_type_found = false;
for_array(j, bt->Union.variants) {
Type *vt = bt->Union.variants[j];
if (are_types_identical(vt, y.type)) {
tag_type_found = true;
break;
}
}
if (!tag_type_found) {
gbString type_str = type_to_string(y.type);
error(y.expr, "Unknown variant type, got '%s'", type_str);
gb_string_free(type_str);
continue;
}
case_type = y.type;
add_type_info_type(ctx, y.type);
} else if (switch_kind == TypeSwitch_Any) {
case_type = y.type;
add_type_info_type(ctx, y.type);
} else {
GB_PANIC("Unknown type to type switch statement");
}
if (type_ptr_set_exists(&seen, y.type)) {
TokenPos pos = cc->token.pos;
gbString expr_str = expr_to_string(y.expr);
error(y.expr,
"Duplicate type case '%s'\n"
"\tprevious type case at %.*s(%td:%td)",
expr_str,
LIT(pos.file), pos.line, pos.column);
gb_string_free(expr_str);
break;
}
ptr_set_add(&seen, y.type);
}
}
if (is_ptr &&
cc->list.count == 1 &&
case_type != nullptr) {
case_type = alloc_type_pointer(case_type);
}
if (cc->list.count > 1) {
case_type = nullptr;
}
if (case_type == nullptr) {
case_type = x.type;
}
add_type_info_type(ctx, case_type);
check_open_scope(ctx, stmt);
{
Entity *tag_var = alloc_entity_variable(ctx->scope, lhs->Ident.token, case_type, false, EntityState_Resolved);
tag_var->flags |= EntityFlag_Used;
tag_var->flags |= EntityFlag_Value;
add_entity(ctx->checker, ctx->scope, lhs, tag_var);
add_entity_use(ctx, lhs, tag_var);
add_implicit_entity(ctx, stmt, tag_var);
}
check_stmt_list(ctx, cc->stmts, mod_flags);
check_close_scope(ctx);
}
if (complete) {
Type *ut = base_type(type_deref(x.type));
GB_ASSERT(is_type_union(ut));
auto variants = ut->Union.variants;
auto unhandled = array_make<Type *>(ctx->allocator, 0, variants.count);
defer (array_free(&unhandled));
for_array(i, variants) {
Type *t = variants[i];
if (!type_ptr_set_exists(&seen, t)) {
array_add(&unhandled, t);
}
}
if (unhandled.count > 0) {
if (unhandled.count == 1) {
error_no_newline(node, "Unhandled switch case: ");
} else {
error_no_newline(node, "Unhandled switch cases: ");
}
for_array(i, unhandled) {
Type *t = unhandled[i];
if (i > 0) {
error_line(", ");
}
gbString s = type_to_string(t);
error_line("%s", s);
gb_string_free(s);
}
error_line("\n");
}
}
}
void check_stmt_internal(CheckerContext *ctx, Ast *node, u32 flags) {
u32 mod_flags = flags & (~Stmt_FallthroughAllowed);
switch (node->kind) {
case_ast_node(_, EmptyStmt, node); case_end;
case_ast_node(_, BadStmt, node); case_end;
case_ast_node(_, BadDecl, node); case_end;
case_ast_node(es, ExprStmt, node)
Operand operand = {Addressing_Invalid};
ExprKind kind = check_expr_base(ctx, &operand, es->expr, nullptr);
switch (operand.mode) {
case Addressing_Type: {
gbString str = type_to_string(operand.type);
error(node, "'%s' is not an expression", str);
gb_string_free(str);
break;
}
case Addressing_NoValue:
return;
default: {
if (kind == Expr_Stmt) {
return;
}
if (operand.expr->kind == Ast_CallExpr) {
AstCallExpr *ce = &operand.expr->CallExpr;
Type *t = type_of_expr(ce->proc);
if (is_type_proc(t)) {
if (t->Proc.require_results) {
gbString expr_str = expr_to_string(ce->proc);
error(node, "'%s' requires that its results must be handled", expr_str);
gb_string_free(expr_str);
}
}
return;
}
gbString expr_str = expr_to_string(operand.expr);
error(node, "Expression is not used: '%s'", expr_str);
gb_string_free(expr_str);
break;
}
}
case_end;
case_ast_node(ts, TagStmt, node);
// TODO(bill): Tag Statements
error(node, "Tag statements are not supported yet");
check_stmt(ctx, ts->stmt, flags);
case_end;
case_ast_node(as, AssignStmt, node);
switch (as->op.kind) {
case Token_Eq: {
// a, b, c = 1, 2, 3; // Multisided
isize lhs_count = as->lhs.count;
if (lhs_count == 0) {
error(as->op, "Missing lhs in assignment statement");
return;
}
// NOTE(bill): If there is a bad syntax error, rhs > lhs which would mean there would need to be
// an extra allocation
auto lhs_operands = array_make<Operand>(ctx->allocator, lhs_count);
auto rhs_operands = array_make<Operand>(ctx->allocator, 0, 2*lhs_count);
defer (array_free(&lhs_operands));
defer (array_free(&rhs_operands));
for_array(i, as->lhs) {
if (is_blank_ident(as->lhs[i])) {
Operand *o = &lhs_operands[i];
o->expr = as->lhs[i];
o->mode = Addressing_Value;
} else {
check_expr(ctx, &lhs_operands[i], as->lhs[i]);
}
}
check_assignment_arguments(ctx, lhs_operands, &rhs_operands, as->rhs);
isize rhs_count = rhs_operands.count;
for_array(i, rhs_operands) {
if (rhs_operands[i].mode == Addressing_Invalid) {
// TODO(bill): Should I ignore invalid parameters?
