mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 09:24:33 +00:00
1504 lines
37 KiB
Odin
1504 lines
37 KiB
Odin
// This is the runtime code required by the compiler
|
|
// IMPORTANT NOTE(bill): Do not change the order of any of this data
|
|
// The compiler relies upon this _exact_ order
|
|
package runtime
|
|
|
|
import "core:os"
|
|
import "intrinsics"
|
|
_ :: intrinsics;
|
|
|
|
// Naming Conventions:
|
|
// In general, Ada_Case for types and snake_case for values
|
|
//
|
|
// Package Name: snake_case (but prefer single word)
|
|
// Import Name: snake_case (but prefer single word)
|
|
// Types: Ada_Case
|
|
// Enum Values: Ada_Case
|
|
// Procedures: snake_case
|
|
// Local Variables: snake_case
|
|
// Constant Variables: SCREAMING_SNAKE_CASE
|
|
|
|
|
|
// IMPORTANT NOTE(bill): `type_info_of` cannot be used within a
|
|
// #shared_global_scope due to the internals of the compiler.
|
|
// This could change at a later date if the all these data structures are
|
|
// implemented within the compiler rather than in this "preload" file
|
|
|
|
// NOTE(bill): This must match the compiler's
|
|
Calling_Convention :: enum u8 {
|
|
Invalid = 0,
|
|
Odin = 1,
|
|
Contextless = 2,
|
|
C = 3,
|
|
Std = 4,
|
|
Fast = 5,
|
|
}
|
|
|
|
Type_Info_Enum_Value :: union {
|
|
rune,
|
|
i8, i16, i32, i64, int,
|
|
u8, u16, u32, u64, uint, uintptr,
|
|
};
|
|
|
|
Platform_Endianness :: enum u8 {
|
|
Platform = 0,
|
|
Little = 1,
|
|
Big = 2,
|
|
}
|
|
|
|
Type_Info_Struct_Soa_Kind :: enum u8 {
|
|
None = 0,
|
|
Fixed = 1,
|
|
Slice = 2,
|
|
Dynamic = 3,
|
|
}
|
|
|
|
// Variant Types
|
|
Type_Info_Named :: struct {name: string, base: ^Type_Info};
|
|
Type_Info_Integer :: struct {signed: bool, endianness: Platform_Endianness};
|
|
Type_Info_Rune :: struct {};
|
|
Type_Info_Float :: struct {endianness: Platform_Endianness};
|
|
Type_Info_Complex :: struct {};
|
|
Type_Info_Quaternion :: struct {};
|
|
Type_Info_String :: struct {is_cstring: bool};
|
|
Type_Info_Boolean :: struct {};
|
|
Type_Info_Any :: struct {};
|
|
Type_Info_Type_Id :: struct {};
|
|
Type_Info_Pointer :: struct {
|
|
elem: ^Type_Info // nil -> rawptr
|
|
};
|
|
Type_Info_Procedure :: struct {
|
|
params: ^Type_Info, // Type_Info_Tuple
|
|
results: ^Type_Info, // Type_Info_Tuple
|
|
variadic: bool,
|
|
convention: Calling_Convention,
|
|
};
|
|
Type_Info_Array :: struct {
|
|
elem: ^Type_Info,
|
|
elem_size: int,
|
|
count: int,
|
|
};
|
|
Type_Info_Enumerated_Array :: struct {
|
|
elem: ^Type_Info,
|
|
index: ^Type_Info,
|
|
elem_size: int,
|
|
count: int,
|
|
min_value: Type_Info_Enum_Value,
|
|
max_value: Type_Info_Enum_Value,
|
|
};
|
|
Type_Info_Dynamic_Array :: struct {elem: ^Type_Info, elem_size: int};
|
|
Type_Info_Slice :: struct {elem: ^Type_Info, elem_size: int};
|
|
Type_Info_Tuple :: struct { // Only really used for procedures
|
|
types: []^Type_Info,
|
|
names: []string,
|
|
};
|
|
Type_Info_Struct :: struct {
|
|
types: []^Type_Info,
|
|
names: []string,
|
|
offsets: []uintptr,
|
|
usings: []bool,
|
|
tags: []string,
|
|
is_packed: bool,
|
|
is_raw_union: bool,
|
|
custom_align: bool,
|
|
// These are only set iff this structure is an SOA structure
|
|
soa_kind: Type_Info_Struct_Soa_Kind,
|
|
soa_base_type: ^Type_Info,
|
|
soa_len: int,
|
|
};
|
|
Type_Info_Union :: struct {
|
|
variants: []^Type_Info,
|
|
tag_offset: uintptr,
|
|
tag_type: ^Type_Info,
|
|
custom_align: bool,
|
|
no_nil: bool,
|
|
maybe: bool,
|
|
};
|
|
Type_Info_Enum :: struct {
|
|
base: ^Type_Info,
|
|
names: []string,
|
|
values: []Type_Info_Enum_Value,
|
|
};
|
|
Type_Info_Map :: struct {
|
|
key: ^Type_Info,
|
|
value: ^Type_Info,
|
|
generated_struct: ^Type_Info,
|
|
};
|
|
Type_Info_Bit_Field :: struct {
|
|
names: []string,
|
|
bits: []i32,
|
|
offsets: []i32,
|
|
};
|
|
Type_Info_Bit_Set :: struct {
|
|
elem: ^Type_Info,
|
|
underlying: ^Type_Info, // Possibly nil
|
|
lower: i64,
|
|
upper: i64,
|
|
};
|
|
Type_Info_Opaque :: struct {
|
|
elem: ^Type_Info,
|
|
};
|
|
Type_Info_Simd_Vector :: struct {
|
|
elem: ^Type_Info,
|
|
elem_size: int,
|
|
count: int,
|
|
is_x86_mmx: bool,
|
|
};
|
|
Type_Info_Relative_Pointer :: struct {
|
|
pointer: ^Type_Info,
|
|
base_integer: ^Type_Info,
|
|
};
|
|
Type_Info_Relative_Slice :: struct {
|
|
slice: ^Type_Info,
|
|
base_integer: ^Type_Info,
|
|
};
|
|
|
|
Type_Info :: struct {
|
|
size: int,
|
|
align: int,
|
|
id: typeid,
|
|
|
|
variant: union {
|
|
Type_Info_Named,
|
|
Type_Info_Integer,
|
|
Type_Info_Rune,
|
|
Type_Info_Float,
|
|
Type_Info_Complex,
|
|
Type_Info_Quaternion,
|
|
Type_Info_String,
|
|
Type_Info_Boolean,
|
|
Type_Info_Any,
|
|
Type_Info_Type_Id,
|
|
Type_Info_Pointer,
|
|
Type_Info_Procedure,
|
|
Type_Info_Array,
|
|
Type_Info_Enumerated_Array,
|
|
Type_Info_Dynamic_Array,
|
|
Type_Info_Slice,
|
|
Type_Info_Tuple,
|
|
Type_Info_Struct,
|
|
Type_Info_Union,
|
|
Type_Info_Enum,
|
|
Type_Info_Map,
|
|
Type_Info_Bit_Field,
|
|
Type_Info_Bit_Set,
|
|
Type_Info_Opaque,
|
|
Type_Info_Simd_Vector,
|
|
