Files
Odin/core/runtime/internal.odin
2020-05-15 17:37:00 +01:00

952 lines
27 KiB
Odin

package runtime
import "core:os"
bswap_16 :: proc "none" (x: u16) -> u16 {
return x>>8 | x<<16;
}
bswap_32 :: proc "none" (x: u32) -> u32 {
return x>>24 | (x>>8)&0xff00 | (x<<8)&0xff0000 | x<<24;
}
bswap_64 :: proc "none" (x: u64) -> u64 {
return u64(bswap_32(u32(x))) | u64(bswap_32(u32(x>>32)));
}
bswap_128 :: proc "none" (x: u128) -> u128 {
return u128(bswap_64(u64(x))) | u128(bswap_64(u64(x>>64)));
}
bswap_f32 :: proc "none" (f: f32) -> f32 {
x := transmute(u32)f;
z := x>>24 | (x>>8)&0xff00 | (x<<8)&0xff0000 | x<<24;
return transmute(f32)z;
}
bswap_f64 :: proc "none" (f: f64) -> f64 {
x := transmute(u64)f;
z := u64(bswap_32(u32(x))) | u64(bswap_32(u32(x>>32)));
return transmute(f64)z;
}
ptr_offset :: inline proc "contextless" (ptr: $P/^$T, n: int) -> P {
new := int(uintptr(ptr)) + size_of(T)*n;
return P(uintptr(new));
}
is_power_of_two_int :: inline proc(x: int) -> bool {
if x <= 0 do return false;
return (x & (x-1)) == 0;
}
align_forward_int :: inline proc(ptr, align: int) -> int {
assert(is_power_of_two_int(align));
p := ptr;
modulo := p & (align-1);
if modulo != 0 do p += align - modulo;
return p;
}
is_power_of_two_uintptr :: inline proc(x: uintptr) -> bool {
if x <= 0 do return false;
return (x & (x-1)) == 0;
}
align_forward_uintptr :: inline proc(ptr, align: uintptr) -> uintptr {
assert(is_power_of_two_uintptr(align));
p := ptr;
modulo := p & (align-1);
if modulo != 0 do p += align - modulo;
return p;
}
mem_zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
if data == nil do return nil;
if len < 0 do return data;
memset(data, 0, len);
return data;
}
mem_copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
if src == nil do return dst;
// NOTE(bill): This _must_ be implemented like C's memmove
foreign _ {
when ODIN_USE_LLVM_API {
when size_of(rawptr) == 8 {
@(link_name="llvm.memmove.p0i8.p0i8.i64")
llvm_memmove :: proc(dst, src: rawptr, len: int, is_volatile: bool = false) ---;
} else {
@(link_name="llvm.memmove.p0i8.p0i8.i32")
llvm_memmove :: proc(dst, src: rawptr, len: int, is_volatile: bool = false) ---;
}
} else {
when size_of(rawptr) == 8 {
@(link_name="llvm.memmove.p0i8.p0i8.i64")
llvm_memmove :: proc(dst, src: rawptr, len: int, align: i32 = 1, is_volatile: bool = false) ---;
} else {
@(link_name="llvm.memmove.p0i8.p0i8.i32")
llvm_memmove :: proc(dst, src: rawptr, len: int, align: i32 = 1, is_volatile: bool = false) ---;
}
}
}
llvm_memmove(dst, src, len);
return dst;
}
mem_copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
if src == nil do return dst;
// NOTE(bill): This _must_ be implemented like C's memcpy
foreign _ {
when ODIN_USE_LLVM_API {
when size_of(rawptr) == 8 {
@(link_name="llvm.memcpy.p0i8.p0i8.i64")
llvm_memcpy :: proc(dst, src: rawptr, len: int, is_volatile: bool = false) ---;
} else {
@(link_name="llvm.memcpy.p0i8.p0i8.i32")
llvm_memcpy :: proc(dst, src: rawptr, len: int, is_volatile: bool = false) ---;
}
} else {
when size_of(rawptr) == 8 {
@(link_name="llvm.memcpy.p0i8.p0i8.i64")
llvm_memcpy :: proc(dst, src: rawptr, len: int, align: i32 = 1, is_volatile: bool = false) ---;
} else {
@(link_name="llvm.memcpy.p0i8.p0i8.i32")
llvm_memcpy :: proc(dst, src: rawptr, len: int, align: i32 = 1, is_volatile: bool = false) ---;
}
}
}
llvm_memcpy(dst, src, len);
return dst;
}
DEFAULT_ALIGNMENT :: 2*align_of(rawptr);
mem_alloc :: inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr {
if size == 0 do return nil;
if allocator.procedure == nil do return nil;
return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, 0, loc);
