Files
Odin/core/fmt/fmt.odin
2020-05-15 17:37:00 +01:00

1977 lines
50 KiB
Odin

package fmt
import "core:runtime"
import "core:os"
import "core:mem"
import "core:math/bits"
import "core:unicode/utf8"
import "core:strconv"
import "core:strings"
import "core:reflect"
import "intrinsics"
@private
DEFAULT_BUFFER_SIZE :: 1<<12;
Info :: struct {
minus: bool,
plus: bool,
space: bool,
zero: bool,
hash: bool,
width_set: bool,
prec_set: bool,
width: int,
prec: int,
indent: int,
reordered: bool,
good_arg_index: bool,
buf: ^strings.Builder,
arg: any, // Temporary
record_level: int,
}
fprint :: proc(fd: os.Handle, args: ..any) -> int {
data: [DEFAULT_BUFFER_SIZE]byte;
buf := strings.builder_from_slice(data[:]);
res := sbprint(&buf, ..args);
os.write_string(fd, res);
return len(res);
}
fprintln :: proc(fd: os.Handle, args: ..any) -> int {
data: [DEFAULT_BUFFER_SIZE]byte;
buf := strings.builder_from_slice(data[:]);
res := sbprintln(&buf, ..args);
os.write_string(fd, res);
return len(res);
}
fprintf :: proc(fd: os.Handle, fmt: string, args: ..any) -> int {
data: [DEFAULT_BUFFER_SIZE]byte;
buf := strings.builder_from_slice(data[:]);
res := sbprintf(&buf, fmt, ..args);
os.write_string(fd, res);
return len(res);
}
// print* procedures return the number of bytes written
print :: proc(args: ..any) -> int { return fprint(os.stdout, ..args); }
println :: proc(args: ..any) -> int { return fprintln(os.stdout, ..args); }
printf :: proc(fmt: string, args: ..any) -> int { return fprintf(os.stdout, fmt, ..args); }
eprint :: proc(args: ..any) -> int { return fprint(os.stderr, ..args); }
eprintln :: proc(args: ..any) -> int { return fprintln(os.stderr, ..args); }
eprintf :: proc(fmt: string, args: ..any) -> int { return fprintf(os.stderr, fmt, ..args); }
@(deprecated="prefer eprint") print_err :: proc(args: ..any) -> int { return eprint(..args); }
@(deprecated="prefer eprintf") printf_err :: proc(fmt: string, args: ..any) -> int { return eprintf(fmt, ..args); }
@(deprecated="prefer eprintln") println_err :: proc(args: ..any) -> int { return eprintln(..args); }
// aprint* procedures return a string that was allocated with the current context
// They must be freed accordingly
aprint :: proc(args: ..any) -> string {
str := strings.make_builder();
sbprint(&str, ..args);
return strings.to_string(str);
}
aprintln :: proc(args: ..any) -> string {
str := strings.make_builder();
sbprintln(&str, ..args);
return strings.to_string(str);
}
aprintf :: proc(fmt: string, args: ..any) -> string {
str := strings.make_builder();
sbprintf(&str, fmt, ..args);
return strings.to_string(str);
}
// tprint* procedures return a string that was allocated with the current context's temporary allocator
tprint :: proc(args: ..any) -> string {
str := strings.make_builder(context.temp_allocator);
sbprint(&str, ..args);
return strings.to_string(str);
}
tprintln :: proc(args: ..any) -> string {
str := strings.make_builder(context.temp_allocator);
sbprintln(&str, ..args);
return strings.to_string(str);
}
tprintf :: proc(fmt: string, args: ..any) -> string {
str := strings.make_builder(context.temp_allocator);
sbprintf(&str, fmt, ..args);
return strings.to_string(str);
}
// bprint* procedures return a string using a buffer from an array
bprint :: proc(buf: []byte, args: ..any) -> string {
sb := strings.builder_from_slice(buf[0:len(buf)]);
return sbprint(&sb, ..args);
}
bprintln :: proc(buf: []byte, args: ..any) -> string {
sb := strings.builder_from_slice(buf[0:len(buf)]);
return sbprintln(&sb, ..args);
}
bprintf :: proc(buf: []byte, fmt: string, args: ..any) -> string {
sb := strings.builder_from_slice(buf[0:len(buf)]);
return sbprintf(&sb, fmt, ..args);
}
assertf :: proc(condition: bool, fmt: string, args: ..any, loc := #caller_location) -> bool {
if !condition {
p := context.assertion_failure_proc;
if p == nil {
p = runtime.default_assertion_failure_proc;
}
message := tprintf(fmt, ..args);
p("Runtime assertion", message, loc);
}
return condition;
}
panicf :: proc(fmt: string, args: ..any, loc := #caller_location) {
p := context.assertion_failure_proc;
if p == nil {
p = runtime.default_assertion_failure_proc;
}
message := tprintf(fmt, ..args);
p("Panic", message, loc);
}
fprint_type :: proc(fd: os.Handle, info: ^runtime.Type_Info) {
data: [DEFAULT_BUFFER_SIZE]byte;
buf := strings.builder_from_slice(data[:]);
reflect.write_type(&buf, info);
os.write_string(fd, strings.to_string(buf));
}
sbprint :: proc(buf: ^strings.Builder, args: ..any) -> string {
fi: Info;
prev_string := false;
fi.buf = buf;
for arg, i in args {
is_string := arg != nil && reflect.is_string(type_info_of(arg.id));
if i > 0 && !is_string && !prev_string {
strings.write_byte(buf, ' ');
}
fmt_value(&fi, args[i], 'v');
prev_string = is_string;
}
return strings.to_string(buf^);
}
sbprintln :: proc(buf: ^strings.Builder, args: ..any) -> string {
fi: Info;
fi.buf = buf;
for _, i in args {
if i > 0 do strings.write_byte(buf, ' ');
fmt_value(&fi, args[i], 'v');
}
strings.write_byte(buf, '\n');
return strings.to_string(buf^);
}
sbprintf :: proc(b: ^strings.Builder, fmt: string, args: ..any) -> string {
fi: Info;
arg_index: int = 0;
end := len(fmt);
was_prev_index := false;
loop: for i := 0; i < end; /**/ {
fi = Info{buf = b, good_arg_index = true, reordered = fi.reordered};
prev_i := i;
for i < end && !(fmt[i] == '%' || fmt[i] == '{' || fmt[i] == '}') {
i += 1;
}
if i > prev_i {
strings.write_string(b, fmt[prev_i:i]);
}
if i >= end {
break loop;
}
char := fmt[i];
// Process a "char"
i += 1;
if char == '}' {
if i < end && fmt[i] == char {
// Skip extra one
i += 1;
}
strings.write_byte(b, char);
continue loop;
} else if char == '{' {
if i < end && fmt[i] == char {
// Skip extra one
i += 1;
strings.write_byte(b, char);
continue loop;
}
}
if char == '%' {
prefix_loop: for ; i < end; i += 1 {
switch fmt[i] {
case '+':
fi.plus = true;
case '-':
fi.minus = true;
fi.zero = false;
case ' ':
fi.space = true;
case '#':
fi.hash = true;
case '0':
fi.zero = !fi.minus;
case:
break prefix_loop;
}
}
arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args));
// Width
if i < end && fmt[i] == '*' {
i += 1;
fi.width, arg_index, fi.width_set = int_from_arg(args, arg_index);
if !fi.width_set {
strings.write_string(b, "%!(BAD WIDTH)");
}
if fi.width < 0 {
fi.width = -fi.width;
fi.minus = true;
fi.zero = false;
}
was_prev_index = false;
} else {
fi.width, i, fi.width_set = _parse_int(fmt, i);