Type_Info_Relative_Pointer,
|
|
Type_Info_Relative_Slice,
|
|
},
|
|
}
|
|
|
|
// NOTE(bill): This must match the compiler's
|
|
Typeid_Kind :: enum u8 {
|
|
Invalid,
|
|
Integer,
|
|
Rune,
|
|
Float,
|
|
Complex,
|
|
Quaternion,
|
|
String,
|
|
Boolean,
|
|
Any,
|
|
Type_Id,
|
|
Pointer,
|
|
Procedure,
|
|
Array,
|
|
Enumerated_Array,
|
|
Dynamic_Array,
|
|
Slice,
|
|
Tuple,
|
|
Struct,
|
|
Union,
|
|
Enum,
|
|
Map,
|
|
Bit_Field,
|
|
Bit_Set,
|
|
Opaque,
|
|
Simd_Vector,
|
|
Relative_Pointer,
|
|
Relative_Slice,
|
|
}
|
|
#assert(len(Typeid_Kind) < 32);
|
|
|
|
Typeid_Bit_Field :: bit_field #align align_of(uintptr) {
|
|
index: 8*size_of(uintptr) - 8,
|
|
kind: 5, // Typeid_Kind
|
|
named: 1,
|
|
special: 1, // signed, cstring, etc
|
|
reserved: 1,
|
|
}
|
|
#assert(size_of(Typeid_Bit_Field) == size_of(uintptr));
|
|
|
|
// NOTE(bill): only the ones that are needed (not all types)
|
|
// This will be set by the compiler
|
|
type_table: []Type_Info;
|
|
|
|
args__: []cstring;
|
|
|
|
// IMPORTANT NOTE(bill): Must be in this order (as the compiler relies upon it)
|
|
|
|
|
|
Source_Code_Location :: struct {
|
|
file_path: string,
|
|
line, column: int,
|
|
procedure: string,
|
|
hash: u64,
|
|
}
|
|
|
|
Assertion_Failure_Proc :: #type proc(prefix, message: string, loc: Source_Code_Location);
|
|
|
|
|
|
// Allocation Stuff
|
|
Allocator_Mode :: enum byte {
|
|
Alloc,
|
|
Free,
|
|
Free_All,
|
|
Resize,
|
|
}
|
|
|
|
Allocator_Proc :: #type proc(allocator_data: rawptr, mode: Allocator_Mode,
|
|
size, alignment: int,
|
|
old_memory: rawptr, old_size: int, flags: u64 = 0, location: Source_Code_Location = #caller_location) -> rawptr;
|
|
Allocator :: struct {
|
|
procedure: Allocator_Proc,
|
|
data: rawptr,
|
|
}
|
|
|
|
// Logging stuff
|
|
|
|
Logger_Level :: enum {
|
|
Debug,
|
|
Info,
|
|
Warning,
|
|
Error,
|
|
Fatal,
|
|
}
|
|
|
|
Logger_Option :: enum {
|
|
Level,
|
|
Date,
|
|
Time,
|
|
Short_File_Path,
|
|
Long_File_Path,
|
|
Line,
|
|
Procedure,
|
|
Terminal_Color
|
|
}
|
|
|
|
Logger_Options :: bit_set[Logger_Option];
|
|
Logger_Proc :: #type proc(data: rawptr, level: Logger_Level, text: string, options: Logger_Options, location := #caller_location);
|
|
|
|
Logger :: struct {
|
|
procedure: Logger_Proc,
|
|
data: rawptr,
|
|
lowest_level: Logger_Level,
|
|
options: Logger_Options,
|
|
}
|
|
|
|
Context :: struct {
|
|
allocator: Allocator,
|
|
temp_allocator: Allocator,
|
|
assertion_failure_proc: Assertion_Failure_Proc,
|
|
logger: Logger,
|
|
|
|
// stdin: os.Handle,
|
|
// stdout: os.Handle,
|
|
// stderr: os.Handle,
|
|
|
|
thread_id: int,
|
|
|
|
user_data: any,
|
|
user_ptr: rawptr,
|
|
user_index: int,
|
|
}
|
|
|
|
|
|
|
|
|
|
@thread_local global_default_temp_allocator_data: Default_Temp_Allocator;
|
|
|
|
Raw_String :: struct {
|
|
data: ^byte,
|
|
len: int,
|
|
}
|
|
|
|
Raw_Slice :: struct {
|
|
data: rawptr,
|
|
len: int,
|
|
}
|
|
|
|
Raw_Dynamic_Array :: struct {
|
|
data: rawptr,
|
|
len: int,
|
|
cap: int,
|
|
allocator: Allocator,
|
|
}
|
|
|
|
Raw_Map :: struct {
|
|
hashes: []int,
|
|
entries: Raw_Dynamic_Array,
|
|
}
|
|
|
|
INITIAL_MAP_CAP :: 16;
|
|
|
|
Map_Key :: struct {
|
|
hash: u64,
|
|
str: string,
|
|
}
|
|
|
|
Map_Find_Result :: struct {
|
|
hash_index: int,
|
|
entry_prev: int,
|
|
entry_index: int,
|
|
}
|
|
|
|
Map_Entry_Header :: struct {
|
|
key: Map_Key,
|
|
next: int,
|
|
/*
|
|
value: Value_Type,
|
|
*/
|
|
}
|
|
|
|
Map_Header :: struct {
|
|
m: ^Raw_Map,
|
|
is_key_string: bool,
|
|
|
|
entry_size: int,
|
|
entry_align: int,
|
|
|
|
value_offset: uintptr,
|
|
value_size: int,
|
|
}
|
|
|
|
|
|
|
|
|
|
type_info_base :: proc "contextless" (info: ^Type_Info) -> ^Type_Info {
|
|
if info == nil do return nil;
|
|
|
|
base := info;
|
|
loop: for {
|
|
#partial switch i in base.variant {
|
|
case Type_Info_Named: base = i.base;
|
|
case: break loop;
|
|
}
|
|
}
|
|
return base;
|
|
}
|
|
|
|
|
|
type_info_core :: proc "contextless" (info: ^Type_Info) -> ^Type_Info {
|
|
if info == nil do return nil;
|
|
|
|
base := info;
|
|
loop: for {
|
|
#partial switch i in base.variant {
|
|
case Type_Info_Named: base = i.base;
|
|
case Type_Info_Enum: base = i.base;
|
|
case Type_Info_Opaque: base = i.elem;
|
|
case: break loop;
|
|
}
|
|
}
|
|
return base;
|
|
}
|
|
type_info_base_without_enum :: type_info_core;
|
|
|
|
__type_info_of :: proc "contextless" (id: typeid) -> ^Type_Info {
|
|
data := transmute(Typeid_Bit_Field)id;
|
|
n := int(data.index);
|
|
if n < 0 || n >= len(type_table) {
|
|
n = 0;
|
|
}
|
|
return &type_table[n];
|
|
}
|
|
|
|
typeid_base :: proc "contextless" (id: typeid) -> typeid {
|
|
ti := type_info_of(id);
|
|
ti = type_info_base(ti);
|
|
return ti.id;
|
|
}
|
|
typeid_core :: proc "contextless" (id: typeid) -> typeid {
|
|
ti := type_info_base_without_enum(type_info_of(id));
|
|
return ti.id;
|
|
}
|
|
typeid_base_without_enum :: typeid_core;
|
|
|
|
|
|
|
|
@(default_calling_convention = "c")
|
|
foreign {
|
|
@(link_name="llvm.assume")
|
|
assume :: proc(cond: bool) ---;
