Files
Odin/core/mem/allocators.odin

639 lines
16 KiB
Odin

package mem
nil_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr {
return nil;
}
nil_allocator :: proc() -> Allocator {
return Allocator{
procedure = nil_allocator_proc,
data = nil,
};
}
// Custom allocators
Arena :: struct {
data: []byte,
offset: int,
peak_used: int,
temp_count: int,
}
Arena_Temp_Memory :: struct {
arena: ^Arena,
prev_offset: int,
}
init_arena :: proc(a: ^Arena, data: []byte) {
a.data = data;
a.offset = 0;
a.peak_used = 0;
a.temp_count = 0;
}
arena_allocator :: proc(arena: ^Arena) -> Allocator {
return Allocator{
procedure = arena_allocator_proc,
data = arena,
};
}
arena_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64, location := #caller_location) -> rawptr {
arena := cast(^Arena)allocator_data;
switch mode {
case .Alloc:
total_size := size + alignment;
if arena.offset + total_size > len(arena.data) {
return nil;
}
#no_bounds_check end := &arena.data[arena.offset];
ptr := align_forward(end, uintptr(alignment));
arena.offset += total_size;
arena.peak_used = max(arena.peak_used, arena.offset);
return zero(ptr, size);
case .Free:
// NOTE(bill): Free all at once
// Use Arena_Temp_Memory if you want to free a block
case .Free_All:
arena.offset = 0;
case .Resize:
return default_resize_align(old_memory, old_size, size, alignment, arena_allocator(arena));
}
return nil;
}
begin_arena_temp_memory :: proc(a: ^Arena) -> Arena_Temp_Memory {
tmp: Arena_Temp_Memory;
tmp.arena = a;
tmp.prev_offset = a.offset;
a.temp_count += 1;
return tmp;
}
end_arena_temp_memory :: proc(using tmp: Arena_Temp_Memory) {
assert(arena.offset >= prev_offset);
assert(arena.temp_count > 0);
arena.offset = prev_offset;
arena.temp_count -= 1;
}
Scratch_Allocator :: struct {
data: []byte,
curr_offset: int,
prev_offset: int,
backup_allocator: Allocator,
leaked_allocations: [dynamic]rawptr,
default_to_default_allocator: bool,
}
scratch_allocator_init :: proc(scratch: ^Scratch_Allocator, data: []byte, backup_allocator := context.allocator) {
scratch.data = data;
scratch.curr_offset = 0;
scratch.prev_offset = 0;
scratch.backup_allocator = backup_allocator;
}
scratch_allocator_destroy :: proc(using scratch: ^Scratch_Allocator) {
if scratch == nil {
return;
}
for ptr in leaked_allocations {
free(ptr, backup_allocator);
}
delete(leaked_allocations);
delete(data, backup_allocator);
scratch^ = {};
}
scratch_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64 = 0, loc := #caller_location) -> rawptr {
scratch := (^Scratch_Allocator)(allocator_data);
if scratch.data == nil {
DEFAULT_SCRATCH_BACKING_SIZE :: 1<<22;
if !(context.allocator.procedure != scratch_allocator_proc &&
context.allocator.data != allocator_data) {
panic("cyclic initialization of the scratch allocator with itself");
}
scratch_allocator_init(scratch, make([]byte, 1<<22));
}
switch mode {
case .Alloc:
switch {
case scratch.curr_offset+size <= len(scratch.data):
offset := align_forward_uintptr(uintptr(scratch.curr_offset), uintptr(alignment));
ptr := &scratch.data[offset];
zero(ptr, size);
scratch.prev_offset = int(offset);
scratch.curr_offset = int(offset) + size;
return ptr;
case size <= len(scratch.data):
offset := align_forward_uintptr(uintptr(0), uintptr(alignment));
ptr := &scratch.data[offset];
zero(ptr, size);
scratch.prev_offset = int(offset);
scratch.curr_offset = int(offset) + size;
return ptr;
}
// TODO(bill): Should leaks be notified about? Should probably use a logging system that is built into the context system
