Files
Odin/core/math/linalg/specific.odin
2020-03-30 12:38:09 +01:00

799 lines
18 KiB
Odin

package linalg
import "core:math"
import "intrinsics"
// Specific
Float :: f32;
FLOAT_EPSILON :: 1e-7 when size_of(Float) == 4 else 1e-15;
Vector2 :: distinct [2]Float;
Vector3 :: distinct [3]Float;
Vector4 :: distinct [4]Float;
Matrix1x1 :: distinct [1][1]Float;
Matrix1x2 :: distinct [1][2]Float;
Matrix1x3 :: distinct [1][3]Float;
Matrix1x4 :: distinct [1][4]Float;
Matrix2x1 :: distinct [2][1]Float;
Matrix2x2 :: distinct [2][2]Float;
Matrix2x3 :: distinct [2][3]Float;
Matrix2x4 :: distinct [2][4]Float;
Matrix3x1 :: distinct [3][1]Float;
Matrix3x2 :: distinct [3][2]Float;
Matrix3x3 :: distinct [3][3]Float;
Matrix3x4 :: distinct [3][4]Float;
Matrix4x1 :: distinct [4][1]Float;
Matrix4x2 :: distinct [4][2]Float;
Matrix4x3 :: distinct [4][3]Float;
Matrix4x4 :: distinct [4][4]Float;
Matrix1 :: Matrix1x1;
Matrix2 :: Matrix2x2;
Matrix3 :: Matrix3x3;
Matrix4 :: Matrix4x4;
Quaternion :: distinct (quaternion128 when size_of(Float) == size_of(f32) else quaternion256);
MATRIX1_IDENTITY :: Matrix1{{1}};
MATRIX2_IDENTITY :: Matrix2{{1, 0}, {0, 1}};
MATRIX3_IDENTITY :: Matrix3{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
MATRIX4_IDENTITY :: Matrix4{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};
QUATERNION_IDENTITY :: Quaternion(1);
VECTOR3_X_AXIS :: Vector3{1, 0, 0};
VECTOR3_Y_AXIS :: Vector3{0, 1, 0};
VECTOR3_Z_AXIS :: Vector3{0, 0, 1};
radians :: proc(degrees: Float) -> Float {
return math.TAU * degrees / 360.0;
}
degrees :: proc(radians: Float) -> Float {
return 360.0 * radians / math.TAU;
}
vector2_orthogonal :: proc(v: Vector2) -> Vector2 {
return {-v.y, v.x};
}
vector3_orthogonal :: proc(v: Vector3) -> Vector3 {
x := abs(v.x);
y := abs(v.y);
z := abs(v.z);
other: Vector3;
if x < y {
if x < z {
other = {1, 0, 0};
} else {
other = {0, 0, 1};
}
} else {
if y < z {
other = {0, 1, 0};
} else {
other = {0, 0, 1};
}
}
return normalize(cross(v, other));
}
vector4_srgb_to_linear :: proc(col: Vector4) -> Vector4 {
r := math.pow(col.x, 2.2);
g := math.pow(col.y, 2.2);
b := math.pow(col.z, 2.2);
a := col.w;
return {r, g, b, a};
}
vector4_linear_to_srgb :: proc(col: Vector4) -> Vector4 {
a :: 2.51;
b :: 0.03;
c :: 2.43;
d :: 0.59;
e :: 0.14;
x := col.x;
y := col.y;
z := col.z;
x = (x * (a * x + b)) / (x * (c * x + d) + e);
y = (y * (a * y + b)) / (y * (c * y + d) + e);
z = (z * (a * z + b)) / (z * (c * z + d) + e);
x = math.pow(clamp(x, 0, 1), 1.0 / 2.2);
y = math.pow(clamp(y, 0, 1), 1.0 / 2.2);
z = math.pow(clamp(z, 0, 1), 1.0 / 2.2);
return {x, y, z, col.w};
}
vector4_hsl_to_rgb :: proc(h, s, l: Float, a: Float = 1) -> Vector4 {
hue_to_rgb :: proc(p, q, t0: Float) -> Float {
t := math.mod(t0, 1.0);
switch {
case t < 1.0/6.0: return p + (q - p) * 6.0 * t;
case t < 1.0/2.0: return q;
case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t);
}
return p;
}
r, g, b: Float;
if s == 0 {
r = l;