|
|
|
|
@(link_name="llvm.debugtrap")
|
|
debug_trap :: proc() ---;
|
|
|
|
@(link_name="llvm.trap")
|
|
trap :: proc() -> ! ---;
|
|
|
|
@(link_name="llvm.readcyclecounter")
|
|
read_cycle_counter :: proc() -> u64 ---;
|
|
}
|
|
|
|
|
|
|
|
default_logger_proc :: proc(data: rawptr, level: Logger_Level, text: string, options: Logger_Options, location := #caller_location) {
|
|
// Do nothing
|
|
}
|
|
|
|
default_logger :: proc() -> Logger {
|
|
return Logger{default_logger_proc, nil, Logger_Level.Debug, nil};
|
|
}
|
|
|
|
|
|
default_context :: proc "contextless" () -> Context {
|
|
c: Context;
|
|
__init_context(&c);
|
|
return c;
|
|
}
|
|
|
|
@private
|
|
__init_context_from_ptr :: proc "contextless" (c: ^Context, other: ^Context) {
|
|
if c == nil do return;
|
|
c^ = other^;
|
|
__init_context(c);
|
|
}
|
|
|
|
@private
|
|
__init_context :: proc "contextless" (c: ^Context) {
|
|
if c == nil do return;
|
|
|
|
// NOTE(bill): Do not initialize these procedures with a call as they are not defined with the "contexless" calling convention
|
|
c.allocator.procedure = default_allocator_proc;
|
|
c.allocator.data = nil;
|
|
|
|
c.temp_allocator.procedure = default_temp_allocator_proc;
|
|
c.temp_allocator.data = &global_default_temp_allocator_data;
|
|
|
|
c.thread_id = os.current_thread_id(); // NOTE(bill): This is "contextless" so it is okay to call
|
|
c.assertion_failure_proc = default_assertion_failure_proc;
|
|
|
|
c.logger.procedure = default_logger_proc;
|
|
c.logger.data = nil;
|
|
|
|
// c.stdin = os.stdin;
|
|
// c.stdout = os.stdout;
|
|
// c.stderr = os.stderr;
|
|
}
|
|
|
|
@builtin
|
|
init_global_temporary_allocator :: proc(data: []byte, backup_allocator := context.allocator) {
|
|
default_temp_allocator_init(&global_default_temp_allocator_data, data, backup_allocator);
|
|
}
|
|
|
|
default_assertion_failure_proc :: proc(prefix, message: string, loc: Source_Code_Location) {
|
|
fd := os.stderr;
|
|
print_caller_location(fd, loc);
|
|
os.write_string(fd, " ");
|
|
os.write_string(fd, prefix);
|
|
if len(message) > 0 {
|
|
os.write_string(fd, ": ");
|
|
os.write_string(fd, message);
|
|
}
|
|
os.write_byte(fd, '\n');
|
|
debug_trap();
|
|
}
|
|
|
|
|
|
|
|
@builtin
|
|
copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int {
|
|
n := max(0, min(len(dst), len(src)));
|
|
#no_bounds_check if n > 0 do mem_copy(&dst[0], &src[0], n*size_of(E));
|
|
return n;
|
|
}
|
|
@builtin
|
|
copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int {
|
|
n := max(0, min(len(dst), len(src)));
|
|
if n > 0 {
|
|
d := (transmute(Raw_Slice)dst).data;
|
|
s := (transmute(Raw_String)src).data;
|
|
mem_copy(d, s, n);
|
|
}
|
|
return n;
|
|
}
|
|
@builtin
|
|
copy :: proc{copy_slice, copy_from_string};
|
|
|
|
|
|
|
|
|
|
@builtin
|
|
pop :: proc(array: ^$T/[dynamic]$E) -> E {
|
|
if array == nil do return E{};
|
|
assert(len(array) > 0);
|
|
res := #no_bounds_check array[len(array)-1];
|
|
(^Raw_Dynamic_Array)(array).len -= 1;
|
|
return res;
|
|
}
|
|
|
|
@builtin
|
|
unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) {
|
|
bounds_check_error_loc(loc, index, len(array));
|
|
n := len(array)-1;
|
|
if index != n {
|
|
array[index] = array[n];
|
|
}
|
|
pop(array);
|
|
}
|
|
|
|
@builtin
|
|
ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) {
|
|
bounds_check_error_loc(loc, index, len(array));
|
|
if index+1 < len(array) {
|
|
copy(array[index:], array[index+1:]);
|
|
}
|
|
pop(array);
|
|
}
|
|
|
|
|
|
@builtin
|
|
clear :: proc{clear_dynamic_array, clear_map};
|
|
|
|
@builtin
|
|
reserve :: proc{reserve_dynamic_array, reserve_map};
|
|
|
|
@builtin
|
|
resize :: proc{resize_dynamic_array};
|
|
|
|
|
|
@builtin
|
|
free :: proc{mem_free};
|
|
|
|
@builtin
|
|
free_all :: proc{mem_free_all};
|
|
|
|
|
|
|
|
@builtin
|
|
delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) {
|
|
mem_free((transmute(Raw_String)str).data, allocator, loc);
|
|
}
|
|
@builtin
|
|
delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) {
|
|
mem_free((^byte)(str), allocator, loc);
|
|
}
|
|
@builtin
|
|
delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) {
|
|
mem_free((transmute(Raw_Dynamic_Array)array).data, array.allocator, loc);
|
|
}
|
|
@builtin
|
|
delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) {
|
|
mem_free((transmute(Raw_Slice)array).data, allocator, loc);
|
|
}
|
|
@builtin
|
|
delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) {
|
|
raw := transmute(Raw_Map)m;
|
|
delete_slice(raw.hashes);
|
|
mem_free(raw.entries.data, raw.entries.allocator, loc);
|
|
}
|
|
|
|
|
|
@builtin
|
|
delete :: proc{
|
|
delete_string,
|
|
delete_cstring,
|
|
delete_dynamic_array,
|
|
delete_slice,
|
|
delete_map,
|
|
};
|
|
|
|
|
|
@builtin
|
|
new :: inline proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> ^T {
|
|
ptr := (^T)(mem_alloc(size_of(T), align_of(T), allocator, loc));
|
|
if ptr != nil do ptr^ = T{};
|
|
return ptr;
|
|
}
|
|
|
|
@builtin
|
|