// rhs_count--;
}
}
isize max = gb_min(lhs_count, rhs_count);
for (isize i = 0; i < max; i++) {
check_assignment_variable(ctx, &lhs_operands[i], &rhs_operands[i]);
}
if (lhs_count != rhs_count) {
error(as->lhs[0], "Assignment count mismatch '%td' = '%td'", lhs_count, rhs_count);
}
break;
}
default: {
// a += 1; // Single-sided
Token op = as->op;
if (as->lhs.count != 1 || as->rhs.count != 1) {
error(op, "Assignment operation '%.*s' requires single-valued expressions", LIT(op.string));
return;
}
if (!gb_is_between(op.kind, Token__AssignOpBegin+1, Token__AssignOpEnd-1)) {
error(op, "Unknown Assignment operation '%.*s'", LIT(op.string));
return;
}
Operand lhs = {Addressing_Invalid};
Operand rhs = {Addressing_Invalid};
Ast binary_expr = {Ast_BinaryExpr};
ast_node(be, BinaryExpr, &binary_expr);
be->op = op;
be->op.kind = cast(TokenKind)(cast(i32)be->op.kind - (Token_AddEq - Token_Add));
// NOTE(bill): Only use the first one will be used
be->left = as->lhs[0];
be->right = as->rhs[0];
check_expr(ctx, &lhs, as->lhs[0]);
check_binary_expr(ctx, &rhs, &binary_expr, nullptr, true);
if (rhs.mode == Addressing_Invalid) {
return;
}
// NOTE(bill): Only use the first one will be used
check_assignment_variable(ctx, &lhs, &rhs);
break;
}
}
case_end;
case_ast_node(bs, BlockStmt, node);
check_open_scope(ctx, node);
check_label(ctx, bs->label, node);
check_stmt_list(ctx, bs->stmts, flags);
check_close_scope(ctx);
case_end;
case_ast_node(is, IfStmt, node);
check_open_scope(ctx, node);
check_label(ctx, is->label, node);
if (is->init != nullptr) {
check_stmt(ctx, is->init, 0);
}
Operand operand = {Addressing_Invalid};
check_expr(ctx, &operand, is->cond);
if (operand.mode != Addressing_Invalid && !is_type_boolean(operand.type)) {
error(is->cond, "Non-boolean condition in 'if' statement");
}
check_stmt(ctx, is->body, mod_flags);
if (is->else_stmt != nullptr) {
switch (is->else_stmt->kind) {
case Ast_IfStmt:
case Ast_BlockStmt:
check_stmt(ctx, is->else_stmt, mod_flags);
break;
default:
error(is->else_stmt, "Invalid 'else' statement in 'if' statement");
break;
}
}
check_close_scope(ctx);
case_end;
case_ast_node(ws, WhenStmt, node);
check_when_stmt(ctx, ws, flags);
case_end;
case_ast_node(rs, ReturnStmt, node);
GB_ASSERT(ctx->curr_proc_sig != nullptr);
if (ctx->in_defer) {
error(rs->token, "You cannot 'return' within a defer statement");
break;
}
Type *proc_type = ctx->curr_proc_sig;
GB_ASSERT(proc_type != nullptr);
GB_ASSERT(proc_type->kind == Type_Proc);
TypeProc *pt = &proc_type->Proc;
if (pt->diverging) {
error(rs->token, "Diverging procedures may not return");
break;
}
Entity **result_entities = nullptr;
isize result_count = 0;
bool has_named_results = pt->has_named_results;
if (pt->results) {
result_entities = proc_type->Proc.results->Tuple.variables.data;
result_count = proc_type->Proc.results->Tuple.variables.count;
}
auto operands = array_make<Operand>(heap_allocator(), 0, 2*rs->results.count);
defer (array_free(&operands));
check_unpack_arguments(ctx, result_entities, result_count, &operands, rs->results, true, false);
if (result_count == 0 && rs->results.count > 0) {
