mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-28 17:04:34 +00:00
6555 lines
174 KiB
C++
6555 lines
174 KiB
C++
enum CallArgumentError {
|
|
CallArgumentError_None,
|
|
CallArgumentError_NoneProcedureType,
|
|
CallArgumentError_WrongTypes,
|
|
CallArgumentError_NonVariadicExpand,
|
|
CallArgumentError_VariadicTuple,
|
|
CallArgumentError_MultipleVariadicExpand,
|
|
CallArgumentError_ArgumentCount,
|
|
CallArgumentError_TooFewArguments,
|
|
CallArgumentError_TooManyArguments,
|
|
CallArgumentError_InvalidFieldValue,
|
|
CallArgumentError_ParameterNotFound,
|
|
CallArgumentError_ParameterMissing,
|
|
CallArgumentError_DuplicateParameter,
|
|
CallArgumentError_NoneConstantParameter,
|
|
};
|
|
|
|
enum CallArgumentErrorMode {
|
|
CallArgumentMode_NoErrors,
|
|
CallArgumentMode_ShowErrors,
|
|
};
|
|
|
|
struct CallArgumentData {
|
|
Entity *gen_entity;
|
|
i64 score;
|
|
Type * result_type;
|
|
};
|
|
|
|
struct PolyProcData {
|
|
Entity * gen_entity;
|
|
ProcedureInfo proc_info;
|
|
};
|
|
|
|
struct ValidIndexAndScore {
|
|
isize index;
|
|
i64 score;
|
|
};
|
|
|
|
int valid_index_and_score_cmp(void const *a, void const *b) {
|
|
i64 si = (cast(ValidIndexAndScore const *)a)->score;
|
|
i64 sj = (cast(ValidIndexAndScore const *)b)->score;
|
|
return sj < si ? -1 : sj > si;
|
|
}
|
|
|
|
|
|
|
|
|
|
#define CALL_ARGUMENT_CHECKER(name) CallArgumentError name(Checker *c, AstNode *call, Type *proc_type, Entity *entity, Array<Operand> operands, CallArgumentErrorMode show_error_mode, CallArgumentData *data)
|
|
typedef CALL_ARGUMENT_CHECKER(CallArgumentCheckerType);
|
|
|
|
|
|
|
|
void check_expr (Checker *c, Operand *operand, AstNode *expression);
|
|
void check_multi_expr (Checker *c, Operand *operand, AstNode *expression);
|
|
void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression, Type *type_hint = nullptr);
|
|
ExprKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint);
|
|
void check_expr_with_type_hint (Checker *c, Operand *o, AstNode *e, Type *t);
|
|
Type * check_type (Checker *c, AstNode *expression);
|
|
Type * check_type_expr (Checker *c, AstNode *expression, Type *named_type);
|
|
Type * make_optional_ok_type (Type *value);
|
|
void check_type_decl (Checker *c, Entity *e, AstNode *type_expr, Type *def);
|
|
Entity * check_selector (Checker *c, Operand *operand, AstNode *node, Type *type_hint);
|
|
Entity * check_ident (Checker *c, Operand *o, AstNode *n, Type *named_type, Type *type_hint, bool allow_import_name);
|
|
Entity * find_polymorphic_struct_entity (Checker *c, Type *original_type, isize param_count, Array<Operand> ordered_operands);
|
|
void check_not_tuple (Checker *c, Operand *operand);
|
|
void convert_to_typed (Checker *c, Operand *operand, Type *target_type);
|
|
gbString expr_to_string (AstNode *expression);
|
|
void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type);
|
|
void check_const_decl (Checker *c, Entity *e, AstNode *type_expr, AstNode *init_expr, Type *named_type);
|
|
void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body);
|
|
void update_expr_type (Checker *c, AstNode *e, Type *type, bool final);
|
|
bool check_is_terminating (AstNode *node);
|
|
bool check_has_break (AstNode *stmt, bool implicit);
|
|
void check_stmt (Checker *c, AstNode *node, u32 flags);
|
|
void check_stmt_list (Checker *c, Array<AstNode *> stmts, u32 flags);
|
|
void check_init_constant (Checker *c, Entity *e, Operand *operand);
|
|
bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value);
|
|
bool check_procedure_type (Checker *c, Type *type, AstNode *proc_type_node, Array<Operand> *operands = nullptr);
|
|
void check_struct_type (Checker *c, Type *struct_type, AstNode *node, Array<Operand> *poly_operands,
|
|
Type *named_type = nullptr, Type *original_type_for_poly = nullptr);
|
|
CallArgumentData check_call_arguments (Checker *c, Operand *operand, Type *proc_type, AstNode *call);
|
|
Type * check_init_variable (Checker *c, Entity *e, Operand *operand, String context_name);
|
|
|
|
|
|
|
|
void error_operand_not_expression(Operand *o) {
|
|
if (o->mode == Addressing_Type) {
|
|
gbString err = expr_to_string(o->expr);
|
|
error(o->expr, "'%s' is not an expression but a type", err);
|
|
gb_string_free(err);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
}
|
|
|
|
void error_operand_no_value(Operand *o) {
|
|
if (o->mode == Addressing_NoValue) {
|
|
gbString err = expr_to_string(o->expr);
|
|
AstNode *x = unparen_expr(o->expr);
|
|
if (x->kind == AstNode_CallExpr) {
|
|
error(o->expr, "'%s' call does not return a value and cannot be used as a value", err);
|
|
} else {
|
|
error(o->expr, "'%s' used as a value", err);
|
|
}
|
|
gb_string_free(err);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
}
|
|
|
|
|
|
void check_scope_decls(Checker *c, Array<AstNode *> nodes, isize reserve_size) {
|
|
Scope *s = c->context.scope;
|
|
GB_ASSERT(s->file == nullptr);
|
|
|
|
check_collect_entities(c, nodes);
|
|
|
|
for_array(i, s->elements.entries) {
|
|
Entity *e = s->elements.entries[i].value;
|
|
switch (e->kind) {
|
|
case Entity_Constant:
|
|
case Entity_TypeName:
|
|
case Entity_Procedure:
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
DeclInfo *d = decl_info_of_entity(&c->info, e);
|
|
if (d != nullptr) {
|
|
check_entity_decl(c, e, d, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool check_is_assignable_to_using_subtype(Type *src, Type *dst) {
|
|
bool src_is_ptr = false;
|
|
Type *prev_src = src;
|
|
src = type_deref(src);
|
|
src_is_ptr = src != prev_src;
|
|
src = base_type(src);
|
|
|
|
if (!is_type_struct(src)) {
|
|
return false;
|
|
}
|
|
|
|
for_array(i, src->Struct.fields) {
|
|
Entity *f = src->Struct.fields[i];
|
|
if (f->kind != Entity_Variable || (f->flags&EntityFlag_Using) == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (are_types_identical(f->type, dst)) {
|
|
return true;
|
|
}
|
|
if (src_is_ptr && is_type_pointer(dst)) {
|
|
if (are_types_identical(f->type, type_deref(dst))) {
|
|
return true;
|
|
}
|
|
}
|
|
bool ok = check_is_assignable_to_using_subtype(f->type, dst);
|
|
if (ok) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool find_or_generate_polymorphic_procedure(Checker *c, Entity *base_entity, Type *type,
|
|
Array<Operand> *param_operands, PolyProcData *poly_proc_data) {
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// //
|
|
// TODO CLEANUP(bill): This procedure is very messy and hacky. Clean this!!! //
|
|
// //
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
if (base_entity == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
if (!is_type_proc(base_entity->type)) {
|
|
return false;
|
|
}
|
|
String name = base_entity->token.string;
|
|
|
|
Type *src = base_type(base_entity->type);
|
|
Type *dst = nullptr;
|
|
if (type != nullptr) dst = base_type(type);
|
|
|
|
if (param_operands == nullptr) {
|
|
GB_ASSERT(dst != nullptr);
|
|
}
|
|
if (param_operands != nullptr) {
|
|
GB_ASSERT(dst == nullptr);
|
|
}
|
|
|
|
|
|
if (!src->Proc.is_polymorphic || src->Proc.is_poly_specialized) {
|
|
return false;
|
|
}
|
|
|
|
if (dst != nullptr) {
|
|
if (dst->Proc.is_polymorphic) {
|
|
return false;
|
|
}
|
|
|
|
if (dst->Proc.param_count != src->Proc.param_count ||
|
|
dst->Proc.result_count != src->Proc.result_count) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
DeclInfo *old_decl = decl_info_of_entity(&c->info, base_entity);
|
|
if (old_decl == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
gbAllocator a = heap_allocator();
|
|
|
|
Array<Operand> operands = {};
|
|
if (param_operands) {
|
|
operands = *param_operands;
|
|
} else {
|
|
operands = array_make<Operand>(a, 0, dst->Proc.param_count);
|
|
for (isize i = 0; i < dst->Proc.param_count; i++) {
|
|
Entity *param = dst->Proc.params->Tuple.variables[i];
|
|
Operand o = {Addressing_Value};
|
|
o.type = param->type;
|
|
array_add(&operands, o);
|
|
}
|
|
}
|
|
|
|
defer (if (param_operands == nullptr) {
|
|
array_free(&operands);
|
|
});
|
|
|
|
|
|
|
|
CheckerContext prev_context = c->context;
|
|
defer (c->context = prev_context);
|
|
|
|
Scope *scope = create_scope(base_entity->scope, a);
|
|
scope->is_proc = true;
|
|
c->context.scope = scope;
|
|
c->context.allow_polymorphic_types = true;
|
|
if (c->context.polymorphic_scope == nullptr) {
|
|
c->context.polymorphic_scope = scope;
|
|
}
|
|
if (param_operands == nullptr) {
|
|
// c->context.no_polymorphic_errors = false;
|
|
}
|
|
|
|
|
|
bool generate_type_again = c->context.no_polymorphic_errors;
|
|
|
|
auto *pt = &src->Proc;
|
|
|
|
// NOTE(bill): This is slightly memory leaking if the type already exists
|
|
// Maybe it's better to check with the previous types first?
|
|
Type *final_proc_type = alloc_type_proc(scope, nullptr, 0, nullptr, 0, false, pt->calling_convention);
|
|
bool success = check_procedure_type(c, final_proc_type, pt->node, &operands);
|
|
|
|
if (!success) {
|
|
return false;
|
|
}
|
|
|
|
|
|
gb_mutex_lock(&c->mutex);
|
|
defer (gb_mutex_unlock(&c->mutex));
|
|
|
|
auto *found_gen_procs = map_get(&c->info.gen_procs, hash_pointer(base_entity->identifier));
|
|
if (found_gen_procs) {
|
|
auto procs = *found_gen_procs;
|
|
for_array(i, procs) {
|
|
Entity *other = procs[i];
|
|
Type *pt = base_type(other->type);
|
|
if (are_types_identical(pt, final_proc_type)) {
|
|
if (poly_proc_data) {
|
|
poly_proc_data->gen_entity = other;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (generate_type_again) {
|
|
// LEAK TODO(bill): This is technically a memory leak as it has to generate the type twice
|
|
bool prev_no_polymorphic_errors = c->context.no_polymorphic_errors;
|
|
defer (c->context.no_polymorphic_errors = prev_no_polymorphic_errors);
|
|
c->context.no_polymorphic_errors = false;
|
|
|
|
// NOTE(bill): Reset scope from the failed procedure type
|
|
scope_reset(scope);
|
|
|
|
success = check_procedure_type(c, final_proc_type, pt->node, &operands);
|
|
|
|
if (!success) {
|
|
return false;
|
|
}
|
|
|
|
|
|
if (found_gen_procs) {
|
|
auto procs = *found_gen_procs;
|
|
for_array(i, procs) {
|
|
Entity *other = procs[i];
|
|
Type *pt = base_type(other->type);
|
|
if (are_types_identical(pt, final_proc_type)) {
|
|
if (poly_proc_data) {
|
|
poly_proc_data->gen_entity = other;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
AstNode *proc_lit = clone_ast_node(a, old_decl->proc_lit);
|
|
ast_node(pl, ProcLit, proc_lit);
|
|
// NOTE(bill): Associate the scope declared above withinth this procedure declaration's type
|
|
add_scope(c, pl->type, final_proc_type->Proc.scope);
|
|
final_proc_type->Proc.is_poly_specialized = true;
|
|
final_proc_type->Proc.is_polymorphic = true;
|
|
|
|
u64 tags = base_entity->Procedure.tags;
|
|
AstNode *ident = clone_ast_node(a, base_entity->identifier);
|
|
Token token = ident->Ident.token;
|
|
DeclInfo *d = make_declaration_info(c->allocator, scope, old_decl->parent);
|
|
d->gen_proc_type = final_proc_type;
|
|
d->type_expr = pl->type;
|
|
d->proc_lit = proc_lit;
|
|
|
|
|
|
Entity *entity = alloc_entity_procedure(nullptr, token, final_proc_type, tags);
|
|
entity->identifier = ident;
|
|
|
|
add_entity_and_decl_info(c, ident, entity, d);
|
|
// NOTE(bill): Set the scope afterwards as this is not real overloading
|
|
entity->scope = scope->parent;
|
|
|
|
AstFile *file = nullptr;
|
|
{
|
|
Scope *s = entity->scope;
|
|
while (s != nullptr && s->file == nullptr) {
|
|
s = s->parent;
|
|
}
|
|
file = s->file;
|
|
}
|
|
|
|
ProcedureInfo proc_info = {};
|
|
proc_info.file = file;
|
|
proc_info.token = token;
|
|
proc_info.decl = d;
|
|
proc_info.type = final_proc_type;
|
|
proc_info.body = pl->body;
|
|
proc_info.tags = tags;
|
|
proc_info.generated_from_polymorphic = true;
|
|
|
|
if (found_gen_procs) {
|
|
array_add(found_gen_procs, entity);
|
|
} else {
|
|
auto array = array_make<Entity *>(heap_allocator());
|
|
array_add(&array, entity);
|
|
map_set(&c->info.gen_procs, hash_pointer(base_entity->identifier), array);
|
|
}
|
|
|
|
GB_ASSERT(entity != nullptr);
|
|
|
|
if (poly_proc_data) {
|
|
poly_proc_data->gen_entity = entity;
|
|
poly_proc_data->proc_info = proc_info;
|
|
}
|
|
|
|
// NOTE(bill): Check the newly generated procedure body
|
|
check_procedure_later(c, proc_info);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool check_polymorphic_procedure_assignment(Checker *c, Operand *operand, Type *type, PolyProcData *poly_proc_data) {
|
|
if (operand->expr == nullptr) return false;
|
|
Entity *base_entity = entity_of_ident(&c->info, operand->expr);
|
|
if (base_entity == nullptr) return false;
|
|
return find_or_generate_polymorphic_procedure(c, base_entity, type, nullptr, poly_proc_data);
|
|
}
|
|
|
|
bool find_or_generate_polymorphic_procedure_from_parameters(Checker *c, Entity *base_entity, Array<Operand> *operands, PolyProcData *poly_proc_data) {
|
|
return find_or_generate_polymorphic_procedure(c, base_entity, nullptr, operands, poly_proc_data);
|
|
}
|
|
|
|
bool check_type_specialization_to(Checker *c, Type *specialization, Type *type, bool compound, bool modify_type);
|
|
bool is_polymorphic_type_assignable(Checker *c, Type *poly, Type *source, bool compound, bool modify_type);
|
|
bool check_cast_internal(Checker *c, Operand *x, Type *type);
|
|
|
|
i64 check_distance_between_types(Checker *c, Operand *operand, Type *type) {
|
|
if (operand->mode == Addressing_Invalid ||
|
|
type == t_invalid) {
|
|
return -1;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Builtin) {
|
|
return -1;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Type) {
|
|
return -1;
|
|
}
|
|
|
|
Type *s = operand->type;
|
|
|
|
if (are_types_identical(s, type)) {
|
|
return 0;
|
|
}
|
|
|
|
Type *src = base_type(s);
|
|
Type *dst = base_type(type);
|
|
|
|
if (is_type_untyped_undef(src)) {
|
|
if (type_has_undef(dst)) {
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (is_type_untyped_nil(src)) {
|
|
if (type_has_nil(dst)) {
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
if (is_type_untyped(src)) {
|
|
if (is_type_any(dst)) {
|
|
// NOTE(bill): Anything can cast to 'Any'
|
|
add_type_info_type(c, s);
|
|
return 10;
|
|
}
|
|
if (dst->kind == Type_Basic) {
|
|
if (operand->mode == Addressing_Constant) {
|
|
if (check_representable_as_constant(c, operand->value, dst, nullptr)) {
|
|
if (is_type_typed(dst) && src->kind == Type_Basic) {
|
|
switch (src->Basic.kind) {
|
|
case Basic_UntypedRune:
|
|
if (is_type_integer(dst) || is_type_rune(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedInteger:
|
|
if (is_type_integer(dst) || is_type_rune(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedFloat:
|
|
if (is_type_float(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedComplex:
|
|
if (is_type_complex(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return 2;
|
|
}
|
|
return -1;
|
|
}
|
|
if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedRune) {
|
|
if (is_type_integer(dst) || is_type_rune(dst)) {
|
|
if (is_type_typed(type)) {
|
|
return 2;
|
|
}
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedBool) {
|
|
if (is_type_boolean(dst)) {
|
|
if (is_type_typed(type)) {
|
|
return 2;
|
|
}
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
if (are_types_identical(dst, src) && (!is_type_named(dst) || !is_type_named(src))) {
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
if (is_type_bit_field_value(operand->type) && is_type_integer(type)) {
|
|
Type *bfv = base_type(operand->type);
|
|
i32 bits = bfv->BitFieldValue.bits;
|
|
i32 size = next_pow2((bits+7)/8);
|
|
i32 dst_size = cast(i32)type_size_of(type);
|
|
i32 diff = gb_abs(dst_size - size);
|
|
// TODO(bill): figure out a decent rule here
|
|
return 1;
|
|
}
|
|
|
|
|
|
if (check_is_assignable_to_using_subtype(operand->type, type)) {
|
|
return 4;
|
|
}
|
|
|
|
// ^T <- rawptr
|
|
#if 0
|
|
// TODO(bill): Should C-style (not C++) pointer cast be allowed?
|
|
if (is_type_pointer(dst) && is_type_rawptr(src)) {
|
|
return true;
|
|
}
|
|
#endif
|
|
#if 1
|
|
|
|
|
|
// TODO(bill): Should I allow this implicit conversion at all?!