a := scratch.backup_allocator;
if a.procedure == nil {
a = context.allocator;
scratch.backup_allocator = a;
}
ptr := alloc(size, alignment, a, loc);
if scratch.leaked_allocations == nil {
scratch.leaked_allocations = make([dynamic]rawptr, a);
}
append(&scratch.leaked_allocations, ptr);
return ptr;
case .Free:
last_ptr := rawptr(&scratch.data[scratch.prev_offset]);
if old_memory == last_ptr {
full_size := scratch.curr_offset - scratch.prev_offset;
scratch.curr_offset = scratch.prev_offset;
zero(last_ptr, full_size);
return nil;
}
// NOTE(bill): It's scratch memory, don't worry about freeing
case .Free_All:
scratch.curr_offset = 0;
scratch.prev_offset = 0;
for ptr in scratch.leaked_allocations {
free(ptr, scratch.backup_allocator);
}
clear(&scratch.leaked_allocations);
case .Resize:
last_ptr := rawptr(&scratch.data[scratch.prev_offset]);
if old_memory == last_ptr && len(scratch.data)-scratch.prev_offset >= size {
scratch.curr_offset = scratch.prev_offset+size;
return old_memory;
}
return scratch_allocator_proc(allocator_data, Allocator_Mode.Alloc, size, alignment, old_memory, old_size, flags, loc);
}
return nil;
}
scratch_allocator :: proc(scratch: ^Scratch_Allocator) -> Allocator {
return Allocator{
procedure = scratch_allocator_proc,
data = scratch,
};
}
Stack_Allocation_Header :: struct {
prev_offset: int,
padding: int,
}
// Stack is a stack-like allocator which has a strict memory freeing order
Stack :: struct {
data: []byte,
prev_offset: int,
curr_offset: int,
peak_used: int,
}
init_stack :: proc(s: ^Stack, data: []byte) {
s.data = data;
s.prev_offset = 0;
s.curr_offset = 0;
s.peak_used = 0;
}
stack_allocator :: proc(stack: ^Stack) -> Allocator {
return Allocator{
procedure = stack_allocator_proc,
data = stack,
};
}
stack_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64, location := #caller_location) -> rawptr {
s := cast(^Stack)allocator_data;
if s.data == nil {
return nil;
}
raw_alloc :: proc(s: ^Stack, size, alignment: int) -> rawptr {
curr_addr := uintptr(&s.data[0]) + uintptr(s.curr_offset);
padding := calc_padding_with_header(curr_addr, uintptr(alignment), size_of(Stack_Allocation_Header));
if s.curr_offset + padding + size > len(s.data) {
return nil;
}
s.prev_offset = s.curr_offset;
s.curr_offset += padding;
next_addr := curr_addr + uintptr(padding);
header := (^Stack_Allocation_Header)(next_addr - size_of(Stack_Allocation_Header));
header.padding = auto_cast padding;
header.prev_offset = auto_cast s.prev_offset;
s.curr_offset += size;
s.peak_used = max(s.peak_used, s.curr_offset);
return zero(rawptr(next_addr), size);
}
switch mode {
case .Alloc:
return raw_alloc(s, size, alignment);
case .Free:
if old_memory == nil {
return nil;
}
start := uintptr(&s.data[0]);
end := start + uintptr(len(s.data));
curr_addr := uintptr(old_memory);
if !(start <= curr_addr && curr_addr < end) {
panic("Out of bounds memory address passed to stack allocator (free)");
return nil;
}
if curr_addr >= start+uintptr(s.curr_offset) {
// NOTE(bill): Allow double frees
return nil;
}
header := (^Stack_Allocation_Header)(curr_addr - size_of(Stack_Allocation_Header));
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(&s.data[0]));
if old_offset != int(header.prev_offset) {
panic("Out of order stack allocator free");
return nil;
}
s.curr_offset = int(old_offset);
s.prev_offset = int(header.prev_offset);
case .Free_All:
s.prev_offset = 0;
s.curr_offset = 0;
case .Resize:
if old_memory == nil {