}
mem_free :: inline proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) {
if ptr == nil do return;
if allocator.procedure == nil do return;
allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, 0, loc);
}
mem_free_all :: inline proc(allocator := context.allocator, loc := #caller_location) {
if allocator.procedure != nil {
allocator.procedure(allocator.data, .Free_All, 0, 0, nil, 0, 0, loc);
}
}
mem_resize :: inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> rawptr {
switch {
case allocator.procedure == nil:
return nil;
case new_size == 0:
allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, 0, loc);
return nil;
case ptr == nil:
return allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, 0, loc);
}
return allocator.procedure(allocator.data, .Resize, new_size, alignment, ptr, old_size, 0, loc);
}
print_u64 :: proc(fd: os.Handle, x: u64) {
digits := "0123456789";
a: [129]byte;
i := len(a);
b := u64(10);
u := x;
for u >= b {
i -= 1; a[i] = digits[u % b];
u /= b;
}
i -= 1; a[i] = digits[u % b];
os.write(fd, a[i:]);
}
print_i64 :: proc(fd: os.Handle, x: i64) {
digits := "0123456789";
b :: i64(10);
u := x;
neg := u < 0;
u = abs(u);
a: [129]byte;
i := len(a);
for u >= b {
i -= 1; a[i] = digits[u % b];
u /= b;
}
i -= 1; a[i] = digits[u % b];
if neg {
i -= 1; a[i] = '-';
}
os.write(fd, a[i:]);
}
print_caller_location :: proc(fd: os.Handle, using loc: Source_Code_Location) {
os.write_string(fd, file_path);
os.write_byte(fd, '(');
print_u64(fd, u64(line));
os.write_byte(fd, ':');
print_u64(fd, u64(column));
os.write_byte(fd, ')');
}
print_typeid :: proc(fd: os.Handle, id: typeid) {
if id == nil {
os.write_string(fd, "nil");
} else {
ti := type_info_of(id);
print_type(fd, ti);
}
}
print_type :: proc(fd: os.Handle, ti: ^Type_Info) {
if ti == nil {
os.write_string(fd, "nil");
return;
}
switch info in ti.variant {
case Type_Info_Named:
os.write_string(fd, info.name);
case Type_Info_Integer:
switch ti.id {
case int: os.write_string(fd, "int");
case uint: os.write_string(fd, "uint");
case uintptr: os.write_string(fd, "uintptr");
case:
os.write_byte(fd, 'i' if info.signed else 'u');
print_u64(fd, u64(8*ti.size));
}
case Type_Info_Rune:
os.write_string(fd, "rune");
case Type_Info_Float:
os.write_byte(fd, 'f');
print_u64(fd, u64(8*ti.size));
case Type_Info_Complex:
os.write_string(fd, "complex");
print_u64(fd, u64(8*ti.size));
case Type_Info_Quaternion:
os.write_string(fd, "quaternion");
print_u64(fd, u64(8*ti.size));
case Type_Info_String:
os.write_string(fd, "string");
case Type_Info_Boolean:
switch ti.id {
case bool: os.write_string(fd, "bool");
case:
os.write_byte(fd, 'b');
print_u64(fd, u64(8*ti.size));
}
case Type_Info_Any:
os.write_string(fd, "any");
case Type_Info_Type_Id:
os.write_string(fd, "typeid");
case Type_Info_Pointer:
if info.elem == nil {
os.write_string(fd, "rawptr");
} else {
os.write_string(fd, "^");
print_type(fd, info.elem);
}
case Type_Info_Procedure:
os.write_string(fd, "proc");
if info.params == nil {
os.write_string(fd, "()");
} else {
t := info.params.variant.(Type_Info_Tuple);
os.write_byte(fd, '(');
for t, i in t.types {
if i > 0 do os.write_string(fd, ", ");
print_type(fd, t);
}
os.write_string(fd, ")");
}
if info.results != nil {
os.write_string(fd, " -> ");
print_type(fd, info.results);
}
case Type_Info_Tuple:
count := len(info.names);
if count != 1 do os.write_byte(fd, '(');
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
t := info.types[i];
if len(name) > 0 {
os.write_string(fd, name);
os.write_string(fd, ": ");
}
print_type(fd, t);
}