g = l;
b = l;
} else {
q := l * (1+s) if l < 0.5 else l+s - l*s;
p := 2*l - q;
r = hue_to_rgb(p, q, h + 1.0/3.0);
g = hue_to_rgb(p, q, h);
b = hue_to_rgb(p, q, h - 1.0/3.0);
}
return {r, g, b, a};
}
vector4_rgb_to_hsl :: proc(col: Vector4) -> Vector4 {
r := col.x;
g := col.y;
b := col.z;
a := col.w;
v_min := min(r, g, b);
v_max := max(r, g, b);
h, s, l: Float;
h = 0.0;
s = 0.0;
l = (v_min + v_max) * 0.5;
if v_max != v_min {
d: = v_max - v_min;
s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min);
switch {
case v_max == r:
h = (g - b) / d + (6.0 if g < b else 0.0);
case v_max == g:
h = (b - r) / d + 2.0;
case v_max == b:
h = (r - g) / d + 4.0;
}
h *= 1.0/6.0;
}
return {h, s, l, a};
}
quaternion_angle_axis :: proc(angle_radians: Float, axis: Vector3) -> Quaternion {
t := angle_radians*0.5;
w := math.cos(t);
v := normalize(axis) * math.sin(t);
return quaternion(w, v.x, v.y, v.z);
}
quaternion_from_euler_angles :: proc(roll, pitch, yaw: Float) -> Quaternion {
x, y, z := roll, pitch, yaw;
a, b, c := x, y, z;
ca, sa := math.cos(a*0.5), math.sin(a*0.5);
cb, sb := math.cos(b*0.5), math.sin(b*0.5);
cc, sc := math.cos(c*0.5), math.sin(c*0.5);
q: Quaternion;
q.x = sa*cb*cc - ca*sb*sc;
q.y = ca*sb*cc + sa*cb*sc;
q.z = ca*cb*sc - sa*sb*cc;
q.w = ca*cb*cc + sa*sb*sc;
return q;
}
euler_angles_from_quaternion :: proc(q: Quaternion) -> (roll, pitch, yaw: Float) {
// roll, x-axis rotation
sinr_cosp: Float = 2 * (q.w * q.x + q.y * q.z);
cosr_cosp: Float = 1 - 2 * (q.x * q.x + q.y * q.y);
roll = math.atan2(sinr_cosp, cosr_cosp);
// pitch, y-axis rotation
sinp: Float = 2 * (q.w * q.y - q.z * q.x);
if abs(sinp) >= 1 {
pitch = math.copy_sign(math.TAU * 0.25, sinp);
} else {
pitch = 2 * math.asin(sinp);
}
// yaw, z-axis rotation
siny_cosp: Float = 2 * (q.w * q.z + q.x * q.y);
cosy_cosp: Float = 1 - 2 * (q.y * q.y + q.z * q.z);
yaw = math.atan2(siny_cosp, cosy_cosp);
return;
}
quaternion_from_forward_and_up :: proc(forward, up: Vector3) -> Quaternion {
f := normalize(forward);
s := normalize(cross(f, up));
u := cross(s, f);
m := Matrix3{
{+s.x, +u.x, -f.x},
{+s.y, +u.y, -f.y},
{+s.z, +u.z, -f.z},
};
tr := trace(m);
q: Quaternion;
switch {
case tr > 0:
S := 2 * math.sqrt(1 + tr);
q.w = 0.25 * S;
q.x = (m[2][1] - m[1][2]) / S;
q.y = (m[0][2] - m[2][0]) / S;
q.z = (m[1][0] - m[0][1]) / S;
case (m[0][0] > m[1][1]) && (m[0][0] > m[2][2]):
S := 2 * math.sqrt(1 + m[0][0] - m[1][1] - m[2][2]);
q.w = (m[2][1] - m[1][2]) / S;
q.x = 0.25 * S;
q.y = (m[0][1] + m[1][0]) / S;
q.z = (m[0][2] + m[2][0]) / S;
case m[1][1] > m[2][2]:
S := 2 * math.sqrt(1 + m[1][1] - m[0][0] - m[2][2]);
q.w = (m[0][2] - m[2][0]) / S;
q.x = (m[0][1] + m[1][0]) / S;
q.y = 0.25 * S;
q.z = (m[1][2] + m[2][1]) / S;
case:
S := 2 * math.sqrt(1 + m[2][2] - m[0][0] - m[1][1]);
q.w = (m[1][0] - m[0][1]) / S;
q.x = (m[0][2] - m[2][0]) / S;
q.y = (m[1][2] + m[2][1]) / S;
q.z = 0.25 * S;
}
return normalize(q);
}