error(rs->results[0], "No return values expected");
} else if (has_named_results && operands.count == 0) {
// Okay
} else if (operands.count != result_count) {
error(node, "Expected %td return values, got %td", result_count, operands.count);
} else {
isize max_count = rs->results.count;
for (isize i = 0; i < max_count; i++) {
Entity *e = pt->results->Tuple.variables[i];
check_assignment(ctx, &operands[i], e->type, str_lit("return statement"));
}
}
case_end;
case_ast_node(fs, ForStmt, node);
u32 new_flags = mod_flags | Stmt_BreakAllowed | Stmt_ContinueAllowed;
check_open_scope(ctx, node);
check_label(ctx, fs->label, node); // TODO(bill): What should the label's "scope" be?
if (fs->init != nullptr) {
check_stmt(ctx, fs->init, 0);
}
if (fs->cond != nullptr) {
Operand o = {Addressing_Invalid};
check_expr(ctx, &o, fs->cond);
if (o.mode != Addressing_Invalid && !is_type_boolean(o.type)) {
error(fs->cond, "Non-boolean condition in 'for' statement");
}
}
if (fs->post != nullptr) {
check_stmt(ctx, fs->post, 0);
if (fs->post->kind != Ast_AssignStmt) {
error(fs->post, "'for' statement post statement must be a simple statement");
}
}
check_stmt(ctx, fs->body, new_flags);
check_close_scope(ctx);
case_end;
case_ast_node(rs, RangeStmt, node);
u32 new_flags = mod_flags | Stmt_BreakAllowed | Stmt_ContinueAllowed;
check_open_scope(ctx, node);
check_label(ctx, rs->label, node);
Type *val0 = nullptr;
Type *val1 = nullptr;
Entity *entities[2] = {};
isize entity_count = 0;
bool is_map = false;
Ast *expr = unparen_expr(rs->expr);
if (is_ast_range(expr)) {
ast_node(ie, BinaryExpr, expr);
Operand x = {};
Operand y = {};
bool ok = check_range(ctx, expr, &x, &y, nullptr);
if (!ok) {
goto skip_expr_range_stmt;
}
val0 = x.type;
val1 = t_int;
} else {
Operand operand = {Addressing_Invalid};
check_expr_or_type(ctx, &operand, rs->expr);
if (operand.mode == Addressing_Type) {
if (!is_type_enum(operand.type)) {
gbString t = type_to_string(operand.type);
error(operand.expr, "Cannot iterate over the type '%s'", t);
gb_string_free(t);
goto skip_expr_range_stmt;
} else {
val0 = operand.type;
val1 = t_int;
add_type_info_type(ctx, operand.type);
goto skip_expr_range_stmt;
}
} else if (operand.mode != Addressing_Invalid) {
bool is_ptr = is_type_pointer(operand.type);
Type *t = base_type(type_deref(operand.type));
switch (t->kind) {
case Type_Basic:
if (is_type_string(t) && t->Basic.kind != Basic_cstring) {
val0 = t_rune;
val1 = t_int;
add_package_dependency(ctx, "runtime", "string_decode_rune");
}
break;
case Type_Array:
val0 = t->Array.elem;
val1 = t_int;
break;
case Type_DynamicArray:
val0 = t->DynamicArray.elem;
val1 = t_int;
break;
case Type_Slice:
val0 = t->Slice.elem;
val1 = t_int;
break;
case Type_Map:
is_map = true;
val0 = t->Map.key;
val1 = t->Map.value;
break;
}
}
if (val0 == nullptr) {
gbString s = expr_to_string(operand.expr);
gbString t = type_to_string(operand.type);
error(operand.expr, "Cannot iterate over '%s' of type '%s'", s, t);
gb_string_free(t);
gb_string_free(s);
}
}
skip_expr_range_stmt:; // NOTE(zhiayang): again, declaring a variable immediately after a label... weird.