if count != 1 do os.write_string(fd, ")");
case Type_Info_Array:
os.write_byte(fd, '[');
print_u64(fd, u64(info.count));
os.write_byte(fd, ']');
print_type(fd, info.elem);
case Type_Info_Enumerated_Array:
os.write_byte(fd, '[');
print_type(fd, info.index);
os.write_byte(fd, ']');
print_type(fd, info.elem);
case Type_Info_Dynamic_Array:
os.write_string(fd, "[dynamic]");
print_type(fd, info.elem);
case Type_Info_Slice:
os.write_string(fd, "[]");
print_type(fd, info.elem);
case Type_Info_Map:
os.write_string(fd, "map[");
print_type(fd, info.key);
os.write_byte(fd, ']');
print_type(fd, info.value);
case Type_Info_Struct:
switch info.soa_kind {
case .None: // Ignore
case .Fixed:
os.write_string(fd, "#soa[");
print_u64(fd, u64(info.soa_len));
os.write_byte(fd, ']');
print_type(fd, info.soa_base_type);
return;
case .Slice:
os.write_string(fd, "#soa[]");
print_type(fd, info.soa_base_type);
return;
case .Dynamic:
os.write_string(fd, "#soa[dynamic]");
print_type(fd, info.soa_base_type);
return;
}
os.write_string(fd, "struct ");
if info.is_packed do os.write_string(fd, "#packed ");
if info.is_raw_union do os.write_string(fd, "#raw_union ");
if info.custom_align {
os.write_string(fd, "#align ");
print_u64(fd, u64(ti.align));
os.write_byte(fd, ' ');
}
os.write_byte(fd, '{');
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
os.write_string(fd, name);
os.write_string(fd, ": ");
print_type(fd, info.types[i]);
}
os.write_byte(fd, '}');
case Type_Info_Union:
os.write_string(fd, "union ");
if info.custom_align {
os.write_string(fd, "#align ");
print_u64(fd, u64(ti.align));
}
if info.no_nil {
os.write_string(fd, "#no_nil ");
}
os.write_byte(fd, '{');
for variant, i in info.variants {
if i > 0 do os.write_string(fd, ", ");
print_type(fd, variant);
}
os.write_string(fd, "}");
case Type_Info_Enum:
os.write_string(fd, "enum ");
print_type(fd, info.base);
os.write_string(fd, " {");
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
os.write_string(fd, name);
}
os.write_string(fd, "}");
case Type_Info_Bit_Field:
os.write_string(fd, "bit_field ");
if ti.align != 1 {
os.write_string(fd, "#align ");
print_u64(fd, u64(ti.align));
os.write_byte(fd, ' ');
}
os.write_string(fd, " {");
for name, i in info.names {
if i > 0 do os.write_string(fd, ", ");
os.write_string(fd, name);
os.write_string(fd, ": ");
print_u64(fd, u64(info.bits[i]));
}
os.write_string(fd, "}");
case Type_Info_Bit_Set:
os.write_string(fd, "bit_set[");
#partial switch elem in type_info_base(info.elem).variant {
case Type_Info_Enum:
print_type(fd, info.elem);
case Type_Info_Rune:
os.write_encoded_rune(fd, rune(info.lower));
os.write_string(fd, "..");
os.write_encoded_rune(fd, rune(info.upper));
case:
print_i64(fd, info.lower);
os.write_string(fd, "..");
print_i64(fd, info.upper);
}
if info.underlying != nil {
os.write_string(fd, "; ");
print_type(fd, info.underlying);
}
os.write_byte(fd, ']');
case Type_Info_Opaque:
os.write_string(fd, "opaque ");
print_type(fd, info.elem);
case Type_Info_Simd_Vector:
if info.is_x86_mmx {
os.write_string(fd, "intrinsics.x86_mmx");
} else {
os.write_string(fd, "#simd[");
print_u64(fd, u64(info.count));
os.write_byte(fd, ']');
print_type(fd, info.elem);
}
case Type_Info_Relative_Pointer:
os.write_string(fd, "#relative(");
print_type(fd, info.base_integer);
os.write_string(fd, ") ");
print_type(fd, info.pointer);
case Type_Info_Relative_Slice:
os.write_string(fd, "#relative(");
print_type(fd, info.base_integer);
os.write_string(fd, ") ");
print_type(fd, info.slice);
}
}
memory_compare :: proc "contextless" (a, b: rawptr, n: int) -> int #no_bounds_check {