if was_prev_index && fi.width_set { // %[6]2d
fi.good_arg_index = false;
}
}
// Precision
if i < end && fmt[i] == '.' {
i += 1;
if was_prev_index { // %[6].2d
fi.good_arg_index = false;
}
if i < end && fmt[i] == '*' {
arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args));
i += 1;
fi.prec, arg_index, fi.prec_set = int_from_arg(args, arg_index);
if fi.prec < 0 {
fi.prec = 0;
fi.prec_set = false;
}
if !fi.prec_set {
strings.write_string(fi.buf, "%!(BAD PRECISION)");
}
was_prev_index = false;
} else {
fi.prec, i, fi.prec_set = _parse_int(fmt, i);
}
}
if !was_prev_index {
arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args));
}
if i >= end {
strings.write_string(b, "%!(NO VERB)");
break loop;
}
verb, w := utf8.decode_rune_in_string(fmt[i:]);
i += w;
switch {
case verb == '%':
strings.write_byte(b, '%');
case !fi.good_arg_index:
strings.write_string(b, "%!(BAD ARGUMENT NUMBER)");
case arg_index >= len(args):
strings.write_string(b, "%!(MISSING ARGUMENT)");
case:
fmt_arg(&fi, args[arg_index], verb);
arg_index += 1;
}
} else if char == '{' {
if i < end && fmt[i] != '}' && fmt[i] != ':' {
new_arg_index, new_i, ok := _parse_int(fmt, i);
if ok {
fi.reordered = true;
was_prev_index = true;
arg_index = new_arg_index;
i = new_i;
} else {
strings.write_string(b, "%!(BAD ARGUMENT NUMBER ");
// Skip over the bad argument
start_index := i;
for i < end && fmt[i] != '}' && fmt[i] != ':' {
i += 1;
}
fmt_arg(&fi, fmt[start_index:i], 'v');
strings.write_string(b, ")");
}
}
verb: rune = 'v';
if i < end && fmt[i] == ':' {
i += 1;
prefix_loop_percent: for ; i < end; i += 1 {
switch fmt[i] {
case '+':
fi.plus = true;
case '-':
fi.minus = true;
fi.zero = false;
case ' ':
fi.space = true;
case '#':
fi.hash = true;
case '0':
fi.zero = !fi.minus;
case:
break prefix_loop_percent;
}
}
arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args));
// Width
if i < end && fmt[i] == '*' {
i += 1;
fi.width, arg_index, fi.width_set = int_from_arg(args, arg_index);
if !fi.width_set {
strings.write_string(b, "%!(BAD WIDTH)");
}
if fi.width < 0 {
fi.width = -fi.width;
fi.minus = true;
fi.zero = false;
}
was_prev_index = false;
} else {
fi.width, i, fi.width_set = _parse_int(fmt, i);
if was_prev_index && fi.width_set { // %[6]2d
fi.good_arg_index = false;
}
}
// Precision
if i < end && fmt[i] == '.' {
i += 1;
if was_prev_index { // %[6].2d
fi.good_arg_index = false;
}
if i < end && fmt[i] == '*' {
arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args));
i += 1;
fi.prec, arg_index, fi.prec_set = int_from_arg(args, arg_index);
if fi.prec < 0 {
fi.prec = 0;
fi.prec_set = false;
}
if !fi.prec_set {
strings.write_string(fi.buf, "%!(BAD PRECISION)");
}
was_prev_index = false;
} else {
fi.prec, i, fi.prec_set = _parse_int(fmt, i);
}
}
if !was_prev_index {
arg_index, i, was_prev_index = _arg_number(&fi, arg_index, fmt, i, len(args));
}
if i >= end {
strings.write_string(b, "%!(NO VERB)");
break loop;
}
w: int = 1;
verb, w = utf8.decode_rune_in_string(fmt[i:]);
i += w;
}
if i >= end {
strings.write_string(b, "%!(MISSING CLOSE BRACE)");
break loop;
}
brace, w := utf8.decode_rune_in_string(fmt[i:]);
i += w;
switch {
case brace != '}':
strings.write_string(b, "%!(MISSING CLOSE BRACE)");
case !fi.good_arg_index:
strings.write_string(b, "%!(BAD ARGUMENT NUMBER)");
case arg_index >= len(args):
strings.write_string(b, "%!(MISSING ARGUMENT)");
case:
fmt_arg(&fi, args[arg_index], verb);
arg_index += 1;
}
}
}
if !fi.reordered && arg_index < len(args) {
strings.write_string(b, "%!(EXTRA ");
for arg, index in args[arg_index:] {
if index > 0 do strings.write_string(b, ", ");
if arg == nil do strings.write_string(b, "<nil>");
else do fmt_arg(&fi, args[index], 'v');
}
strings.write_string(b, ")");
}
return strings.to_string(b^);
}
_parse_int :: proc(s: string, offset: int) -> (result: int, new_offset: int, ok: bool) {
is_digit :: inline proc(r: byte) -> bool { return '0' <= r && r <= '9' }
new_offset = offset;
for new_offset <= len(s) {
c := s[new_offset];
if !is_digit(c) do break;
new_offset += 1;
result *= 10;
result += int(c)-'0';
}
ok = new_offset > offset;
return;
}
_arg_number :: proc(fi: ^Info, arg_index: int, format: string, offset, arg_count: int) -> (index, new_offset: int, ok: bool) {
parse_arg_number :: proc(format: string) -> (int, int, bool) {
if len(format) < 3 do return 0, 1, false;
for i in 1..<len(format) {
if format[i] == ']' {
width, new_index, ok := _parse_int(format, 1);
if !ok || new_index != i {
return 0, i+1, false;
}
return width-1, i+1, true;
}
}
return 0, 1, false;
}
if len(format) <= offset || format[offset] != '[' {
return arg_index, offset, false;
}
fi.reordered = true;
width: int;
index, width, ok = parse_arg_number(format[offset:]);
if ok && 0 <= index && index < arg_count {
return index, offset+width, true;
}
fi.good_arg_index = false;
return arg_index, offset+width, false;
}
int_from_arg :: proc(args: []any, arg_index: int) -> (int, int, bool) {
num := 0;
new_arg_index := arg_index;
ok := true;
if arg_index < len(args) {
arg := args[arg_index];
arg.id = runtime.typeid_base(arg.id);
switch i in arg {
case int: num = i;
case i8: num = int(i);
case i16: num = int(i);
case i32: num = int(i);
case i64: num = int(i);
case u8: num = int(i);
case u16: num = int(i);
case u32: num = int(i);
case u64: num = int(i);
case:
ok = false;
}
}
if ok {
new_arg_index += 1;
}
return num, new_arg_index, ok;
}
fmt_bad_verb :: proc(using fi: ^Info, verb: rune) {
strings.write_string(buf, "%!");
strings.write_rune(buf, verb);
strings.write_byte(buf, '(');
if arg.id != nil {
reflect.write_typeid(buf, arg.id);
strings.write_byte(buf, '=');
fmt_value(fi, arg, 'v');
} else {
strings.write_string(buf, "<nil>");
}
strings.write_byte(buf, ')');
}
fmt_bool :: proc(using fi: ^Info, b: bool, verb: rune) {
switch verb {
case 't', 'v':
strings.write_string(buf, b ? "true" : "false");
case:
fmt_bad_verb(fi, verb);
}
}
fmt_write_padding :: proc(fi: ^Info, width: int) {
if width <= 0 do return;
pad_byte: byte = '0';
if fi.space do pad_byte = ' ';
for i := 0; i < width; i += 1 {
strings.write_byte(fi.buf, pad_byte);
}
}
_fmt_int :: proc(fi: ^Info, u: u64, base: int, is_signed: bool, bit_size: int, digits: string) {
_, neg := strconv.is_integer_negative(u, is_signed, bit_size);
BUF_SIZE :: 256;
if fi.width_set || fi.prec_set {
width := fi.width + fi.prec + 3; // 3 extra bytes for sign and prefix
if width > BUF_SIZE {
// TODO(bill):????