|
|
// rawptr <- ^T
|
|
if (are_types_identical(type, t_rawptr) && is_type_pointer(src)) {
|
|
return 5;
|
|
}
|
|
#endif
|
|
|
|
if (is_type_polymorphic(dst) && !is_type_polymorphic(src)) {
|
|
bool modify_type = !c->context.no_polymorphic_errors;
|
|
if (is_polymorphic_type_assignable(c, type, s, false, modify_type)) {
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
if (is_type_union(dst)) {
|
|
for_array(i, dst->Union.variants) {
|
|
Type *vt = dst->Union.variants[i];
|
|
if (are_types_identical(vt, s)) {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_type_proc(dst)) {
|
|
if (are_types_identical(src, dst)) {
|
|
return 3;
|
|
}
|
|
PolyProcData poly_proc_data = {};
|
|
if (check_polymorphic_procedure_assignment(c, operand, type, &poly_proc_data)) {
|
|
add_entity_use(c, operand->expr, poly_proc_data.gen_entity);
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
if (is_type_array(dst)) {
|
|
Type *elem = base_array_type(dst);
|
|
i64 distance = check_distance_between_types(c, operand, elem);
|
|
if (distance >= 0) {
|
|
return distance + 6;
|
|
}
|
|
}
|
|
|
|
if (is_type_any(dst)) {
|
|
if (!is_type_polymorphic(src)) {
|
|
// NOTE(bill): Anything can cast to 'Any'
|
|
add_type_info_type(c, s);
|
|
return 10;
|
|
}
|
|
}
|
|
|
|
AstNode *expr = unparen_expr(operand->expr);
|
|
if (expr != nullptr && expr->kind == AstNode_AutoCast) {
|
|
Operand x = *operand;
|
|
x.expr = expr->AutoCast.expr;
|
|
bool ok = check_cast_internal(c, &x, type);
|
|
if (ok) {
|
|
return 10;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
i64 assign_score_function(i64 distance) {
|
|
// TODO(bill): A decent score function
|
|
return gb_max(1000000 - distance*distance, 0);
|
|
}
|
|
|
|
|
|
bool check_is_assignable_to_with_score(Checker *c, Operand *operand, Type *type, i64 *score_) {
|
|
i64 score = 0;
|
|
i64 distance = check_distance_between_types(c, operand, type);
|
|
bool ok = distance >= 0;
|
|
if (ok) {
|
|
score = assign_score_function(distance);
|
|
}
|
|
if (score_) *score_ = score;
|
|
return ok;
|
|
}
|
|
|
|
|
|
bool check_is_assignable_to(Checker *c, Operand *operand, Type *type) {
|
|
i64 score = 0;
|
|
return check_is_assignable_to_with_score(c, operand, type, &score);
|
|
}
|
|
|
|
|
|
// NOTE(bill): 'content_name' is for debugging and error messages
|
|
void check_assignment(Checker *c, Operand *operand, Type *type, String context_name) {
|
|
check_not_tuple(c, operand);
|
|
if (operand->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
|
|
#if 0
|
|
if (operand->mode == Addressing_Type) {
|
|
Type *t = base_type(type);
|
|
if (t->kind == Type_Pointer &&
|
|
t->Pointer.elem == t_type_info) {
|
|
add_type_info_type(c, type);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (is_type_untyped(operand->type)) {
|
|
Type *target_type = type;
|
|
if (type == nullptr || is_type_any(type)) {
|
|
if (type == nullptr && is_type_untyped_nil(operand->type)) {
|
|
error(operand->expr, "Use of untyped nil in %.*s", LIT(context_name));
|
|
operand->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
if (type == nullptr && is_type_untyped_undef(operand->type)) {
|
|
error(operand->expr, "Use of --- in %.*s", LIT(context_name));
|
|
operand->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
target_type = default_type(operand->type);
|
|
if (type != nullptr && !is_type_any(type)) {
|
|
GB_ASSERT_MSG(is_type_typed(target_type), "%s", type_to_string(type));
|
|
}
|
|
add_type_info_type(c, type);
|
|
add_type_info_type(c, target_type);
|
|
}
|
|
|
|
convert_to_typed(c, operand, target_type);
|
|
if (operand->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
if (type == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (operand->mode == Addressing_ProcGroup) {
|
|
// GB_PANIC("HERE!\n");
|
|
|
|
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
|
|
defer (gb_temp_arena_memory_end(tmp));
|
|
|
|
Array<Entity *> procs = proc_group_entities(c, *operand);
|
|
bool good = false;
|
|
// NOTE(bill): These should be done
|
|
for_array(i, procs) {
|
|
Type *t = base_type(procs[i]->type);
|
|
if (t == t_invalid) {
|
|
continue;
|
|
}
|
|
Operand x = {};
|
|
x.mode = Addressing_Value;
|
|
x.type = t;
|
|
if (check_is_assignable_to(c, &x, type)) {
|
|
Entity *e = procs[i];
|
|
add_entity_use(c, operand->expr, e);
|
|
good = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!good) {
|
|
gbString expr_str = expr_to_string(operand->expr);
|
|
gbString op_type_str = type_to_string(operand->type);
|
|
gbString type_str = type_to_string(type);
|
|
|
|
defer (gb_string_free(type_str));
|
|
defer (gb_string_free(op_type_str));
|
|
defer (gb_string_free(expr_str));
|
|
|
|
// TODO(bill): is this a good enough error message?
|
|
error(operand->expr,
|
|
"Cannot assign overloaded procedure '%s' to '%s' in %.*s",
|
|
expr_str,
|
|
op_type_str,
|
|
LIT(context_name));
|
|
operand->mode = Addressing_Invalid;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!check_is_assignable_to(c, operand, type)) {
|
|
gbString expr_str = expr_to_string(operand->expr);
|
|
gbString op_type_str = type_to_string(operand->type);
|
|
gbString type_str = type_to_string(type);
|
|
|
|
defer (gb_string_free(type_str));
|
|
defer (gb_string_free(op_type_str));
|
|
defer (gb_string_free(expr_str));
|
|
|
|
switch (operand->mode) {
|
|
case Addressing_Builtin:
|
|
// TODO(bill): Actually allow built in procedures to be passed around and thus be created on use
|
|
error(operand->expr,
|
|
"Cannot assign built-in procedure '%s' in %.*s",
|
|
expr_str,
|
|
LIT(context_name));
|
|
break;
|
|
case Addressing_Type:
|
|
error(operand->expr,
|
|
"Cannot assign '%s' which is a type in %.*s",
|
|
op_type_str,
|
|
LIT(context_name));
|
|
break;
|
|
default:
|
|
// TODO(bill): is this a good enough error message?
|
|
error(operand->expr,
|
|
"Cannot assign value '%s' of type '%s' to '%s' in %.*s",
|
|
expr_str,
|
|
op_type_str,
|
|
type_str,
|
|
LIT(context_name));
|
|
break;
|
|
}
|
|
operand->mode = Addressing_Invalid;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool is_polymorphic_type_assignable(Checker *c, Type *poly, Type *source, bool compound, bool modify_type) {
|
|
Operand o = {Addressing_Value};
|
|
o.type = source;
|
|
switch (poly->kind) {
|
|
case Type_Basic:
|
|
if (compound) return are_types_identical(poly, source);
|
|
return check_is_assignable_to(c, &o, poly);
|
|
|
|
case Type_Named: {
|
|
if (check_type_specialization_to(c, poly, source, compound, modify_type)) {
|
|
return true;
|
|
}
|
|
if (compound || !is_type_generic(poly)) {
|
|
return are_types_identical(poly, source);
|
|
}
|
|
return check_is_assignable_to(c, &o, poly);
|
|
}
|
|
|
|
case Type_Generic: {
|
|
if (poly->Generic.specialized != nullptr) {
|
|
Type *s = poly->Generic.specialized;
|
|
if (!check_type_specialization_to(c, s, source, compound, modify_type)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (modify_type) {
|
|
Type *ds = default_type(source);
|
|
gb_memmove(poly, ds, gb_size_of(Type));
|
|
}
|
|
return true;
|
|
}
|
|
case Type_Pointer:
|
|
if (source->kind == Type_Pointer) {
|
|
return is_polymorphic_type_assignable(c, poly->Pointer.elem, source->Pointer.elem, true, modify_type);
|
|
}
|
|
return false;
|
|
case Type_Array:
|
|
if (source->kind == Type_Array) {
|
|
|
|
// IMPORTANT TODO(bill): Which is correct?
|
|
// if (poly->Array.generic_count != nullptr && modify_type) {
|
|
if (poly->Array.generic_count != nullptr) {
|
|
Type *gt = poly->Array.generic_count;
|
|
GB_ASSERT(gt->kind == Type_Generic);
|
|
Entity *e = scope_lookup_entity(gt->Generic.scope, gt->Generic.name);
|
|
GB_ASSERT(e != nullptr);
|
|
if (e->kind == Entity_TypeName) {
|
|
poly->Array.generic_count = nullptr;
|
|
poly->Array.count = source->Array.count;
|
|
|
|
e->kind = Entity_Constant;
|
|
e->Constant.value = exact_value_i64(source->Array.count);
|
|
e->type = t_untyped_integer;
|
|
} else if (e->kind == Entity_Constant) {
|
|
poly->Array.generic_count = nullptr;
|
|
if (e->Constant.value.kind != ExactValue_Integer) {
|
|
return false;
|
|
}
|
|
i64 count = e->Constant.value.value_integer;
|
|
if (count != source->Array.count) {
|
|
return false;
|
|
}
|
|
poly->Array.count = source->Array.count;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
if (poly->Array.count == source->Array.count) {
|
|
return is_polymorphic_type_assignable(c, poly->Array.elem, source->Array.elem, true, modify_type);
|
|
}
|
|
}
|
|
return false;
|
|
case Type_DynamicArray:
|
|
if (source->kind == Type_DynamicArray) {
|
|
return is_polymorphic_type_assignable(c, poly->DynamicArray.elem, source->DynamicArray.elem, true, modify_type);
|
|
}
|
|
return false;
|
|
case Type_Slice:
|
|
if (source->kind == Type_Slice) {
|
|
return is_polymorphic_type_assignable(c, poly->Slice.elem, source->Slice.elem, true, modify_type);
|
|
}
|
|
return false;
|
|
|
|
case Type_Enum:
|
|
return false;
|
|
|
|
case Type_Union:
|
|
if (source->kind == Type_Union) {
|
|
TypeUnion *x = &poly->Union;
|
|
TypeUnion *y = &source->Union;
|
|
if (x->variants.count != y->variants.count) {
|
|
return false;
|
|
}
|
|
for_array(i, x->variants) {
|
|
Type *a = x->variants[i];
|
|
Type *b = y->variants[i];
|
|
bool ok = is_polymorphic_type_assignable(c, a, b, false, modify_type);
|
|
if (!ok) return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
case Type_Struct:
|
|
if (source->kind == Type_Struct) {
|
|
// return check_is_assignable_to(c, &o, poly);
|
|
}
|
|
return false;
|
|
case Type_Tuple:
|
|
GB_PANIC("This should never happen");
|
|
return false;
|
|
case Type_Proc:
|
|
if (source->kind == Type_Proc) {
|
|
// return check_is_assignable_to(c, &o, poly);
|
|
// TODO(bill): Polymorphic type assignment
|
|
#if 1
|
|
TypeProc *x = &poly->Proc;
|
|
TypeProc *y = &source->Proc;
|
|
if (x->calling_convention != y->calling_convention) {
|
|
return false;
|
|
}
|
|
if (x->c_vararg != y->c_vararg) {
|
|
return false;
|
|
}
|
|
if (x->variadic != y->variadic) {
|
|
return false;
|
|
}
|
|
if (x->param_count != y->param_count) {
|
|
return false;
|
|
}
|
|
if (x->result_count != y->result_count) {
|
|
return false;
|
|
}
|
|
for (isize i = 0; i < x->param_count; i++) {
|
|
Entity *a = x->params->Tuple.variables[i];
|
|
Entity *b = y->params->Tuple.variables[i];
|
|
bool ok = is_polymorphic_type_assignable(c, a->type, b->type, false, modify_type);
|
|
if (!ok) return false;
|
|
}
|
|
for (isize i = 0; i < x->result_count; i++) {
|
|
Entity *a = x->results->Tuple.variables[i];
|
|
Entity *b = y->results->Tuple.variables[i];
|
|
bool ok = is_polymorphic_type_assignable(c, a->type, b->type, false, modify_type);
|
|
if (!ok) return false;
|
|
}
|
|
// TODO(bill): Polymorphic type assignment
|
|
return true;
|
|
#endif
|
|
}
|
|
return false;
|
|
case Type_Map:
|
|
if (source->kind == Type_Map) {
|
|
bool key = is_polymorphic_type_assignable(c, poly->Map.key, source->Map.key, true, modify_type);
|
|
bool value = is_polymorphic_type_assignable(c, poly->Map.value, source->Map.value, true, modify_type);
|
|
return key || value;
|
|
}
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool check_cycle(Checker *c, Entity *curr, bool report) {
|
|
if (curr->state != EntityState_InProgress) {
|
|
return false;
|
|
}
|
|
for_array(i, *c->context.type_path) {
|
|
Entity *prev = (*c->context.type_path)[i];
|
|
if (prev == curr) {
|
|
if (report) {
|
|
error(curr->token, "Illegal declaration cycle of `%.*s`", LIT(curr->token.string));
|
|
for (isize j = i; j < c->context.type_path->count; j++) {
|
|
Entity *curr = (*c->context.type_path)[j];
|
|
error(curr->token, "\t%.*s refers to", LIT(curr->token.string));
|
|
}
|
|
error(curr->token, "\t%.*s", LIT(curr->token.string));
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
Entity *check_ident(Checker *c, Operand *o, AstNode *n, Type *named_type, Type *type_hint, bool allow_import_name) {
|
|
GB_ASSERT(n->kind == AstNode_Ident);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = n;
|
|
String name = n->Ident.token.string;
|
|
|
|
Entity *e = scope_lookup_entity(c->context.scope, name);
|
|
if (e == nullptr) {
|
|
if (is_blank_ident(name)) {
|
|
error(n, "'_' cannot be used as a value type");
|
|
} else {
|
|
error(n, "Undeclared name: %.*s", LIT(name));
|
|
}
|
|
o->type = t_invalid;
|
|
o->mode = Addressing_Invalid;
|
|
if (named_type != nullptr) {
|
|
set_base_type(named_type, t_invalid);
|
|
}
|
|
return nullptr;
|
|
}
|
|
if (e->parent_proc_decl != nullptr &&
|
|
e->parent_proc_decl != c->context.curr_proc_decl) {
|
|
if (e->kind == Entity_Variable) {
|
|
error(n, "Nested procedures do not capture its parent's variables: %.*s", LIT(name));
|
|
return nullptr;
|
|
} else if (e->kind == Entity_Label) {
|
|
error(n, "Nested procedures do not capture its parent's labels: %.*s", LIT(name));
|
|
return nullptr;
|
|
}
|
|
}
|
|
bool is_alias = false;
|
|
while (e->kind == Entity_Alias) {
|
|
GB_ASSERT(e->Alias.base != nullptr);
|
|
e = e->Alias.base;
|
|
is_alias = true;
|
|
}
|
|
|
|
HashKey key = hash_string(e->token.string);
|
|
|
|
if (e->kind == Entity_ProcGroup) {
|
|
auto *pge = &e->ProcGroup;
|
|
|
|
DeclInfo *d = decl_info_of_entity(&c->info, e);
|
|
check_entity_decl(c, e, d, nullptr);
|
|
|
|
|
|
Array<Entity *> procs = pge->entities;
|
|
bool skip = false;
|
|
|
|
if (type_hint != nullptr) {
|
|
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
|
|
defer (gb_temp_arena_memory_end(tmp));
|
|
|
|
// NOTE(bill): These should be done
|
|
for_array(i, procs) {
|
|
Type *t = base_type(procs[i]->type);
|
|
if (t == t_invalid) {
|
|
continue;
|
|
}
|
|
Operand x = {};
|
|
x.mode = Addressing_Value;
|
|
x.type = t;
|
|
if (check_is_assignable_to(c, &x, type_hint)) {
|
|
e = procs[i];
|
|
add_entity_use(c, n, e);
|
|
skip = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!skip) {
|
|
o->mode = Addressing_ProcGroup;
|
|
o->type = t_invalid;
|
|
o->proc_group = e;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
add_entity_use(c, n, e);
|
|
if (e->state == EntityState_Unresolved) {
|
|
check_entity_decl(c, e, nullptr, named_type);
|
|
}
|
|
|
|
|
|
if (e->type == nullptr) {
|
|
if (e->state == EntityState_Unresolved) {
|
|
return nullptr;
|
|
}
|
|
compiler_error("How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(name));
|
|
}
|
|
|
|
e->flags |= EntityFlag_Used;
|
|
|
|
Type *type = e->type;
|
|
switch (e->kind) {
|
|
case Entity_Constant:
|
|
if (type == t_invalid) {
|
|
o->type = t_invalid;
|
|
return e;
|
|
}
|
|
o->value = e->Constant.value;
|
|
if (o->value.kind == ExactValue_Invalid) {
|
|
return e;
|
|
}
|
|
o->mode = Addressing_Constant;
|
|
break;
|
|
|
|
case Entity_Variable:
|
|
e->flags |= EntityFlag_Used;
|
|
if (type == t_invalid) {
|
|
o->type = t_invalid;
|
|
return e;
|
|
}
|
|
o->mode = Addressing_Variable;
|
|
if (e->flags & EntityFlag_Value) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
if (e->Variable.is_immutable) {
|
|
o->mode = Addressing_Immutable;
|
|
}
|
|
break;
|
|
|
|
case Entity_Procedure:
|
|
o->mode = Addressing_Value;
|
|
break;
|
|
|
|
case Entity_Builtin:
|
|
o->builtin_id = cast(BuiltinProcId)e->Builtin.id;
|
|
o->mode = Addressing_Builtin;
|
|
break;
|
|
|
|
case Entity_TypeName:
|
|
o->mode = Addressing_Type;
|
|
if (check_cycle(c, e, true)) {
|
|
type = t_invalid;
|
|
}
|
|
break;
|
|
|
|
case Entity_ImportName:
|
|
if (!allow_import_name) {
|
|
error(n, "Use of import '%.*s' not in selector", LIT(name));
|
|
}
|
|
return e;
|
|
case Entity_LibraryName:
|
|
error(n, "Use of library '%.*s' not in foreign block", LIT(name));
|
|
return e;
|
|
|
|
case Entity_Label:
|
|
o->mode = Addressing_NoValue;
|
|
break;
|
|
|
|
case Entity_Nil:
|
|
o->mode = Addressing_Value;
|
|
break;
|
|
|
|
default:
|
|
compiler_error("Unknown EntityKind %.*s", LIT(entity_strings[e->kind]));
|
|
break;
|
|
}
|
|
|
|
o->type = type;
|
|
return e;
|
|
}
|
|
|
|
|
|
bool check_unary_op(Checker *c, Operand *o, Token op) {
|
|
if (o->type == nullptr) {
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Expression has no value '%s'", str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
// TODO(bill): Handle errors correctly
|
|
Type *type = base_type(core_array_type(o->type));
|
|
gbString str = nullptr;
|
|
switch (op.kind) {
|
|
case Token_Add:
|
|
case Token_Sub:
|
|
if (!is_type_numeric(type)) {
|
|
str = expr_to_string(o->expr);
|
|
error(op, "Operator '%.*s' is not allowed with '%s'", LIT(op.string), str);
|
|
gb_string_free(str);
|
|
}
|
|
break;
|
|
|
|
case Token_Xor:
|
|
if (!is_type_integer(type) && !is_type_boolean(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with integers or booleans", LIT(op.string));
|
|
}
|
|
break;
|
|
|
|
case Token_Not:
|
|
if (!is_type_boolean(type)) {
|
|
str = expr_to_string(o->expr);
|
|
error(op, "Operator '%.*s' is only allowed on boolean expression", LIT(op.string));
|
|
gb_string_free(str);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error(op, "Unknown operator '%.*s'", LIT(op.string));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool check_binary_op(Checker *c, Operand *o, Token op) {
|
|
// TODO(bill): Handle errors correctly
|
|
Type *type = base_type(core_array_type(o->type));
|
|
switch (op.kind) {
|
|
case Token_Sub:
|
|
case Token_SubEq:
|
|
if (!is_type_numeric(type) && !is_type_pointer(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with numeric or pointer expressions", LIT(op.string));
|
|
return false;
|
|
}
|
|
#if defined(NO_POINTER_ARITHMETIC)
|