x := uintptr(a);
y := uintptr(b);
n := uintptr(n);
SU :: size_of(uintptr);
fast := uintptr(n/SU + 1);
offset := (fast-1)*SU;
curr_block := uintptr(0);
if n < SU {
fast = 0;
}
for /**/; curr_block < fast; curr_block += 1 {
va := (^uintptr)(x + curr_block * size_of(uintptr))^;
vb := (^uintptr)(y + curr_block * size_of(uintptr))^;
if va ~ vb != 0 {
for pos := curr_block*SU; pos < n; pos += 1 {
a := (^byte)(x+pos)^;
b := (^byte)(y+pos)^;
if a ~ b != 0 {
return -1 if (int(a) - int(b)) < 0 else +1;
}
}
}
}
for /**/; offset < n; offset += 1 {
a := (^byte)(x+offset)^;
b := (^byte)(y+offset)^;
if a ~ b != 0 {
return -1 if (int(a) - int(b)) < 0 else +1;
}
}
return 0;
}
memory_compare_zero :: proc "contextless" (a: rawptr, n: int) -> int #no_bounds_check {
x := uintptr(a);
n := uintptr(n);
SU :: size_of(uintptr);
fast := uintptr(n/SU + 1);
offset := (fast-1)*SU;
curr_block := uintptr(0);
if n < SU {
fast = 0;
}
for /**/; curr_block < fast; curr_block += 1 {
va := (^uintptr)(x + curr_block * size_of(uintptr))^;
if va ~ 0 != 0 {
for pos := curr_block*SU; pos < n; pos += 1 {
a := (^byte)(x+pos)^;
if a ~ 0 != 0 {
return -1 if int(a) < 0 else +1;
}
}
}
}
for /**/; offset < n; offset += 1 {
a := (^byte)(x+offset)^;
if a ~ 0 != 0 {
return -1 if int(a) < 0 else +1;
}
}
return 0;
}
string_eq :: proc "contextless" (a, b: string) -> bool {
x := transmute(Raw_String)a;
y := transmute(Raw_String)b;
switch {
case x.len != y.len: return false;
case x.len == 0: return true;
case x.data == y.data: return true;
}
return string_cmp(a, b) == 0;
}
string_cmp :: proc "contextless" (a, b: string) -> int {
x := transmute(Raw_String)a;
y := transmute(Raw_String)b;
return memory_compare(x.data, y.data, min(x.len, y.len));
}
string_ne :: inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b); }
string_lt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0; }
string_gt :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0; }
string_le :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0; }
string_ge :: inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0; }
cstring_len :: proc "contextless" (s: cstring) -> int {
p0 := uintptr((^byte)(s));
p := p0;
for p != 0 && (^byte)(p)^ != 0 {
p += 1;
}
return int(p - p0);
}
cstring_to_string :: proc "contextless" (s: cstring) -> string {
if s == nil do return "";
ptr := (^byte)(s);
n := cstring_len(s);
return transmute(string)Raw_String{ptr, n};
}
complex64_eq :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
complex64_ne :: inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
complex128_eq :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b); }
complex128_ne :: inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b); }
quaternion128_eq :: inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); }
quaternion128_ne :: inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); }
quaternion256_eq :: inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b); }
quaternion256_ne :: inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b); }
bounds_check_error :: proc "contextless" (file: string, line, column: int, index, count: int) {
if 0 <= index && index < count do return;
handle_error :: proc "contextless" (file: string, line, column: int, index, count: int) {
context = default_context();
fd := os.stderr;
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Index ");
print_i64(fd, i64(index));
os.write_string(fd, " is out of bounds range 0:");
print_i64(fd, i64(count));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(file, line, column, index, count);
}