panic("_fmt_int: buffer overrun. Width and precision too big");
}
}
prec := 0;
if fi.prec_set {
prec = fi.prec;
if prec == 0 && u == 0 {
prev_zero := fi.zero;
fi.zero = false;
fmt_write_padding(fi, fi.width);
fi.zero = prev_zero;
return;
}
} else if fi.zero && fi.width_set {
prec = fi.width;
if neg || fi.plus || fi.space {
// There needs to be space for the "sign"
prec -= 1;
}
}
switch base {
case 2, 8, 10, 12, 16:
break;
case:
panic("_fmt_int: unknown base, whoops");
}
buf: [256]byte;
start := 0;
flags: strconv.Int_Flags;
if fi.hash && !fi.zero do flags |= {.Prefix};
if fi.plus do flags |= {.Plus};
if fi.space do flags |= {.Space};
s := strconv.append_bits(buf[start:], u, base, is_signed, bit_size, digits, flags);
if fi.hash && fi.zero {
c: byte = 0;
switch base {
case 2: c = 'b';
case 8: c = 'o';
case 12: c = 'z';
case 16: c = 'x';
}
if c != 0 {
strings.write_byte(fi.buf, '0');
strings.write_byte(fi.buf, c);
}
}
prev_zero := fi.zero;
defer fi.zero = prev_zero;
fi.zero = false;
_pad(fi, s);
}
_fmt_int_128 :: proc(fi: ^Info, u: u128, base: int, is_signed: bool, bit_size: int, digits: string) {
_, neg := strconv.is_integer_negative_128(u, is_signed, bit_size);
BUF_SIZE :: 256;
if fi.width_set || fi.prec_set {
width := fi.width + fi.prec + 3; // 3 extra bytes for sign and prefix
if width > BUF_SIZE {
// TODO(bill):????
panic("_fmt_int: buffer overrun. Width and precision too big");
}
}
prec := 0;
if fi.prec_set {
prec = fi.prec;
if prec == 0 && u == 0 {
prev_zero := fi.zero;
fi.zero = false;
fmt_write_padding(fi, fi.width);
fi.zero = prev_zero;
return;
}
} else if fi.zero && fi.width_set {
prec = fi.width;
if neg || fi.plus || fi.space {
// There needs to be space for the "sign"
prec -= 1;
}
}
switch base {
case 2, 8, 10, 12, 16:
break;
case:
panic("_fmt_int: unknown base, whoops");
}
buf: [256]byte;
start := 0;
flags: strconv.Int_Flags;
if fi.hash && !fi.zero do flags |= {.Prefix};
if fi.plus do flags |= {.Plus};
if fi.space do flags |= {.Space};
s := strconv.append_bits_128(buf[start:], u, base, is_signed, bit_size, digits, flags);
if fi.hash && fi.zero {
c: byte = 0;
switch base {
case 2: c = 'b';
case 8: c = 'o';
case 12: c = 'z';
case 16: c = 'x';
}
if c != 0 {
strings.write_byte(fi.buf, '0');
strings.write_byte(fi.buf, c);
}
}
prev_zero := fi.zero;
defer fi.zero = prev_zero;
fi.zero = false;
_pad(fi, s);
}
__DIGITS_LOWER := "0123456789abcdefx";
__DIGITS_UPPER := "0123456789ABCDEFX";
fmt_rune :: proc(fi: ^Info, r: rune, verb: rune) {
switch verb {
case 'c', 'r', 'v':
strings.write_rune(fi.buf, r);
case:
fmt_int(fi, u64(r), false, 32, verb);
}
}
fmt_int :: proc(fi: ^Info, u: u64, is_signed: bool, bit_size: int, verb: rune) {
switch verb {
case 'v': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER);
case 'b': _fmt_int(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER);
case 'o': _fmt_int(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER);
case 'd': _fmt_int(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER);
case 'z': _fmt_int(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER);
case 'x': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER);
case 'X': _fmt_int(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER);
case 'c', 'r':
fmt_rune(fi, rune(u), verb);
case 'U':
r := rune(u);
if r < 0 || r > utf8.MAX_RUNE {
fmt_bad_verb(fi, verb);
} else {
strings.write_string(fi.buf, "U+");
_fmt_int(fi, u, 16, false, bit_size, __DIGITS_UPPER);
}
case:
fmt_bad_verb(fi, verb);
}
}
fmt_int_128 :: proc(fi: ^Info, u: u128, is_signed: bool, bit_size: int, verb: rune) {
switch verb {
case 'v': _fmt_int_128(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER);
case 'b': _fmt_int_128(fi, u, 2, is_signed, bit_size, __DIGITS_LOWER);
case 'o': _fmt_int_128(fi, u, 8, is_signed, bit_size, __DIGITS_LOWER);
case 'd': _fmt_int_128(fi, u, 10, is_signed, bit_size, __DIGITS_LOWER);
case 'z': _fmt_int_128(fi, u, 12, is_signed, bit_size, __DIGITS_LOWER);
case 'x': _fmt_int_128(fi, u, 16, is_signed, bit_size, __DIGITS_LOWER);
case 'X': _fmt_int_128(fi, u, 16, is_signed, bit_size, __DIGITS_UPPER);
case 'c', 'r':
fmt_rune(fi, rune(u), verb);
case 'U':
r := rune(u);
if r < 0 || r > utf8.MAX_RUNE {
fmt_bad_verb(fi, verb);
} else {
strings.write_string(fi.buf, "U+");
_fmt_int_128(fi, u, 16, false, bit_size, __DIGITS_UPPER);
}
case:
fmt_bad_verb(fi, verb);
}
}
_pad :: proc(fi: ^Info, s: string) {
if !fi.width_set {
strings.write_string(fi.buf, s);
return;
}
width := fi.width - utf8.rune_count_in_string(s);
if fi.minus { // right pad
strings.write_string(fi.buf, s);
fmt_write_padding(fi, width);
} else { // left pad
fmt_write_padding(fi, width);
strings.write_string(fi.buf, s);
}
}
fmt_float :: proc(fi: ^Info, v: f64, bit_size: int, verb: rune) {
switch verb {
case 'f', 'F', 'v':
prec: int = 3;
if fi.prec_set do prec = fi.prec;
buf: [386]byte;
str := strconv.append_float(buf[1:], v, 'f', prec, bit_size);
b := buf[:len(str)+1];
if b[1] == '+' || b[1] == '-' {
b = b[1:];
} else {
b[0] = '+';
}
if fi.space && !fi.plus && b[0] == '+' {
b[0] = ' ';
}
if len(b) > 1 && (b[1] == 'N' || b[1] == 'I') {
strings.write_string(fi.buf, string(b));
return;
}
if fi.plus || b[0] != '+' {
if fi.zero && fi.width_set && fi.width > len(b) {
strings.write_byte(fi.buf, b[0]);
fmt_write_padding(fi, fi.width - len(b));
strings.write_string(fi.buf, string(b[1:]));
} else {
_pad(fi, string(b));
}
} else {
_pad(fi, string(b[1:]));
}
case 'e', 'E':
prec: int = 3;
if fi.prec_set do prec = fi.prec;
buf: [386]byte;
str := strconv.append_float(buf[1:], v, 'e', prec, bit_size);
b := buf[:len(str)+1];
if b[1] == '+' || b[1] == '-' {
b = b[1:];
} else {
b[0] = '+';
}
if fi.space && !fi.plus && b[0] == '+' {