|
if (is_type_pointer(type)) {
|
|
error(o->expr, "Pointer arithmetic is not supported");
|
|
return false;
|
|
}
|
|
#else
|
|
if (is_type_pointer(type)) {
|
|
o->type = t_int;
|
|
}
|
|
if (base_type(type) == t_rawptr) {
|
|
gbString str = type_to_string(type);
|
|
error(o->expr, "Invalid pointer type for pointer arithmetic: '%s'", str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case Token_Mul:
|
|
case Token_Quo:
|
|
case Token_AddEq:
|
|
case Token_MulEq:
|
|
case Token_QuoEq:
|
|
if (!is_type_numeric(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with numeric expressions", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_Add:
|
|
if (is_type_string(type)) {
|
|
if (o->mode == Addressing_Constant) {
|
|
return true;
|
|
}
|
|
error(op, "String concatenation is only allowed with constant strings");
|
|
return false;
|
|
} else if (!is_type_numeric(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with numeric expressions", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_And:
|
|
case Token_Or:
|
|
case Token_AndEq:
|
|
case Token_OrEq:
|
|
case Token_Xor:
|
|
case Token_XorEq:
|
|
if (!is_type_integer(type) && !is_type_boolean(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with integers or booleans", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_Mod:
|
|
case Token_ModMod:
|
|
case Token_AndNot:
|
|
case Token_ModEq:
|
|
case Token_ModModEq:
|
|
case Token_AndNotEq:
|
|
if (!is_type_integer(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with integers", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_CmpAnd:
|
|
case Token_CmpOr:
|
|
case Token_CmpAndEq:
|
|
case Token_CmpOrEq:
|
|
if (!is_type_boolean(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with boolean expressions", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error(op, "Unknown operator '%.*s'", LIT(op.string));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) {
|
|
if (in_value.kind == ExactValue_Invalid) {
|
|
// NOTE(bill): There's already been an error
|
|
return true;
|
|
}
|
|
|
|
type = core_type(type);
|
|
if (type == t_invalid) {
|
|
return false;
|
|
} else if (is_type_boolean(type)) {
|
|
return in_value.kind == ExactValue_Bool;
|
|
} else if (is_type_string(type)) {
|
|
return in_value.kind == ExactValue_String;
|
|
} else if (is_type_integer(type) || is_type_rune(type)) {
|
|
ExactValue v = exact_value_to_integer(in_value);
|
|
if (v.kind != ExactValue_Integer) {
|
|
return false;
|
|
}
|
|
if (out_value) *out_value = v;
|
|
|
|
|
|
if (is_type_untyped(type)) {
|
|
return true;
|
|
}
|
|
|
|
i64 i = v.value_integer;
|
|
u64 u = bit_cast<u64>(i);
|
|
i64 s = 8*type_size_of(type);
|
|
u64 umax = ~cast(u64)0ull;
|
|
if (s < 64) {
|
|
umax = (1ull << cast(u64)s) - 1ull;
|
|
} else {
|
|
// IMPORTANT TODO(bill): I NEED A PROPER BIG NUMBER LIBRARY THAT CAN SUPPORT 128 bit floats
|
|
s = 64;
|
|
}
|
|
i64 imin = -1ll << (s-1ll);
|
|
i64 imax = (1ll << (s-1ll))-1ll;
|
|
|
|
switch (type->Basic.kind) {
|
|
case Basic_rune:
|
|
case Basic_i8:
|
|
case Basic_i16:
|
|
case Basic_i32:
|
|
case Basic_int:
|
|
return imin <= i && i <= imax;
|
|
|
|
case Basic_u8:
|
|
case Basic_u16:
|
|
case Basic_u32:
|
|
case Basic_uint:
|
|
case Basic_uintptr:
|
|
return !(u < 0ull || u > umax);
|
|
|
|
case Basic_u64:
|
|
return 0ull <= i;
|
|
|
|
case Basic_i64:
|
|
return true;
|
|
case Basic_UntypedInteger:
|
|
return true;
|
|
|
|
default: GB_PANIC("Compiler error: Unknown integer type!"); break;
|
|
}
|
|
} else if (is_type_float(type)) {
|
|
ExactValue v = exact_value_to_float(in_value);
|
|
if (v.kind != ExactValue_Float) {
|
|
return false;
|
|
}
|
|
if (out_value) *out_value = v;
|
|
|
|
switch (type->Basic.kind) {
|
|
// case Basic_f16:
|
|
case Basic_f32:
|
|
case Basic_f64:
|
|
return true;
|
|
|
|
case Basic_UntypedFloat:
|
|
return true;
|
|
|
|
default: GB_PANIC("Compiler error: Unknown float type!"); break;
|
|
}
|
|
} else if (is_type_complex(type)) {
|
|
ExactValue v = exact_value_to_complex(in_value);
|
|
if (v.kind != ExactValue_Complex) {
|
|
return false;
|
|
}
|
|
|
|
switch (type->Basic.kind) {
|
|
case Basic_complex64:
|
|
case Basic_complex128: {
|
|
ExactValue real = exact_value_real(v);
|
|
ExactValue imag = exact_value_imag(v);
|
|
if (real.kind != ExactValue_Invalid &&
|
|
imag.kind != ExactValue_Invalid) {
|
|
if (out_value) *out_value = exact_binary_operator_value(Token_Add, real, exact_value_make_imag(imag));
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case Basic_UntypedComplex:
|
|
return true;
|
|
|
|
default: GB_PANIC("Compiler error: Unknown complex type!"); break;
|
|
}
|
|
|
|
return false;
|
|
} else if (is_type_pointer(type)) {
|
|
if (in_value.kind == ExactValue_Pointer) {
|
|
return true;
|
|
}
|
|
if (in_value.kind == ExactValue_Integer) {
|
|
return false;
|
|
// return true;
|
|
}
|
|
if (out_value) *out_value = in_value;
|
|
}
|
|
|
|
|
|
return false;
|
|
}
|
|
|
|
void check_is_expressible(Checker *c, Operand *o, Type *type) {
|
|
GB_ASSERT(is_type_constant_type(type));
|
|
GB_ASSERT(o->mode == Addressing_Constant);
|
|
if (!check_representable_as_constant(c, o->value, type, &o->value)) {
|
|
gbString a = expr_to_string(o->expr);
|
|
gbString b = type_to_string(type);
|
|
if (is_type_numeric(o->type) && is_type_numeric(type)) {
|
|
if (!is_type_integer(o->type) && is_type_integer(type)) {
|
|
error(o->expr, "'%s' truncated to '%s'", a, b);
|
|
} else {
|
|
char buf[127] = {};
|
|
String str = {};
|
|
i64 i = o->value.value_integer;
|
|
if (is_type_unsigned(o->type)) {
|
|
str = u64_to_string(bit_cast<u64>(i), buf, gb_size_of(buf));
|
|
} else {
|
|
str = i64_to_string(i, buf, gb_size_of(buf));
|
|
}
|
|
error(o->expr, "'%s = %.*s' overflows '%s'", a, LIT(str), b);
|
|
}
|
|
} else {
|
|
error(o->expr, "Cannot convert '%s' to '%s'", a, b);
|
|
}
|
|
|
|
gb_string_free(b);
|
|
gb_string_free(a);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
}
|
|
|
|
bool check_is_not_addressable(Checker *c, Operand *o) {
|
|
if (o->mode == Addressing_OptionalOk) {
|
|
AstNode *expr = unselector_expr(o->expr);
|
|
if (expr->kind != AstNode_TypeAssertion) {
|
|
return true;
|
|
}
|
|
ast_node(ta, TypeAssertion, expr);
|
|
TypeAndValue tv = type_and_value_of_expr(&c->info, ta->expr);
|
|
if (is_type_pointer(tv.type)) {
|
|
return false;
|
|
}
|
|
if (is_type_union(tv.type) && tv.mode == Addressing_Variable) {
|
|
return false;
|
|
}
|
|
if (is_type_any(tv.type)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
|
|
}
|
|
if (o->mode != Addressing_Variable) {
|
|
return true;
|
|
}
|
|
if (is_type_bit_field_value(o->type)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) {
|
|
switch (op.kind) {
|
|
case Token_And: { // Pointer address
|
|
if (check_is_not_addressable(c, o)) {
|
|
if (ast_node_expect(node, AstNode_UnaryExpr)) {
|
|
ast_node(ue, UnaryExpr, node);
|
|
gbString str = expr_to_string(ue->expr);
|
|
error(op, "Cannot take the pointer address of '%s'", str);
|
|
gb_string_free(str);
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
o->mode = Addressing_Value;
|
|
o->type = alloc_type_pointer(o->type);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!check_unary_op(c, o, op)) {
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (o->mode == Addressing_Constant) {
|
|
Type *type = base_type(o->type);
|
|
if (!is_type_constant_type(o->type)) {
|
|
gbString xt = type_to_string(o->type);
|
|
gbString err_str = expr_to_string(node);
|
|
error(op, "Invalid type, '%s', for constant unary expression '%s'", xt, err_str);
|
|
gb_string_free(err_str);
|
|
gb_string_free(xt);
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
|
|
i32 precision = 0;
|
|
if (is_type_unsigned(type)) {
|
|
precision = cast(i32)(8 * type_size_of(type));
|
|
}
|
|
if (op.kind == Token_Xor && is_type_untyped(type)) {
|
|
gbString err_str = expr_to_string(node);
|
|
error(op, "Bitwise not cannot be applied to untyped constants '%s'", err_str);
|
|
gb_string_free(err_str);
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
if (op.kind == Token_Sub && is_type_unsigned(type)) {
|
|
gbString err_str = expr_to_string(node);
|
|
error(op, "A unsigned constant cannot be negated '%s'", err_str);
|
|
gb_string_free(err_str);
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
o->value = exact_unary_operator_value(op.kind, o->value, precision);
|
|
|
|
if (is_type_typed(type)) {
|
|
if (node != nullptr) {
|
|
o->expr = node;
|
|
}
|
|
check_is_expressible(c, o, type);
|
|
}
|
|
return;
|
|
}
|
|
|
|
o->mode = Addressing_Value;
|
|
}
|
|
|
|
|
|
void check_comparison(Checker *c, Operand *x, Operand *y, TokenKind op) {
|
|
if (x->mode == Addressing_Type && y->mode == Addressing_Type) {
|
|
bool comp = are_types_identical(x->type, y->type);
|
|
switch (op) {
|
|
case Token_CmpEq: comp = comp; break;
|
|
case Token_NotEq: comp = !comp; break;
|
|
}
|
|
x->mode = Addressing_Constant;
|
|
x->type = t_untyped_bool;
|
|
x->value = exact_value_bool(comp);
|
|
return;
|
|
}
|
|
|
|
gbString err_str = nullptr;
|
|
|
|
defer (if (err_str != nullptr) {
|
|
gb_string_free(err_str);
|
|
});
|
|
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
|
|
defer (gb_temp_arena_memory_end(tmp));
|
|
|
|
if (check_is_assignable_to(c, x, y->type) ||
|
|
check_is_assignable_to(c, y, x->type)) {
|
|
Type *err_type = x->type;
|
|
bool defined = false;
|
|
switch (op) {
|
|
case Token_CmpEq:
|
|
case Token_NotEq:
|
|
defined = is_type_comparable(x->type) ||
|
|
(is_operand_nil(*x) && type_has_nil(y->type)) ||
|
|
(is_operand_nil(*y) && type_has_nil(x->type));
|
|
break;
|
|
case Token_Lt:
|
|
case Token_Gt:
|
|
case Token_LtEq:
|
|
case Token_GtEq:
|
|
defined = is_type_ordered(x->type);
|
|
break;
|
|
}
|
|
|
|
if (!defined) {
|
|
if (x->type == err_type && is_operand_nil(*x)) {
|
|
err_type = y->type;
|
|
}
|
|
gbString type_string = type_to_string(err_type);
|
|
defer (gb_string_free(type_string));
|
|
err_str = gb_string_make(c->tmp_allocator,
|
|
gb_bprintf("operator '%.*s' not defined for type '%s'", LIT(token_strings[op]), type_string));
|
|
}
|
|
} else {
|
|
gbString xt, yt;
|
|
if (x->mode == Addressing_ProcGroup) {
|
|
xt = gb_string_make(heap_allocator(), "procedure group");
|
|
} else {
|
|
xt = type_to_string(x->type);
|
|
}
|
|
if (y->mode == Addressing_ProcGroup) {
|
|
yt = gb_string_make(heap_allocator(), "procedure group");
|
|
} else {
|
|
yt = type_to_string(y->type);
|
|
}
|
|
err_str = gb_string_make(c->tmp_allocator,
|
|
gb_bprintf("mismatched types '%s' and '%s'", xt, yt));
|
|
gb_string_free(yt);
|
|
gb_string_free(xt);
|
|
}
|
|
|
|
if (err_str != nullptr) {
|
|
error(x->expr, "Cannot compare expression, %s", err_str);
|
|
x->type = t_untyped_bool;
|
|
} else {
|
|
if (x->mode == Addressing_Constant &&
|
|
y->mode == Addressing_Constant) {
|
|
x->value = exact_value_bool(compare_exact_values(op, x->value, y->value));
|
|
} else {
|
|
x->mode = Addressing_Value;
|
|
|
|
|
|
update_expr_type(c, x->expr, default_type(x->type), true);
|
|
update_expr_type(c, y->expr, default_type(y->type), true);
|
|
}
|
|
|
|
x->type = t_untyped_bool;
|
|
}
|
|
|
|
}
|
|
|
|
void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) {
|
|
GB_ASSERT(node->kind == AstNode_BinaryExpr);
|
|
ast_node(be, BinaryExpr, node);
|
|
|
|
ExactValue x_val = {};
|
|
if (x->mode == Addressing_Constant) {
|
|
x_val = exact_value_to_integer(x->value);
|
|
}
|
|
|
|
bool x_is_untyped = is_type_untyped(x->type);
|
|
if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) {
|
|
gbString err_str = expr_to_string(x->expr);
|
|
error(node, "Shifted operand '%s' must be an integer", err_str);
|
|
gb_string_free(err_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (is_type_unsigned(y->type)) {
|
|
|
|
} else if (is_type_untyped(y->type)) {
|
|
convert_to_typed(c, y, t_untyped_integer);
|
|
if (y->mode == Addressing_Invalid) {
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
} else {
|
|
gbString err_str = expr_to_string(y->expr);
|
|
error(node, "Shift amount '%s' must be an unsigned integer", err_str);
|
|
gb_string_free(err_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
|
|
if (x->mode == Addressing_Constant) {
|
|
if (y->mode == Addressing_Constant) {
|
|
ExactValue y_val = exact_value_to_integer(y->value);
|
|
if (y_val.kind != ExactValue_Integer) {
|
|
gbString err_str = expr_to_string(y->expr);
|
|
error(node, "Shift amount '%s' must be an unsigned integer", err_str);
|
|
gb_string_free(err_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
i64 amount = y_val.value_integer;
|
|
if (amount > 128) {
|
|
gbString err_str = expr_to_string(y->expr);
|
|
error(node, "Shift amount too large: '%s'", err_str);
|
|
gb_string_free(err_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (!is_type_integer(x->type)) {
|
|
// NOTE(bill): It could be an untyped float but still representable
|
|
// as an integer
|
|
x->type = t_untyped_integer;
|
|
}
|
|
|
|
x->value = exact_value_shift(be->op.kind, x_val, exact_value_i64(amount));
|
|
|
|
if (is_type_typed(x->type)) {
|
|
check_is_expressible(c, x, base_type(x->type));
|
|
}
|
|
return;
|
|
}
|
|
|
|
TokenPos pos = ast_node_token(x->expr).pos;
|
|
if (x_is_untyped) {
|
|
ExprInfo *info = check_get_expr_info(&c->info, x->expr);
|
|
if (info != nullptr) {
|
|
info->is_lhs = true;
|
|
}
|
|
x->mode = Addressing_Value;
|
|
// x->value = x_val;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (y->mode == Addressing_Constant && y->value.value_integer < 0) {
|
|
gbString err_str = expr_to_string(y->expr);
|
|
error(node, "Shift amount cannot be negative: '%s'", err_str);
|
|
gb_string_free(err_str);
|
|
}
|
|
|
|
if (!is_type_integer(x->type)) {
|
|
gbString err_str = expr_to_string(y->expr);
|
|
error(node, "Shift operand '%s' must be an integer", err_str);
|
|
gb_string_free(err_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
x->mode = Addressing_Value;
|
|
}
|
|
|
|
|
|
Operand check_ptr_addition(Checker *c, TokenKind op, Operand *ptr, Operand *offset, AstNode *node) {
|
|
GB_ASSERT(node->kind == AstNode_BinaryExpr);
|
|
ast_node(be, BinaryExpr, node);
|
|
GB_ASSERT(is_type_pointer(ptr->type));
|
|
GB_ASSERT(is_type_integer(offset->type));
|
|
GB_ASSERT(op == Token_Add || op == Token_Sub);
|
|
|
|
Operand operand = {};
|
|
operand.mode = Addressing_Value;
|
|
operand.type = ptr->type;
|
|
operand.expr = node;
|
|
|
|
if (base_type(ptr->type) == t_rawptr) {
|
|
gbString str = type_to_string(ptr->type);
|
|
error(node, "Invalid pointer type for pointer arithmetic: '%s'", str);
|
|
gb_string_free(str);
|
|
operand.mode = Addressing_Invalid;
|
|
return operand;
|
|
}
|
|
|
|
#if defined(NO_POINTER_ARITHMETIC)
|
|
operand.mode = Addressing_Invalid;
|
|
error(operand.expr, "Pointer arithmetic is not supported");
|
|
return operand;
|
|
#else
|
|
|
|
Type *base_ptr = base_type(ptr->type); GB_ASSERT(base_ptr->kind == Type_Pointer);
|
|
Type *elem = base_ptr->Pointer.elem;
|
|
i64 elem_size = type_size_of(elem);
|
|
|
|
if (elem_size <= 0) {
|
|
gbString str = type_to_string(elem);
|
|
error(node, "Size of pointer's element type '%s' is zero and cannot be used for pointer arithmetic", str);
|
|
gb_string_free(str);
|
|
operand.mode = Addressing_Invalid;
|
|
return operand;
|
|
}
|
|
|
|
if (ptr->mode == Addressing_Constant && offset->mode == Addressing_Constant) {
|
|
i64 ptr_val = ptr->value.value_pointer;
|
|
i64 offset_val = exact_value_to_integer(offset->value).value_integer;
|
|
i64 new_ptr_val = ptr_val;
|
|
if (op == Token_Add) {
|
|
new_ptr_val += elem_size*offset_val;
|
|
} else {
|
|
new_ptr_val -= elem_size*offset_val;
|
|
}
|
|
operand.mode = Addressing_Constant;
|
|
operand.value = exact_value_pointer(new_ptr_val);
|
|
}
|
|
|
|
return operand;
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
bool check_is_castable_to(Checker *c, Operand *operand, Type *y) {
|
|
if (check_is_assignable_to(c, operand, y)) {
|
|
return true;
|
|
}
|
|
|
|
Type *x = operand->type;
|
|
Type *src = core_type(x);
|
|
Type *dst = core_type(y);
|
|
if (are_types_identical(src, dst)) {
|
|
return true;
|
|
}
|
|
|
|
|
|
if (dst->kind == Type_Array && src->kind == Type_Array) {
|
|
if (are_types_identical(dst->Array.elem, src->Array.elem)) {
|
|
return dst->Array.count == src->Array.count;
|
|
}
|
|
}
|
|
|
|
if (dst->kind == Type_Slice && src->kind == Type_Slice) {
|
|
return are_types_identical(dst->Slice.elem, src->Slice.elem);
|
|
}
|
|
|
|
// Cast between booleans and integers
|
|
if (is_type_boolean(src) || is_type_integer(src)) {
|
|
if (is_type_boolean(dst) || is_type_integer(dst)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Cast between numbers
|
|
if (is_type_integer(src) || is_type_float(src)) {
|
|
if (is_type_integer(dst) || is_type_float(dst)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (is_type_integer(src) && is_type_rune(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_rune(src) && is_type_integer(dst)) {
|
|
return true;
|
|
}
|
|
|
|
if (is_type_complex(src) && is_type_complex(dst)) {
|
|
return true;
|
|
}
|
|
|
|
if (is_type_bit_field_value(src) && is_type_integer(dst)) {
|
|
return true;
|
|
}
|
|
|
|
if (is_type_bit_field_value(src) && is_type_boolean(dst)) {
|
|
return src->BitFieldValue.bits == 1;
|
|
}
|
|
|
|
// Cast between pointers
|
|
if (is_type_pointer(src) && is_type_pointer(dst)) {
|
|
#if 0
|
|
Type *s = base_type(type_deref(src));
|
|
if (is_type_union(s)) {
|
|
// NOTE(bill): Should the error be here?!