quaternion_look_at :: proc(eye, centre: Vector3, up: Vector3) -> Quaternion {
return quaternion_from_forward_and_up(centre-eye, up);
}
quaternion_nlerp :: proc(a, b: Quaternion, t: Float) -> Quaternion {
c := a + (b-a)*quaternion(t, 0, 0, 0);
return normalize(c);
}
quaternion_slerp :: proc(x, y: Quaternion, t: Float) -> Quaternion {
a, b := x, y;
cos_angle := dot(a, b);
if cos_angle < 0 {
b = -b;
cos_angle = -cos_angle;
}
if cos_angle > 1 - FLOAT_EPSILON {
return a + (b-a)*quaternion(t, 0, 0, 0);
}
angle := math.acos(cos_angle);
sin_angle := math.sin(angle);
factor_a, factor_b: Quaternion;
factor_a = quaternion(math.sin((1-t) * angle) / sin_angle, 0, 0, 0);
factor_b = quaternion(math.sin(t * angle) / sin_angle, 0, 0, 0);
return factor_a * a + factor_b * b;
}
quaternion_from_matrix4 :: proc(m: Matrix4) -> Quaternion {
four_x_squared_minus_1, four_y_squared_minus_1,
four_z_squared_minus_1, four_w_squared_minus_1,
four_biggest_squared_minus_1: Float;
/* xyzw */
/* 0123 */
biggest_index := 3;
biggest_value, mult: Float;
four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2];
four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2];
four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1];
four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2];
four_biggest_squared_minus_1 = four_w_squared_minus_1;
if four_x_squared_minus_1 > four_biggest_squared_minus_1 {
four_biggest_squared_minus_1 = four_x_squared_minus_1;
biggest_index = 0;
}
if four_y_squared_minus_1 > four_biggest_squared_minus_1 {
four_biggest_squared_minus_1 = four_y_squared_minus_1;
biggest_index = 1;
}
if four_z_squared_minus_1 > four_biggest_squared_minus_1 {
four_biggest_squared_minus_1 = four_z_squared_minus_1;
biggest_index = 2;
}
biggest_value = math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5;
mult = 0.25 / biggest_value;
switch biggest_index {
case 0:
return quaternion(
biggest_value,
(m[0][1] + m[1][0]) * mult,
(m[2][0] + m[0][2]) * mult,
(m[1][2] - m[2][1]) * mult,
);
case 1:
return quaternion(
(m[0][1] + m[1][0]) * mult,
biggest_value,
(m[1][2] + m[2][1]) * mult,
(m[2][0] - m[0][2]) * mult,
);
case 2:
return quaternion(
(m[2][0] + m[0][2]) * mult,
(m[1][2] + m[2][1]) * mult,
biggest_value,
(m[0][1] - m[1][0]) * mult,
);
case 3:
return quaternion(
(m[1][2] - m[2][1]) * mult,
(m[2][0] - m[0][2]) * mult,
(m[0][1] - m[1][0]) * mult,
biggest_value,
);
}
return 0;
}
quaternion_from_matrix3 :: proc(m: Matrix3) -> Quaternion {
four_x_squared_minus_1, four_y_squared_minus_1,
four_z_squared_minus_1, four_w_squared_minus_1,
four_biggest_squared_minus_1: Float;
/* xyzw */
/* 0123 */
biggest_index := 3;
biggest_value, mult: Float;
four_x_squared_minus_1 = m[0][0] - m[1][1] - m[2][2];
four_y_squared_minus_1 = m[1][1] - m[0][0] - m[2][2];
four_z_squared_minus_1 = m[2][2] - m[0][0] - m[1][1];
four_w_squared_minus_1 = m[0][0] + m[1][1] + m[2][2];
four_biggest_squared_minus_1 = four_w_squared_minus_1;
if four_x_squared_minus_1 > four_biggest_squared_minus_1 {