Ast * lhs[2] = {rs->val0, rs->val1};
Type *rhs[2] = {val0, val1};
for (isize i = 0; i < 2; i++) {
if (lhs[i] == nullptr) {
continue;
}
Ast * name = lhs[i];
Type *type = rhs[i];
Entity *entity = nullptr;
if (name->kind == Ast_Ident) {
Token token = name->Ident.token;
String str = token.string;
Entity *found = nullptr;
if (!is_blank_ident(str)) {
found = scope_lookup_current(ctx->scope, str);
}
if (found == nullptr) {
bool is_immutable = false;
entity = alloc_entity_variable(ctx->scope, token, type, is_immutable, EntityState_Resolved);
entity->flags |= EntityFlag_Value;
add_entity_definition(&ctx->checker->info, name, entity);
} else {
TokenPos pos = found->token.pos;
error(token,
"Redeclaration of '%.*s' in this scope\n"
"\tat %.*s(%td:%td)",
LIT(str), LIT(pos.file), pos.line, pos.column);
entity = found;
}
} else {
error(name, "A variable declaration must be an identifier");
}
if (entity == nullptr) {
entity = alloc_entity_dummy_variable(builtin_pkg->scope, ast_token(name));
}
entities[entity_count++] = entity;
if (type == nullptr) {
entity->type = t_invalid;
entity->flags |= EntityFlag_Used;
}
}
for (isize i = 0; i < entity_count; i++) {
Entity *e = entities[i];
DeclInfo *d = decl_info_of_entity(e);
GB_ASSERT(d == nullptr);
add_entity(ctx->checker, ctx->scope, e->identifier, e);
d = make_decl_info(ctx->allocator, ctx->scope, ctx->decl);
add_entity_and_decl_info(ctx, e->identifier, e, d);
}
check_stmt(ctx, rs->body, new_flags);
check_close_scope(ctx);
case_end;
case_ast_node(irs, InlineRangeStmt, node);
check_inline_range_stmt(ctx, node, mod_flags);
case_end;
case_ast_node(ss, SwitchStmt, node);
check_switch_stmt(ctx, node, mod_flags);
case_end;
case_ast_node(ss, TypeSwitchStmt, node);
check_type_switch_stmt(ctx, node, mod_flags);
case_end;
case_ast_node(ds, DeferStmt, node);
if (is_ast_decl(ds->stmt)) {
error(ds->token, "You cannot defer a declaration");
} else {
bool out_in_defer = ctx->in_defer;
ctx->in_defer = true;
check_stmt(ctx, ds->stmt, 0);
ctx->in_defer = out_in_defer;
}
case_end;
case_ast_node(bs, BranchStmt, node);
Token token = bs->token;
switch (token.kind) {
case Token_break:
if ((flags & Stmt_BreakAllowed) == 0 && bs->label == nullptr) {
error(token, "'break' only allowed in loops or 'switch' statements");
}
break;
case Token_continue:
if ((flags & Stmt_ContinueAllowed) == 0 && bs->label == nullptr) {
error(token, "'continue' only allowed in loops");
}
break;
case Token_fallthrough:
if ((flags & Stmt_FallthroughAllowed) == 0) {
error(token, "'fallthrough' statement in illegal position, expected at the end of a 'case' block");
} else if (bs->label != nullptr) {
error(token, "'fallthrough' cannot have a label");
}
break;
default:
error(token, "Invalid AST: Branch Statement '%.*s'", LIT(token.string));
break;
}
if (bs->label != nullptr) {
if (bs->label->kind != Ast_Ident) {
error(bs->label, "A branch statement's label name must be an identifier");
return;
}
Ast *ident = bs->label;
String name = ident->Ident.token.string;
Operand o = {};
Entity *e = check_ident(ctx, &o, ident, nullptr, nullptr, false);
if (e == nullptr) {
error(ident, "Undeclared label name: %.*s", LIT(name));
return;
}
add_entity_use(ctx, ident, e);
if (e->kind != Entity_Label) {
error(ident, "'%.*s' is not a label", LIT(name));
return;
}
Ast *parent = e->Label.parent;
GB_ASSERT(parent != nullptr);
switch (parent->kind) {
case Ast_BlockStmt:
case Ast_IfStmt:
case Ast_SwitchStmt:
if (token.kind != Token_break) {
error(bs->label, "Label '%.*s' can only be used with 'break'", LIT(e->token.string));
}
break;
case Ast_RangeStmt:
case Ast_ForStmt:
if ((token.kind != Token_break) && (token.kind != Token_continue)) {