|
|
// NOTE(bill): This error should suppress the next casting error as it's at the same position
|
|
gbString xs = type_to_string(x);
|
|
gbString ys = type_to_string(y);
|
|
error(operand->expr, "Cannot cast from a union pointer '%s' to '%s', try using 'union_cast' or cast to a 'rawptr'", xs, ys);
|
|
gb_string_free(ys);
|
|
gb_string_free(xs);
|
|
return false;
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
// (u)int <-> pointer
|
|
if (is_type_uintptr(src) && is_type_pointer(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_pointer(src) && is_type_uintptr(dst)) {
|
|
return true;
|
|
}
|
|
|
|
// []byte/[]u8 <-> string
|
|
if (is_type_u8_slice(src) && is_type_string(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_string(src) && is_type_u8_slice(dst)) {
|
|
// if (is_type_typed(src)) {
|
|
return true;
|
|
// }
|
|
}
|
|
// cstring -> string
|
|
if (src == t_cstring && dst == t_string) {
|
|
return true;
|
|
}
|
|
// cstring -> ^u8
|
|
if (src == t_cstring && is_type_u8_ptr(dst)) {
|
|
return true;
|
|
}
|
|
|
|
// ^u8 -> cstring
|
|
if (is_type_u8_ptr(src) && dst == t_cstring) {
|
|
return true;
|
|
}
|
|
// proc <-> proc
|
|
if (is_type_proc(src) && is_type_proc(dst)) {
|
|
return true;
|
|
}
|
|
|
|
// proc -> rawptr
|
|
if (is_type_proc(src) && is_type_rawptr(dst)) {
|
|
return true;
|
|
}
|
|
// rawptr -> proc
|
|
if (is_type_rawptr(src) && is_type_proc(dst)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool check_cast_internal(Checker *c, Operand *x, Type *type) {
|
|
bool is_const_expr = x->mode == Addressing_Constant;
|
|
bool can_convert = false;
|
|
|
|
Type *bt = base_type(type);
|
|
if (is_const_expr && is_type_constant_type(bt)) {
|
|
if (core_type(bt)->kind == Type_Basic) {
|
|
if (check_representable_as_constant(c, x->value, bt, &x->value)) {
|
|
return true;
|
|
} else if (is_type_pointer(type) && check_is_castable_to(c, x, type)) {
|
|
return true;
|
|
}
|
|
}
|
|
} else if (check_is_castable_to(c, x, type)) {
|
|
if (x->mode != Addressing_Constant) {
|
|
x->mode = Addressing_Value;
|
|
} else if (is_type_slice(type) && is_type_string(x->type)) {
|
|
x->mode = Addressing_Value;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
}
|
|
|
|
void check_cast(Checker *c, Operand *x, Type *type) {
|
|
if (!is_operand_value(*x)) {
|
|
error(x->expr, "Only values can be casted");
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
bool is_const_expr = x->mode == Addressing_Constant;
|
|
bool can_convert = check_cast_internal(c, x, type);
|
|
|
|
if (!can_convert) {
|
|
gbString expr_str = expr_to_string(x->expr);
|
|
gbString to_type = type_to_string(type);
|
|
gbString from_type = type_to_string(x->type);
|
|
error(x->expr, "Cannot cast '%s' as '%s' from '%s'", expr_str, to_type, from_type);
|
|
gb_string_free(from_type);
|
|
gb_string_free(to_type);
|
|
gb_string_free(expr_str);
|
|
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (is_type_untyped(x->type)) {
|
|
Type *final_type = type;
|
|
if (is_const_expr && !is_type_constant_type(type)) {
|
|
final_type = default_type(x->type);
|
|
}
|
|
update_expr_type(c, x->expr, final_type, true);
|
|
}
|
|
|
|
x->type = type;
|
|
}
|
|
|
|
bool check_transmute(Checker *c, AstNode *node, Operand *o, Type *t) {
|
|
if (!is_operand_value(*o)) {
|
|
error(o->expr, "'transmute' can only be applied to values");
|
|
o->mode = Addressing_Invalid;
|
|
return false;
|
|
}
|
|
|
|
if (o->mode == Addressing_Constant) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot transmute a constant expression: '%s'", expr_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return false;
|
|
}
|
|
|
|
if (is_type_untyped(o->type)) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot transmute untyped expression: '%s'", expr_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return false;
|
|
}
|
|
|
|
i64 srcz = type_size_of(o->type);
|
|
i64 dstz = type_size_of(t);
|
|
if (srcz != dstz) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
gbString type_str = type_to_string(t);
|
|
error(o->expr, "Cannot transmute '%s' to '%s', %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
|
|
gb_string_free(type_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return false;
|
|
}
|
|
|
|
o->mode = Addressing_Value;
|
|
o->type = t;
|
|
return true;
|
|
}
|
|
|
|
bool check_binary_array_expr(Checker *c, Token op, Operand *x, Operand *y) {
|
|
if (is_type_array(x->type) && !is_type_array(y->type)) {
|
|
if (check_is_assignable_to(c, y, x->type)) {
|
|
if (check_binary_op(c, x, op)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void check_binary_expr(Checker *c, Operand *x, AstNode *node) {
|
|
GB_ASSERT(node->kind == AstNode_BinaryExpr);
|
|
Operand y_ = {}, *y = &y_;
|
|
|
|
ast_node(be, BinaryExpr, node);
|
|
|
|
Token op = be->op;
|
|
switch (op.kind) {
|
|
case Token_CmpEq:
|
|
case Token_NotEq: {
|
|
// NOTE(bill): Allow comparisons between types
|
|
check_expr_or_type(c, x, be->left);
|
|
check_expr_or_type(c, y, be->right);
|
|
bool xt = x->mode == Addressing_Type;
|
|
bool yt = y->mode == Addressing_Type;
|
|
// If only one is a type, this is an error
|
|
if (xt ^ yt) {
|
|
GB_ASSERT(xt != yt);
|
|
if (xt) error_operand_not_expression(x);
|
|
if (yt) error_operand_not_expression(y);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
check_expr(c, x, be->left);
|
|
check_expr(c, y, be->right);
|
|
break;
|
|
}
|
|
if (x->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
if (y->mode == Addressing_Invalid) {
|
|
x->mode = Addressing_Invalid;
|
|
x->expr = y->expr;
|
|
return;
|
|
}
|
|
|
|
if (token_is_shift(op.kind)) {
|
|
check_shift(c, x, y, node);
|
|
return;
|
|
}
|
|
|
|
if (op.kind == Token_Add || op.kind == Token_Sub) {
|
|
if (is_type_pointer(x->type) && is_type_integer(y->type)) {
|
|
*x = check_ptr_addition(c, op.kind, x, y, node);
|
|
return;
|
|
} else if (is_type_integer(x->type) && is_type_pointer(y->type)) {
|
|
if (op.kind == Token_Sub) {
|
|
gbString lhs = expr_to_string(x->expr);
|
|
gbString rhs = expr_to_string(y->expr);
|
|
error(node, "Invalid pointer arithmetic, did you mean '%s %.*s %s'?", rhs, LIT(op.string), lhs);
|
|
gb_string_free(rhs);
|
|
gb_string_free(lhs);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
*x = check_ptr_addition(c, op.kind, y, x, node);
|
|
return;
|
|
}
|
|
}
|
|
|
|
convert_to_typed(c, x, y->type);
|
|
if (x->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
convert_to_typed(c, y, x->type);
|
|
if (y->mode == Addressing_Invalid) {
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
if (token_is_comparison(op.kind)) {
|
|
check_comparison(c, x, y, op.kind);
|
|
return;
|
|
}
|
|
|
|
if (check_binary_array_expr(c, op, x, y)) {
|
|
x->mode = Addressing_Value;
|
|
x->type = x->type;
|
|
return;
|
|
}
|
|
if (check_binary_array_expr(c, op, y, x)) {
|
|
x->mode = Addressing_Value;
|
|
x->type = y->type;
|
|
return;
|
|
}
|
|
if (!are_types_identical(x->type, y->type)) {
|
|
if (x->type != t_invalid &&
|
|
y->type != t_invalid) {
|
|
gbString xt = type_to_string(x->type);
|
|
gbString yt = type_to_string(y->type);
|
|
gbString expr_str = expr_to_string(x->expr);
|
|
error(op, "Mismatched types in binary expression '%s' : '%s' vs '%s'", expr_str, xt, yt);
|
|
gb_string_free(expr_str);
|
|
gb_string_free(yt);
|
|
gb_string_free(xt);
|
|
}
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (!check_binary_op(c, x, op)) {
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
switch (op.kind) {
|
|
case Token_Quo:
|
|
case Token_Mod:
|
|
case Token_ModMod:
|
|
case Token_QuoEq:
|
|
case Token_ModEq:
|
|
case Token_ModModEq:
|
|
if ((x->mode == Addressing_Constant || is_type_integer(x->type)) &&
|
|
y->mode == Addressing_Constant) {
|
|
bool fail = false;
|
|
switch (y->value.kind) {
|
|
case ExactValue_Integer:
|
|
if (y->value.value_integer == 0 ) {
|
|
fail = true;
|
|
}
|
|
break;
|
|
case ExactValue_Float:
|
|
if (y->value.value_float == 0.0) {
|
|
fail = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (fail) {
|
|
error(y->expr, "Division by zero not allowed");
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (x->mode == Addressing_Constant &&
|
|
y->mode == Addressing_Constant) {
|
|
ExactValue a = x->value;
|
|
ExactValue b = y->value;
|
|
|
|
Type *type = base_type(x->type);
|
|
if (is_type_pointer(type)) {
|
|
GB_ASSERT(op.kind == Token_Sub);
|
|
i64 bytes = a.value_pointer - b.value_pointer;
|
|
i64 diff = bytes/type_size_of(type);
|
|
x->value = exact_value_pointer(diff);
|
|
return;
|
|
}
|
|
|
|
if (!is_type_constant_type(type)) {
|
|
gbString xt = type_to_string(x->type);
|
|
gbString err_str = expr_to_string(node);
|
|
error(op, "Invalid type, '%s', for constant binary expression '%s'", xt, err_str);
|
|
gb_string_free(err_str);
|
|
gb_string_free(xt);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (op.kind == Token_Quo && is_type_integer(type)) {
|
|
op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers
|
|
}
|
|
|
|
x->value = exact_binary_operator_value(op.kind, a, b);
|
|
|
|
if (is_type_typed(type)) {
|
|
if (node != nullptr) {
|
|
x->expr = node;
|
|
}
|
|
check_is_expressible(c, x, type);
|
|
}
|
|
return;
|
|
} else if (is_type_string(x->type)) {
|
|
error(node, "String concatenation is only allowed with constant strings");
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
x->mode = Addressing_Value;
|
|
}
|
|
|
|
|
|
void update_expr_type(Checker *c, AstNode *e, Type *type, bool final) {
|
|
ExprInfo *found = check_get_expr_info(&c->info, e);
|
|
if (found == nullptr) {
|
|
return;
|
|
}
|
|
ExprInfo old = *found;
|
|
|
|
switch (e->kind) {
|
|
case_ast_node(ue, UnaryExpr, e);
|
|
if (old.value.kind != ExactValue_Invalid) {
|
|
// NOTE(bill): if 'e' is constant, the operands will be constant too.
|
|
// They don't need to be updated as they will be updated later and
|
|
// checked at the end of general checking stage.
|
|
break;
|
|
}
|
|
update_expr_type(c, ue->expr, type, final);
|
|
case_end;
|
|
|
|
case_ast_node(be, BinaryExpr, e);
|
|
if (old.value.kind != ExactValue_Invalid) {
|
|
// See above note in UnaryExpr case
|
|
break;
|
|
}
|
|
if (token_is_comparison(be->op.kind)) {
|
|
// NOTE(bill): Do nothing as the types are fine
|
|
} else if (token_is_shift(be->op.kind)) {
|
|
update_expr_type(c, be->left, type, final);
|
|
} else {
|
|
update_expr_type(c, be->left, type, final);
|
|
update_expr_type(c, be->right, type, final);
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(pe, ParenExpr, e);
|
|
update_expr_type(c, pe->expr, type, final);
|
|
case_end;
|
|
}
|
|
|
|
if (!final && is_type_untyped(type)) {
|
|
old.type = base_type(type);
|
|
check_set_expr_info(&c->info, e, old);
|
|
return;
|
|
}
|
|
|
|
// We need to remove it and then give it a new one
|
|
check_remove_expr_info(&c->info, e);
|
|
|
|
if (old.is_lhs && !is_type_integer(type)) {
|
|
gbString expr_str = expr_to_string(e);
|
|
gbString type_str = type_to_string(type);
|
|
error(e, "Shifted operand %s must be an integer, got %s", expr_str, type_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(expr_str);
|
|
return;
|
|
}
|
|
|
|
add_type_and_value(&c->info, e, old.mode, type, old.value);
|
|
}
|
|
|
|
void update_expr_value(Checker *c, AstNode *e, ExactValue value) {
|
|
ExprInfo *found = check_get_expr_info(&c->info, e);
|
|
if (found) {
|
|
found->value = value;
|
|
}
|
|
}
|
|
|
|
void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) {
|
|
gbString expr_str = expr_to_string(operand->expr);
|
|
gbString type_str = type_to_string(target_type);
|
|
char *extra_text = "";
|
|
|
|
if (operand->mode == Addressing_Constant) {
|
|
if (operand->value.value_integer == 0) {
|
|
if (make_string_c(expr_str) != "nil") { // HACK NOTE(bill): Just in case
|
|
// NOTE(bill): Doesn't matter what the type is as it's still zero in the union
|
|
extra_text = " - Did you want 'nil'?";
|
|
}
|
|
}
|
|
}
|
|
error(operand->expr, "Cannot convert '%s' to '%s'%s", expr_str, type_str, extra_text);
|
|
|
|
gb_string_free(type_str);
|
|
gb_string_free(expr_str);
|
|
operand->mode = Addressing_Invalid;
|
|
}
|
|
|
|
ExactValue convert_exact_value_for_type(ExactValue v, Type *type) {
|
|
Type *t = core_type(type);
|
|
if (is_type_boolean(t)) {
|
|
// v = exact_value_to_boolean(v);
|
|
} else if (is_type_float(t)) {
|
|
v = exact_value_to_float(v);
|
|
} else if (is_type_integer(t)) {
|
|
v = exact_value_to_integer(v);
|
|
} else if (is_type_pointer(t)) {
|
|
v = exact_value_to_integer(v);
|
|
} else if (is_type_complex(t)) {
|
|
v = exact_value_to_complex(v);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
void convert_to_typed(Checker *c, Operand *operand, Type *target_type) {
|
|
GB_ASSERT_NOT_NULL(target_type);
|
|
if (operand->mode == Addressing_Invalid ||
|
|
operand->mode == Addressing_Type ||
|
|
is_type_typed(operand->type) ||
|
|
target_type == t_invalid) {
|
|
return;
|
|
}
|
|
|
|
if (is_type_untyped(target_type)) {
|
|
GB_ASSERT(operand->type->kind == Type_Basic);
|
|
GB_ASSERT(target_type->kind == Type_Basic);
|
|
BasicKind x_kind = operand->type->Basic.kind;
|
|
BasicKind y_kind = target_type->Basic.kind;
|
|
if (is_type_numeric(operand->type) && is_type_numeric(target_type)) {
|
|
if (x_kind < y_kind) {
|
|
operand->type = target_type;
|
|
update_expr_type(c, operand->expr, target_type, false);
|
|
}
|
|
} else if (x_kind != y_kind) {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
Type *t = core_type(target_type);
|
|
switch (t->kind) {
|
|
case Type_Basic:
|
|
if (operand->mode == Addressing_Constant) {
|
|
check_is_expressible(c, operand, t);
|
|
if (operand->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
update_expr_value(c, operand->expr, operand->value);
|
|
} else {
|
|
switch (operand->type->Basic.kind) {
|
|
case Basic_UntypedBool:
|
|
if (!is_type_boolean(target_type)) {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
break;
|
|
case Basic_UntypedInteger:
|
|
case Basic_UntypedFloat:
|
|
case Basic_UntypedComplex:
|
|
case Basic_UntypedRune:
|
|
if (!is_type_numeric(target_type)) {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case Basic_UntypedNil:
|
|
if (is_type_any(target_type)) {
|
|
target_type = t_untyped_nil;
|
|
} else if (is_type_cstring(target_type)) {
|
|
target_type = t_untyped_nil;
|
|
} else if (!type_has_nil(target_type)) {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Type_Array: {
|
|
Type *elem = base_array_type(t);
|
|
if (check_is_assignable_to(c, operand, elem)) {
|
|
operand->mode = Addressing_Value;
|
|
} else {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Type_Union:
|
|
if (!is_operand_nil(*operand) && !is_operand_undef(*operand)) {
|
|
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
|
|
defer (gb_temp_arena_memory_end(tmp));
|
|
isize count = t->Union.variants.count;
|
|
ValidIndexAndScore *valids = gb_alloc_array(c->tmp_allocator, ValidIndexAndScore, count);
|
|
isize valid_count = 0;
|
|
isize first_success_index = -1;
|
|
for_array(i, t->Union.variants) {
|
|
Type *vt = t->Union.variants[i];
|
|
i64 score = 0;
|
|
if (check_is_assignable_to_with_score(c, operand, vt, &score)) {
|
|
valids[valid_count].index = i;
|
|
valids[valid_count].score = score;
|
|
valid_count += 1;
|
|
if (first_success_index < 0) {
|
|
first_success_index = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (valid_count > 1) {
|
|
gb_sort_array(valids, valid_count, valid_index_and_score_cmp);
|
|
i64 best_score = valids[0].score;
|
|
Type *best_type = t->Union.variants[valids[0].index];
|
|
for (isize i = 1; i < valid_count; i++) {
|
|
auto v = valids[i];
|
|
Type *vt = t->Union.variants[v.index];
|
|
if (best_score > v.score) {
|
|
valid_count = i;
|
|
break;
|
|
}
|
|
best_score = v.score;
|
|
}
|
|
first_success_index = valids[0].index;
|
|
}
|
|
|
|
gbString type_str = type_to_string(target_type);
|
|
defer (gb_string_free(type_str));
|
|
|
|
if (valid_count == 1) {
|
|
operand->mode = Addressing_Value;
|
|
operand->type = t->Union.variants[first_success_index];
|
|
target_type = t->Union.variants[first_success_index];
|
|
break;
|
|
} else if (valid_count > 1) {
|
|
GB_ASSERT(first_success_index >= 0);
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
|
|
gb_printf_err("Ambiguous type conversion to '%s', which variant did you mean:\n\t", type_str);
|
|
i32 j = 0;
|
|
for (i32 i = 0; i < valid_count; i++) {
|
|
ValidIndexAndScore valid = valids[i];
|
|
if (j > 0 && valid_count > 2) gb_printf_err(", ");
|
|
if (j == valid_count-1) {
|
|
if (valid_count == 2) gb_printf_err(" ");
|
|
gb_printf_err("or ");
|
|
}
|
|
gbString str = type_to_string(t->Union.variants[valid.index]);
|
|
gb_printf_err("'%s'", str);
|
|
gb_string_free(str);
|
|
j++;
|
|
}
|
|
gb_printf_err("\n\n");
|
|
|
|
return;
|
|
} else if (is_type_untyped_undef(operand->type) && type_has_undef(target_type)) {
|
|
target_type = t_untyped_undef;
|
|
} else if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
if (count > 0) {
|
|
gb_printf_err("'%s' is a union which only excepts the following types:\n", type_str);
|
|
gb_printf_err("\t");
|
|
for (i32 i = 0; i < count; i++) {
|
|
Type *v = t->Union.variants[i];
|
|
if (i > 0 && count > 2) gb_printf_err(", ");
|
|
if (i == count-1) {
|
|
if (count == 2) gb_printf_err(" ");
|
|
gb_printf_err("or ");
|
|
}
|
|
gbString str = type_to_string(v);
|
|
gb_printf_err("'%s'", str);
|
|
gb_string_free(str);
|
|
}
|
|
gb_printf_err("\n\n");
|
|
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
/* fallthrough */
|
|
|
|
|
|
default:
|
|
if (is_type_untyped_undef(operand->type) && type_has_undef(target_type)) {
|
|
target_type = t_untyped_undef;
|
|
} else if (is_type_untyped_nil(operand->type) && type_has_nil(target_type)) {
|
|
target_type = t_untyped_nil;
|
|
} else {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
operand->type = target_type;
|
|
update_expr_type(c, operand->expr, target_type, true);
|
|
}
|
|
|
|
bool check_index_value(Checker *c, bool open_range, AstNode *index_value, i64 max_count, i64 *value) {
|
|
Operand operand = {Addressing_Invalid};
|
|
check_expr(c, &operand, index_value);
|
|
if (operand.mode == Addressing_Invalid) {
|
|
if (value) *value = 0;
|
|
return false;
|
|
}
|
|
|
|
convert_to_typed(c, &operand, t_int);
|
|
if (operand.mode == Addressing_Invalid) {
|
|
if (value) *value = 0;
|
|
return false;
|
|
}
|
|
|
|
if (!is_type_integer(operand.type)) {
|
|
gbString expr_str = expr_to_string(operand.expr);
|
|
error(operand.expr, "Index '%s' must be an integer", expr_str);
|
|
gb_string_free(expr_str);
|
|
if (value) *value = 0;
|
|
return false;
|
|
}
|
|
|
|
if (operand.mode == Addressing_Constant &&
|
|
(c->context.stmt_state_flags & StmtStateFlag_no_bounds_check) == 0) {
|
|
i64 i = exact_value_to_integer(operand.value).value_integer;
|
|
if (i < 0) {
|
|
gbString expr_str = expr_to_string(operand.expr);
|
|
error(operand.expr, "Index '%s' cannot be a negative value", expr_str);
|
|
gb_string_free(expr_str);
|
|
if (value) *value = 0;
|
|
return false;
|
|
}
|
|
|
|
if (max_count >= 0) { // NOTE(bill): Do array bound checking
|
|
if (value) *value = i;
|
|
bool out_of_bounds = false;
|
|
if (open_range) {
|
|
out_of_bounds = i >= max_count;
|
|
} else {
|
|
out_of_bounds = i > max_count;
|
|
}
|
|
if (out_of_bounds) {
|
|
gbString expr_str = expr_to_string(operand.expr);
|
|
error(operand.expr, "Index '%s' is out of bounds range 0..<%lld", expr_str, max_count);
|
|
gb_string_free(expr_str);
|
|
return false;
|
|
}
|
|
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// NOTE(bill): It's alright :D
|
|
if (value) *value = -1;
|
|
return true;
|
|
}
|
|
|
|
Entity *check_selector(Checker *c, Operand *operand, AstNode *node, Type *type_hint) {
|
|
ast_node(se, SelectorExpr, node);
|
|
|
|
bool check_op_expr = true;
|
|
Entity *expr_entity = nullptr;
|
|
Entity *entity = nullptr;
|
|
Selection sel = {}; // NOTE(bill): Not used if it's an import name
|
|
|
|
operand->expr = node;
|
|
|
|
AstNode *op_expr = se->expr;
|
|
AstNode *selector = unparen_expr(se->selector);
|
|
if (selector == nullptr) {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
if (selector->kind != AstNode_Ident && selector->kind != AstNode_BasicLit) {
|
|
// if (selector->kind != AstNode_Ident) {
|
|
error(selector, "Illegal selector kind: '%.*s'", LIT(ast_node_strings[selector->kind]));
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
if (op_expr->kind == AstNode_Ident) {
|
|
String op_name = op_expr->Ident.token.string;
|
|
Entity *e = scope_lookup_entity(c->context.scope, op_name);
|
|
|
|
bool is_alias = false;
|
|
while (e != nullptr && e->kind == Entity_Alias) {
|
|
GB_ASSERT(e->Alias.base != nullptr);
|
|
e = e->Alias.base;
|
|
is_alias = true;
|
|
}
|
|
|
|
add_entity_use(c, op_expr, e);
|
|
expr_entity = e;
|
|
|
|
Entity *original_e = e;
|
|
if (e != nullptr && e->kind == Entity_ImportName && selector->kind == AstNode_Ident) {
|
|
// IMPORTANT NOTE(bill): This is very sloppy code but it's also very fragile
|
|
// It pretty much needs to be in this order and this way
|
|
// If you can clean this up, please do but be really careful
|
|
String import_name = op_name;
|
|
Scope *import_scope = e->ImportName.scope;
|
|
String entity_name = selector->Ident.token.string;
|
|
|
|
check_op_expr = false;
|
|
entity = scope_lookup_entity(import_scope, entity_name);
|
|
bool is_declared = entity != nullptr;
|
|
if (is_declared) {
|
|
if (entity->kind == Entity_Builtin) {
|
|
// NOTE(bill): Builtin's are in the universal scope which is part of every scopes hierarchy
|
|
// This means that we should just ignore the found result through it
|
|
is_declared = false;
|
|
} else if (entity->scope->is_global && !import_scope->is_global) {
|
|
is_declared = false;
|
|
}
|
|
}
|
|
if (!is_declared) {
|
|
error(op_expr, "'%.*s' is not declared by '%.*s'", LIT(entity_name), LIT(import_name));
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
bool is_alias = false;
|
|
while (entity->kind == Entity_Alias) {
|
|
GB_ASSERT(e->Alias.base != nullptr);
|
|
entity = entity->Alias.base;
|
|
is_alias = true;
|
|
}
|
|
|
|
check_entity_decl(c, entity, nullptr, nullptr);
|
|
GB_ASSERT(entity->type != nullptr);
|
|
|
|
|
|
if (is_alias) {
|
|
// TODO(bill): Which scope do you search for for an alias?