four_biggest_squared_minus_1 = four_x_squared_minus_1;
biggest_index = 0;
}
if four_y_squared_minus_1 > four_biggest_squared_minus_1 {
four_biggest_squared_minus_1 = four_y_squared_minus_1;
biggest_index = 1;
}
if four_z_squared_minus_1 > four_biggest_squared_minus_1 {
four_biggest_squared_minus_1 = four_z_squared_minus_1;
biggest_index = 2;
}
biggest_value = math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5;
mult = 0.25 / biggest_value;
switch biggest_index {
case 0:
return quaternion(
biggest_value,
(m[0][1] + m[1][0]) * mult,
(m[2][0] + m[0][2]) * mult,
(m[1][2] - m[2][1]) * mult,
);
case 1:
return quaternion(
(m[0][1] + m[1][0]) * mult,
biggest_value,
(m[1][2] + m[2][1]) * mult,
(m[2][0] - m[0][2]) * mult,
);
case 2:
return quaternion(
(m[2][0] + m[0][2]) * mult,
(m[1][2] + m[2][1]) * mult,
biggest_value,
(m[0][1] - m[1][0]) * mult,
);
case 3:
return quaternion(
(m[1][2] - m[2][1]) * mult,
(m[2][0] - m[0][2]) * mult,
(m[0][1] - m[1][0]) * mult,
biggest_value,
);
}
return 0;
}
quaternion_between_two_vector3 :: proc(from, to: Vector3) -> Quaternion {
x := normalize(from);
y := normalize(to);
cos_theta := dot(x, y);
if abs(cos_theta + 1) < 2*FLOAT_EPSILON {
v := vector3_orthogonal(x);
return quaternion(0, v.x, v.y, v.z);
}
v := cross(x, y);
w := cos_theta + 1;
return Quaternion(normalize(quaternion(w, v.x, v.y, v.z)));
}
matrix2_inverse_transpose :: proc(m: Matrix2) -> Matrix2 {
c: Matrix2;
d := m[0][0]*m[1][1] - m[1][0]*m[0][1];
id := 1.0/d;
c[0][0] = +m[1][1] * id;
c[0][1] = -m[0][1] * id;
c[1][0] = -m[1][0] * id;
c[1][1] = +m[0][0] * id;
return c;
}
matrix2_determinant :: proc(m: Matrix2) -> Float {
return m[0][0]*m[1][1] - m[1][0]*m[0][1];
}
matrix2_inverse :: proc(m: Matrix2) -> Matrix2 {
c: Matrix2;
d := m[0][0]*m[1][1] - m[1][0]*m[0][1];
id := 1.0/d;
c[0][0] = +m[1][1] * id;
c[1][0] = -m[0][1] * id;
c[0][1] = -m[1][0] * id;
c[1][1] = +m[0][0] * id;
return c;
}
matrix2_adjoint :: proc(m: Matrix2) -> Matrix2 {
c: Matrix2;
c[0][0] = +m[1][1];
c[0][1] = -m[1][0];
c[1][0] = -m[0][1];
c[1][1] = +m[0][0];
return c;
}
matrix3_from_quaternion :: proc(q: Quaternion) -> Matrix3 {
xx := q.x * q.x;
xy := q.x * q.y;
xz := q.x * q.z;
xw := q.x * q.w;
yy := q.y * q.y;
yz := q.y * q.z;
yw := q.y * q.w;
zz := q.z * q.z;
zw := q.z * q.w;
m: Matrix3;
m[0][0] = 1 - 2 * (yy + zz);
m[1][0] = 2 * (xy - zw);
m[2][0] = 2 * (xz + yw);
m[0][1] = 2 * (xy + zw);
m[1][1] = 1 - 2 * (xx + zz);
m[2][1] = 2 * (yz - xw);
m[0][2] = 2 * (xz - yw);
m[1][2] = 2 * (yz + xw);
m[2][2] = 1 - 2 * (xx + yy);
return m;
}
matrix3_inverse :: proc(m: Matrix3) -> Matrix3 {
return transpose(matrix3_inverse_transpose(m));
}
matrix3_determinant :: proc(m: Matrix3) -> Float {
a := +m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
b := -m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
c := +m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
return a + b + c;
}