return raw_alloc(s, size, alignment);
}
if size == 0 {
return nil;
}
start := uintptr(&s.data[0]);
end := start + uintptr(len(s.data));
curr_addr := uintptr(old_memory);
if !(start <= curr_addr && curr_addr < end) {
panic("Out of bounds memory address passed to stack allocator (resize)");
return nil;
}
if curr_addr >= start+uintptr(s.curr_offset) {
// NOTE(bill): Allow double frees
return nil;
}
if old_size == size {
return old_memory;
}
header := (^Stack_Allocation_Header)(curr_addr - size_of(Stack_Allocation_Header));
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(&s.data[0]));
if old_offset != int(header.prev_offset) {
ptr := raw_alloc(s, size, alignment);
copy(ptr, old_memory, min(old_size, size));
return ptr;
}
old_memory_size := uintptr(s.curr_offset) - (curr_addr - start);
assert(old_memory_size == uintptr(old_size));
diff := size - old_size;
s.curr_offset += diff; // works for smaller sizes too
if diff > 0 {
zero(rawptr(curr_addr + uintptr(diff)), diff);
}
return old_memory;
}
return nil;
}
Small_Stack_Allocation_Header :: struct {
padding: u8,
}
// Small_Stack is a stack-like allocator which uses the smallest possible header but at the cost of non-strict memory freeing order
Small_Stack :: struct {
data: []byte,
offset: int,
peak_used: int,
}
init_small_stack :: proc(s: ^Small_Stack, data: []byte) {
s.data = data;
s.offset = 0;
s.peak_used = 0;
}
small_stack_allocator :: proc(stack: ^Small_Stack) -> Allocator {
return Allocator{
procedure = small_stack_allocator_proc,
data = stack,
};
}
small_stack_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64, location := #caller_location) -> rawptr {
s := cast(^Small_Stack)allocator_data;
if s.data == nil {
return nil;
}
align := clamp(alignment, 1, 8*size_of(Stack_Allocation_Header{}.padding)/2);
raw_alloc :: proc(s: ^Small_Stack, size, alignment: int) -> rawptr {
curr_addr := uintptr(&s.data[0]) + uintptr(s.offset);
padding := calc_padding_with_header(curr_addr, uintptr(alignment), size_of(Small_Stack_Allocation_Header));
if s.offset + padding + size > len(s.data) {
return nil;
}
s.offset += padding;
next_addr := curr_addr + uintptr(padding);
header := (^Small_Stack_Allocation_Header)(next_addr - size_of(Small_Stack_Allocation_Header));
header.padding = auto_cast padding;
s.offset += size;
s.peak_used = max(s.peak_used, s.offset);
return zero(rawptr(next_addr), size);
}
switch mode {
case .Alloc:
return raw_alloc(s, size, align);
case .Free:
if old_memory == nil {
return nil;
}
start := uintptr(&s.data[0]);
end := start + uintptr(len(s.data));
curr_addr := uintptr(old_memory);
if !(start <= curr_addr && curr_addr < end) {
panic("Out of bounds memory address passed to stack allocator (free)");
return nil;
}
if curr_addr >= start+uintptr(s.offset) {
// NOTE(bill): Allow double frees
return nil;
}
header := (^Small_Stack_Allocation_Header)(curr_addr - size_of(Small_Stack_Allocation_Header));
old_offset := int(curr_addr - uintptr(header.padding) - uintptr(&s.data[0]));
s.offset = int(old_offset);
case .Free_All:
s.offset = 0;
case .Resize:
if old_memory == nil {
return raw_alloc(s, size, align);
}
if size == 0 {
return nil;
}
start := uintptr(&s.data[0]);
end := start + uintptr(len(s.data));
curr_addr := uintptr(old_memory);
if !(start <= curr_addr && curr_addr < end) {
panic("Out of bounds memory address passed to stack allocator (resize)");
return nil;
}
if curr_addr >= start+uintptr(s.offset) {
// NOTE(bill): Treat as a double free
return nil;
}
if old_size == size {