b[0] = ' ';
}
if len(b) > 1 && (b[1] == 'N' || b[1] == 'I') {
strings.write_string(fi.buf, string(b));
return;
}
if fi.plus || str[0] != '+' {
if fi.zero && fi.width_set && fi.width > len(b) {
strings.write_byte(fi.buf, b[0]);
fmt_write_padding(fi, fi.width - len(b));
strings.write_string(fi.buf, string(b[1:]));
} else {
_pad(fi, string(b));
}
} else {
_pad(fi, string(b[1:]));
}
case 'h', 'H':
prev_fi := fi^;
defer fi^ = prev_fi;
fi.hash = false;
fi.width = bit_size;
fi.zero = true;
fi.plus = false;
u: u64;
switch bit_size {
case 32: u = u64(transmute(u32)f32(v));
case 64: u = transmute(u64)v;
case: panic("Unhandled float size");
}
strings.write_string(fi.buf, "0h");
_fmt_int(fi, u, 16, false, bit_size, __DIGITS_LOWER if verb == 'h' else __DIGITS_UPPER);
case:
fmt_bad_verb(fi, verb);
}
}
fmt_string :: proc(fi: ^Info, s: string, verb: rune) {
switch verb {
case 's', 'v':
strings.write_string(fi.buf, s);
case 'q': // quoted string
strings.write_quoted_string(fi.buf, s, '"');
case 'x', 'X':
space := fi.space;
fi.space = false;
defer fi.space = space;
for i in 0..<len(s) {
if i > 0 && space do strings.write_byte(fi.buf, ' ');
char_set := __DIGITS_UPPER;
if verb == 'x' do char_set = __DIGITS_LOWER;
_fmt_int(fi, u64(s[i]), 16, false, 8, char_set);
}
case:
fmt_bad_verb(fi, verb);
}
}
fmt_cstring :: proc(fi: ^Info, s: cstring, verb: rune) {
fmt_string(fi, string(s), verb);
}
fmt_pointer :: proc(fi: ^Info, p: rawptr, verb: rune) {
u := u64(uintptr(p));
switch verb {
case 'p', 'v':
if !fi.hash || verb == 'v' {
strings.write_string(fi.buf, "0x");
}
_fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER);
case 'b': _fmt_int(fi, u, 2, false, 8*size_of(rawptr), __DIGITS_UPPER);
case 'o': _fmt_int(fi, u, 8, false, 8*size_of(rawptr), __DIGITS_UPPER);
case 'd': _fmt_int(fi, u, 10, false, 8*size_of(rawptr), __DIGITS_UPPER);
case 'x': _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER);
case 'X': _fmt_int(fi, u, 16, false, 8*size_of(rawptr), __DIGITS_UPPER);
case:
fmt_bad_verb(fi, verb);
}
}
enum_value_to_string :: proc(val: any) -> (string, bool) {
v := val;
v.id = runtime.typeid_base(v.id);
type_info := type_info_of(v.id);
#partial switch e in type_info.variant {
case: return "", false;
case runtime.Type_Info_Enum:
get_str :: proc(data: rawptr, e: runtime.Type_Info_Enum) -> (string, bool) {
if len(e.values) == 0 {
return "", true;
} else {
for _, idx in e.values {
val := &e.values[idx];
// NOTE(bill): Removes need for parametric polymorphic check
res := mem.compare_ptrs(val, data, e.base.size);
if res == 0 {
return e.names[idx], true;
}
}
}
return "", false;
}
return get_str(v.data, e);
}
return "", false;
}
string_to_enum_value :: proc($T: typeid, s: string) -> (T, bool) {
ti := runtime.type_info_base(type_info_of(T));
if e, ok := ti.variant.(runtime.Type_Info_Enum); ok {
for str, idx in e.names {
if s == str {
// NOTE(bill): Unsafe cast
ptr := cast(^T)&e.values[idx];
return ptr^, true;
}
}
}
return T{}, false;
}
fmt_enum :: proc(fi: ^Info, v: any, verb: rune) {
if v.id == nil || v.data == nil {
strings.write_string(fi.buf, "<nil>");
return;
}
type_info := type_info_of(v.id);
#partial switch e in type_info.variant {
case: fmt_bad_verb(fi, verb);
case runtime.Type_Info_Enum:
switch verb {
case: fmt_bad_verb(fi, verb);
case 'd', 'f':
fmt_arg(fi, any{v.data, runtime.type_info_base(e.base).id}, verb);
case 's', 'v':
str, ok := enum_value_to_string(v);
if !ok do str = "!%(BAD ENUM VALUE)";
strings.write_string(fi.buf, str);
}
}
}
stored_enum_value_to_string :: proc(enum_type: ^runtime.Type_Info, ev: runtime.Type_Info_Enum_Value, offset: int = 0) -> (string, bool) {
et := runtime.type_info_base(enum_type);
#partial switch e in et.variant {
case: return "", false;
case runtime.Type_Info_Enum:
get_str :: proc(i: $T, e: runtime.Type_Info_Enum) -> (string, bool) {
if reflect.is_string(e.base) {
for val, idx in e.values {
if v, ok := val.(T); ok && v == i {
return e.names[idx], true;
}
}
} else if len(e.values) == 0 {
return "", true;
} else {
for val, idx in e.values {
if v, ok := val.(T); ok && v == i {
return e.names[idx], true;
}
}
}
return "", false;
}
switch v in ev {
case rune: return get_str(v + auto_cast offset, e);
case i8: return get_str(v + auto_cast offset, e);
case i16: return get_str(v + auto_cast offset, e);
case i32: return get_str(v + auto_cast offset, e);
case i64: return get_str(v + auto_cast offset, e);
case int: return get_str(v + auto_cast offset, e);
case u8: return get_str(v + auto_cast offset, e);
case u16: return get_str(v + auto_cast offset, e);
case u32: return get_str(v + auto_cast offset, e);
case u64: return get_str(v + auto_cast offset, e);
case uint: return get_str(v + auto_cast offset, e);
case uintptr: return get_str(v + auto_cast offset, e);
}
}
return "", false;
}
enum_value_to_u64 :: proc(ev: runtime.Type_Info_Enum_Value) -> u64 {
switch i in ev {
case rune: return u64(i);
case i8: return u64(i);
case i16: return u64(i);
case i32: return u64(i);
case i64: return u64(i);
case int: return u64(i);
case u8: return u64(i);
case u16: return u64(i);
case u32: return u64(i);
case u64: return u64(i);
case uint: return u64(i);
case uintptr: return u64(i);
}
return 0;
}
enum_value_to_i64 :: proc(ev: runtime.Type_Info_Enum_Value) -> i64 {
switch i in ev {
case rune: return i64(i);
case i8: return i64(i);
case i16: return i64(i);
case i32: return i64(i);
case i64: return i64(i);
case int: return i64(i);
case u8: return i64(i);
case u16: return i64(i);
case u32: return i64(i);
case u64: return i64(i);
case uint: return i64(i);
case uintptr: return i64(i);
}
return 0;
}
fmt_bit_set :: proc(fi: ^Info, v: any, name: string = "") {