new_clone :: inline proc(data: $T, allocator := context.allocator, loc := #caller_location) -> ^T {
|
|
ptr := (^T)(mem_alloc(size_of(T), align_of(T), allocator, loc));
|
|
if ptr != nil do ptr^ = data;
|
|
return ptr;
|
|
}
|
|
|
|
make_aligned :: proc($T: typeid/[]$E, auto_cast len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> T {
|
|
make_slice_error_loc(loc, len);
|
|
data := mem_alloc(size_of(E)*len, alignment, allocator, loc);
|
|
if data == nil && size_of(E) != 0 {
|
|
return nil;
|
|
}
|
|
mem_zero(data, size_of(E)*len);
|
|
s := Raw_Slice{data, len};
|
|
return transmute(T)s;
|
|
}
|
|
|
|
@builtin
|
|
make_slice :: inline proc($T: typeid/[]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
|
|
return make_aligned(T, len, align_of(E), allocator, loc);
|
|
}
|
|
|
|
@builtin
|
|
make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> T {
|
|
return make_dynamic_array_len_cap(T, 0, 16, allocator, loc);
|
|
}
|
|
|
|
@builtin
|
|
make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, auto_cast len: int, allocator := context.allocator, loc := #caller_location) -> T {
|
|
return make_dynamic_array_len_cap(T, len, len, allocator, loc);
|
|
}
|
|
|
|
@builtin
|
|
make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, auto_cast len: int, auto_cast cap: int, allocator := context.allocator, loc := #caller_location) -> T {
|
|
make_dynamic_array_error_loc(loc, len, cap);
|
|
data := mem_alloc(size_of(E)*cap, align_of(E), allocator, loc);
|
|
s := Raw_Dynamic_Array{data, len, cap, allocator};
|
|
if data == nil && size_of(E) != 0 {
|
|
s.len, s.cap = 0, 0;
|
|
}
|
|
mem_zero(data, size_of(E)*cap);
|
|
return transmute(T)s;
|
|
}
|
|
|
|
@builtin
|
|
make_map :: proc($T: typeid/map[$K]$E, auto_cast cap: int = 16, allocator := context.allocator, loc := #caller_location) -> T {
|
|
make_map_expr_error_loc(loc, cap);
|
|
context.allocator = allocator;
|
|
|
|
m: T;
|
|
reserve_map(&m, cap);
|
|
return m;
|
|
}
|
|
|
|
@builtin
|
|
make :: proc{
|
|
make_slice,
|
|
make_dynamic_array,
|
|
make_dynamic_array_len,
|
|
make_dynamic_array_len_cap,
|
|
make_map,
|
|
};
|
|
|
|
|
|
|
|
@builtin
|
|
clear_map :: inline proc "contextless" (m: ^$T/map[$K]$V) {
|
|
if m == nil do return;
|
|
raw_map := (^Raw_Map)(m);
|
|
entries := (^Raw_Dynamic_Array)(&raw_map.entries);
|
|
entries.len = 0;
|
|
for _, i in raw_map.hashes {
|
|
raw_map.hashes[i] = -1;
|
|
}
|
|
}
|
|
|
|
@builtin
|
|
reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int) {
|
|
if m != nil do __dynamic_map_reserve(__get_map_header(m), capacity);
|
|
}
|
|
|
|
@builtin
|
|
delete_key :: proc(m: ^$T/map[$K]$V, key: K) {
|
|
if m != nil do __dynamic_map_delete_key(__get_map_header(m), __get_map_key(key));
|
|
}
|
|
|
|
|
|
|
|
@builtin
|
|
append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) {
|
|
if array == nil do return;
|
|
|
|
arg_len := 1;
|
|
|
|
if cap(array) < len(array)+arg_len {
|
|
cap := 2 * cap(array) + max(8, arg_len);
|
|
_ = reserve(array, cap, loc);
|
|
}
|
|
arg_len = min(cap(array)-len(array), arg_len);
|
|
if arg_len > 0 {
|
|
a := (^Raw_Dynamic_Array)(array);
|
|
if size_of(E) != 0 {
|
|
data := (^E)(a.data);
|
|
assert(data != nil);
|
|
val := arg;
|
|
mem_copy(ptr_offset(data, a.len), &val, size_of(E));
|
|
}
|
|
a.len += arg_len;
|
|
}
|
|
}
|
|
@builtin
|
|
append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) {
|
|
if array == nil do return;
|
|
|
|
arg_len := len(args);
|
|
if arg_len <= 0 do return;
|
|
|
|
|
|
if cap(array) < len(array)+arg_len {
|
|
cap := 2 * cap(array) + max(8, arg_len);
|
|
_ = reserve(array, cap, loc);
|
|
}
|
|
arg_len = min(cap(array)-len(array), arg_len);
|
|
if arg_len > 0 {
|
|
a := (^Raw_Dynamic_Array)(array);
|
|
if size_of(E) != 0 {
|
|
data := (^E)(a.data);
|
|
assert(data != nil);
|
|
mem_copy(ptr_offset(data, a.len), &args[0], size_of(E) * arg_len);
|
|
}
|
|
a.len += arg_len;
|
|
}
|
|
}
|
|
@builtin
|
|
append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) {
|
|
args := transmute([]E)arg;
|
|
append_elems(array=array, args=args, loc=loc);
|
|
}
|
|
|
|
@builtin
|
|
reserve_soa :: proc(array: ^$T/#soa[dynamic]$E, capacity: int, loc := #caller_location) -> bool {
|
|
if array == nil do return false;
|
|
|
|
old_cap := cap(array);
|
|
if capacity <= old_cap do return true;
|
|
|
|
if array.allocator.procedure == nil {
|
|
array.allocator = context.allocator;
|
|
}
|
|
assert(array.allocator.procedure != nil);
|
|
|
|
|
|
ti := type_info_of(typeid_of(T));
|
|
ti = type_info_base(ti);
|
|
si := &ti.variant.(Type_Info_Struct);
|
|
|
|
field_count := uintptr(len(si.offsets) - 3);
|
|
|
|
if field_count == 0 {
|
|
return true;
|
|
}
|
|
|
|
cap_ptr := cast(^int)rawptr(uintptr(array) + (field_count + 1)*size_of(rawptr));
|
|
assert(cap_ptr^ == old_cap);
|
|
|
|
|
|
old_size := 0;
|
|
new_size := 0;
|
|
|
|
max_align := 0;
|
|
for i in 0..<field_count {
|
|
type := si.types[i].variant.(Type_Info_Pointer).elem;
|
|
max_align = max(max_align, type.align);
|
|
|
|
old_size = align_forward_int(old_size, type.align);