|
|
// import_scope = entity->scope;
|
|
entity_name = entity->token.string;
|
|
}
|
|
|
|
|
|
bool implicit_is_found = is_entity_implicitly_imported(e, entity);
|
|
bool is_not_exported = !is_entity_exported(entity);
|
|
if (entity->kind == Entity_ImportName) {
|
|
is_not_exported = true;
|
|
} else if (implicit_is_found) {
|
|
is_not_exported = true;
|
|
}
|
|
|
|
|
|
|
|
if (is_not_exported) {
|
|
gbString sel_str = expr_to_string(selector);
|
|
error(op_expr, "'%s' is not exported by '%.*s'", sel_str, LIT(import_name));
|
|
gb_string_free(sel_str);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
if (entity->kind == Entity_ProcGroup) {
|
|
Array<Entity *> procs = entity->ProcGroup.entities;
|
|
bool skip = false;
|
|
for_array(i, procs) {
|
|
Entity *p = procs[i];
|
|
Type *t = base_type(p->type);
|
|
if (t == t_invalid) {
|
|
continue;
|
|
}
|
|
|
|
Operand x = {};
|
|
x.mode = Addressing_Value;
|
|
x.type = t;
|
|
if (type_hint != nullptr) {
|
|
if (check_is_assignable_to(c, &x, type_hint)) {
|
|
entity = p;
|
|
skip = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!skip) {
|
|
GB_ASSERT(entity != nullptr);
|
|
operand->mode = Addressing_ProcGroup;
|
|
operand->type = t_invalid;
|
|
operand->expr = node;
|
|
operand->proc_group = entity;
|
|
return entity;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (check_op_expr) {
|
|
check_expr_base(c, operand, op_expr, nullptr);
|
|
if (operand->mode == Addressing_Invalid) {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
if (entity == nullptr && selector->kind == AstNode_Ident) {
|
|
String field_name = selector->Ident.token.string;
|
|
sel = lookup_field(operand->type, field_name, operand->mode == Addressing_Type);
|
|
entity = sel.entity;
|
|
|
|
// NOTE(bill): Add type info needed for fields like 'names'
|
|
if (entity != nullptr && (entity->flags&EntityFlag_TypeField)) {
|
|
add_type_info_type(c, operand->type);
|
|
}
|
|
if (is_type_enum(operand->type)) {
|
|
add_type_info_type(c, operand->type);
|
|
}
|
|
}
|
|
if (entity == nullptr && selector->kind == AstNode_BasicLit) {
|
|
if (is_type_struct(operand->type) || is_type_tuple(operand->type)) {
|
|
Type *type = base_type(operand->type);
|
|
Operand o = {};
|
|
check_expr(c, &o, selector);
|
|
if (o.mode != Addressing_Constant ||
|
|
!is_type_integer(o.type)) {
|
|
error(op_expr, "Indexed based selectors must be a constant integer %s");
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
i64 index = o.value.value_integer;
|
|
if (index < 0) {
|
|
error(o.expr, "Index %lld cannot be a negative value", index);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
i64 max_count = 0;
|
|
switch (type->kind) {
|
|
case Type_Struct: max_count = type->Struct.fields.count; break;
|
|
case Type_Tuple: max_count = type->Tuple.variables.count; break;
|
|
}
|
|
|
|
if (index >= max_count) {
|
|
error(o.expr, "Index %lld is out of bounds range 0..<%lld", index, max_count);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
sel = lookup_field_from_index(type, index);
|
|
entity = sel.entity;
|
|
|
|
GB_ASSERT(entity != nullptr);
|
|
|
|
} else {
|
|
error(op_expr, "Indexed based selectors may only be used on structs or tuples");
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (entity == nullptr &&
|
|
operand->type != nullptr && is_type_untyped(operand->type) && is_type_string(operand->type)) {
|
|
String s = operand->value.value_string;
|
|
operand->mode = Addressing_Constant;
|
|
operand->value = exact_value_i64(s.len);
|
|
operand->type = t_untyped_integer;
|
|
return nullptr;
|
|
}
|
|
|
|
if (entity == nullptr) {
|
|
gbString op_str = expr_to_string(op_expr);
|
|
gbString type_str = type_to_string(operand->type);
|
|
gbString sel_str = expr_to_string(selector);
|
|
error(op_expr, "'%s' of type '%s' has no field '%s'", op_str, type_str, sel_str);
|
|
gb_string_free(sel_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(op_str);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
if (expr_entity != nullptr && expr_entity->kind == Entity_Constant && entity->kind != Entity_Constant) {
|
|
gbString op_str = expr_to_string(op_expr);
|
|
gbString type_str = type_to_string(operand->type);
|
|
gbString sel_str = expr_to_string(selector);
|
|
error(op_expr, "Cannot access non-constant field '%s' from '%s'", sel_str, op_str);
|
|
gb_string_free(sel_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(op_str);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
|
|
add_entity_use(c, selector, entity);
|
|
|
|
switch (entity->kind) {
|
|
case Entity_Constant:
|
|
operand->mode = Addressing_Constant;
|
|
operand->value = entity->Constant.value;
|
|
break;
|
|
case Entity_Variable:
|
|
// TODO(bill): Is this the rule I need?
|
|
if (operand->mode == Addressing_Immutable) {
|
|
// Okay
|
|
} else if (sel.indirect || operand->mode != Addressing_Value) {
|
|
operand->mode = Addressing_Variable;
|
|
} else {
|
|
operand->mode = Addressing_Value;
|
|
}
|
|
break;
|
|
case Entity_TypeName:
|
|
operand->mode = Addressing_Type;
|
|
break;
|
|
case Entity_Procedure:
|
|
operand->mode = Addressing_Value;
|
|
break;
|
|
case Entity_Builtin:
|
|
operand->mode = Addressing_Builtin;
|
|
operand->builtin_id = cast(BuiltinProcId)entity->Builtin.id;
|
|
break;
|
|
|
|
case Entity_ProcGroup:
|
|
operand->mode = Addressing_ProcGroup;
|
|
operand->proc_group = entity;
|
|
break;
|
|
|
|
// NOTE(bill): These cases should never be hit but are here for sanity reasons
|
|
case Entity_Nil:
|
|
operand->mode = Addressing_Value;
|
|
break;
|
|
}
|
|
|
|
operand->type = entity->type;
|
|
operand->expr = node;
|
|
|
|
return entity;
|
|
}
|
|
|
|
bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) {
|
|
GB_ASSERT(call->kind == AstNode_CallExpr);
|
|
ast_node(ce, CallExpr, call);
|
|
BuiltinProc *bp = &builtin_procs[id];
|
|
{
|
|
char *err = nullptr;
|
|
if (ce->args.count < bp->arg_count) {
|
|
err = "Too few";
|
|
} else if (ce->args.count > bp->arg_count && !bp->variadic) {
|
|
err = "Too many";
|
|
}
|
|
|
|
if (err != nullptr) {
|
|
gbString expr = expr_to_string(ce->proc);
|
|
error(ce->close, "%s arguments for '%s', expected %td, got %td",
|
|
err, expr,
|
|
bp->arg_count, ce->args.count);
|
|
gb_string_free(expr);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (ce->args.count > 0) {
|
|
if (ce->args[0]->kind == AstNode_FieldValue) {
|
|
error(call, "'field = value' calling is not allowed on built-in procedures");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool vari_expand = (ce->ellipsis.pos.line != 0);
|
|
// if (vari_expand && id != BuiltinProc_append) {
|
|
// error(ce->ellipsis, "Invalid use of '...' with built-in procedure 'append'");
|
|
// return false;
|
|
// }
|
|
|
|
|
|
switch (id) {
|
|
// case BuiltinProc_new:
|
|
case BuiltinProc_make:
|
|
case BuiltinProc_size_of:
|
|
case BuiltinProc_align_of:
|
|
case BuiltinProc_offset_of:
|
|
case BuiltinProc_type_info_of:
|
|
// NOTE(bill): The first arg may be a Type, this will be checked case by case
|
|
break;
|
|
default:
|
|
if (ce->args.count > 0) {
|
|
check_multi_expr(c, operand, ce->args[0]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (id) {
|
|
default:
|
|
GB_PANIC("Implement built-in procedure: %.*s", LIT(builtin_procs[id].name));
|
|
break;
|
|
|
|
case BuiltinProc_DIRECTIVE: {
|
|
ast_node(bd, BasicDirective, ce->proc);
|
|
String name = bd->name;
|
|
if (name == "location") {
|
|
if (ce->args.count > 1) {
|
|
error(ce->args[0], "'#location' expects either 0 or 1 arguments, got %td", ce->args.count);
|
|
}
|
|
if (ce->args.count > 0) {
|
|
AstNode *arg = ce->args[0];
|
|
Entity *e = nullptr;
|
|
Operand o = {};
|
|
if (arg->kind == AstNode_Ident) {
|
|
e = check_ident(c, &o, arg, nullptr, nullptr, true);
|
|
} else if (arg->kind == AstNode_SelectorExpr) {
|
|
e = check_selector(c, &o, arg, nullptr);
|
|
}
|
|
if (e == nullptr) {
|
|
error(ce->args[0], "'#location' expected a valid entity name");
|
|
}
|
|
}
|
|
|
|
operand->type = t_source_code_location;
|
|
operand->mode = Addressing_Value;
|
|
} else if (name == "assert") {
|
|
if (ce->args.count != 1) {
|
|
error(call, "'#assert' expects at 1 argument, got %td", ce->args.count);
|
|
return false;
|
|
}
|
|
if (!is_type_boolean(operand->type) && operand->mode != Addressing_Constant) {
|
|
gbString str = expr_to_string(ce->args[0]);
|
|
error(call, "'%s' is not a constant boolean", str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
if (!operand->value.value_bool) {
|
|
gbString arg = expr_to_string(ce->args[0]);
|
|
error(call, "Compile time assertion: %s", arg);
|
|
gb_string_free(arg);
|
|
}
|
|
|
|
operand->type = t_untyped_bool;
|
|
operand->mode = Addressing_Constant;
|
|
} else {
|
|
GB_PANIC("Unhandled #%.*s", LIT(name));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_len:
|
|
case BuiltinProc_cap: {
|
|
// proc len(Type) -> int
|
|
// proc cap(Type) -> int
|
|
Type *op_type = type_deref(operand->type);
|
|
Type *type = t_int;
|
|
AddressingMode mode = Addressing_Invalid;
|
|
ExactValue value = {};
|
|
if (is_type_string(op_type) && id == BuiltinProc_len) {
|
|
if (operand->mode == Addressing_Constant) {
|
|
mode = Addressing_Constant;
|
|
String str = operand->value.value_string;
|
|
value = exact_value_i64(str.len);
|
|
type = t_untyped_integer;
|
|
} else {
|
|
mode = Addressing_Value;
|
|
}
|
|
} else if (is_type_array(op_type)) {
|
|
Type *at = core_type(op_type);
|
|
mode = Addressing_Constant;
|
|
value = exact_value_i64(at->Array.count);
|
|
type = t_untyped_integer;
|
|
} else if (is_type_slice(op_type) && id == BuiltinProc_len) {
|
|
mode = Addressing_Value;
|
|
} else if (is_type_dynamic_array(op_type)) {
|
|
mode = Addressing_Value;
|
|
} else if (is_type_map(op_type)) {
|
|
mode = Addressing_Value;
|
|
}
|
|
|
|
if (mode == Addressing_Invalid) {
|
|
String name = builtin_procs[id].name;
|
|
gbString t = type_to_string(operand->type);
|
|
error(call, "'%.*s' is not supported for '%s'", LIT(name), t);
|
|
return false;
|
|
}
|
|
|
|
operand->mode = mode;
|
|
operand->value = value;
|
|
operand->type = type;
|
|
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
case BuiltinProc_new: {
|
|
// proc new(Type) -> ^Type
|
|
Operand op = {};
|
|
check_expr_or_type(c, &op, ce->args[0]);
|
|
Type *type = op.type;
|
|
if ((op.mode != Addressing_Type && type == nullptr) || type == t_invalid) {
|
|
error(ce->args[0], "Expected a type for 'new'");
|
|
return false;
|
|
}
|
|
operand->mode = Addressing_Value;
|
|
operand->type = alloc_type_pointer(type);
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
#if 0
|
|
case BuiltinProc_new_slice: {
|
|
// proc new_slice(Type, len: int) -> []Type
|
|
// proc new_slice(Type, len, cap: int) -> []Type
|
|
Operand op = {};
|
|
check_expr_or_type(c, &op, ce->args[0]);
|
|
Type *type = op.type;
|
|
if ((op.mode != Addressing_Type && type == nullptr) || type == t_invalid) {
|
|
error(ce->args[0], "Expected a type for 'new_slice'");
|
|
return false;
|
|
}
|
|
|
|
isize arg_count = ce->args.count;
|
|
if (arg_count < 2 || 3 < arg_count) {
|
|
error(ce->args[0], "'new_slice' expects 2 or 3 arguments, found %td", arg_count);
|
|
// NOTE(bill): Return the correct type to reduce errors
|
|
} else {
|
|
// If any are constant
|
|
i64 sizes[2] = {};
|
|
isize size_count = 0;
|
|
for (isize i = 1; i < arg_count; i++) {
|
|
i64 val = 0;
|
|
bool ok = check_index_value(c, ce->args[i], -1, &val);
|
|
if (ok && val >= 0) {
|
|
GB_ASSERT(size_count < gb_count_of(sizes));
|
|
sizes[size_count++] = val;
|
|
}
|
|
}
|
|
|
|
if (size_count == 2 && sizes[0] > sizes[1]) {
|
|
error(ce->args[1], "'new_slice' count and capacity are swapped");
|
|
// No need quit
|
|
}
|
|
}
|
|
|
|
operand->mode = Addressing_Value;
|
|
operand->type = alloc_type_slice(type);
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
case BuiltinProc_make: {
|
|
// proc make(Type, len: int) -> Type
|
|
// proc make(Type, len, cap: int) -> Type
|
|
Operand op = {};
|
|
check_expr_or_type(c, &op, ce->args[0]);
|
|
Type *type = op.type;
|
|
if ((op.mode != Addressing_Type && type == nullptr) || type == t_invalid) {
|
|
error(ce->args[0], "Expected a type for 'make'");
|
|
return false;
|
|
}
|
|
|
|
isize min_args = 0;
|
|
isize max_args = 1;
|
|
if (is_type_slice(type)) {
|
|
min_args = 2;
|
|
max_args = 2;
|
|
} else if (is_type_map(type)) {
|
|
min_args = 1;
|
|
max_args = 2;
|
|
} else if (is_type_dynamic_array(type)) {
|
|
min_args = 1;
|
|
max_args = 3;
|
|
} else {
|
|
gbString str = type_to_string(type);
|
|
error(call, "Cannot 'make' %s; type must be a slice, map, or dynamic array", str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
|
|
isize arg_count = ce->args.count;
|
|
if (arg_count < min_args || max_args < arg_count) {
|
|
error(ce->args[0], "'make' expects %td or %d argument, found %td", min_args, max_args, arg_count);
|
|
return false;
|
|
}
|
|
|
|
// If any are constant
|
|
i64 sizes[4] = {};
|
|
isize size_count = 0;
|
|
for (isize i = 1; i < arg_count; i++) {
|
|
i64 val = 0;
|
|
bool ok = check_index_value(c, false, ce->args[i], -1, &val);
|
|
if (ok && val >= 0) {
|
|
GB_ASSERT(size_count < gb_count_of(sizes));
|
|
sizes[size_count++] = val;
|
|
}
|
|
}
|
|
|
|
if (size_count == 2 && sizes[0] > sizes[1]) {
|
|
error(ce->args[1], "'make' count and capacity are swapped");
|
|
// No need quit
|
|
}
|
|
|
|
operand->mode = Addressing_Value;
|
|
operand->type = type;
|
|
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
case BuiltinProc_free: {
|
|
// proc free(^Type)
|
|
// proc free([]Type)
|
|
// proc free(string)
|
|
// proc free(map[K]T)
|
|
Type *type = operand->type;
|
|
bool ok = false;
|
|
if (is_type_pointer(type)) {
|
|
ok = true;
|
|
} else if (is_type_slice(type)) {
|
|
ok = true;
|
|
} else if (is_type_string(type)) {
|
|
ok = true;
|
|
} else if (is_type_dynamic_array(type)) {
|
|
ok = true;
|
|
} else if (is_type_dynamic_map(type)) {
|
|
ok = true;
|
|
}
|
|
|
|
if (!ok) {
|
|
gbString type_str = type_to_string(type);
|
|
error(operand->expr, "Invalid type for 'free', got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
|
|
operand->mode = Addressing_NoValue;
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
|
|
#if 0
|
|
case BuiltinProc_reserve: {
|
|
// proc reserve([dynamic]Type, count: int) {
|
|
// proc reserve(map[Key]Type, count: int) {
|
|
Type *type = operand->type;
|
|
if (!is_type_dynamic_array(type) && !is_type_dynamic_map(type)) {
|
|
gbString str = type_to_string(type);
|
|
error(operand->expr, "Expected a dynamic array or dynamic map, got '%s'", str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
|
|
AstNode *capacity = ce->args[1];
|
|
Operand op = {};
|
|
check_expr(c, &op, capacity);
|
|
if (op.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
Type *arg_type = base_type(op.type);
|
|
if (!is_type_integer(arg_type)) {
|
|
error(operand->expr, "'reserve' capacities must be an integer");
|
|
return false;
|
|
}
|
|
|
|
operand->type = nullptr;
|
|
operand->mode = Addressing_NoValue;
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
#if 0
|
|
case BuiltinProc_clear: {
|
|
Type *type = operand->type;
|
|
bool is_pointer = is_type_pointer(type);
|
|
type = base_type(type_deref(type));
|
|
if (!is_type_dynamic_array(type) && !is_type_map(type) && !is_type_slice(type)) {
|
|
gbString str = type_to_string(type);
|
|
error(operand->expr, "Invalid type for 'clear', got '%s'", str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
|
|
operand->type = nullptr;
|
|
operand->mode = Addressing_NoValue;
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
#if 0
|
|
case BuiltinProc_append: {
|
|
// proc append([dynamic]Type, item: ..Type)
|
|
// proc append([]Type, item: ..Type)
|
|
Operand prev_operand = *operand;
|
|
|
|
Type *type = operand->type;
|
|
bool is_pointer = is_type_pointer(type);
|
|
type = base_type(type_deref(type));
|
|
if (!is_type_dynamic_array(type) && !is_type_slice(type)) {
|
|
gbString str = type_to_string(type);
|
|
error(operand->expr, "Expected a slice or dynamic array, got '%s'", str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
|
|
bool is_addressable = operand->mode == Addressing_Variable;
|
|
if (is_pointer) {
|
|
is_addressable = true;
|
|
}
|
|
if (!is_addressable) {
|
|
error(operand->expr, "'append' can only operate on addressable values");
|
|
return false;
|
|
}
|
|
|
|
Type *elem = nullptr;
|
|
if (is_type_dynamic_array(type)) {
|
|
elem = type->DynamicArray.elem;
|
|
} else {
|
|
elem = type->Slice.elem;
|
|
}
|
|
Type *slice_elem = alloc_type_slice(elem);
|
|
|
|
Type *proc_type_params = alloc_type_tuple(c->allocator);
|
|
proc_type_params->Tuple.variables = gb_alloc_array(c->allocator, Entity *, 2);
|
|
proc_type_params->Tuple.variable_count = 2;
|
|
proc_type_params->Tuple.variables[0] = alloc_entity_param(c->allocator, nullptr, blank_token, operand->type, false, false);
|
|
proc_type_params->Tuple.variables[1] = alloc_entity_param(c->allocator, nullptr, blank_token, slice_elem, false, false);
|
|
Type *proc_type = alloc_type_proc(nullptr, proc_type_params, 2, nullptr, false, true, ProcCC_Odin);
|
|
|
|
check_call_arguments(c, &prev_operand, proc_type, call);
|
|
|
|
if (prev_operand.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
operand->mode = Addressing_Value;
|
|
operand->type = t_int;
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
#if 0
|
|
case BuiltinProc_delete: {
|
|
// proc delete(map[Key]Value, key: Key)
|
|
Type *type = operand->type;
|
|
if (!is_type_map(type)) {
|
|
gbString str = type_to_string(type);
|
|
error(operand->expr, "Expected a map, got '%s'", str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
|
|
Type *key = base_type(type)->Map.key;
|
|
Operand x = {Addressing_Invalid};
|
|
AstNode *key_node = ce->args[1];
|
|
Operand op = {};
|
|
check_expr(c, &op, key_node);
|
|
if (op.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
|
|
if (!check_is_assignable_to(c, &op, key)) {
|
|
gbString kt = type_to_string(key);
|
|
gbString ot = type_to_string(op.type);
|
|
error(operand->expr, "Expected a key of type '%s', got '%s'", key, ot);
|
|
gb_string_free(ot);
|
|
gb_string_free(kt);
|
|
return false;
|
|
}
|
|
|
|
operand->mode = Addressing_NoValue;
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
|
|
case BuiltinProc_size_of: {
|
|
// proc size_of(Type or expr) -> untyped int
|
|
Operand o = {};
|
|
check_expr_or_type(c, &o, ce->args[0]);
|
|
if (o.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
Type *t = o.type;
|
|
if (t == nullptr || t == t_invalid) {
|
|
error(ce->args[0], "Invalid argument for 'size_of'");
|
|
return false;
|
|
}
|
|
t = default_type(t);
|
|
|
|
operand->mode = Addressing_Constant;
|
|
operand->value = exact_value_i64(type_size_of(t));
|
|
operand->type = t_untyped_integer;
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_align_of: {
|
|
// proc align_of(Type or expr) -> untyped int
|
|
Operand o = {};
|
|
check_expr_or_type(c, &o, ce->args[0]);
|
|
if (o.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
Type *t = o.type;
|
|
if (t == nullptr || t == t_invalid) {
|
|
error(ce->args[0], "Invalid argument for 'align_of'");
|
|
return false;
|
|
}
|
|
t = default_type(t);
|
|
|
|
operand->mode = Addressing_Constant;
|
|
operand->value = exact_value_i64(type_align_of(t));
|
|
operand->type = t_untyped_integer;
|
|
|
|
break;
|
|
}
|
|
|
|
|
|
case BuiltinProc_offset_of: {
|
|
// proc offset_of(Type, field) -> uintptr
|
|
Operand op = {};
|
|
Type *bt = check_type(c, ce->args[0]);
|
|
Type *type = base_type(bt);
|
|
if (type == nullptr || type == t_invalid) {
|
|
error(ce->args[0], "Expected a type for 'offset_of'");
|
|
return false;
|
|
}
|
|
|
|
AstNode *field_arg = unparen_expr(ce->args[1]);
|
|
if (field_arg == nullptr ||
|
|
field_arg->kind != AstNode_Ident) {