error(bs->label, "Label '%.*s' can only be used with 'break' and 'continue'", LIT(e->token.string));
}
break;
}
}
case_end;
case_ast_node(us, UsingStmt, node);
if (us->list.count == 0) {
error(us->token, "Empty 'using' list");
return;
}
for_array(i, us->list) {
Ast *expr = unparen_expr(us->list[0]);
Entity *e = nullptr;
bool is_selector = false;
Operand o = {};
switch (expr->kind) {
case Ast_Ident:
e = check_ident(ctx, &o, expr, nullptr, nullptr, true);
break;
case Ast_SelectorExpr:
e = check_selector(ctx, &o, expr, nullptr);
is_selector = true;
break;
case Ast_Implicit:
error(us->token, "'using' applied to an implicit value");
continue;
default:
error(us->token, "'using' can only be applied to an entity, got %.*s", LIT(ast_strings[expr->kind]));
continue;
}
if (!check_using_stmt_entity(ctx, us, expr, is_selector, e)) {
return;
}
}
case_end;
case_ast_node(fb, ForeignBlockDecl, node);
Ast *foreign_library = fb->foreign_library;
CheckerContext c = *ctx;
if (foreign_library->kind != Ast_Ident) {
error(foreign_library, "foreign library name must be an identifier");
} else {
c.foreign_context.curr_library = foreign_library;
c.foreign_context.default_cc = ProcCC_CDecl;
}
check_decl_attributes(&c, fb->attributes, foreign_block_decl_attribute, nullptr);
ast_node(block, BlockStmt, fb->body);
for_array(i, block->stmts) {
Ast *decl = block->stmts[i];
if (decl->kind == Ast_ValueDecl && decl->ValueDecl.is_mutable) {
check_stmt(&c, decl, flags);
}
}
case_end;
case_ast_node(vd, ValueDecl, node);
if (vd->is_mutable) {
Entity **entities = gb_alloc_array(ctx->allocator, Entity *, vd->names.count);
isize entity_count = 0;
isize new_name_count = 0;
for_array(i, vd->names) {
Ast *name = vd->names[i];
Entity *entity = nullptr;
if (name->kind != Ast_Ident) {
error(name, "A variable declaration must be an identifier");
} else {
Token token = name->Ident.token;
String str = token.string;
Entity *found = nullptr;
// NOTE(bill): Ignore assignments to '_'
if (!is_blank_ident(str)) {
found = scope_lookup_current(ctx->scope, str);
new_name_count += 1;
}
if (found == nullptr) {
entity = alloc_entity_variable(ctx->scope, token, nullptr, false);
entity->identifier = name;
Ast *fl = ctx->foreign_context.curr_library;
if (fl != nullptr) {
GB_ASSERT(fl->kind == Ast_Ident);
entity->Variable.is_foreign = true;
entity->Variable.foreign_library_ident = fl;
}
} else {
TokenPos pos = found->token.pos;
error(token,
"Redeclaration of '%.*s' in this scope\n"
"\tat %.*s(%td:%td)",
LIT(str), LIT(pos.file), pos.line, pos.column);
entity = found;
}
}
if (entity == nullptr) {
entity = alloc_entity_dummy_variable(builtin_pkg->scope, ast_token(name));
}
entity->parent_proc_decl = ctx->curr_proc_decl;
entities[entity_count++] = entity;
}
if (new_name_count == 0) {
error(node, "No new declarations on the lhs");
}
Type *init_type = nullptr;
if (vd->type != nullptr) {
init_type = check_type(ctx, vd->type);
if (init_type == nullptr) {
init_type = t_invalid;
} else if (is_type_polymorphic(base_type(init_type))) {
gbString str = type_to_string(init_type);
error(vd->type, "Invalid use of a polymorphic type '%s' in variable declaration", str);
gb_string_free(str);
init_type = t_invalid;
}
}
// TODO NOTE(bill): This technically checks things multple times
AttributeContext ac = make_attribute_context(ctx->foreign_context.link_prefix);
check_decl_attributes(ctx, vd->attributes, var_decl_attribute, &ac);
for (isize i = 0; i < entity_count; i++) {
Entity *e = entities[i];
GB_ASSERT(e != nullptr);
if (e->flags & EntityFlag_Visited) {
e->type = t_invalid;
continue;
}
e->flags |= EntityFlag_Visited;
e->state = EntityState_InProgress;
if (e->type == nullptr) {