|
|
new_size = align_forward_int(new_size, type.align);
|
|
|
|
old_size += type.size * old_cap;
|
|
new_size += type.size * capacity;
|
|
}
|
|
|
|
old_size = align_forward_int(old_size, max_align);
|
|
new_size = align_forward_int(new_size, max_align);
|
|
|
|
old_data := (^rawptr)(array)^;
|
|
|
|
new_data := array.allocator.procedure(
|
|
array.allocator.data, .Alloc, new_size, max_align,
|
|
nil, old_size, 0, loc,
|
|
);
|
|
if new_data == nil do return false;
|
|
|
|
|
|
cap_ptr^ = capacity;
|
|
|
|
old_offset := 0;
|
|
new_offset := 0;
|
|
for i in 0..<field_count {
|
|
type := si.types[i].variant.(Type_Info_Pointer).elem;
|
|
max_align = max(max_align, type.align);
|
|
|
|
old_offset = align_forward_int(old_offset, type.align);
|
|
new_offset = align_forward_int(new_offset, type.align);
|
|
|
|
new_data_elem := rawptr(uintptr(new_data) + uintptr(new_offset));
|
|
old_data_elem := rawptr(uintptr(old_data) + uintptr(old_offset));
|
|
|
|
mem_copy(new_data_elem, old_data_elem, type.size * old_cap);
|
|
|
|
(^rawptr)(uintptr(array) + i*size_of(rawptr))^ = new_data_elem;
|
|
|
|
old_offset += type.size * old_cap;
|
|
new_offset += type.size * capacity;
|
|
}
|
|
|
|
array.allocator.procedure(
|
|
array.allocator.data, .Free, 0, max_align,
|
|
old_data, old_size, 0, loc,
|
|
);
|
|
|
|
return true;
|
|
}
|
|
|
|
@builtin
|
|
append_soa_elem :: proc(array: ^$T/#soa[dynamic]$E, arg: E, loc := #caller_location) {
|
|
if array == nil do return;
|
|
|
|
arg_len := 1;
|
|
|
|
if cap(array) <= len(array)+arg_len {
|
|
cap := 2 * cap(array) + max(8, arg_len);
|
|
_ = reserve_soa(array, cap, loc);
|
|
}
|
|
arg_len = min(cap(array)-len(array), arg_len);
|
|
if arg_len > 0 {
|
|
ti := type_info_of(typeid_of(T));
|
|
ti = type_info_base(ti);
|
|
si := &ti.variant.(Type_Info_Struct);
|
|
field_count := uintptr(len(si.offsets) - 3);
|
|
|
|
if field_count == 0 {
|
|
return;
|
|
}
|
|
|
|
data := (^rawptr)(array)^;
|
|
|
|
len_ptr := cast(^int)rawptr(uintptr(array) + (field_count + 0)*size_of(rawptr));
|
|
|
|
|
|
soa_offset := 0;
|
|
item_offset := 0;
|
|
|
|
arg_copy := arg;
|
|
arg_ptr := &arg_copy;
|
|
|
|
max_align := 0;
|
|
for i in 0..<field_count {
|
|
type := si.types[i].variant.(Type_Info_Pointer).elem;
|
|
max_align = max(max_align, type.align);
|
|
|
|
soa_offset = align_forward_int(soa_offset, type.align);
|
|
item_offset = align_forward_int(item_offset, type.align);
|
|
|
|
dst := rawptr(uintptr(data) + uintptr(soa_offset) + uintptr(type.size * len_ptr^));
|
|
src := rawptr(uintptr(arg_ptr) + uintptr(item_offset));
|
|
mem_copy(dst, src, type.size);
|
|
|
|
soa_offset += type.size * cap(array);
|
|
item_offset += type.size;
|
|
}
|
|
|
|
len_ptr^ += arg_len;
|
|
}
|
|
}
|
|
|
|
@builtin
|
|
append_soa_elems :: proc(array: ^$T/#soa[dynamic]$E, args: ..E, loc := #caller_location) {
|
|
if array == nil do return;
|
|
|
|
arg_len := len(args);
|
|
if arg_len == 0 {
|
|
return;
|
|
}
|
|
|
|
if cap(array) <= len(array)+arg_len {
|
|
cap := 2 * cap(array) + max(8, arg_len);
|
|
_ = reserve_soa(array, cap, loc);
|
|
}
|
|
arg_len = min(cap(array)-len(array), arg_len);
|
|
if arg_len > 0 {
|
|
ti := type_info_of(typeid_of(T));
|
|
ti = type_info_base(ti);
|
|
si := &ti.variant.(Type_Info_Struct);
|
|
field_count := uintptr(len(si.offsets) - 3);
|
|
|
|
if field_count == 0 {
|
|
return;
|
|
}
|
|
|
|
data := (^rawptr)(array)^;
|
|
|
|
len_ptr := cast(^int)rawptr(uintptr(array) + (field_count + 0)*size_of(rawptr));
|
|
|
|
|
|
soa_offset := 0;
|
|
item_offset := 0;
|
|
|
|
args_ptr := &args[0];
|
|
|
|
max_align := 0;
|
|
for i in 0..<field_count {
|
|
type := si.types[i].variant.(Type_Info_Pointer).elem;
|
|
max_align = max(max_align, type.align);
|
|
|
|
soa_offset = align_forward_int(soa_offset, type.align);
|
|
item_offset = align_forward_int(item_offset, type.align);
|
|
|
|
dst := uintptr(data) + uintptr(soa_offset) + uintptr(type.size * len_ptr^);
|
|
src := uintptr(args_ptr) + uintptr(item_offset);
|
|
for j in 0..<arg_len {
|
|
d := rawptr(dst + uintptr(j*type.size));
|
|
s := rawptr(src + uintptr(j*size_of(E)));
|
|
mem_copy(d, s, type.size);
|
|
}
|
|
|
|
soa_offset += type.size * cap(array);
|
|
item_offset += type.size;
|
|
}
|
|
|
|
len_ptr^ += arg_len;
|
|
}
|
|
}
|
|
|
|
@builtin append :: proc{append_elem, append_elems, append_elem_string};
|
|
@builtin append_soa :: proc{append_soa_elem, append_soa_elems};
|
|
|
|
|
|
|
|
@builtin
|
|
append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) {
|
|
for arg in args {
|
|
append(array = array, args = transmute([]E)(arg), loc = loc);
|
|
}
|
|
}
|
|
|
|
@builtin
|
|
clear_dynamic_array :: inline proc "contextless" (array: ^$T/[dynamic]$E) {
|
|
if array != nil do (^Raw_Dynamic_Array)(array).len = 0;
|
|
}
|
|
|
|
@builtin
|
|
reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> bool {
|
|
if array == nil do return false;
|
|
a := (^Raw_Dynamic_Array)(array);
|
|
|
|
if capacity <= a.cap do return true;
|
|
|
|
if a.allocator.procedure == nil {