|
|
error(field_arg, "Expected an identifier for field argument");
|
|
return false;
|
|
}
|
|
if (is_type_array(type)) {
|
|
error(field_arg, "Invalid type for 'offset_of'");
|
|
return false;
|
|
}
|
|
|
|
|
|
ast_node(arg, Ident, field_arg);
|
|
Selection sel = lookup_field(type, arg->token.string, operand->mode == Addressing_Type);
|
|
if (sel.entity == nullptr) {
|
|
gbString type_str = type_to_string(bt);
|
|
error(ce->args[0],
|
|
"'%s' has no field named '%.*s'", type_str, LIT(arg->token.string));
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
if (sel.indirect) {
|
|
gbString type_str = type_to_string(bt);
|
|
error(ce->args[0],
|
|
"Field '%.*s' is embedded via a pointer in '%s'", LIT(arg->token.string), type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
operand->mode = Addressing_Constant;
|
|
operand->value = exact_value_i64(type_offset_of_from_selection(type, sel));
|
|
operand->type = t_uintptr;
|
|
|
|
break;
|
|
}
|
|
|
|
|
|
case BuiltinProc_type_of: {
|
|
// proc type_of(val: Type) -> type(Type)
|
|
AstNode *expr = ce->args[0];
|
|
Operand o = {};
|
|
check_expr_or_type(c, &o, expr);
|
|
|
|
// check_assignment(c, operand, nullptr, str_lit("argument of 'type_of'"));
|
|
if (o.mode == Addressing_Invalid || o.mode == Addressing_Builtin) {
|
|
return false;
|
|
}
|
|
if (o.type == nullptr || o.type == t_invalid) {
|
|
error(o.expr, "Invalid argument to 'type_of'");
|
|
return false;
|
|
}
|
|
if (o.type == nullptr || o.type == t_invalid) {
|
|
error(o.expr, "Invalid argument to 'type_of'");
|
|
return false;
|
|
}
|
|
// NOTE(bill): Prevent type cycles for procedure declarations
|
|
if (c->context.curr_proc_sig == o.type) {
|
|
gbString s = expr_to_string(o.expr);
|
|
error(o.expr, "Invalid cyclic type usage from 'type_of', got '%s'", s);
|
|
gb_string_free(s);
|
|
return false;
|
|
}
|
|
|
|
if (is_type_polymorphic(o.type)) {
|
|
error(o.expr, "'type_of' of polymorphic type cannot be determined");
|
|
return false;
|
|
}
|
|
operand->mode = Addressing_Type;
|
|
operand->type = o.type;
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_type_info_of: {
|
|
// proc type_info_of(Type) -> ^Type_Info
|
|
if (c->context.scope->is_global) {
|
|
compiler_error("'type_info_of' Cannot be declared within a #shared_global_scope due to how the internals of the compiler works");
|
|
}
|
|
|
|
// NOTE(bill): The type information may not be setup yet
|
|
init_preload(c);
|
|
AstNode *expr = ce->args[0];
|
|
Operand o = {};
|
|
check_expr_or_type(c, &o, expr);
|
|
if (o.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
Type *t = o.type;
|
|
if (t == nullptr || t == t_invalid || is_type_polymorphic(operand->type)) {
|
|
error(ce->args[0], "Invalid argument for 'type_info_of'");
|
|
return false;
|
|
}
|
|
t = default_type(t);
|
|
|
|
add_type_info_type(c, t);
|
|
|
|
operand->mode = Addressing_Value;
|
|
operand->type = t_type_info_ptr;
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_swizzle: {
|
|
// proc swizzle(v: [N]T, ...int) -> [M]T
|
|
Type *type = base_type(operand->type);
|
|
if (!is_type_array(type)) {
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(call,
|
|
"You can only 'swizzle' an array, got '%s'",
|
|
type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
i64 max_count = type->Array.count;
|
|
Type *elem_type = type->Array.elem;
|
|
|
|
i64 arg_count = 0;
|
|
for_array(i, ce->args) {
|
|
if (i == 0) {
|
|
continue;
|
|
}
|
|
AstNode *arg = ce->args[i];
|
|
Operand op = {};
|
|
check_expr(c, &op, arg);
|
|
if (op.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
Type *arg_type = base_type(op.type);
|
|
if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) {
|
|
error(op.expr, "Indices to 'swizzle' must be constant integers");
|
|
return false;
|
|
}
|
|
|
|
if (op.value.value_integer < 0) {
|
|
error(op.expr, "Negative 'swizzle' index");
|
|
return false;
|
|
}
|
|
|
|
if (max_count <= op.value.value_integer) {
|
|
error(op.expr, "'swizzle' index exceeds length");
|
|
return false;
|
|
}
|
|
|
|
arg_count++;
|
|
}
|
|
|
|
if (arg_count > max_count) {
|
|
error(call, "Too many 'swizzle' indices, %td > %td", arg_count, max_count);
|
|
return false;
|
|
}
|
|
|
|
if (arg_count < max_count) {
|
|
operand->type = alloc_type_array(elem_type, arg_count);
|
|
}
|
|
operand->mode = Addressing_Value;
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_complex: {
|
|
// proc complex(real, imag: float_type) -> complex_type
|
|
Operand x = *operand;
|
|
Operand y = {};
|
|
|
|
// NOTE(bill): Invalid will be the default till fixed
|
|
operand->type = t_invalid;
|
|
operand->mode = Addressing_Invalid;
|
|
|
|
check_expr(c, &y, ce->args[1]);
|
|
if (y.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
|
|
convert_to_typed(c, &x, y.type); if (x.mode == Addressing_Invalid) return false;
|
|
convert_to_typed(c, &y, x.type); if (y.mode == Addressing_Invalid) return false;
|
|
if (x.mode == Addressing_Constant &&
|
|
y.mode == Addressing_Constant) {
|
|
if (is_type_numeric(x.type) && exact_value_imag(x.value).value_float == 0) {
|
|
x.type = t_untyped_float;
|
|
}
|
|
if (is_type_numeric(y.type) && exact_value_imag(y.value).value_float == 0) {
|
|
y.type = t_untyped_float;
|
|
}
|
|
}
|
|
|
|
if (!are_types_identical(x.type, y.type)) {
|
|
gbString tx = type_to_string(x.type);
|
|
gbString ty = type_to_string(y.type);
|
|
error(call, "Mismatched types to 'complex', '%s' vs '%s'", tx, ty);
|
|
gb_string_free(ty);
|
|
gb_string_free(tx);
|
|
return false;
|
|
}
|
|
|
|
if (!is_type_float(x.type)) {
|
|
gbString s = type_to_string(x.type);
|
|
error(call, "Arguments have type '%s', expected a floating point", s);
|
|
gb_string_free(s);
|
|
return false;
|
|
}
|
|
|
|
if (x.mode == Addressing_Constant && y.mode == Addressing_Constant) {
|
|
operand->value = exact_binary_operator_value(Token_Add, x.value, y.value);
|
|
operand->mode = Addressing_Constant;
|
|
} else {
|
|
operand->mode = Addressing_Value;
|
|
}
|
|
|
|
BasicKind kind = core_type(x.type)->Basic.kind;
|
|
switch (kind) {
|
|
// case Basic_f16: operand->type = t_complex32; break;
|
|
case Basic_f32: operand->type = t_complex64; break;
|
|
case Basic_f64: operand->type = t_complex128; break;
|
|
case Basic_UntypedFloat: operand->type = t_untyped_complex; break;
|
|
default: GB_PANIC("Invalid type"); break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_real:
|
|
case BuiltinProc_imag: {
|
|
// proc real(x: type) -> float_type
|
|
// proc imag(x: type) -> float_type
|
|
|
|
Operand *x = operand;
|
|
if (is_type_untyped(x->type)) {
|
|
if (x->mode == Addressing_Constant) {
|
|
if (is_type_numeric(x->type)) {
|
|
x->type = t_untyped_complex;
|
|
}
|
|
} else {
|
|
convert_to_typed(c, x, t_complex128);
|
|
if (x->mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!is_type_complex(x->type)) {
|
|
gbString s = type_to_string(x->type);
|
|
error(call, "Argument has type '%s', expected a complex type", s);
|
|
gb_string_free(s);
|
|
return false;
|
|
}
|
|
|
|
if (x->mode == Addressing_Constant) {
|
|
switch (id) {
|
|
case BuiltinProc_real: x->value = exact_value_real(x->value); break;
|
|
case BuiltinProc_imag: x->value = exact_value_imag(x->value); break;
|
|
}
|
|
} else {
|
|
x->mode = Addressing_Value;
|
|
}
|
|
|
|
BasicKind kind = core_type(x->type)->Basic.kind;
|
|
switch (kind) {
|
|
case Basic_complex64: x->type = t_f32; break;
|
|
case Basic_complex128: x->type = t_f64; break;
|
|
case Basic_UntypedComplex: x->type = t_untyped_float; break;
|
|
default: GB_PANIC("Invalid type"); break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_conj: {
|
|
// proc conj(x: type) -> type
|
|
Operand *x = operand;
|
|
if (is_type_complex(x->type)) {
|
|
if (x->mode == Addressing_Constant) {
|
|
ExactValue v = exact_value_to_complex(x->value);
|
|
f64 r = v.value_complex.real;
|
|
f64 i = v.value_complex.imag;
|
|
x->value = exact_value_complex(r, i);
|
|
x->mode = Addressing_Constant;
|
|
} else {
|
|
x->mode = Addressing_Value;
|
|
}
|
|
} else {
|
|
gbString s = type_to_string(x->type);
|
|
error(call, "Expected a complex or quaternion, got '%s'", s);
|
|
gb_string_free(s);
|
|
return false;
|
|
}
|
|
|
|
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
case BuiltinProc_slice_ptr: {
|
|
// proc slice_ptr(a: ^T, len: int) -> []T
|
|
// proc slice_ptr(a: ^T, len, cap: int) -> []T
|
|
// ^T cannot be rawptr
|
|
Type *ptr_type = base_type(operand->type);
|
|
if (!is_type_pointer(ptr_type)) {
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(call, "Expected a pointer to 'slice_ptr', got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
if (ptr_type == t_rawptr) {
|
|
error(call, "'rawptr' cannot have pointer arithmetic");
|
|
return false;
|
|
}
|
|
|
|
isize arg_count = ce->args.count;
|
|
if (arg_count < 2 || 3 < arg_count) {
|
|
error(ce->args[0], "'slice_ptr' expects 2 or 3 arguments, found %td", arg_count);
|
|
// NOTE(bill): Return the correct type to reduce errors
|
|
} else {
|
|
// If any are constant
|
|
i64 sizes[2] = {};
|
|
isize size_count = 0;
|
|
for (isize i = 1; i < arg_count; i++) {
|
|
i64 val = 0;
|
|
bool ok = check_index_value(c, false, ce->args[i], -1, &val);
|
|
if (ok && val >= 0) {
|
|
GB_ASSERT(size_count < gb_count_of(sizes));
|
|
sizes[size_count++] = val;
|
|
}
|
|
}
|
|
|
|
if (size_count == 2 && sizes[0] > sizes[1]) {
|
|
error(ce->args[1], "'slice_ptr' count and capacity are swapped");
|
|
// No need quit
|
|
}
|
|
}
|
|
operand->type = alloc_type_slice(ptr_type->Pointer.elem);
|
|
operand->mode = Addressing_Value;
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_slice_to_bytes: {
|
|
// proc slice_to_bytes(a: []T) -> []u8
|
|
Type *slice_type = base_type(operand->type);
|
|
if (!is_type_slice(slice_type)) {
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(call, "Expected a slice type, got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
operand->type = t_u8_slice;
|
|
operand->mode = Addressing_Value;
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
case BuiltinProc_expand_to_tuple: {
|
|
Type *type = base_type(operand->type);
|
|
if (!is_type_struct(type) &
|
|
!is_type_union(type)) {
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(call, "Expected a struct or union type, got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
gbAllocator a = c->allocator;
|
|
|
|
Type *tuple = alloc_type_tuple();
|
|
isize variable_count = type->Struct.fields.count;
|
|
array_init(&tuple->Tuple.variables, a, variable_count);
|
|
// TODO(bill): Should I copy each of the entities or is this good enough?
|
|
gb_memcopy_array(tuple->Tuple.variables.data, type->Struct.fields.data, variable_count);
|
|
|
|
operand->type = tuple;
|
|
operand->mode = Addressing_Value;
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_min: {
|
|
// proc min(a, b: ordered) -> ordered
|
|
Type *type = base_type(operand->type);
|
|
if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(call, "Expected a ordered numeric type to 'min', got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
AstNode *other_arg = ce->args[1];
|
|
Operand a = *operand;
|
|
Operand b = {};
|
|
check_expr(c, &b, other_arg);
|
|
if (b.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
|
|
gbString type_str = type_to_string(b.type);
|
|
error(call,
|
|
"Expected a ordered numeric type to 'min', got '%s'",
|
|
type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
if (a.mode == Addressing_Constant &&
|
|
b.mode == Addressing_Constant) {
|
|
ExactValue x = a.value;
|
|
ExactValue y = b.value;
|
|
|
|
operand->mode = Addressing_Constant;
|
|
if (compare_exact_values(Token_Lt, x, y)) {
|
|
operand->value = x;
|
|
operand->type = a.type;
|
|
} else {
|
|
operand->value = y;
|
|
operand->type = b.type;
|
|
}
|
|
} else {
|
|
operand->mode = Addressing_Value;
|
|
operand->type = type;
|
|
|
|
convert_to_typed(c, &a, b.type);
|
|
if (a.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
convert_to_typed(c, &b, a.type);
|
|
if (b.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
|
|
if (!are_types_identical(a.type, b.type)) {
|
|
gbString type_a = type_to_string(a.type);
|
|
gbString type_b = type_to_string(b.type);
|
|
error(call,
|
|
"Mismatched types to 'min', '%s' vs '%s'",
|
|
type_a, type_b);
|
|
gb_string_free(type_b);
|
|
gb_string_free(type_a);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_max: {
|
|
// proc min(a, b: ordered) -> ordered
|
|
Type *type = base_type(operand->type);
|
|
if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(call,
|
|
"Expected a ordered numeric or string type to 'max', got '%s'",
|
|
type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
AstNode *other_arg = ce->args[1];
|
|
Operand a = *operand;
|
|
Operand b = {};
|
|
check_expr(c, &b, other_arg);
|
|
if (b.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
|
|
gbString type_str = type_to_string(b.type);
|
|
error(call,
|
|
"Expected a ordered numeric or string type to 'max', got '%s'",
|
|
type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
if (a.mode == Addressing_Constant &&
|
|
b.mode == Addressing_Constant) {
|
|
ExactValue x = a.value;
|
|
ExactValue y = b.value;
|
|
|
|
operand->mode = Addressing_Constant;
|
|
if (compare_exact_values(Token_Gt, x, y)) {
|
|
operand->value = x;
|
|
operand->type = a.type;
|
|
} else {
|
|
operand->value = y;
|
|
operand->type = b.type;
|
|
}
|
|
} else {
|
|
operand->mode = Addressing_Value;
|
|
operand->type = type;
|
|
|
|
convert_to_typed(c, &a, b.type);
|
|
if (a.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
convert_to_typed(c, &b, a.type);
|
|
if (b.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
|
|
if (!are_types_identical(a.type, b.type)) {
|
|
gbString type_a = type_to_string(a.type);
|
|
gbString type_b = type_to_string(b.type);
|
|
error(call,
|
|
"Mismatched types to 'max', '%s' vs '%s'",
|
|
type_a, type_b);
|
|
gb_string_free(type_b);
|
|
gb_string_free(type_a);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_abs: {
|
|
// proc abs(n: numeric) -> numeric
|
|
if (!is_type_numeric(operand->type)) {
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(call, "Expected a numeric type to 'abs', got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Constant) {
|
|
switch (operand->value.kind) {
|
|
case ExactValue_Integer:
|
|
operand->value.value_integer = gb_abs(operand->value.value_integer);
|
|
break;
|
|
case ExactValue_Float:
|
|
operand->value.value_float = gb_abs(operand->value.value_float);
|
|
break;
|
|
case ExactValue_Complex: {
|
|
f64 r = operand->value.value_complex.real;
|
|
f64 i = operand->value.value_complex.imag;
|
|
operand->value = exact_value_float(gb_sqrt(r*r + i*i));
|
|
|
|
break;
|
|
}
|
|
default:
|
|
GB_PANIC("Invalid numeric constant");
|
|
break;
|
|
}
|
|
} else {
|
|
operand->mode = Addressing_Value;
|
|
}
|
|
|
|
if (is_type_complex(operand->type)) {
|
|
operand->type = base_complex_elem_type(operand->type);
|
|
}
|
|
GB_ASSERT(!is_type_complex(operand->type));
|
|
|
|
break;
|
|
}
|
|
|
|
case BuiltinProc_clamp: {
|
|
// proc clamp(a, min, max: ordered) -> ordered
|
|
Type *type = base_type(operand->type);
|
|
if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(call, "Expected a ordered numeric or string type to 'clamp', got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
AstNode *min_arg = ce->args[1];
|
|
AstNode *max_arg = ce->args[2];
|
|
Operand x = *operand;
|
|
Operand y = {};
|
|
Operand z = {};
|
|
|
|
check_expr(c, &y, min_arg);
|
|
if (y.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
if (!is_type_ordered(y.type) || !(is_type_numeric(y.type) || is_type_string(y.type))) {
|
|
gbString type_str = type_to_string(y.type);
|
|
error(call, "Expected a ordered numeric or string type to 'clamp', got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
check_expr(c, &z, max_arg);
|
|
if (z.mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
if (!is_type_ordered(z.type) || !(is_type_numeric(z.type) || is_type_string(z.type))) {
|
|
gbString type_str = type_to_string(z.type);
|
|
error(call, "Expected a ordered numeric or string type to 'clamp', got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
return false;
|
|
}
|
|
|
|
if (x.mode == Addressing_Constant &&
|
|
y.mode == Addressing_Constant &&
|
|
z.mode == Addressing_Constant) {
|
|
ExactValue a = x.value;
|
|
ExactValue b = y.value;
|
|
ExactValue c = z.value;
|
|
|
|
operand->mode = Addressing_Constant;
|
|
if (compare_exact_values(Token_Lt, a, b)) {
|
|
operand->value = b;
|
|
operand->type = y.type;
|
|
} else if (compare_exact_values(Token_Gt, a, c)) {
|
|
operand->value = c;
|
|
operand->type = z.type;
|
|
} else {
|
|
operand->value = a;
|
|
operand->type = x.type;
|
|
}
|
|
} else {
|
|
operand->mode = Addressing_Value;
|
|
operand->type = type;
|
|
|
|
convert_to_typed(c, &x, y.type);
|
|
if (x.mode == Addressing_Invalid) { return false; }
|
|
convert_to_typed(c, &y, x.type);
|
|
if (y.mode == Addressing_Invalid) { return false; }
|
|
convert_to_typed(c, &x, z.type);
|
|
if (x.mode == Addressing_Invalid) { return false; }
|
|
convert_to_typed(c, &z, x.type);
|
|
if (z.mode == Addressing_Invalid) { return false; }
|
|
convert_to_typed(c, &y, z.type);
|
|
if (y.mode == Addressing_Invalid) { return false; }
|
|
convert_to_typed(c, &z, y.type);
|
|
if (z.mode == Addressing_Invalid) { return false; }
|
|
|
|
if (!are_types_identical(x.type, y.type) || !are_types_identical(x.type, z.type)) {
|
|
gbString type_x = type_to_string(x.type);
|
|
gbString type_y = type_to_string(y.type);
|
|
gbString type_z = type_to_string(z.type);
|
|
error(call,
|
|
"Mismatched types to 'clamp', '%s', '%s', '%s'",
|
|
type_x, type_y, type_z);
|
|
gb_string_free(type_z);
|
|
gb_string_free(type_y);
|
|
gb_string_free(type_x);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
case BuiltinProc_transmute: {
|
|
Operand op = {};
|
|
check_expr_or_type(c, &op, ce->args[0]);
|
|
Type *t = op.type;
|
|
if ((op.mode != Addressing_Type && t == nullptr) || t == t_invalid) {
|
|
error(ce->args[0], "Expected a type for 'transmute'");
|
|
return false;
|
|
}
|
|
AstNode *expr = ce->args[1];
|
|
Operand *o = operand;
|
|
check_expr(c, o, expr);
|
|
if (o->mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
|
|
if (o->mode == Addressing_Constant) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot transmute a constant expression: '%s'", expr_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = expr;
|
|
return false;
|
|
}
|
|
|
|
if (is_type_untyped(o->type)) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot transmute untyped expression: '%s'", expr_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = expr;
|
|
return false;
|
|
}
|
|
|
|
i64 srcz = type_size_of(o->type);
|
|
i64 dstz = type_size_of(t);
|
|
if (srcz != dstz) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
gbString type_str = type_to_string(t);
|
|
error(o->expr, "Cannot transmute '%s' to '%s', %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
|
|
gb_string_free(type_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = expr;
|
|
return false;
|
|
}
|
|
|
|
o->mode = Addressing_Value;
|
|
o->type = t;
|
|
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
isize add_dependencies_from_unpacking(Checker *c, Entity **lhs, isize lhs_count, isize tuple_index, isize tuple_count) {
|
|
if (lhs != nullptr) {
|
|
for (isize j = 0; (tuple_index + j) < lhs_count && j < tuple_count; j++) {
|
|
Entity *e = lhs[tuple_index + j];
|
|
DeclInfo *decl = decl_info_of_entity(&c->info, e);
|
|
if (decl != nullptr) {
|
|
c->context.decl = decl; // will be reset by the 'defer' any way
|
|
for_array(k, decl->deps.entries) {
|
|
Entity *dep = decl->deps.entries[k].ptr;
|
|
add_declaration_dependency(c, dep); // TODO(bill): Should this be here?