matrix3_adjoint :: proc(m: Matrix3) -> Matrix3 {
adjoint: Matrix3;
adjoint[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]);
adjoint[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]);
adjoint[2][0] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]);
adjoint[0][1] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]);
adjoint[1][1] = +(m[0][0] * m[2][2] - m[0][2] * m[2][0]);
adjoint[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]);
adjoint[0][2] = +(m[1][0] * m[2][1] - m[1][1] * m[2][0]);
adjoint[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]);
adjoint[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]);
return adjoint;
}
matrix3_inverse_transpose :: proc(m: Matrix3) -> Matrix3 {
inverse_transpose: Matrix3;
adjoint := matrix3_adjoint(m);
determinant := matrix3_determinant(m);
inv_determinant := 1.0 / determinant;
for i in 0..<3 {
for j in 0..<3 {
inverse_transpose[i][j] = adjoint[i][j] * inv_determinant;
}
}
return inverse_transpose;
}
matrix3_scale :: proc(s: Vector3) -> Matrix3 {
m: Matrix3;
m[0][0] = s[0];
m[1][1] = s[1];
m[2][2] = s[2];
return m;
}
matrix3_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix3 {
c := math.cos(angle_radians);
s := math.sin(angle_radians);
a := normalize(v);
t := a * (1-c);
rot: Matrix3 = ---;
rot[0][0] = c + t[0]*a[0];
rot[0][1] = 0 + t[0]*a[1] + s*a[2];
rot[0][2] = 0 + t[0]*a[2] - s*a[1];
rot[1][0] = 0 + t[1]*a[0] - s*a[2];
rot[1][1] = c + t[1]*a[1];
rot[1][2] = 0 + t[1]*a[2] + s*a[0];
rot[2][0] = 0 + t[2]*a[0] + s*a[1];
rot[2][1] = 0 + t[2]*a[1] - s*a[0];
rot[2][2] = c + t[2]*a[2];
return rot;
}
matrix3_look_at :: proc(eye, centre, up: Vector3) -> Matrix3 {
f := normalize(centre - eye);
s := normalize(cross(f, up));
u := cross(s, f);
return Matrix3{
{+s.x, +u.x, -f.x},
{+s.y, +u.y, -f.y},
{+s.z, +u.z, -f.z},
};
}
matrix4_from_quaternion :: proc(q: Quaternion) -> Matrix4 {
m := identity(Matrix4);
xx := q.x * q.x;
xy := q.x * q.y;
xz := q.x * q.z;
xw := q.x * q.w;
yy := q.y * q.y;
yz := q.y * q.z;
yw := q.y * q.w;
zz := q.z * q.z;
zw := q.z * q.w;
m[0][0] = 1 - 2 * (yy + zz);
m[1][0] = 2 * (xy - zw);
m[2][0] = 2 * (xz + yw);
m[0][1] = 2 * (xy + zw);
m[1][1] = 1 - 2 * (xx + zz);
m[2][1] = 2 * (yz - xw);
m[0][2] = 2 * (xz - yw);
m[1][2] = 2 * (yz + xw);
m[2][2] = 1 - 2 * (xx + yy);
return m;
}
matrix4_from_trs :: proc(t: Vector3, r: Quaternion, s: Vector3) -> Matrix4 {
translation := matrix4_translate(t);
rotation := matrix4_from_quaternion(r);
scale := matrix4_scale(s);
return mul(translation, mul(rotation, scale));
}
matrix4_inverse :: proc(m: Matrix4) -> Matrix4 {
return transpose(matrix4_inverse_transpose(m));
}
matrix4_minor :: proc(m: Matrix4, c, r: int) -> Float {
cut_down: Matrix3;
for i in 0..<3 {
col := i if i < c else i+1;
for j in 0..<3 {
row := j if j < r else j+1;
cut_down[i][j] = m[col][row];
}
}
return matrix3_determinant(cut_down);
}
matrix4_cofactor :: proc(m: Matrix4, c, r: int) -> Float {
sign, minor: Float;