return old_memory;
}
ptr := raw_alloc(s, size, align);
copy(ptr, old_memory, min(old_size, size));
return ptr;
}
return nil;
}
Dynamic_Pool :: struct {
block_size: int,
out_band_size: int,
alignment: int,
unused_blocks: [dynamic]rawptr,
used_blocks: [dynamic]rawptr,
out_band_allocations: [dynamic]rawptr,
current_block: rawptr,
current_pos: rawptr,
bytes_left: int,
block_allocator: Allocator,
}
DYNAMIC_POOL_BLOCK_SIZE_DEFAULT :: 65536;
DYNAMIC_POOL_OUT_OF_BAND_SIZE_DEFAULT :: 6554;
dynamic_pool_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int,
flags: u64 = 0, loc := #caller_location) -> rawptr {
pool := (^Dynamic_Pool)(allocator_data);
switch mode {
case .Alloc:
return dynamic_pool_alloc(pool, size);
case .Free:
panic("Allocator_Mode.Free is not supported for a pool");
case .Free_All:
dynamic_pool_free_all(pool);
case .Resize:
panic("Allocator_Mode.Resize is not supported for a pool");
if old_size >= size {
return old_memory;
}
ptr := dynamic_pool_alloc(pool, size);
copy(ptr, old_memory, old_size);
return ptr;
}
return nil;
}
dynamic_pool_allocator :: proc(pool: ^Dynamic_Pool) -> Allocator {
return Allocator{
procedure = dynamic_pool_allocator_proc,
data = pool,
};
}
dynamic_pool_init :: proc(pool: ^Dynamic_Pool,
block_allocator := context.allocator,
array_allocator := context.allocator,
block_size := DYNAMIC_POOL_BLOCK_SIZE_DEFAULT,
out_band_size := DYNAMIC_POOL_OUT_OF_BAND_SIZE_DEFAULT,
alignment := 8) {
pool.block_size = block_size;
pool.out_band_size = out_band_size;
pool.alignment = alignment;
pool.block_allocator = block_allocator;
pool.out_band_allocations.allocator = array_allocator;
pool. unused_blocks.allocator = array_allocator;
pool. used_blocks.allocator = array_allocator;
}
dynamic_pool_destroy :: proc(using pool: ^Dynamic_Pool) {
dynamic_pool_free_all(pool);
delete(unused_blocks);
delete(used_blocks);
zero(pool, size_of(pool^));
}
dynamic_pool_alloc :: proc(using pool: ^Dynamic_Pool, bytes: int) -> rawptr {
cycle_new_block :: proc(using pool: ^Dynamic_Pool) {
if block_allocator.procedure == nil {
panic("You must call pool_init on a Pool before using it");
}
if current_block != nil {
append(&used_blocks, current_block);
}
new_block: rawptr;
if len(unused_blocks) > 0 {
new_block = pop(&unused_blocks);
} else {
new_block = block_allocator.procedure(block_allocator.data, Allocator_Mode.Alloc,
block_size, alignment,
nil, 0);
}
bytes_left = block_size;
current_pos = new_block;
current_block = new_block;
}
n := bytes;
extra := alignment - (n % alignment);
n += extra;
if n >= out_band_size {
assert(block_allocator.procedure != nil);
memory := block_allocator.procedure(block_allocator.data, Allocator_Mode.Alloc,
block_size, alignment,
nil, 0);
if memory != nil {
append(&out_band_allocations, (^byte)(memory));
}
return memory;
}
if bytes_left < n {
cycle_new_block(pool);
if current_block == nil {
return nil;
}
}
memory := current_pos;
current_pos = ptr_offset((^byte)(current_pos), n);
bytes_left -= n;
return memory;
}
dynamic_pool_reset :: proc(using pool: ^Dynamic_Pool) {
if current_block != nil {
append(&unused_blocks, current_block);
current_block = nil;
}
for block in used_blocks {
append(&unused_blocks, block);
}
clear(&used_blocks);
for a in out_band_allocations {
free(a, block_allocator);
}
clear(&out_band_allocations);
}
dynamic_pool_free_all :: proc(using pool: ^Dynamic_Pool) {
dynamic_pool_reset(pool);
for block in unused_blocks {
free(block, block_allocator);
}
clear(&unused_blocks);
}