e->type = init_type;
e->state = EntityState_Resolved;
}
ac.link_name = handle_link_name(ctx, e->token, ac.link_name, ac.link_prefix);
e->Variable.thread_local_model = ac.thread_local_model;
if (ac.link_name.len > 0) {
e->Variable.link_name = ac.link_name;
}
e->flags &= ~EntityFlag_Static;
if (ac.is_static) {
String name = e->token.string;
if (name == "_") {
error(e->token, "The 'static' attribute is not allowed to be applied to '_'");
} else {
e->flags |= EntityFlag_Static;
}
}
}
check_arity_match(ctx, vd);
check_init_variables(ctx, entities, entity_count, vd->values, str_lit("variable declaration"));
for (isize i = 0; i < entity_count; i++) {
Entity *e = entities[i];
if (e->Variable.is_foreign) {
if (vd->values.count > 0) {
error(e->token, "A foreign variable declaration cannot have a default value");
}
String name = e->token.string;
if (e->Variable.link_name.len > 0) {
name = e->Variable.link_name;
}
if (vd->values.count > 0) {
error(e->token, "A foreign variable declaration cannot have a default value");
}
init_entity_foreign_library(ctx, e);
auto *fp = &ctx->checker->info.foreigns;
HashKey key = hash_string(name);
Entity **found = map_get(fp, key);
if (found) {
Entity *f = *found;
TokenPos pos = f->token.pos;
Type *this_type = base_type(e->type);
Type *other_type = base_type(f->type);
if (!are_types_identical(this_type, other_type)) {
error(e->token,
"Foreign entity '%.*s' previously declared elsewhere with a different type\n"
"\tat %.*s(%td:%td)",
LIT(name), LIT(pos.file), pos.line, pos.column);
}
} else {
map_set(fp, key, e);
}
} else if (e->flags & EntityFlag_Static) {
if (vd->values.count > 0) {
if (entity_count != vd->values.count) {
error(e->token, "A static variable declaration with a default value must be constant");
} else {
Ast *value = vd->values[i];
if (value->tav.mode != Addressing_Constant) {
error(e->token, "A static variable declaration with a default value must be constant");
}
}
}
}
add_entity(ctx->checker, ctx->scope, e->identifier, e);
}
if (vd->is_using != 0) {
Token token = ast_token(node);
if (vd->type != nullptr && entity_count > 1) {
error(token, "'using' can only be applied to one variable of the same type");
// TODO(bill): Should a 'continue' happen here?
}
for (isize entity_index = 0; entity_index < 1; entity_index++) {
Entity *e = entities[entity_index];
if (e == nullptr) {
continue;
}
if (e->kind != Entity_Variable) {
continue;
}
bool is_immutable = e->Variable.is_immutable;
String name = e->token.string;
Type *t = base_type(type_deref(e->type));
if (is_blank_ident(name)) {
error(token, "'using' cannot be applied variable declared as '_'");
} else if (is_type_struct(t) || is_type_raw_union(t)) {
Scope *scope = scope_of_node(t->Struct.node);
for_array(i, scope->elements.entries) {
Entity *f = scope->elements.entries[i].value;
if (f->kind == Entity_Variable) {
Entity *uvar = alloc_entity_using_variable(e, f->token, f->type, nullptr);
uvar->Variable.is_immutable = is_immutable;
Entity *prev = scope_insert(ctx->scope, uvar);
if (prev != nullptr) {
error(token, "Namespace collision while 'using' '%.*s' of: %.*s", LIT(name), LIT(prev->token.string));
return;
}
}
}
add_entity_use(ctx, nullptr, e);
} else {
// NOTE(bill): skip the rest to remove extra errors
error(token, "'using' can only be applied to variables of type struct or raw_union");
return;
}
}
}
} else {
// constant value declaration
// NOTE(bill): Check `_` declarations
for_array(i, vd->names) {
Ast *name = vd->names[i];
if (is_blank_ident(name)) {
Entity *e = name->Ident.entity;
DeclInfo *d = decl_info_of_entity(e);
if (d != nullptr) {
check_entity_decl(ctx, e, d, nullptr);
}
}
}
}
case_end;
}
}