is_bit_set_different_endian_to_platform :: proc(ti: ^runtime.Type_Info) -> bool {
if ti == nil {
return false;
}
t := runtime.type_info_base(ti);
#partial switch info in t.variant {
case runtime.Type_Info_Integer:
switch info.endianness {
case .Platform: return false;
case .Little: return ODIN_ENDIAN != "little";
case .Big: return ODIN_ENDIAN != "big";
}
}
return false;
}
byte_swap :: bits.byte_swap;
type_info := type_info_of(v.id);
#partial switch info in type_info.variant {
case runtime.Type_Info_Named:
val := v;
val.id = info.base.id;
fmt_bit_set(fi, val, info.name);
case runtime.Type_Info_Bit_Set:
bits: u128;
bit_size := u128(8*type_info.size);
do_byte_swap := is_bit_set_different_endian_to_platform(info.underlying);
switch bit_size {
case 0: bits = 0;
case 8:
x := (^u8)(v.data)^;
bits = u128(x);
case 16:
x := (^u16)(v.data)^;
if do_byte_swap do x = byte_swap(x);
bits = u128(x);
case 32:
x := (^u32)(v.data)^;
if do_byte_swap do x = byte_swap(x);
bits = u128(x);
case 64:
x := (^u64)(v.data)^;
if do_byte_swap do x = byte_swap(x);
bits = u128(x);
case 128:
x := (^u128)(v.data)^;
if do_byte_swap do x = byte_swap(x);
bits = u128(x);
case: panic("unknown bit_size size");
}
et := runtime.type_info_base(info.elem);
if name != "" {
strings.write_string(fi.buf, name);
} else {
reflect.write_type(fi.buf, type_info);
}
strings.write_byte(fi.buf, '{');
defer strings.write_byte(fi.buf, '}');
e, is_enum := et.variant.(runtime.Type_Info_Enum);
commas := 0;
loop: for i in 0 ..< bit_size {
if bits & (1<<i) == 0 {
continue loop;
}
if commas > 0 do strings.write_string(fi.buf, ", ");
if is_enum do for ev, evi in e.values {
v := enum_value_to_u64(ev);
if v == u64(i) {
strings.write_string(fi.buf, e.names[evi]);
commas += 1;
continue loop;
}
}
v := i64(i) + info.lower;
strings.write_i64(fi.buf, v, 10);
commas += 1;
}
}
}
fmt_bit_field :: proc(fi: ^Info, v: any, bit_field_name: string = "") {
type_info := type_info_of(v.id);
#partial switch info in type_info.variant {
case runtime.Type_Info_Named:
val := v;
val.id = info.base.id;
fmt_bit_field(fi, val, info.name);
case runtime.Type_Info_Bit_Field:
data: u64 = 0;
switch type_info.size {
case 1: data = cast(u64) (^u8)(v.data)^;
case 2: data = cast(u64)(^u16)(v.data)^;
case 4: data = cast(u64)(^u32)(v.data)^;
case 8: data = cast(u64)(^u64)(v.data)^;
}
if bit_field_name != "" {
strings.write_string(fi.buf, bit_field_name);
strings.write_byte(fi.buf, '{');
} else {
strings.write_string(fi.buf, "bit_field{");
}
for name, i in info.names {
if i > 0 {
strings.write_string(fi.buf, ", ");
}
bits := u64(info.bits[i]);
offset := u64(info.offsets[i]);
strings.write_string(fi.buf, name);
strings.write_string(fi.buf, " = ");
n := 8*u64(size_of(u64));
sa := n - bits;
u := data>>offset;
u <<= sa;
u >>= sa;
strings.write_u64(fi.buf, u, 10);
}
strings.write_byte(fi.buf, '}');
}
}
fmt_opaque :: proc(fi: ^Info, v: any) {
is_nil :: proc(data: rawptr, n: int) -> bool {
if data == nil do return true;
if n == 0 do return true;
a := (^byte)(data);
for i in 0..<n do if mem.ptr_offset(a, i)^ != 0 {
return false;
}
return true;
}
rt :: runtime;
type_info := type_info_of(v.id);
if is_nil(v.data, type_info.size) {
strings.write_string(fi.buf, "nil");
return;
}
if ot, ok := rt.type_info_base(type_info).variant.(rt.Type_Info_Opaque); ok {
elem := rt.type_info_base(ot.elem);
if elem == nil do return;
reflect.write_type(fi.buf, type_info);
strings.write_byte(fi.buf, '{');
defer strings.write_byte(fi.buf, '}');
#partial switch in elem.variant {
case rt.Type_Info_Integer, rt.Type_Info_Pointer, rt.Type_Info_Float:
fmt_value(fi, any{v.data, elem.id}, 'v');
case:
// Okay
}
} else {
reflect.write_type(fi.buf, type_info);
strings.write_byte(fi.buf, '{');
strings.write_byte(fi.buf, '}');
}
}
fmt_value :: proc(fi: ^Info, v: any, verb: rune) {
if v.data == nil || v.id == nil {
strings.write_string(fi.buf, "<nil>");
return;
}
type_info := type_info_of(v.id);
switch info in type_info.variant {
case runtime.Type_Info_Any: // Ignore
case runtime.Type_Info_Tuple: // Ignore
case runtime.Type_Info_Named:
#partial switch b in info.base.variant {
case runtime.Type_Info_Struct:
if verb != 'v' {
fmt_bad_verb(fi, verb);
return;
}
if b.is_raw_union {
strings.write_string(fi.buf, info.name);
strings.write_string(fi.buf, "{}");
return;
};
is_soa := b.soa_kind != .None;
strings.write_string(fi.buf, info.name);
strings.write_byte(fi.buf, '[' if is_soa else '{');
hash := fi.hash; defer fi.hash = hash;
indent := fi.indent; defer fi.indent -= 1;
fi.hash = false;
fi.indent += 1;
if hash do strings.write_byte(fi.buf, '\n');
defer {
if hash do for in 0..<indent do strings.write_byte(fi.buf, '\t');
strings.write_byte(fi.buf, ']' if is_soa else '}');
}
if is_soa {
fi.indent += 1;
defer fi.indent -= 1;
base_type_name: string;
if v, ok := b.soa_base_type.variant.(runtime.Type_Info_Named); ok {
base_type_name = v.name;
}
for index in 0..<uintptr(b.soa_len) {
if !hash && index > 0 do strings.write_string(fi.buf, ", ");
field_count := -1;
if !hash && field_count > 0 do strings.write_string(fi.buf, ", ");
strings.write_string(fi.buf, base_type_name);
strings.write_byte(fi.buf, '{');
defer strings.write_byte(fi.buf, '}');
for name, i in b.names {
field_count += 1;
if !hash && field_count > 0 do strings.write_string(fi.buf, ", ");
if hash do for in 0..<fi.indent do strings.write_byte(fi.buf, '\t');
strings.write_string(fi.buf, name);
strings.write_string(fi.buf, " = ");
t := b.types[i].variant.(runtime.Type_Info_Array).elem;
t_size := uintptr(t.size);
if reflect.is_any(t) {
strings.write_string(fi.buf, "any{}");
} else {
data := rawptr(uintptr(v.data) + b.offsets[i] + index*t_size);
fmt_arg(fi, any{data, t.id}, 'v');
}