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return tuple_count;
|
|
}
|
|
|
|
|
|
void check_unpack_arguments(Checker *c, Entity **lhs, isize lhs_count, Array<Operand> *operands, Array<AstNode *> rhs, bool allow_ok, bool *optional_ok_ = nullptr) {
|
|
bool optional_ok = false;
|
|
isize tuple_index = 0;
|
|
for_array(i, rhs) {
|
|
CheckerContext prev_context = c->context;
|
|
defer (c->context = prev_context);
|
|
|
|
Operand o = {};
|
|
|
|
Type *type_hint = nullptr;
|
|
|
|
if (lhs != nullptr && tuple_index < lhs_count) {
|
|
// NOTE(bill): override DeclInfo for dependency
|
|
Entity *e = lhs[tuple_index];
|
|
DeclInfo *decl = decl_info_of_entity(&c->info, e);
|
|
if (decl) c->context.decl = decl;
|
|
type_hint = e->type;
|
|
}
|
|
|
|
check_expr_base(c, &o, rhs[i], type_hint);
|
|
if (o.mode == Addressing_NoValue) {
|
|
error_operand_no_value(&o);
|
|
o.mode = Addressing_Invalid;
|
|
}
|
|
|
|
|
|
if (o.type == nullptr || o.type->kind != Type_Tuple) {
|
|
if (allow_ok && lhs_count == 2 && rhs.count == 1 &&
|
|
(o.mode == Addressing_MapIndex || o.mode == Addressing_OptionalOk)) {
|
|
Type *tuple = make_optional_ok_type(o.type);
|
|
add_type_and_value(&c->info, o.expr, o.mode, tuple, o.value);
|
|
|
|
Operand val = o;
|
|
Operand ok = o;
|
|
val.mode = Addressing_Value;
|
|
ok.mode = Addressing_Value;
|
|
ok.type = t_bool;
|
|
array_add(operands, val);
|
|
array_add(operands, ok);
|
|
|
|
optional_ok = true;
|
|
tuple_index += add_dependencies_from_unpacking(c, lhs, lhs_count, tuple_index, 2);
|
|
} else {
|
|
array_add(operands, o);
|
|
tuple_index += 1;
|
|
}
|
|
} else {
|
|
TypeTuple *tuple = &o.type->Tuple;
|
|
for_array(j, tuple->variables) {
|
|
o.type = tuple->variables[j]->type;
|
|
array_add(operands, o);
|
|
}
|
|
|
|
isize count = tuple->variables.count;
|
|
tuple_index += add_dependencies_from_unpacking(c, lhs, lhs_count, tuple_index, count);
|
|
}
|
|
}
|
|
|
|
if (optional_ok_) *optional_ok_ = optional_ok;
|
|
}
|
|
|
|
|
|
|
|
CALL_ARGUMENT_CHECKER(check_call_arguments_internal) {
|
|
ast_node(ce, CallExpr, call);
|
|
GB_ASSERT(is_type_proc(proc_type));
|
|
proc_type = base_type(proc_type);
|
|
TypeProc *pt = &proc_type->Proc;
|
|
|
|
isize param_count = 0;
|
|
isize param_count_excluding_defaults = 0;
|
|
bool variadic = pt->variadic;
|
|
bool vari_expand = (ce->ellipsis.pos.line != 0);
|
|
i64 score = 0;
|
|
bool show_error = show_error_mode == CallArgumentMode_ShowErrors;
|
|
|
|
|
|
TypeTuple *param_tuple = nullptr;
|
|
|
|
if (pt->params != nullptr) {
|
|
param_tuple = &pt->params->Tuple;
|
|
|
|
param_count = param_tuple->variables.count;
|
|
if (variadic) {
|
|
for (isize i = param_count-1; i >= 0; i--) {
|
|
Entity *e = param_tuple->variables[i];
|
|
if (e->kind == Entity_TypeName) {
|
|
break;
|
|
}
|
|
|
|
if (e->kind == Entity_Variable) {
|
|
if (e->Variable.default_value.kind != ExactValue_Invalid ||
|
|
e->Variable.default_is_nil ||
|
|
e->Variable.default_is_location) {
|
|
param_count--;
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
param_count--;
|
|
}
|
|
}
|
|
|
|
param_count_excluding_defaults = param_count;
|
|
if (param_tuple != nullptr) {
|
|
for (isize i = param_count-1; i >= 0; i--) {
|
|
Entity *e = param_tuple->variables[i];
|
|
if (e->kind == Entity_TypeName) {
|
|
break;
|
|
}
|
|
|
|
if (e->kind == Entity_Variable) {
|
|
if (e->Variable.default_value.kind != ExactValue_Invalid ||
|
|
e->Variable.default_is_nil ||
|
|
e->Variable.default_is_location) {
|
|
param_count_excluding_defaults--;
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
CallArgumentError err = CallArgumentError_None;
|
|
Type *final_proc_type = proc_type;
|
|
Entity *gen_entity = nullptr;
|
|
|
|
if (vari_expand && !variadic) {
|
|
if (show_error) {
|
|
error(ce->ellipsis,
|
|
"Cannot use '...' in call to a non-variadic procedure: '%.*s'",
|
|
LIT(ce->proc->Ident.token.string));
|
|
}
|
|
err = CallArgumentError_NonVariadicExpand;
|
|
} else if (vari_expand && pt->c_vararg) {
|
|
if (show_error) {
|
|
error(ce->ellipsis,
|
|
"Cannot use '...' in call to a '#c_vararg' variadic procedure: '%.*s'",
|
|
LIT(ce->proc->Ident.token.string));
|
|
}
|
|
err = CallArgumentError_NonVariadicExpand;
|
|
} else if (operands.count == 0 && param_count_excluding_defaults == 0) {
|
|
err = CallArgumentError_None;
|
|
} else {
|
|
i32 error_code = 0;
|
|
if (operands.count < param_count_excluding_defaults) {
|
|
error_code = -1;
|
|
} else if (!variadic && operands.count > param_count) {
|
|
error_code = +1;
|
|
}
|
|
if (error_code != 0) {
|
|
err = CallArgumentError_TooManyArguments;
|
|
char *err_fmt = "Too many arguments for '%s', expected %td arguments";
|
|
if (error_code < 0) {
|
|
err = CallArgumentError_TooFewArguments;
|
|
err_fmt = "Too few arguments for '%s', expected %td arguments";
|
|
}
|
|
|
|
if (show_error) {
|
|
gbString proc_str = expr_to_string(ce->proc);
|
|
error(call, err_fmt, proc_str, param_count_excluding_defaults);
|
|
gb_string_free(proc_str);
|
|
}
|
|
} else {
|
|
// NOTE(bill): Generate the procedure type for this generic instance
|
|
PolyProcData poly_proc_data = {};
|
|
|
|
if (pt->is_polymorphic && !pt->is_poly_specialized) {
|
|
if (find_or_generate_polymorphic_procedure_from_parameters(c, entity, &operands, &poly_proc_data)) {
|
|
gen_entity = poly_proc_data.gen_entity;
|
|
GB_ASSERT(is_type_proc(gen_entity->type));
|
|
final_proc_type = gen_entity->type;
|
|
}
|
|
}
|
|
|
|
GB_ASSERT(is_type_proc(final_proc_type));
|
|
TypeProc *pt = &final_proc_type->Proc;
|
|
|
|
GB_ASSERT(pt->params != nullptr);
|
|
auto sig_params = pt->params->Tuple.variables;
|
|
isize operand_index = 0;
|
|
isize max_operand_count = gb_min(param_count, operands.count);
|
|
for (; operand_index < max_operand_count; operand_index++) {
|
|
Entity *e = sig_params[operand_index];
|
|
Type *t = e->type;
|
|
Operand o = operands[operand_index];
|
|
if (e->kind == Entity_TypeName) {
|
|
// GB_ASSERT(!variadic);
|
|
if (o.mode == Addressing_Invalid) {
|
|
continue;
|
|
} else if (o.mode != Addressing_Type) {
|
|
if (show_error) {
|
|
error(o.expr, "Expected a type for the argument '%.*s'", LIT(e->token.string));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
|
|
if (are_types_identical(e->type, o.type)) {
|
|
score += assign_score_function(1);
|
|
} else {
|
|
score += assign_score_function(10);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
|
|
i64 s = 0;
|
|
if (!check_is_assignable_to_with_score(c, &o, t, &s)) {
|
|
if (show_error) {
|
|
check_assignment(c, &o, t, str_lit("argument"));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
score += s;
|
|
}
|
|
|
|
if (variadic) {
|
|
bool variadic_expand = false;
|
|
Type *slice = sig_params[param_count]->type;
|
|
GB_ASSERT(is_type_slice(slice));
|
|
Type *elem = base_type(slice)->Slice.elem;
|
|
Type *t = elem;
|
|
for (; operand_index < operands.count; operand_index++) {
|
|
Operand o = operands[operand_index];
|
|
if (vari_expand) {
|
|
variadic_expand = true;
|
|
t = slice;
|
|
if (operand_index != param_count) {
|
|
if (show_error) {
|
|
error(o.expr, "'...' in a variadic procedure can only have one variadic argument at the end");
|
|
}
|
|
if (data) {
|
|
data->score = score;
|
|
data->result_type = final_proc_type->Proc.results;
|
|
data->gen_entity = gen_entity;
|
|
}
|
|
return CallArgumentError_MultipleVariadicExpand;
|
|
}
|
|
}
|
|
i64 s = 0;
|
|
if (!check_is_assignable_to_with_score(c, &o, t, &s)) {
|
|
if (show_error) {
|
|
check_assignment(c, &o, t, str_lit("argument"));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
score += s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (data) {
|
|
data->score = score;
|
|
data->result_type = final_proc_type->Proc.results;
|
|
data->gen_entity = gen_entity;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
bool is_call_expr_field_value(AstNodeCallExpr *ce) {
|
|
GB_ASSERT(ce != nullptr);
|
|
|
|
if (ce->args.count == 0) {
|
|
return false;
|
|
}
|
|
return ce->args[0]->kind == AstNode_FieldValue;
|
|
}
|
|
|
|
isize lookup_procedure_parameter(TypeProc *pt, String parameter_name) {
|
|
isize param_count = pt->param_count;
|
|
for (isize i = 0; i < param_count; i++) {
|
|
Entity *e = pt->params->Tuple.variables[i];
|
|
String name = e->token.string;
|
|
if (is_blank_ident(name)) {
|
|
continue;
|
|
}
|
|
if (name == parameter_name) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
isize lookup_procedure_result(TypeProc *pt, String result_name) {
|
|
isize result_count = pt->result_count;
|
|
for (isize i = 0; i < result_count; i++) {
|
|
Entity *e = pt->results->Tuple.variables[i];
|
|
String name = e->token.string;
|
|
if (is_blank_ident(name)) {
|
|
continue;
|
|
}
|
|
if (name == result_name) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
CALL_ARGUMENT_CHECKER(check_named_call_arguments) {
|
|
ast_node(ce, CallExpr, call);
|
|
GB_ASSERT(is_type_proc(proc_type));
|
|
TypeProc *pt = &base_type(proc_type)->Proc;
|
|
|
|
i64 score = 0;
|
|
bool show_error = show_error_mode == CallArgumentMode_ShowErrors;
|
|
CallArgumentError err = CallArgumentError_None;
|
|
|
|
gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
|
|
defer (gb_temp_arena_memory_end(tmp));
|
|
|
|
isize param_count = pt->param_count;
|
|
bool *visited = gb_alloc_array(c->tmp_allocator, bool, param_count);
|
|
|
|
auto ordered_operands = array_make<Operand>(c->tmp_allocator, param_count);
|
|
|
|
for_array(i, ce->args) {
|
|
AstNode *arg = ce->args[i];
|
|
ast_node(fv, FieldValue, arg);
|
|
if (fv->field->kind != AstNode_Ident) {
|
|
if (show_error) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(arg, "Invalid parameter name '%s' in procedure call", expr_str);
|
|
gb_string_free(expr_str);
|
|
}
|
|
err = CallArgumentError_InvalidFieldValue;
|
|
continue;
|
|
}
|
|
String name = fv->field->Ident.token.string;
|
|
isize index = lookup_procedure_parameter(pt, name);
|
|
if (index < 0) {
|
|
if (show_error) {
|
|
error(arg, "No parameter named '%.*s' for this procedure type", LIT(name));
|
|
}
|
|
err = CallArgumentError_ParameterNotFound;
|
|
continue;
|
|
}
|
|
if (visited[index]) {
|
|
if (show_error) {
|
|
error(arg, "Duplicate parameter '%.*s' in procedure call", LIT(name));
|
|
}
|
|
err = CallArgumentError_DuplicateParameter;
|
|
continue;
|
|
}
|
|
|
|
visited[index] = true;
|
|
ordered_operands[index] = operands[i];
|
|
}
|
|
|
|
// NOTE(bill): Check for default values and missing parameters
|
|
isize param_count_to_check = param_count;
|
|
if (pt->variadic) {
|
|
param_count_to_check--;
|
|
}
|
|
for (isize i = 0; i < param_count_to_check; i++) {
|
|
if (!visited[i]) {
|
|
Entity *e = pt->params->Tuple.variables[i];
|
|
if (is_blank_ident(e->token)) {
|
|
continue;
|
|
}
|
|
if (e->kind == Entity_Variable) {
|
|
if (e->Variable.default_value.kind != ExactValue_Invalid) {
|
|
score += assign_score_function(1);
|
|
continue;
|
|
} else if (e->Variable.default_is_nil) {
|
|
score += assign_score_function(1);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (show_error) {
|
|
if (e->kind == Entity_TypeName) {
|
|
error(call, "Type parameter '%.*s' is missing in procedure call",
|
|
LIT(e->token.string));
|
|
} else if (e->kind == Entity_Constant && e->Constant.value.kind != ExactValue_Invalid) {
|
|
// Ignore
|
|
} else {
|
|
gbString str = type_to_string(e->type);
|
|
error(call, "Parameter '%.*s' of type '%s' is missing in procedure call",
|
|
LIT(e->token.string), str);
|
|
gb_string_free(str);
|
|
}
|
|
}
|
|
err = CallArgumentError_ParameterMissing;
|
|
}
|
|
}
|
|
|
|
Entity *gen_entity = nullptr;
|
|
if (pt->is_polymorphic && !pt->is_poly_specialized && err == CallArgumentError_None) {
|
|
PolyProcData poly_proc_data = {};
|
|
if (find_or_generate_polymorphic_procedure_from_parameters(c, entity, &ordered_operands, &poly_proc_data)) {
|
|
gen_entity = poly_proc_data.gen_entity;
|
|
Type *gept = base_type(gen_entity->type);
|
|
GB_ASSERT(is_type_proc(gept));
|
|
pt = &gept->Proc;
|
|
}
|
|
}
|
|
|
|
|
|
for (isize i = 0; i < param_count; i++) {
|
|
Operand *o = &ordered_operands[i];
|
|
if (o->mode == Addressing_Invalid) {
|
|
continue;
|
|
}
|
|
Entity *e = pt->params->Tuple.variables[i];
|
|
|
|
if (e->kind == Entity_TypeName) {
|
|
GB_ASSERT(pt->is_polymorphic);
|
|
if (o->mode != Addressing_Type) {
|
|
if (show_error) {
|
|
error(o->expr, "Expected a type for the argument '%.*s'", LIT(e->token.string));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
if (are_types_identical(e->type, o->type)) {
|
|
score += assign_score_function(1);
|
|
} else {
|
|
score += assign_score_function(10);
|
|
}
|
|
} else {
|
|
i64 s = 0;
|
|
if (!check_is_assignable_to_with_score(c, o, e->type, &s)) {
|
|
if (show_error) {
|
|
check_assignment(c, o, e->type, str_lit("procedure argument"));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
score += s;
|
|
}
|
|
}
|
|
|
|
if (data) {
|
|
data->score = score;
|
|
data->result_type = pt->results;
|
|
data->gen_entity = gen_entity;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
CallArgumentData check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) {
|
|
ast_node(ce, CallExpr, call);
|
|
|
|
CallArgumentCheckerType *call_checker = check_call_arguments_internal;
|
|
Array<Operand> operands = {};
|
|
defer (array_free(&operands));
|
|
|
|
Type *result_type = t_invalid;
|
|
|
|
if (is_call_expr_field_value(ce)) {
|
|
call_checker = check_named_call_arguments;
|
|
|
|
operands = array_make<Operand>(heap_allocator(), ce->args.count);
|
|
for_array(i, ce->args) {
|
|
AstNode *arg = ce->args[i];
|
|
ast_node(fv, FieldValue, arg);
|
|
check_expr_or_type(c, &operands[i], fv->value);
|
|
}
|
|
|
|
bool vari_expand = (ce->ellipsis.pos.line != 0);
|
|
if (vari_expand) {
|
|
// error(ce->ellipsis, "Invalid use of '...' with 'field = value' call'");
|
|
}
|
|
|
|
} else {
|
|
operands = array_make<Operand>(heap_allocator(), 0, 2*ce->args.count);
|
|
check_unpack_arguments(c, nullptr, -1, &operands, ce->args, false);
|
|
}
|
|
|
|
if (operand->mode == Addressing_ProcGroup) {
|
|
check_entity_decl(c, operand->proc_group, nullptr, nullptr);
|
|
|
|
Array<Entity *> procs = proc_group_entities(c, *operand);
|
|
|
|
ValidIndexAndScore *valids = gb_alloc_array(heap_allocator(), ValidIndexAndScore, procs.count);
|
|
isize valid_count = 0;
|
|
defer (gb_free(heap_allocator(), valids));
|
|
|
|
gbString expr_name = expr_to_string(operand->expr);
|
|
defer (gb_string_free(expr_name));
|
|
|
|
for_array(i, procs) {
|
|
Entity *p = procs[i];
|
|
check_entity_decl(c, p, nullptr, nullptr);
|
|
Type *pt = base_type(p->type);
|
|
if (pt != nullptr && is_type_proc(pt)) {
|
|
CallArgumentError err = CallArgumentError_None;
|
|
CallArgumentData data = {};
|
|
CheckerContext prev_context = c->context;
|
|
defer (c->context = prev_context);
|
|
c->context.no_polymorphic_errors = true;
|
|
c->context.allow_polymorphic_types = is_type_polymorphic(pt);
|
|
|
|
err = call_checker(c, call, pt, p, operands, CallArgumentMode_NoErrors, &data);
|
|
|
|
if (err == CallArgumentError_None) {
|
|
valids[valid_count].index = i;
|
|
valids[valid_count].score = data.score;
|
|
valid_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (valid_count > 1) {
|
|
gb_sort_array(valids, valid_count, valid_index_and_score_cmp);
|
|
i64 best_score = valids[0].score;
|
|
Entity *best_entity = procs[valids[0].index];
|
|
for (isize i = 1; i < valid_count; i++) {
|
|
if (best_score > valids[i].score) {
|
|
valid_count = i;
|
|
break;
|
|
}
|
|
if (best_entity == procs[valids[i].index]) {
|
|
valid_count = i;
|
|
break;
|
|
}
|
|
best_score = valids[i].score;
|
|
}
|
|
}
|
|
|
|