|
|
a.allocator = context.allocator;
|
|
}
|
|
assert(a.allocator.procedure != nil);
|
|
|
|
old_size := a.cap * size_of(E);
|
|
new_size := capacity * size_of(E);
|
|
allocator := a.allocator;
|
|
|
|
new_data := allocator.procedure(
|
|
allocator.data, .Resize, new_size, align_of(E),
|
|
a.data, old_size, 0, loc,
|
|
);
|
|
if new_data == nil do return false;
|
|
|
|
a.data = new_data;
|
|
a.cap = capacity;
|
|
return true;
|
|
}
|
|
|
|
@builtin
|
|
resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> bool {
|
|
if array == nil do return false;
|
|
a := (^Raw_Dynamic_Array)(array);
|
|
|
|
if length <= a.cap {
|
|
a.len = max(length, 0);
|
|
return true;
|
|
}
|
|
|
|
if a.allocator.procedure == nil {
|
|
a.allocator = context.allocator;
|
|
}
|
|
assert(a.allocator.procedure != nil);
|
|
|
|
old_size := a.cap * size_of(E);
|
|
new_size := length * size_of(E);
|
|
allocator := a.allocator;
|
|
|
|
new_data := allocator.procedure(
|
|
allocator.data, .Resize, new_size, align_of(E),
|
|
a.data, old_size, 0, loc,
|
|
);
|
|
if new_data == nil do return false;
|
|
|
|
a.data = new_data;
|
|
a.len = length;
|
|
a.cap = length;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
@builtin
|
|
incl_elem :: inline proc(s: ^$S/bit_set[$E; $U], elem: E) -> S {
|
|
s^ |= {elem};
|
|
return s^;
|
|
}
|
|
@builtin
|
|
incl_elems :: inline proc(s: ^$S/bit_set[$E; $U], elems: ..E) -> S {
|
|
for elem in elems do s^ |= {elem};
|
|
return s^;
|
|
}
|
|
@builtin
|
|
incl_bit_set :: inline proc(s: ^$S/bit_set[$E; $U], other: S) -> S {
|
|
s^ |= other;
|
|
return s^;
|
|
}
|
|
@builtin
|
|
excl_elem :: inline proc(s: ^$S/bit_set[$E; $U], elem: E) -> S {
|
|
s^ &~= {elem};
|
|
return s^;
|
|
}
|
|
@builtin
|
|
excl_elems :: inline proc(s: ^$S/bit_set[$E; $U], elems: ..E) -> S {
|
|
for elem in elems do s^ &~= {elem};
|
|
return s^;
|
|
}
|
|
@builtin
|
|
excl_bit_set :: inline proc(s: ^$S/bit_set[$E; $U], other: S) -> S {
|
|
s^ &~= other;
|
|
return s^;
|
|
}
|
|
|
|
@builtin incl :: proc{incl_elem, incl_elems, incl_bit_set};
|
|
@builtin excl :: proc{excl_elem, excl_elems, excl_bit_set};
|
|
|
|
|
|
@builtin
|
|
card :: proc(s: $S/bit_set[$E; $U]) -> int {
|
|
when size_of(S) == 1 {
|
|
foreign { @(link_name="llvm.ctpop.i8") count_ones :: proc(i: u8) -> u8 --- }
|
|
return int(count_ones(transmute(u8)s));
|
|
} else when size_of(S) == 2 {
|
|
foreign { @(link_name="llvm.ctpop.i16") count_ones :: proc(i: u16) -> u16 --- }
|
|
return int(count_ones(transmute(u16)s));
|
|
} else when size_of(S) == 4 {
|
|
foreign { @(link_name="llvm.ctpop.i32") count_ones :: proc(i: u32) -> u32 --- }
|
|
return int(count_ones(transmute(u32)s));
|
|
} else when size_of(S) == 8 {
|
|
foreign { @(link_name="llvm.ctpop.i64") count_ones :: proc(i: u64) -> u64 --- }
|
|
return int(count_ones(transmute(u64)s));
|
|
} else {
|
|
#assert(false);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@builtin
|
|
@(disabled=ODIN_DISABLE_ASSERT)
|
|
assert :: proc(condition: bool, message := "", loc := #caller_location) {
|
|
if !condition {
|
|
proc(message: string, loc: Source_Code_Location) {
|
|
p := context.assertion_failure_proc;
|
|
if p == nil {
|
|
p = default_assertion_failure_proc;
|
|
}
|
|
p("runtime assertion", message, loc);
|
|
}(message, loc);
|
|
}
|
|
}
|
|
|
|
@builtin
|
|
@(disabled=ODIN_DISABLE_ASSERT)
|
|
panic :: proc(message: string, loc := #caller_location) -> ! {
|
|
p := context.assertion_failure_proc;
|
|
if p == nil {
|
|
p = default_assertion_failure_proc;
|
|
}
|
|
p("panic", message, loc);
|
|
}
|
|
|
|
@builtin
|
|
@(disabled=ODIN_DISABLE_ASSERT)
|
|
unimplemented :: proc(message := "", loc := #caller_location) -> ! {
|
|
p := context.assertion_failure_proc;
|
|
if p == nil {
|
|
p = default_assertion_failure_proc;
|
|
}
|
|
p("not yet implemented", message, loc);
|
|
}
|
|
|
|
@builtin
|
|
@(disabled=ODIN_DISABLE_ASSERT)
|
|
unreachable :: proc(message := "", loc := #caller_location) -> ! {
|
|
p := context.assertion_failure_proc;
|
|
if p == nil {
|
|
p = default_assertion_failure_proc;
|
|
}
|
|
if message != "" {
|
|
p("internal error", message, loc);
|
|
} else {
|
|
p("internal error", "entered unreachable code", loc);
|
|
}
|
|
}
|
|
|
|
|
|
// Dynamic Array
|
|
|
|
|
|
__dynamic_array_make :: proc(array_: rawptr, elem_size, elem_align: int, len, cap: int, loc := #caller_location) {
|
|
array := (^Raw_Dynamic_Array)(array_);
|
|
array.allocator = context.allocator;
|
|
assert(array.allocator.procedure != nil);
|
|
|
|
if cap > 0 {
|
|
__dynamic_array_reserve(array_, elem_size, elem_align, cap, loc);
|
|
array.len = len;
|
|
}
|
|
}
|
|
|
|
__dynamic_array_reserve :: proc(array_: rawptr, elem_size, elem_align: int, cap: int, loc := #caller_location) -> bool {
|
|
array := (^Raw_Dynamic_Array)(array_);
|
|
|
|
// NOTE(tetra, 2020-01-26): We set the allocator before earlying-out below, because user code is usually written
|
|
// assuming that appending/reserving will set the allocator, if it is not already set.