if hash do strings.write_string(fi.buf, ",\n");
}
}
} else {
field_count := -1;
for name, i in b.names {
field_count += 1;
if !hash && field_count > 0 do strings.write_string(fi.buf, ", ");
if hash do for in 0..<fi.indent do strings.write_byte(fi.buf, '\t');
strings.write_string(fi.buf, name);
strings.write_string(fi.buf, " = ");
if t := b.types[i]; reflect.is_any(t) {
strings.write_string(fi.buf, "any{}");
} else {
data := rawptr(uintptr(v.data) + b.offsets[i]);
fmt_arg(fi, any{data, t.id}, 'v');
}
if hash do strings.write_string(fi.buf, ",\n");
}
}
case runtime.Type_Info_Bit_Set:
fmt_bit_set(fi, v);
case runtime.Type_Info_Bit_Field:
fmt_bit_field(fi, v);
case runtime.Type_Info_Opaque:
fmt_opaque(fi, v);
case:
fmt_value(fi, any{v.data, info.base.id}, verb);
}
case runtime.Type_Info_Boolean: fmt_arg(fi, v, verb);
case runtime.Type_Info_Integer: fmt_arg(fi, v, verb);
case runtime.Type_Info_Rune: fmt_arg(fi, v, verb);
case runtime.Type_Info_Float: fmt_arg(fi, v, verb);
case runtime.Type_Info_Complex: fmt_arg(fi, v, verb);
case runtime.Type_Info_Quaternion: fmt_arg(fi, v, verb);
case runtime.Type_Info_String: fmt_arg(fi, v, verb);
case runtime.Type_Info_Pointer:
if v.id == typeid_of(^runtime.Type_Info) {
reflect.write_type(fi.buf, (^^runtime.Type_Info)(v.data)^);
} else {
ptr := (^rawptr)(v.data)^;
if verb != 'p' && info.elem != nil {
a := any{ptr, info.elem.id};
elem := runtime.type_info_base(info.elem);
if elem != nil do #partial switch e in elem.variant {
case runtime.Type_Info_Array,
runtime.Type_Info_Slice,
runtime.Type_Info_Dynamic_Array,
runtime.Type_Info_Map:
if ptr == nil {
strings.write_string(fi.buf, "<nil>");
return;
}
if fi.record_level < 1 {
fi.record_level += 1;
defer fi.record_level -= 1;
strings.write_byte(fi.buf, '&');
fmt_value(fi, a, verb);
return;
}
case runtime.Type_Info_Struct,
runtime.Type_Info_Union:
if ptr == nil {
strings.write_string(fi.buf, "<nil>");
return;
}
if fi.record_level < 1 {
fi.record_level += 1;
defer fi.record_level -= 1;
strings.write_byte(fi.buf, '&');
fmt_value(fi, a, verb);
return;
}
}
}
fmt_pointer(fi, ptr, verb);
}
case runtime.Type_Info_Array:
strings.write_byte(fi.buf, '[');
defer strings.write_byte(fi.buf, ']');
for i in 0..<info.count {
if i > 0 do strings.write_string(fi.buf, ", ");
data := uintptr(v.data) + uintptr(i*info.elem_size);
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb);
}
case runtime.Type_Info_Enumerated_Array:
strings.write_byte(fi.buf, '[');
defer strings.write_byte(fi.buf, ']');
for i in 0..<info.count {
if i > 0 do strings.write_string(fi.buf, ", ");
idx, ok := stored_enum_value_to_string(info.index, info.min_value, i);
if ok {
strings.write_byte(fi.buf, '.');
strings.write_string(fi.buf, idx);
} else {
strings.write_i64(fi.buf, enum_value_to_i64(info.min_value)+i64(i));
}
strings.write_string(fi.buf, " = ");
data := uintptr(v.data) + uintptr(i*info.elem_size);
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb);
}
case runtime.Type_Info_Dynamic_Array:
if verb == 'p' {
slice := cast(^mem.Raw_Dynamic_Array)v.data;
fmt_pointer(fi, slice.data, 'p');
} else {
strings.write_byte(fi.buf, '[');
defer strings.write_byte(fi.buf, ']');
array := cast(^mem.Raw_Dynamic_Array)v.data;
for i in 0..<array.len {
if i > 0 do strings.write_string(fi.buf, ", ");
data := uintptr(array.data) + uintptr(i*info.elem_size);
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb);
}
}
case runtime.Type_Info_Simd_Vector:
if info.is_x86_mmx {
strings.write_string(fi.buf, "intrinsics.x86_mmx<>");
}
strings.write_byte(fi.buf, '<');
defer strings.write_byte(fi.buf, '>');
for i in 0..<info.count {
if i > 0 do strings.write_string(fi.buf, ", ");
data := uintptr(v.data) + uintptr(i*info.elem_size);
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb);
}
case runtime.Type_Info_Slice:
if verb == 'p' {
slice := cast(^mem.Raw_Slice)v.data;
fmt_pointer(fi, slice.data, 'p');
} else {
strings.write_byte(fi.buf, '[');
defer strings.write_byte(fi.buf, ']');
slice := cast(^mem.Raw_Slice)v.data;
for i in 0..<slice.len {
if i > 0 do strings.write_string(fi.buf, ", ");
data := uintptr(slice.data) + uintptr(i*info.elem_size);
fmt_arg(fi, any{rawptr(data), info.elem.id}, verb);
}
}
case runtime.Type_Info_Map:
if verb != 'v' {
fmt_bad_verb(fi, verb);
return;
}
strings.write_string(fi.buf, "map[");
defer strings.write_byte(fi.buf, ']');
m := (^mem.Raw_Map)(v.data);
if m != nil {
if info.generated_struct == nil {
return;
}
entries := &m.entries;
gs := runtime.type_info_base(info.generated_struct).variant.(runtime.Type_Info_Struct);
ed := runtime.type_info_base(gs.types[1]).variant.(runtime.Type_Info_Dynamic_Array);
entry_type := ed.elem.variant.(runtime.Type_Info_Struct);
entry_size := ed.elem_size;
for i in 0..<entries.len {
if i > 0 do strings.write_string(fi.buf, ", ");
data := uintptr(entries.data) + uintptr(i*entry_size);
header := cast(^runtime.Map_Entry_Header)data;
if reflect.is_string(info.key) {
strings.write_string(fi.buf, header.key.str);
} else {
fi := Info{buf = fi.buf};
fmt_arg(&fi, any{rawptr(&header.key.hash), info.key.id}, 'v');
}
strings.write_string(fi.buf, "=");
value := data + entry_type.offsets[2];
fmt_arg(fi, any{rawptr(value), info.value.id}, 'v');
}
}
case runtime.Type_Info_Struct:
if info.is_raw_union {
strings.write_string(fi.buf, "(raw_union)");
return;
}
is_soa := info.soa_kind != .None;
strings.write_byte(fi.buf, '[' if is_soa else '{');
defer strings.write_byte(fi.buf, ']' if is_soa else '}');
fi.indent += 1; defer fi.indent -= 1;
hash := fi.hash; defer fi.hash = hash;
fi.hash = false;
if hash do strings.write_byte(fi.buf, '\n');
if is_soa {
fi.indent += 1;
defer fi.indent -= 1;
base_type_name: string;