slice_handle_error :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) {
context = default_context();
fd := os.stderr;
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Invalid slice indices: ");
print_i64(fd, i64(lo));
os.write_string(fd, ":");
print_i64(fd, i64(hi));
os.write_string(fd, ":");
print_i64(fd, i64(len));
os.write_byte(fd, '\n');
debug_trap();
}
slice_expr_error_hi :: proc "contextless" (file: string, line, column: int, hi: int, len: int) {
if 0 <= hi && hi <= len do return;
slice_handle_error(file, line, column, 0, hi, len);
}
slice_expr_error_lo_hi :: proc "contextless" (file: string, line, column: int, lo, hi: int, len: int) {
if 0 <= lo && lo <= len && lo <= hi && hi <= len do return;
slice_handle_error(file, line, column, lo, hi, len);
}
dynamic_array_expr_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) {
if 0 <= low && low <= high && high <= max do return;
handle_error :: proc "contextless" (file: string, line, column: int, low, high, max: int) {
context = default_context();
fd := os.stderr;
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Invalid dynamic array values: ");
print_i64(fd, i64(low));
os.write_string(fd, ":");
print_i64(fd, i64(high));
os.write_string(fd, ":");
print_i64(fd, i64(max));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(file, line, column, low, high, max);
}
type_assertion_check :: proc "contextless" (ok: bool, file: string, line, column: int, from, to: typeid) {
if ok do return;
handle_error :: proc "contextless" (file: string, line, column: int, from, to: typeid) {
context = default_context();
fd := os.stderr;
print_caller_location(fd, Source_Code_Location{file, line, column, "", 0});
os.write_string(fd, " Invalid type assertion from ");
print_typeid(fd, from);
os.write_string(fd, " to ");
print_typeid(fd, to);
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(file, line, column, from, to);
}
string_decode_rune :: inline proc "contextless" (s: string) -> (rune, int) {
// NOTE(bill): Duplicated here to remove dependency on package unicode/utf8
@static accept_sizes := [256]u8{
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x00-0x0f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x10-0x1f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x20-0x2f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x30-0x3f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x40-0x4f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x50-0x5f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x60-0x6f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x70-0x7f
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x80-0x8f
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x90-0x9f
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xa0-0xaf
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xb0-0xbf
0xf1, 0xf1, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xc0-0xcf
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xd0-0xdf
0x13, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x23, 0x03, 0x03, // 0xe0-0xef
0x34, 0x04, 0x04, 0x04, 0x44, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xf0-0xff
};
Accept_Range :: struct {lo, hi: u8};
@static accept_ranges := [5]Accept_Range{
{0x80, 0xbf},
{0xa0, 0xbf},
{0x80, 0x9f},
{0x90, 0xbf},
{0x80, 0x8f},
};
MASKX :: 0b0011_1111;
MASK2 :: 0b0001_1111;
MASK3 :: 0b0000_1111;
MASK4 :: 0b0000_0111;
LOCB :: 0b1000_0000;
HICB :: 0b1011_1111;
RUNE_ERROR :: '\ufffd';
n := len(s);
if n < 1 {
return RUNE_ERROR, 0;
}
s0 := s[0];
x := accept_sizes[s0];
if x >= 0xF0 {
mask := rune(x) << 31 >> 31; // NOTE(bill): Create 0x0000 or 0xffff.