|
|
if array.allocator.procedure == nil {
|
|
array.allocator = context.allocator;
|
|
}
|
|
assert(array.allocator.procedure != nil);
|
|
|
|
if cap <= array.cap do return true;
|
|
|
|
old_size := array.cap * elem_size;
|
|
new_size := cap * elem_size;
|
|
allocator := array.allocator;
|
|
|
|
new_data := allocator.procedure(allocator.data, .Resize, new_size, elem_align, array.data, old_size, 0, loc);
|
|
if new_data != nil || elem_size == 0 {
|
|
array.data = new_data;
|
|
array.cap = cap;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
__dynamic_array_resize :: proc(array_: rawptr, elem_size, elem_align: int, len: int, loc := #caller_location) -> bool {
|
|
array := (^Raw_Dynamic_Array)(array_);
|
|
|
|
ok := __dynamic_array_reserve(array_, elem_size, elem_align, len, loc);
|
|
if ok do array.len = len;
|
|
return ok;
|
|
}
|
|
|
|
|
|
__dynamic_array_append :: proc(array_: rawptr, elem_size, elem_align: int,
|
|
items: rawptr, item_count: int, loc := #caller_location) -> int {
|
|
array := (^Raw_Dynamic_Array)(array_);
|
|
|
|
if items == nil do return 0;
|
|
if item_count <= 0 do return 0;
|
|
|
|
|
|
ok := true;
|
|
if array.cap <= array.len+item_count {
|
|
cap := 2 * array.cap + max(8, item_count);
|
|
ok = __dynamic_array_reserve(array, elem_size, elem_align, cap, loc);
|
|
}
|
|
// TODO(bill): Better error handling for failed reservation
|
|
if !ok do return array.len;
|
|
|
|
assert(array.data != nil);
|
|
data := uintptr(array.data) + uintptr(elem_size*array.len);
|
|
|
|
mem_copy(rawptr(data), items, elem_size * item_count);
|
|
array.len += item_count;
|
|
return array.len;
|
|
}
|
|
|
|
__dynamic_array_append_nothing :: proc(array_: rawptr, elem_size, elem_align: int, loc := #caller_location) -> int {
|
|
array := (^Raw_Dynamic_Array)(array_);
|
|
|
|
ok := true;
|
|
if array.cap <= array.len+1 {
|
|
cap := 2 * array.cap + max(8, 1);
|
|
ok = __dynamic_array_reserve(array, elem_size, elem_align, cap, loc);
|
|
}
|
|
// TODO(bill): Better error handling for failed reservation
|
|
if !ok do return array.len;
|
|
|
|
assert(array.data != nil);
|
|
data := uintptr(array.data) + uintptr(elem_size*array.len);
|
|
mem_zero(rawptr(data), elem_size);
|
|
array.len += 1;
|
|
return array.len;
|
|
}
|
|
|
|
|
|
|
|
|
|
// Map
|
|
|
|
__get_map_header :: proc "contextless" (m: ^$T/map[$K]$V) -> Map_Header {
|
|
header := Map_Header{m = (^Raw_Map)(m)};
|
|
Entry :: struct {
|
|
key: Map_Key,
|
|
next: int,
|
|
value: V,
|
|
};
|
|
|
|
header.is_key_string = intrinsics.type_is_string(K);
|
|
header.entry_size = int(size_of(Entry));
|
|
header.entry_align = int(align_of(Entry));
|
|
header.value_offset = uintptr(offset_of(Entry, value));
|
|
header.value_size = int(size_of(V));
|
|
return header;
|
|
}
|
|
|
|
__get_map_key :: proc "contextless" (k: $K) -> Map_Key {
|
|
key := k;
|
|
map_key: Map_Key;
|
|
|
|
T :: intrinsics.type_core_type(K);
|
|
|
|
when intrinsics.type_is_integer(T) {
|
|
sz :: 8*size_of(T);
|
|
when sz == 8 do map_key.hash = u64(( ^u8)(&key)^);
|
|
else when sz == 16 do map_key.hash = u64((^u16)(&key)^);
|
|
else when sz == 32 do map_key.hash = u64((^u32)(&key)^);
|
|
else when sz == 64 do map_key.hash = u64((^u64)(&key)^);
|
|
else do #assert(false, "Unhandled integer size");
|
|
} else when intrinsics.type_is_rune(T) {
|
|
map_key.hash = u64((^rune)(&key)^);
|
|
} else when intrinsics.type_is_pointer(T) {
|
|
map_key.hash = u64(uintptr((^rawptr)(&key)^));
|
|
} else when intrinsics.type_is_float(T) {
|
|
sz :: 8*size_of(T);
|
|
when sz == 32 do map_key.hash = u64((^u32)(&key)^);
|
|
else when sz == 64 do map_key.hash = u64((^u64)(&key)^);
|
|
else do #assert(false, "Unhandled float size");
|
|
} else when intrinsics.type_is_string(T) {
|
|
#assert(T == string);
|
|
str := (^string)(&key)^;
|
|
map_key.hash = default_hash_string(str);
|
|
map_key.str = str;
|
|
} else {
|
|
#assert(false, "Unhandled map key type");
|
|
}
|
|
|
|
return map_key;
|
|
}
|
|
|
|
_fnv64a :: proc "contextless" (data: []byte, seed: u64 = 0xcbf29ce484222325) -> u64 {
|
|
h: u64 = seed;
|
|
for b in data {
|
|
h = (h ~ u64(b)) * 0x100000001b3;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
|
|
default_hash :: proc "contextless" (data: []byte) -> u64 {
|
|
return _fnv64a(data);
|
|
}
|
|
default_hash_string :: proc "contextless" (s: string) -> u64 do return default_hash(transmute([]byte)(s));
|
|
|
|
|
|
source_code_location_hash :: proc(s: Source_Code_Location) -> u64 {
|
|
hash := _fnv64a(transmute([]byte)s.file_path);
|
|
hash = hash ~ (u64(s.line) * 0x100000001b3);
|
|
hash = hash ~ (u64(s.column) * 0x100000001b3);
|
|
return hash;
|
|
}
|
|
|
|
|
|
|
|
__slice_resize :: proc(array_: ^$T/[]$E, new_count: int, allocator: Allocator, loc := #caller_location) -> bool {
|
|
array := (^Raw_Slice)(array_);
|
|
|
|
if new_count < array.len do return true;
|
|
|
|
assert(allocator.procedure != nil);
|
|
|
|
old_size := array.len*size_of(T);
|
|
new_size := new_count*size_of(T);
|
|
|
|
new_data := mem_resize(array.data, old_size, new_size, align_of(T), allocator, loc);
|
|
if new_data == nil do return false;
|
|
array.data = new_data;
|
|
array.len = new_count;
|
|
return true;
|
|
}
|
|
|
|
__dynamic_map_reserve :: proc(using header: Map_Header, cap: int, loc := #caller_location) {
|
|
__dynamic_array_reserve(&m.entries, entry_size, entry_align, cap, loc);
|
|
|
|
old_len := len(m.hashes);
|
|
__slice_resize(&m.hashes, cap, m.entries.allocator, loc);
|
|
for i in old_len..<len(m.hashes) do m.hashes[i] = -1;