if v, ok := info.soa_base_type.variant.(runtime.Type_Info_Named); ok {
base_type_name = v.name;
}
actual_field_count := len(info.names);
n := uintptr(info.soa_len);
if info.soa_kind == .Slice {
actual_field_count = len(info.names)-1; // len
n = uintptr((^int)(uintptr(v.data) + info.offsets[actual_field_count])^);
} else if info.soa_kind == .Dynamic {
actual_field_count = len(info.names)-3; // len, cap, allocator
n = uintptr((^int)(uintptr(v.data) + info.offsets[actual_field_count])^);
}
for index in 0..<n {
if !hash && index > 0 do strings.write_string(fi.buf, ", ");
field_count := -1;
if !hash && field_count > 0 do strings.write_string(fi.buf, ", ");
strings.write_string(fi.buf, base_type_name);
strings.write_byte(fi.buf, '{');
defer strings.write_byte(fi.buf, '}');
for i in 0..<actual_field_count {
name := info.names[i];
field_count += 1;
if !hash && field_count > 0 do strings.write_string(fi.buf, ", ");
if hash do for in 0..<fi.indent do strings.write_byte(fi.buf, '\t');
strings.write_string(fi.buf, name);
strings.write_string(fi.buf, " = ");
if info.soa_kind == .Fixed {
t := info.types[i].variant.(runtime.Type_Info_Array).elem;
t_size := uintptr(t.size);
if reflect.is_any(t) {
strings.write_string(fi.buf, "any{}");
} else {
data := rawptr(uintptr(v.data) + info.offsets[i] + index*t_size);
fmt_arg(fi, any{data, t.id}, 'v');
}
} else {
t := info.types[i].variant.(runtime.Type_Info_Pointer).elem;
t_size := uintptr(t.size);
if reflect.is_any(t) {
strings.write_string(fi.buf, "any{}");
} else {
field_ptr := (^^byte)(uintptr(v.data) + info.offsets[i])^;
data := rawptr(uintptr(field_ptr) + index*t_size);
fmt_arg(fi, any{data, t.id}, 'v');
}
}
if hash do strings.write_string(fi.buf, ",\n");
}
}
} else {
field_count := -1;
for name, i in info.names {
field_count += 1;
if !hash && field_count > 0 do strings.write_string(fi.buf, ", ");
if hash do for in 0..<fi.indent do strings.write_byte(fi.buf, '\t');
strings.write_string(fi.buf, name);
strings.write_string(fi.buf, " = ");
if t := info.types[i]; reflect.is_any(t) {
strings.write_string(fi.buf, "any{}");
} else {
data := rawptr(uintptr(v.data) + info.offsets[i]);
fmt_arg(fi, any{data, t.id}, 'v');
}
if hash do strings.write_string(fi.buf, ",\n");
}
}
case runtime.Type_Info_Union:
if type_info.size == 0 {
strings.write_string(fi.buf, "nil");
return;
}
if info.maybe && len(info.variants) == 1 && reflect.is_pointer(info.variants[0]) {
if v.data == nil {
strings.write_string(fi.buf, "nil");
} else {
id := info.variants[0].id;
fmt_arg(fi, any{v.data, id}, verb);
}
return;
}
tag: i64 = -1;
tag_ptr := uintptr(v.data) + info.tag_offset;
tag_any := any{rawptr(tag_ptr), info.tag_type.id};
switch i in tag_any {
case u8: tag = i64(i);
case i8: tag = i64(i);
case u16: tag = i64(i);
case i16: tag = i64(i);
case u32: tag = i64(i);
case i32: tag = i64(i);
case u64: tag = i64(i);
case i64: tag = i64(i);
case: panic("Invalid union tag type");
}
assert(tag >= 0);
if v.data == nil {
strings.write_string(fi.buf, "nil");
} else if info.no_nil {
id := info.variants[tag].id;
fmt_arg(fi, any{v.data, id}, verb);
} else if tag == 0 {
strings.write_string(fi.buf, "nil");
} else {
id := info.variants[tag-1].id;
fmt_arg(fi, any{v.data, id}, verb);
}
case runtime.Type_Info_Enum:
fmt_enum(fi, v, verb);
case runtime.Type_Info_Procedure:
ptr := (^rawptr)(v.data)^;
if ptr == nil {
strings.write_string(fi.buf, "nil");
} else {
reflect.write_typeid(fi.buf, v.id);
strings.write_string(fi.buf, " @ ");
fmt_pointer(fi, ptr, 'p');
}
case runtime.Type_Info_Type_Id:
id := (^typeid)(v.data)^;
reflect.write_typeid(fi.buf, id);
case runtime.Type_Info_Bit_Field:
fmt_bit_field(fi, v);
case runtime.Type_Info_Bit_Set:
fmt_bit_set(fi, v);
case runtime.Type_Info_Opaque:
fmt_opaque(fi, v);
case runtime.Type_Info_Relative_Pointer:
ptr_any := any{v.data, info.base_integer.id};
ptr: rawptr;
switch i in &ptr_any {
case u8: ptr = handle_relative_pointer(&i);
case u16: ptr = handle_relative_pointer(&i);
case u32: ptr = handle_relative_pointer(&i);
case u64: ptr = handle_relative_pointer(&i);
case i8: ptr = handle_relative_pointer(&i);
case i16: ptr = handle_relative_pointer(&i);
case i32: ptr = handle_relative_pointer(&i);
case i64: ptr = handle_relative_pointer(&i);
case u16le: ptr = handle_relative_pointer(&i);
case u32le: ptr = handle_relative_pointer(&i);
case u64le: ptr = handle_relative_pointer(&i);
case i16le: ptr = handle_relative_pointer(&i);
case i32le: ptr = handle_relative_pointer(&i);
case i64le: ptr = handle_relative_pointer(&i);
case u16be: ptr = handle_relative_pointer(&i);
case u32be: ptr = handle_relative_pointer(&i);
case u64be: ptr = handle_relative_pointer(&i);
case i16be: ptr = handle_relative_pointer(&i);
case i32be: ptr = handle_relative_pointer(&i);
case i64be: ptr = handle_relative_pointer(&i);
}
absolute_ptr := any{ptr, info.pointer.id};
fmt_value(fi, absolute_ptr, verb);
case runtime.Type_Info_Relative_Slice:
ptr_any := any{v.data, info.base_integer.id};
ptr: rawptr;
switch i in &ptr_any {
case u8: ptr = handle_relative_pointer(&i);
case u16: ptr = handle_relative_pointer(&i);
case u32: ptr = handle_relative_pointer(&i);
case u64: ptr = handle_relative_pointer(&i);
case i8: ptr = handle_relative_pointer(&i);
case i16: ptr = handle_relative_pointer(&i);
case i32: ptr = handle_relative_pointer(&i);
case i64: ptr = handle_relative_pointer(&i);
case u16le: ptr = handle_relative_pointer(&i);
case u32le: ptr = handle_relative_pointer(&i);
case u64le: ptr = handle_relative_pointer(&i);
case i16le: ptr = handle_relative_pointer(&i);
case i32le: ptr = handle_relative_pointer(&i);
case i64le: ptr = handle_relative_pointer(&i);
case u16be: ptr = handle_relative_pointer(&i);