sign = 1 if (c + r) % 2 == 0 else -1;
minor = matrix4_minor(m, c, r);
return sign * minor;
}
matrix4_adjoint :: proc(m: Matrix4) -> Matrix4 {
adjoint: Matrix4;
for i in 0..<4 {
for j in 0..<4 {
adjoint[i][j] = matrix4_cofactor(m, i, j);
}
}
return adjoint;
}
matrix4_determinant :: proc(m: Matrix4) -> Float {
adjoint := matrix4_adjoint(m);
determinant: Float = 0;
for i in 0..<4 {
determinant += m[i][0] * adjoint[i][0];
}
return determinant;
}
matrix4_inverse_transpose :: proc(m: Matrix4) -> Matrix4 {
adjoint := matrix4_adjoint(m);
determinant: Float = 0;
for i in 0..<4 {
determinant += m[i][0] * adjoint[i][0];
}
inv_determinant := 1.0 / determinant;
inverse_transpose: Matrix4;
for i in 0..<4 {
for j in 0..<4 {
inverse_transpose[i][j] = adjoint[i][j] * inv_determinant;
}
}
return inverse_transpose;
}
matrix4_translate :: proc(v: Vector3) -> Matrix4 {
m := identity(Matrix4);
m[3][0] = v[0];
m[3][1] = v[1];
m[3][2] = v[2];
return m;
}
matrix4_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix4 {
c := math.cos(angle_radians);
s := math.sin(angle_radians);
a := normalize(v);
t := a * (1-c);
rot := identity(Matrix4);
rot[0][0] = c + t[0]*a[0];
rot[0][1] = 0 + t[0]*a[1] + s*a[2];
rot[0][2] = 0 + t[0]*a[2] - s*a[1];
rot[0][3] = 0;
rot[1][0] = 0 + t[1]*a[0] - s*a[2];
rot[1][1] = c + t[1]*a[1];
rot[1][2] = 0 + t[1]*a[2] + s*a[0];
rot[1][3] = 0;
rot[2][0] = 0 + t[2]*a[0] + s*a[1];
rot[2][1] = 0 + t[2]*a[1] - s*a[0];
rot[2][2] = c + t[2]*a[2];
rot[2][3] = 0;
return rot;
}
matrix4_scale :: proc(v: Vector3) -> Matrix4 {
m: Matrix4;
m[0][0] = v[0];
m[1][1] = v[1];
m[2][2] = v[2];
m[3][3] = 1;
return m;
}
matrix4_look_at :: proc(eye, centre, up: Vector3) -> Matrix4 {
f := normalize(centre - eye);
s := normalize(cross(f, up));
u := cross(s, f);
return Matrix4{
{+s.x, +u.x, -f.x, 0},
{+s.y, +u.y, -f.y, 0},
{+s.z, +u.z, -f.z, 0},
{-dot(s, eye), -dot(u, eye), +dot(f, eye), 1},
};
}
matrix4_perspective :: proc(fovy, aspect, near, far: Float, flip_z_axis := true) -> (m: Matrix4) {
tan_half_fovy := math.tan(0.5 * fovy);
m[0][0] = 1 / (aspect*tan_half_fovy);
m[1][1] = 1 / (tan_half_fovy);
m[2][2] = +(far + near) / (far - near);
m[2][3] = +1;
m[3][2] = -2*far*near / (far - near);
if flip_z_axis {
m[2] = -m[2];
}
return;
}
matrix_ortho3d :: proc(left, right, bottom, top, near, far: Float, flip_z_axis := true) -> (m: Matrix4) {
m[0][0] = +2 / (right - left);
m[1][1] = +2 / (top - bottom);
m[2][2] = +2 / (far - near);
m[3][0] = -(right + left) / (right - left);
m[3][1] = -(top + bottom) / (top - bottom);
m[3][2] = -(far + near) / (far- near);
m[3][3] = 1;
if flip_z_axis {
m[2] = -m[2];
}
return;
}
matrix4_infinite_perspective :: proc(fovy, aspect, near: Float, flip_z_axis := true) -> (m: Matrix4) {
tan_half_fovy := math.tan(0.5 * fovy);
m[0][0] = 1 / (aspect*tan_half_fovy);
m[1][1] = 1 / (tan_half_fovy);
m[2][2] = +1;
m[2][3] = +1;
m[3][2] = -2*near;
if flip_z_axis {
m[2] = -m[2];
}
return;
}