Files
Odin/core/mem/mem.odin
2020-05-14 17:56:24 +01:00

232 lines
5.9 KiB
Odin

package mem
import "core:runtime"
set :: proc(data: rawptr, value: byte, len: int) -> rawptr {
return runtime.memset(data, i32(value), len);
}
zero :: inline proc(data: rawptr, len: int) -> rawptr {
return set(data, 0, len);
}
zero_item :: inline proc(item: $P/^$T) {
set(item, 0, size_of(T));
}
zero_slice :: proc(data: $T/[]$E) {
if n := len(data); n > 0 {
zero(&data[0], size_of(E)*n);
}
}
copy :: proc(dst, src: rawptr, len: int) -> rawptr {
return runtime.mem_copy(dst, src, len);
}
copy_non_overlapping :: proc(dst, src: rawptr, len: int) -> rawptr {
return runtime.mem_copy_non_overlapping(dst, src, len);
}
compare :: inline proc(a, b: []byte) -> int {
// NOTE(tetra): no-abc is okay here because if the slices are empty, `&a[0]` is just nil+0 == nil, which
// compare_byte_ptrs handles fine when the passed length is also zero.
res := #no_bounds_check compare_byte_ptrs(&a[0], &b[0], min(len(a), len(b)));
if res == 0 && len(a) != len(b) {
return len(a) <= len(b) ? -1 : +1;
} else if len(a) == 0 && len(b) == 0 {
return 0;
}
return res;
}
compare_byte_ptrs :: proc(a, b: ^byte, n: int) -> int #no_bounds_check {
x := slice_ptr(a, n);
y := slice_ptr(b, n);
SU :: size_of(uintptr);
fast := n/SU + 1;
offset := (fast-1)*SU;
curr_block := 0;
if n < SU {
fast = 0;
}
la := slice_ptr((^uintptr)(a), fast);
lb := slice_ptr((^uintptr)(b), fast);
for /**/; curr_block < fast; curr_block += 1 {
if la[curr_block] ~ lb[curr_block] != 0 {
for pos := curr_block*SU; pos < n; pos += 1 {
if x[pos] ~ y[pos] != 0 {
return (int(x[pos]) - int(y[pos])) < 0 ? -1 : +1;
}
}
}
}
for /**/; offset < n; offset += 1 {
if x[offset] ~ y[offset] != 0 {
return (int(x[offset]) - int(y[offset])) < 0 ? -1 : +1;
}
}
return 0;
}
compare_ptrs :: inline proc(a, b: rawptr, n: int) -> int {
return compare_byte_ptrs((^byte)(a), (^byte)(b), n);
}
ptr_offset :: inline proc(ptr: $P/^$T, n: int) -> P {
new := int(uintptr(ptr)) + size_of(T)*n;
return P(uintptr(new));
}
ptr_sub :: inline proc(a, b: $P/^$T) -> int {
return (int(uintptr(a)) - int(uintptr(b)))/size_of(T);
}
slice_ptr :: inline proc(ptr: ^$T, len: int) -> []T {
assert(len >= 0);
return transmute([]T)Raw_Slice{data = ptr, len = len};
}
slice_ptr_to_bytes :: proc(ptr: rawptr, len: int) -> []byte {
assert(len >= 0);
return transmute([]byte)Raw_Slice{data = ptr, len = len};
}
slice_to_bytes :: inline proc(slice: $E/[]$T) -> []byte {
s := transmute(Raw_Slice)slice;
s.len *= size_of(T);
return transmute([]byte)s;
}
slice_data_cast :: inline proc($T: typeid/[]$A, slice: $S/[]$B) -> T {
when size_of(A) == 0 || size_of(B) == 0 {
return nil;
} else {
s := transmute(Raw_Slice)slice;
s.len = (len(slice) * size_of(B)) / size_of(A);
return transmute(T)s;
}
}
slice_to_components :: proc(slice: $E/[]$T) -> (data: ^T, len: int) {
s := transmute(Raw_Slice)slice;
return s.data, s.len;
}
buffer_from_slice :: inline proc(backing: $T/[]$E) -> [dynamic]E {
s := transmute(Raw_Slice)backing;
return transmute([dynamic]E)Raw_Dynamic_Array{
data = s.data,
len = 0,
cap = s.len,
allocator = nil_allocator(),
};
}
ptr_to_bytes :: inline proc(ptr: ^$T, len := 1) -> []byte {
assert(len >= 0);
return transmute([]byte)Raw_Slice{ptr, len*size_of(T)};
}
any_to_bytes :: inline proc(val: any) -> []byte {
ti := type_info_of(val.id);
size := ti != nil ? ti.size : 0;
return transmute([]byte)Raw_Slice{val.data, size};
}
kilobytes :: inline proc(x: int) -> int do return (x) * 1024;
megabytes :: inline proc(x: int) -> int do return kilobytes(x) * 1024;
gigabytes :: inline proc(x: int) -> int do return megabytes(x) * 1024;
terabytes :: inline proc(x: int) -> int do return gigabytes(x) * 1024;
is_power_of_two :: inline proc(x: uintptr) -> bool {
if x <= 0 do return false;
return (x & (x-1)) == 0;
}
align_forward :: inline proc(ptr: rawptr, align: uintptr) -> rawptr {
return rawptr(align_forward_uintptr(uintptr(ptr), align));
}
align_forward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
assert(is_power_of_two(align));
p := ptr;
modulo := p & (align-1);
if modulo != 0 do p += align - modulo;
return p;
}
align_forward_int :: inline proc(ptr, align: int) -> int {
return int(align_forward_uintptr(uintptr(ptr), uintptr(align)));
}
align_forward_uint :: inline proc(ptr, align: uint) -> uint {
return uint(align_forward_uintptr(uintptr(ptr), uintptr(align)));
}
align_backward :: inline proc(ptr: rawptr, align: uintptr) -> rawptr {
return rawptr(align_backward_uintptr(uintptr(ptr), align));
}
align_backward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
assert(is_power_of_two(align));
return align_forward_uintptr(ptr - align + 1, align);
}
align_backward_int :: inline proc(ptr, align: int) -> int {
return int(align_backward_uintptr(uintptr(ptr), uintptr(align)));
}
align_backward_uint :: inline proc(ptr, align: uint) -> uint {
return uint(align_backward_uintptr(uintptr(ptr), uintptr(align)));
}
context_from_allocator :: proc(a: Allocator) -> type_of(context) {
context.allocator = a;
return context;
}
Fixed_Byte_Buffer :: distinct [dynamic]byte;
make_fixed_byte_buffer :: proc(backing: []byte) -> Fixed_Byte_Buffer {
s := transmute(Raw_Slice)backing;
d: Raw_Dynamic_Array;
d.data = s.data;
d.len = 0;
d.cap = s.len;
d.allocator = nil_allocator();
return transmute(Fixed_Byte_Buffer)d;
}
align_formula :: proc(size, align: int) -> int {
result := size + align-1;
return result - result%align;
}
calc_padding_with_header :: proc(ptr: uintptr, align: uintptr, header_size: int) -> int {
p := uintptr(ptr);
a := uintptr(align);
modulo := p & (a-1);
padding := uintptr(0);
if modulo != 0 do padding = a - modulo;
needed_space := uintptr(header_size);
if padding < needed_space {
needed_space -= padding;
if needed_space & (a-1) > 0 {
padding += align * (1+(needed_space/align));
} else {
padding += align * (needed_space/align);
}
}
return int(padding);
}