|
|
|
|
}
|
|
__dynamic_map_rehash :: proc(using header: Map_Header, new_count: int, loc := #caller_location) #no_bounds_check {
|
|
new_header: Map_Header = header;
|
|
nm := Raw_Map{};
|
|
nm.entries.allocator = m.entries.allocator;
|
|
new_header.m = &nm;
|
|
|
|
c := context;
|
|
if m.entries.allocator.procedure != nil {
|
|
c.allocator = m.entries.allocator;
|
|
}
|
|
context = c;
|
|
|
|
__dynamic_array_reserve(&nm.entries, entry_size, entry_align, m.entries.len, loc);
|
|
__slice_resize(&nm.hashes, new_count, m.entries.allocator, loc);
|
|
for i in 0 ..< new_count do nm.hashes[i] = -1;
|
|
|
|
for i in 0 ..< m.entries.len {
|
|
if len(nm.hashes) == 0 do __dynamic_map_grow(new_header, loc);
|
|
|
|
entry_header := __dynamic_map_get_entry(header, i);
|
|
data := uintptr(entry_header);
|
|
|
|
fr := __dynamic_map_find(new_header, entry_header.key);
|
|
j := __dynamic_map_add_entry(new_header, entry_header.key, loc);
|
|
if fr.entry_prev < 0 {
|
|
nm.hashes[fr.hash_index] = j;
|
|
} else {
|
|
e := __dynamic_map_get_entry(new_header, fr.entry_prev);
|
|
e.next = j;
|
|
}
|
|
|
|
e := __dynamic_map_get_entry(new_header, j);
|
|
e.next = fr.entry_index;
|
|
ndata := uintptr(e);
|
|
mem_copy(rawptr(ndata+value_offset), rawptr(data+value_offset), value_size);
|
|
|
|
if __dynamic_map_full(new_header) do __dynamic_map_grow(new_header, loc);
|
|
}
|
|
delete(m.hashes, m.entries.allocator, loc);
|
|
free(m.entries.data, m.entries.allocator, loc);
|
|
header.m^ = nm;
|
|
}
|
|
|
|
__dynamic_map_get :: proc(h: Map_Header, key: Map_Key) -> rawptr {
|
|
index := __dynamic_map_find(h, key).entry_index;
|
|
if index >= 0 {
|
|
data := uintptr(__dynamic_map_get_entry(h, index));
|
|
return rawptr(data + h.value_offset);
|
|
}
|
|
return nil;
|
|
}
|
|
|
|
__dynamic_map_set :: proc(h: Map_Header, key: Map_Key, value: rawptr, loc := #caller_location) #no_bounds_check {
|
|
index: int;
|
|
assert(value != nil);
|
|
|
|
if len(h.m.hashes) == 0 {
|
|
__dynamic_map_reserve(h, INITIAL_MAP_CAP, loc);
|
|
__dynamic_map_grow(h, loc);
|
|
}
|
|
|
|
fr := __dynamic_map_find(h, key);
|
|
if fr.entry_index >= 0 {
|
|
index = fr.entry_index;
|
|
} else {
|
|
index = __dynamic_map_add_entry(h, key, loc);
|
|
if fr.entry_prev >= 0 {
|
|
entry := __dynamic_map_get_entry(h, fr.entry_prev);
|
|
entry.next = index;
|
|
} else {
|
|
h.m.hashes[fr.hash_index] = index;
|
|
}
|
|
}
|
|
{
|
|
e := __dynamic_map_get_entry(h, index);
|
|
e.key = key;
|
|
val := (^byte)(uintptr(e) + h.value_offset);
|
|
mem_copy(val, value, h.value_size);
|
|
}
|
|
|
|
if __dynamic_map_full(h) {
|
|
__dynamic_map_grow(h, loc);
|
|
}
|
|
}
|
|
|
|
|
|
__dynamic_map_grow :: proc(using h: Map_Header, loc := #caller_location) {
|
|
// TODO(bill): Determine an efficient growing rate
|
|
new_count := max(4*m.entries.cap + 7, INITIAL_MAP_CAP);
|
|
__dynamic_map_rehash(h, new_count, loc);
|
|
}
|
|
|
|
__dynamic_map_full :: inline proc(using h: Map_Header) -> bool {
|
|
return int(0.75 * f64(len(m.hashes))) <= m.entries.cap;
|
|
}
|
|
|
|
|
|
__dynamic_map_hash_equal :: proc(h: Map_Header, a, b: Map_Key) -> bool {
|
|
if a.hash == b.hash {
|
|
if h.is_key_string do return a.str == b.str;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
__dynamic_map_find :: proc(using h: Map_Header, key: Map_Key) -> Map_Find_Result #no_bounds_check {
|
|
fr := Map_Find_Result{-1, -1, -1};
|
|
if n := u64(len(m.hashes)); n > 0 {
|
|
fr.hash_index = int(key.hash % n);
|
|
fr.entry_index = m.hashes[fr.hash_index];
|
|
for fr.entry_index >= 0 {
|
|
entry := __dynamic_map_get_entry(h, fr.entry_index);
|
|
if __dynamic_map_hash_equal(h, entry.key, key) do return fr;
|
|
fr.entry_prev = fr.entry_index;
|
|
fr.entry_index = entry.next;
|
|
}
|
|
}
|
|
return fr;
|
|
}
|
|
|
|
__dynamic_map_add_entry :: proc(using h: Map_Header, key: Map_Key, loc := #caller_location) -> int {
|
|
prev := m.entries.len;
|
|
c := __dynamic_array_append_nothing(&m.entries, entry_size, entry_align, loc);
|
|
if c != prev {
|
|
end := __dynamic_map_get_entry(h, c-1);
|
|
end.key = key;
|
|
end.next = -1;
|
|
}
|
|
return prev;
|
|
}
|
|
|
|
__dynamic_map_delete_key :: proc(using h: Map_Header, key: Map_Key) {
|
|
fr := __dynamic_map_find(h, key);
|
|
if fr.entry_index >= 0 {
|
|
__dynamic_map_erase(h, fr);
|
|
}
|
|
}
|
|
|
|
__dynamic_map_get_entry :: proc(using h: Map_Header, index: int) -> ^Map_Entry_Header {
|
|
assert(0 <= index && index < m.entries.len);
|
|
return (^Map_Entry_Header)(uintptr(m.entries.data) + uintptr(index*entry_size));
|
|
}
|
|
|
|
__dynamic_map_erase :: proc(using h: Map_Header, fr: Map_Find_Result) #no_bounds_check {
|
|
if fr.entry_prev < 0 {
|
|
m.hashes[fr.hash_index] = __dynamic_map_get_entry(h, fr.entry_index).next;
|
|
} else {
|
|
prev := __dynamic_map_get_entry(h, fr.entry_prev);
|
|
curr := __dynamic_map_get_entry(h, fr.entry_index);
|
|
prev.next = curr.next;
|
|
}
|
|
if (fr.entry_index == m.entries.len-1) {
|
|
// NOTE(bill): No need to do anything else, just pop
|
|
} else {
|
|
old := __dynamic_map_get_entry(h, fr.entry_index);
|
|
end := __dynamic_map_get_entry(h, m.entries.len-1);
|
|
mem_copy(old, end, entry_size);
|
|
|
|
if last := __dynamic_map_find(h, old.key); last.entry_prev >= 0 {
|
|
last_entry := __dynamic_map_get_entry(h, last.entry_prev);
|
|
last_entry.next = fr.entry_index;
|
|
} else {
|
|
m.hashes[last.hash_index] = fr.entry_index;
|
|
}
|
|
}
|
|
|
|
// TODO(bill): Is this correct behaviour?
|
|
m.entries.len -= 1;
|
|
}
|