return rune(s[0])&~mask | RUNE_ERROR&mask, 1;
}
sz := x & 7;
accept := accept_ranges[x>>4];
if n < int(sz) {
return RUNE_ERROR, 1;
}
b1 := s[1];
if b1 < accept.lo || accept.hi < b1 {
return RUNE_ERROR, 1;
}
if sz == 2 {
return rune(s0&MASK2)<<6 | rune(b1&MASKX), 2;
}
b2 := s[2];
if b2 < LOCB || HICB < b2 {
return RUNE_ERROR, 1;
}
if sz == 3 {
return rune(s0&MASK3)<<12 | rune(b1&MASKX)<<6 | rune(b2&MASKX), 3;
}
b3 := s[3];
if b3 < LOCB || HICB < b3 {
return RUNE_ERROR, 1;
}
return rune(s0&MASK4)<<18 | rune(b1&MASKX)<<12 | rune(b2&MASKX)<<6 | rune(b3&MASKX), 4;
}
bounds_check_error_loc :: inline proc "contextless" (using loc := #caller_location, index, count: int) {
bounds_check_error(file_path, int(line), int(column), index, count);
}
slice_expr_error_hi_loc :: inline proc "contextless" (using loc := #caller_location, hi: int, len: int) {
slice_expr_error_hi(file_path, int(line), int(column), hi, len);
}
slice_expr_error_lo_hi_loc :: inline proc "contextless" (using loc := #caller_location, lo, hi: int, len: int) {
slice_expr_error_lo_hi(file_path, int(line), int(column), lo, hi, len);
}
dynamic_array_expr_error_loc :: inline proc "contextless" (using loc := #caller_location, low, high, max: int) {
dynamic_array_expr_error(file_path, int(line), int(column), low, high, max);
}
make_slice_error_loc :: inline proc "contextless" (loc := #caller_location, len: int) {
if 0 <= len do return;
handle_error :: proc "contextless" (loc: Source_Code_Location, len: int) {
context = default_context();
fd := os.stderr;
print_caller_location(fd, loc);
os.write_string(fd, " Invalid slice length for make: ");
print_i64(fd, i64(len));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(loc, len);
}
make_dynamic_array_error_loc :: inline proc "contextless" (using loc := #caller_location, len, cap: int) {
if 0 <= len && len <= cap do return;
handle_error :: proc "contextless" (loc: Source_Code_Location, len, cap: int) {
context = default_context();
fd := os.stderr;
print_caller_location(fd, loc);
os.write_string(fd, " Invalid dynamic array parameters for make: ");
print_i64(fd, i64(len));
os.write_byte(fd, ':');
print_i64(fd, i64(cap));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(loc, len, cap);
}
make_map_expr_error_loc :: inline proc "contextless" (loc := #caller_location, cap: int) {
if 0 <= cap do return;
handle_error :: proc "contextless" (loc: Source_Code_Location, cap: int) {
context = default_context();
fd := os.stderr;
print_caller_location(fd, loc);
os.write_string(fd, " Invalid map capacity for make: ");
print_i64(fd, i64(cap));
os.write_byte(fd, '\n');
debug_trap();
}
handle_error(loc, cap);
}
@(default_calling_convention = "c")
foreign {
@(link_name="llvm.sqrt.f32") _sqrt_f32 :: proc(x: f32) -> f32 ---
@(link_name="llvm.sqrt.f64") _sqrt_f64 :: proc(x: f64) -> f64 ---
}
abs_f32 :: inline proc "contextless" (x: f32) -> f32 {
foreign {
@(link_name="llvm.fabs.f32") _abs :: proc "c" (x: f32) -> f32 ---
}
return _abs(x);
}
abs_f64 :: inline proc "contextless" (x: f64) -> f64 {
foreign {
@(link_name="llvm.fabs.f64") _abs :: proc "c" (x: f64) -> f64 ---
}
return _abs(x);
}
min_f32 :: proc(a, b: f32) -> f32 {
foreign {
@(link_name="llvm.minnum.f32") _min :: proc "c" (a, b: f32) -> f32 ---