case u32be: ptr = handle_relative_pointer(&i);
case u64be: ptr = handle_relative_pointer(&i);
case i16be: ptr = handle_relative_pointer(&i);
case i32be: ptr = handle_relative_pointer(&i);
case i64be: ptr = handle_relative_pointer(&i);
}
if verb == 'p' {
fmt_pointer(fi, ptr, 'p');
} else if ptr == nil {
strings.write_string(fi.buf, "[]");
} else {
len_ptr := uintptr(v.data) + uintptr(info.base_integer.size);
len_any := any{rawptr(len_ptr), info.base_integer.id};
len: int = 0;
switch i in len_any {
case u8: len = int(i);
case u16: len = int(i);
case u32: len = int(i);
case u64: len = int(i);
case i8: len = int(i);
case i16: len = int(i);
case i32: len = int(i);
case i64: len = int(i);
case u16le: len = int(i);
case u32le: len = int(i);
case u64le: len = int(i);
case i16le: len = int(i);
case i32le: len = int(i);
case i64le: len = int(i);
case u16be: len = int(i);
case u32be: len = int(i);
case u64be: len = int(i);
case i16be: len = int(i);
case i32be: len = int(i);
case i64be: len = int(i);
}
slice_type := reflect.type_info_base(info.slice).variant.(runtime.Type_Info_Slice);
strings.write_byte(fi.buf, '[');
defer strings.write_byte(fi.buf, ']');
for i in 0..<len {
if i > 0 do strings.write_string(fi.buf, ", ");
data := uintptr(ptr) + uintptr(i*slice_type.elem_size);
fmt_arg(fi, any{rawptr(data), slice_type.elem.id}, verb);
}
}
}
handle_relative_pointer :: proc(ptr: ^$T) -> rawptr where intrinsics.type_is_integer(T) {
if ptr^ == 0 {
return nil;
}
when intrinsics.type_is_unsigned(T) {
return rawptr(uintptr(ptr) + uintptr(ptr^));
} else {
return rawptr(uintptr(ptr) + uintptr(i64(ptr^)));
}
}
}
fmt_complex :: proc(fi: ^Info, c: complex128, bits: int, verb: rune) {
switch verb {
case 'f', 'F', 'v', 'h', 'H':
r, i := real(c), imag(c);
fmt_float(fi, r, bits/2, verb);
if !fi.plus && i >= 0 {
strings.write_rune(fi.buf, '+');
}
fmt_float(fi, i, bits/2, verb);
strings.write_rune(fi.buf, 'i');
case:
fmt_bad_verb(fi, verb);
return;
}
}
fmt_quaternion :: proc(fi: ^Info, q: quaternion256, bits: int, verb: rune) {
switch verb {
case 'f', 'F', 'v', 'h', 'H':
r, i, j, k := real(q), imag(q), jmag(q), kmag(q);
fmt_float(fi, r, bits/4, verb);
if !fi.plus && i >= 0 do strings.write_rune(fi.buf, '+');
fmt_float(fi, i, bits/4, verb);
strings.write_rune(fi.buf, 'i');
if !fi.plus && j >= 0 do strings.write_rune(fi.buf, '+');
fmt_float(fi, j, bits/4, verb);
strings.write_rune(fi.buf, 'j');
if !fi.plus && k >= 0 do strings.write_rune(fi.buf, '+');
fmt_float(fi, k, bits/4, verb);
strings.write_rune(fi.buf, 'k');
case:
fmt_bad_verb(fi, verb);
return;
}
}
fmt_arg :: proc(fi: ^Info, arg: any, verb: rune) {
if arg == nil {
strings.write_string(fi.buf, "<nil>");
return;
}
fi.arg = arg;
if verb == 'T' {
ti := type_info_of(arg.id);
switch a in arg {
case ^runtime.Type_Info: ti = a;
}
reflect.write_type(fi.buf, ti);
return;
}
custom_types: switch a in arg {
case runtime.Source_Code_Location:
if fi.hash && verb == 'v' {
strings.write_string(fi.buf, a.file_path);
strings.write_byte(fi.buf, '(');
strings.write_i64(fi.buf, i64(a.line), 10);
strings.write_byte(fi.buf, ':');
strings.write_i64(fi.buf, i64(a.column), 10);
strings.write_byte(fi.buf, ')');
return;
}
}
base_arg := arg;
base_arg.id = runtime.typeid_base(base_arg.id);
switch a in base_arg {
case bool: fmt_bool(fi, bool(a), verb);
case b8: fmt_bool(fi, bool(a), verb);
case b16: fmt_bool(fi, bool(a), verb);
case b32: fmt_bool(fi, bool(a), verb);
case b64: fmt_bool(fi, bool(a), verb);
case any: fmt_arg(fi, a, verb);
case rune: fmt_rune(fi, a, verb);
case f32: fmt_float(fi, f64(a), 32, verb);
case f64: fmt_float(fi, a, 64, verb);
case f32le: fmt_float(fi, f64(a), 32, verb);
case f64le: fmt_float(fi, f64(a), 64, verb);
case f32be: fmt_float(fi, f64(a), 32, verb);
case f64be: fmt_float(fi, f64(a), 64, verb);
case complex64: fmt_complex(fi, complex128(a), 64, verb);
case complex128: fmt_complex(fi, a, 128, verb);
case quaternion128: fmt_quaternion(fi, quaternion256(a), 128, verb);
case quaternion256: fmt_quaternion(fi, a, 256, verb);
case i8: fmt_int(fi, u64(a), true, 8, verb);
case u8: fmt_int(fi, u64(a), false, 8, verb);
case i16: fmt_int(fi, u64(a), true, 16, verb);
case u16: fmt_int(fi, u64(a), false, 16, verb);
case i32: fmt_int(fi, u64(a), true, 32, verb);
case u32: fmt_int(fi, u64(a), false, 32, verb);
case i64: fmt_int(fi, u64(a), true, 64, verb);
case u64: fmt_int(fi, u64(a), false, 64, verb);
case int: fmt_int(fi, u64(a), true, 8*size_of(int), verb);
case uint: fmt_int(fi, u64(a), false, 8*size_of(uint), verb);
case uintptr: fmt_int(fi, u64(a), false, 8*size_of(uintptr), verb);
case string: fmt_string(fi, a, verb);
case cstring: fmt_cstring(fi, a, verb);
case typeid: reflect.write_typeid(fi.buf, a);
case i16le: fmt_int(fi, u64(a), true, 16, verb);
case u16le: fmt_int(fi, u64(a), false, 16, verb);
case i32le: fmt_int(fi, u64(a), true, 32, verb);
case u32le: fmt_int(fi, u64(a), false, 32, verb);
case i64le: fmt_int(fi, u64(a), true, 64, verb);
case u64le: fmt_int(fi, u64(a), false, 64, verb);
case i16be: fmt_int(fi, u64(a), true, 16, verb);
case u16be: fmt_int(fi, u64(a), false, 16, verb);
case i32be: fmt_int(fi, u64(a), true, 32, verb);
case u32be: fmt_int(fi, u64(a), false, 32, verb);
case i64be: fmt_int(fi, u64(a), true, 64, verb);
case u64be: fmt_int(fi, u64(a), false, 64, verb);
case i128: fmt_int_128(fi, u128(a), true, 128, verb);
case u128: fmt_int_128(fi, u128(a), false, 128, verb);
case i128le: fmt_int_128(fi, u128(a), true, 128, verb);
case u128le: fmt_int_128(fi, u128(a), false, 128, verb);
case i128be: fmt_int_128(fi, u128(a), true, 128, verb);
case u128be: fmt_int_128(fi, u128(a), false, 128, verb);
case: fmt_value(fi, arg, verb);
}
}