}
return _min(a, b);
}
min_f64 :: proc(a, b: f64) -> f64 {
foreign {
@(link_name="llvm.minnum.f64") _min :: proc "c" (a, b: f64) -> f64 ---
}
return _min(a, b);
}
max_f32 :: proc(a, b: f32) -> f32 {
foreign {
@(link_name="llvm.maxnum.f32") _max :: proc "c" (a, b: f32) -> f32 ---
}
return _max(a, b);
}
max_f64 :: proc(a, b: f64) -> f64 {
foreign {
@(link_name="llvm.maxnum.f64") _max :: proc "c" (a, b: f64) -> f64 ---
}
return _max(a, b);
}
abs_complex64 :: inline proc "contextless" (x: complex64) -> f32 {
r, i := real(x), imag(x);
return _sqrt_f32(r*r + i*i);
}
abs_complex128 :: inline proc "contextless" (x: complex128) -> f64 {
r, i := real(x), imag(x);
return _sqrt_f64(r*r + i*i);
}
abs_quaternion128 :: inline proc "contextless" (x: quaternion128) -> f32 {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
return _sqrt_f32(r*r + i*i + j*j + k*k);
}
abs_quaternion256 :: inline proc "contextless" (x: quaternion256) -> f64 {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x);
return _sqrt_f64(r*r + i*i + j*j + k*k);
}
quo_complex64 :: proc "contextless" (n, m: complex64) -> complex64 {
e, f: f32;
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m);
denom := real(m) + ratio*imag(m);
e = (real(n) + imag(n)*ratio) / denom;
f = (imag(n) - real(n)*ratio) / denom;
} else {
ratio := real(m) / imag(m);
denom := imag(m) + ratio*real(m);
e = (real(n)*ratio + imag(n)) / denom;
f = (imag(n)*ratio - real(n)) / denom;
}
return complex(e, f);
}
quo_complex128 :: proc "contextless" (n, m: complex128) -> complex128 {
e, f: f64;
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m);
denom := real(m) + ratio*imag(m);
e = (real(n) + imag(n)*ratio) / denom;
f = (imag(n) - real(n)*ratio) / denom;
} else {
ratio := real(m) / imag(m);
denom := imag(m) + ratio*real(m);
e = (real(n)*ratio + imag(n)) / denom;
f = (imag(n)*ratio - real(n)) / denom;
}
return complex(e, f);
}
mul_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3;
t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2;
t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1;
t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0;
return quaternion(t0, t1, t2, t3);
}
mul_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3;
t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2;
t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1;
t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0;
return quaternion(t0, t1, t2, t3);
}
quo_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3);
t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2;
t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2;
t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2;
t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2;
return quaternion(t0, t1, t2, t3);
}
quo_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q);
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r);
invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3);
t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2;
t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2;
t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2;
t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2;
return quaternion(t0, t1, t2, t3);
}