|
|
if (valid_count == 0) {
|
|
error(operand->expr, "No procedures or ambiguous call for procedure group '%s' that match with the given arguments", expr_name);
|
|
gb_printf_err("\tGiven argument types: (");
|
|
for_array(i, operands) {
|
|
Operand o = operands[i];
|
|
if (i > 0) gb_printf_err(", ");
|
|
gbString type = type_to_string(o.type);
|
|
defer (gb_string_free(type));
|
|
gb_printf_err("%s", type);
|
|
}
|
|
gb_printf_err(")\n");
|
|
|
|
if (procs.count > 0) {
|
|
gb_printf_err("Did you mean to use one of the following:\n");
|
|
}
|
|
for_array(i, procs) {
|
|
Entity *proc = procs[i];
|
|
TokenPos pos = proc->token.pos;
|
|
Type *t = base_type(proc->type);
|
|
if (t == t_invalid) continue;
|
|
GB_ASSERT(t->kind == Type_Proc);
|
|
gbString pt;
|
|
defer (gb_string_free(pt));
|
|
if (t->Proc.node != nullptr) {
|
|
pt = expr_to_string(t->Proc.node);
|
|
} else {
|
|
pt = type_to_string(t);
|
|
}
|
|
String name = proc->token.string;
|
|
|
|
char const *sep = "::";
|
|
if (proc->kind == Entity_Variable) {
|
|
sep = ":=";
|
|
}
|
|
// gb_printf_err("\t%.*s %s %s at %.*s(%td:%td) with score %lld\n", LIT(name), sep, pt, LIT(pos.file), pos.line, pos.column, cast(long long)valids[i].score);
|
|
gb_printf_err("\t%.*s %s %s at %.*s(%td:%td)\n", LIT(name), sep, pt, LIT(pos.file), pos.line, pos.column);
|
|
}
|
|
if (procs.count > 0) {
|
|
gb_printf_err("\n");
|
|
}
|
|
result_type = t_invalid;
|
|
} else if (valid_count > 1) {
|
|
error(operand->expr, "Ambiguous procedure group call '%s' that match with the given arguments", expr_name);
|
|
gb_printf_err("\tGiven argument types: (");
|
|
for_array(i, operands) {
|
|
Operand o = operands[i];
|
|
if (i > 0) gb_printf_err(", ");
|
|
gbString type = type_to_string(o.type);
|
|
defer (gb_string_free(type));
|
|
gb_printf_err("%s", type);
|
|
}
|
|
gb_printf_err(")\n");
|
|
|
|
for (isize i = 0; i < valid_count; i++) {
|
|
Entity *proc = procs[valids[i].index];
|
|
TokenPos pos = proc->token.pos;
|
|
Type *t = base_type(proc->type); GB_ASSERT(t->kind == Type_Proc);
|
|
gbString pt;
|
|
defer (gb_string_free(pt));
|
|
if (t->Proc.node != nullptr) {
|
|
pt = expr_to_string(t->Proc.node);
|
|
} else {
|
|
pt = type_to_string(t);
|
|
}
|
|
String name = proc->token.string;
|
|
char const *sep = "::";
|
|
if (proc->kind == Entity_Variable) {
|
|
sep = ":=";
|
|
}
|
|
gb_printf_err("\t%.*s %s %s at %.*s(%td:%td)\n", LIT(name), sep, pt, LIT(pos.file), pos.line, pos.column);
|
|
}
|
|
result_type = t_invalid;
|
|
} else {
|
|
AstNode *ident = operand->expr;
|
|
while (ident->kind == AstNode_SelectorExpr) {
|
|
AstNode *s = ident->SelectorExpr.selector;
|
|
ident = s;
|
|
}
|
|
|
|
Entity *e = procs[valids[0].index];
|
|
|
|
proc_type = e->type;
|
|
CallArgumentData data = {};
|
|
CallArgumentError err = call_checker(c, call, proc_type, e, operands, CallArgumentMode_ShowErrors, &data);
|
|
Entity *entity_to_use = data.gen_entity != nullptr ? data.gen_entity : e;
|
|
add_entity_use(c, ident, entity_to_use);
|
|
return data;
|
|
}
|
|
} else {
|
|
AstNode *ident = operand->expr;
|
|
while (ident->kind == AstNode_SelectorExpr) {
|
|
AstNode *s = ident->SelectorExpr.selector;
|
|
ident = s;
|
|
}
|
|
|
|
Entity *e = entity_of_ident(&c->info, ident);
|
|
CallArgumentData data = {};
|
|
CallArgumentError err = call_checker(c, call, proc_type, e, operands, CallArgumentMode_ShowErrors, &data);
|
|
Entity *entity_to_use = data.gen_entity != nullptr ? data.gen_entity : e;
|
|
add_entity_use(c, ident, entity_to_use);
|
|
return data;
|
|
}
|
|
|
|
CallArgumentData data = {};
|
|
data.result_type = t_invalid;
|
|
return data;
|
|
}
|
|
|
|
|
|
isize lookup_polymorphic_struct_parameter(TypeStruct *st, String parameter_name) {
|
|
if (!st->is_polymorphic) return -1;
|
|
|
|
TypeTuple *params = &st->polymorphic_params->Tuple;
|
|
for_array(i, params->variables) {
|
|
Entity *e = params->variables[i];
|
|
String name = e->token.string;
|
|
if (is_blank_ident(name)) {
|
|
continue;
|
|
}
|
|
if (name == parameter_name) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
CallArgumentError check_polymorphic_struct_type(Checker *c, Operand *operand, AstNode *call) {
|
|
ast_node(ce, CallExpr, call);
|
|
|
|
Type *original_type = operand->type;
|
|
Type *struct_type = base_type(operand->type);
|
|
GB_ASSERT(struct_type->kind == Type_Struct);
|
|
TypeStruct *st = &struct_type->Struct;
|
|
GB_ASSERT(st->is_polymorphic);
|
|
|
|
bool show_error = true;
|
|
|
|
Array<Operand> operands = {};
|
|
defer (array_free(&operands));
|
|
|
|
bool named_fields = false;
|
|
|
|
if (is_call_expr_field_value(ce)) {
|
|
named_fields = true;
|
|
operands = array_make<Operand>(heap_allocator(), ce->args.count);
|
|
for_array(i, ce->args) {
|
|
AstNode *arg = ce->args[i];
|
|
ast_node(fv, FieldValue, arg);
|
|
check_expr_or_type(c, &operands[i], fv->value);
|
|
}
|
|
|
|
bool vari_expand = (ce->ellipsis.pos.line != 0);
|
|
if (vari_expand) {
|
|
error(ce->ellipsis, "Invalid use of '...' in a polymorphic type call'");
|
|
}
|
|
|
|
} else {
|
|
operands = array_make<Operand>(heap_allocator(), 0, 2*ce->args.count);
|
|
check_unpack_arguments(c, nullptr, -1, &operands, ce->args, false);
|
|
}
|
|
|
|
CallArgumentError err = CallArgumentError_None;
|
|
|
|
TypeTuple *tuple = &st->polymorphic_params->Tuple;
|
|
isize param_count = tuple->variables.count;
|
|
|
|
Array<Operand> ordered_operands = operands;
|
|
if (named_fields) {
|
|
bool *visited = gb_alloc_array(c->allocator, bool, param_count);
|
|
|
|
ordered_operands = array_make<Operand>(c->tmp_allocator, param_count);
|
|
|
|
for_array(i, ce->args) {
|
|
AstNode *arg = ce->args[i];
|
|
ast_node(fv, FieldValue, arg);
|
|
if (fv->field->kind != AstNode_Ident) {
|
|
if (show_error) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(arg, "Invalid parameter name '%s' in polymorphic type call", expr_str);
|
|
gb_string_free(expr_str);
|
|
}
|
|
err = CallArgumentError_InvalidFieldValue;
|
|
continue;
|
|
}
|
|
String name = fv->field->Ident.token.string;
|
|
isize index = lookup_polymorphic_struct_parameter(st, name);
|
|
if (index < 0) {
|
|
if (show_error) {
|
|
error(arg, "No parameter named '%.*s' for this polymorphic type", LIT(name));
|
|
}
|
|
err = CallArgumentError_ParameterNotFound;
|
|
continue;
|
|
}
|
|
if (visited[index]) {
|
|
if (show_error) {
|
|
error(arg, "Duplicate parameter '%.*s' in polymorphic type", LIT(name));
|
|
}
|
|
err = CallArgumentError_DuplicateParameter;
|
|
continue;
|
|
}
|
|
|
|
visited[index] = true;
|
|
ordered_operands[index] = operands[i];
|
|
}
|
|
|
|
for (isize i = 0; i < param_count; i++) {
|
|
if (!visited[i]) {
|
|
Entity *e = tuple->variables[i];
|
|
if (is_blank_ident(e->token)) {
|
|
continue;
|
|
}
|
|
|
|
if (show_error) {
|
|
if (e->kind == Entity_TypeName) {
|
|
error(call, "Type parameter '%.*s' is missing in polymorphic type call",
|
|
LIT(e->token.string));
|
|
} else {
|
|
gbString str = type_to_string(e->type);
|
|
error(call, "Parameter '%.*s' of type '%s' is missing in polymorphic type call",
|
|
LIT(e->token.string), str);
|
|
gb_string_free(str);
|
|
}
|
|
}
|
|
err = CallArgumentError_ParameterMissing;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (err != 0) {
|
|
operand->mode = Addressing_Invalid;
|
|
return err;
|
|
}
|
|
|
|
i64 score = 0;
|
|
for (isize i = 0; i < param_count; i++) {
|
|
Operand *o = &ordered_operands[i];
|
|
if (o->mode == Addressing_Invalid) {
|
|
continue;
|
|
}
|
|
Entity *e = tuple->variables[i];
|
|
|
|
if (e->kind == Entity_TypeName) {
|
|
if (o->mode != Addressing_Type) {
|
|
if (show_error) {
|
|
error(o->expr, "Expected a type for the argument '%.*s'", LIT(e->token.string));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
if (are_types_identical(e->type, o->type)) {
|
|
score += assign_score_function(1);
|
|
} else {
|
|
score += assign_score_function(10);
|
|
}
|
|
} else {
|
|
i64 s = 0;
|
|
if (!check_is_assignable_to_with_score(c, o, e->type, &s)) {
|
|
if (show_error) {
|
|
check_assignment(c, o, e->type, str_lit("polymorphic type argument"));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
o->type = e->type;
|
|
if (o->mode != Addressing_Constant) {
|
|
if (show_error) {
|
|
error(o->expr, "Expected a constant value for this polymorphic type argument");
|
|
}
|
|
err = CallArgumentError_NoneConstantParameter;
|
|
}
|
|
score += s;
|
|
}
|
|
}
|
|
|
|
if (param_count < ordered_operands.count) {
|
|
error(call, "Too many polymorphic type arguments, expected %td, got %td", param_count, ordered_operands.count);
|
|
err = CallArgumentError_TooManyArguments;
|
|
} else if (param_count > ordered_operands.count) {
|
|
error(call, "Too few polymorphic type arguments, expected %td, got %td", param_count, ordered_operands.count);
|
|
err = CallArgumentError_TooFewArguments;
|
|
}
|
|
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
|
|
{
|
|
// TODO(bill): Check for previous types
|
|
gbAllocator a = c->allocator;
|
|
|
|
Entity *found_entity = find_polymorphic_struct_entity(c, original_type, param_count, ordered_operands);
|
|
if (found_entity) {
|
|
operand->mode = Addressing_Type;
|
|
operand->type = found_entity->type;
|
|
return err;
|
|
}
|
|
|
|
String generated_name = make_string_c(expr_to_string(call));
|
|
|
|
Type *named_type = alloc_type_named(generated_name, nullptr, nullptr);
|
|
AstNode *node = clone_ast_node(a, st->node);
|
|
Type *struct_type = alloc_type_struct();
|
|
struct_type->Struct.node = node;
|
|
struct_type->Struct.polymorphic_parent = original_type;
|
|
set_base_type(named_type, struct_type);
|
|
|
|
check_open_scope(c, node);
|
|
check_struct_type(c, struct_type, node, &ordered_operands, named_type, original_type);
|
|
check_close_scope(c);
|
|
|
|
operand->mode = Addressing_Type;
|
|
operand->type = named_type;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
|
|
ExprKind check_call_expr(Checker *c, Operand *operand, AstNode *call) {
|
|
ast_node(ce, CallExpr, call);
|
|
if (ce->proc != nullptr &&
|
|
ce->proc->kind == AstNode_BasicDirective) {
|
|
ast_node(bd, BasicDirective, ce->proc);
|
|
String name = bd->name;
|
|
if (name == "location" || name == "assert") {
|
|
operand->mode = Addressing_Builtin;
|
|
operand->builtin_id = BuiltinProc_DIRECTIVE;
|
|
operand->expr = ce->proc;
|
|
operand->type = t_invalid;
|
|
add_type_and_value(&c->info, ce->proc, operand->mode, operand->type, operand->value);
|
|
} else {
|
|
GB_PANIC("Unhandled #%.*s", LIT(name));
|
|
}
|
|
} else {
|
|
check_expr_or_type(c, operand, ce->proc);
|
|
}
|
|
|
|
if (ce->args.count > 0) {
|
|
bool fail = false;
|
|
bool first_is_field_value = (ce->args[0]->kind == AstNode_FieldValue);
|
|
for_array(i, ce->args) {
|
|
AstNode *arg = ce->args[i];
|
|
bool mix = false;
|
|
if (first_is_field_value) {
|
|
mix = arg->kind != AstNode_FieldValue;
|
|
} else {
|
|
mix = arg->kind == AstNode_FieldValue;
|
|
}
|
|
if (mix) {
|
|
error(arg, "Mixture of 'field = value' and value elements in a procedure all is not allowed");
|
|
fail = true;
|
|
}
|
|
}
|
|
|
|
if (fail) {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = call;
|
|
return Expr_Stmt;
|
|
}
|
|
}
|
|
|
|
if (operand->mode == Addressing_Invalid) {
|
|
for_array(i, ce->args) {
|
|
AstNode *arg = ce->args[i];
|
|
if (arg->kind == AstNode_FieldValue) {
|
|
arg = arg->FieldValue.value;
|
|
}
|
|
check_expr_base(c, operand, arg, nullptr);
|
|
}
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = call;
|
|
return Expr_Stmt;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Type) {
|
|
Type *t = operand->type;
|
|
if (is_type_polymorphic_struct(t)) {
|
|
auto err = check_polymorphic_struct_type(c, operand, call);
|
|
if (err == 0) {
|
|
AstNode *ident = operand->expr;
|
|
while (ident->kind == AstNode_SelectorExpr) {
|
|
AstNode *s = ident->SelectorExpr.selector;
|
|
ident = s;
|
|
}
|
|
Type *ot = operand->type; GB_ASSERT(ot->kind == Type_Named);
|
|
Entity *e = ot->Named.type_name;
|
|
add_entity_use(c, ident, e);
|
|
add_type_and_value(&c->info, call, Addressing_Type, ot, empty_exact_value);
|
|
} else {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->type = t_invalid;
|
|
}
|
|
} else {
|
|
gbString str = type_to_string(t);
|
|
defer (gb_string_free(str));
|
|
|
|
operand->mode = Addressing_Invalid;
|
|
isize arg_count = ce->args.count;
|
|
switch (arg_count) {
|
|
case 0: error(call, "Missing argument in conversion to '%s'", str); break;
|
|
default: error(call, "Too many arguments in conversion to '%s'", str); break;
|
|
case 1: {
|
|
AstNode *arg = ce->args[0];
|
|
if (arg->kind == AstNode_FieldValue) {
|
|
error(call, "'field = value' cannot be used in a type conversion");
|
|
arg = arg->FieldValue.value;
|
|
// NOTE(bill): Carry on the cast regardless
|
|
}
|
|
check_expr(c, operand, arg);
|
|
if (operand->mode != Addressing_Invalid) {
|
|
check_cast(c, operand, t);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Expr_Expr;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Builtin) {
|
|
i32 id = operand->builtin_id;
|
|
if (!check_builtin_procedure(c, operand, call, id)) {
|
|
operand->mode = Addressing_Invalid;
|
|
}
|
|
operand->expr = call;
|
|
return builtin_procs[id].kind;
|
|
}
|
|
|
|
Type *proc_type = base_type(operand->type);
|
|
if (operand->mode != Addressing_ProcGroup) {
|
|
bool valid_type = (proc_type != nullptr) && is_type_proc(proc_type);
|
|
bool valid_mode = is_operand_value(*operand);
|
|
if (!valid_type || !valid_mode) {
|
|
AstNode *e = operand->expr;
|
|
gbString str = expr_to_string(e);
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(e, "Cannot call a non-procedure: '%s' of type '%s'", str, type_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(str);
|
|
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = call;
|
|
|
|
return Expr_Stmt;
|
|
}
|
|
}
|
|
|
|
// NOTE(bill): Should this be here or on the `add_entity_use`?
|
|
// if (ce->proc != nullptr) {
|
|
// Entity *e = entity_of_node(&c->info, ce->proc);
|
|
// if (e != nullptr && e->kind == Entity_Procedure) {
|
|
// String msg = e->Procedure.deprecated_message;
|
|
// if (msg.len > 0) {
|
|
// warning(call, "%.*s is deprecated: %.*s", LIT(e->token.string), LIT(msg));
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
CallArgumentData data = check_call_arguments(c, operand, proc_type, call);
|
|
Type *result_type = data.result_type;
|
|
gb_zero_item(operand);
|
|
operand->expr = call;
|
|
|
|
if (result_type == t_invalid) {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->type = t_invalid;
|
|
return Expr_Stmt;
|
|
}
|
|
|
|
Type *pt = base_type(proc_type);
|
|
if (result_type == nullptr) {
|
|
operand->mode = Addressing_NoValue;
|
|
} else {
|
|
GB_ASSERT(is_type_tuple(result_type));
|
|
switch (result_type->Tuple.variables.count) {
|
|
case 0:
|
|
operand->mode = Addressing_NoValue;
|
|
break;
|
|
case 1:
|
|
operand->mode = Addressing_Value;
|
|
operand->type = result_type->Tuple.variables[0]->type;
|
|
break;
|
|
default:
|
|
operand->mode = Addressing_Value;
|
|
operand->type = result_type;
|
|
break;
|
|
}
|
|
}
|
|
|
|
operand->expr = call;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
|
|
void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) {
|
|
check_expr_base(c, o, e, t);
|
|
check_not_tuple(c, o);
|
|
char *err_str = nullptr;
|
|
switch (o->mode) {
|
|
case Addressing_NoValue:
|
|
err_str = "used as a value";
|
|
break;
|
|
case Addressing_Type:
|
|
err_str = "is not an expression";
|
|
break;
|
|
case Addressing_Builtin:
|
|
err_str = "must be called";
|
|
break;
|
|
}
|
|
if (err_str != nullptr) {
|
|
gbString str = expr_to_string(e);
|
|
error(e, "'%s' %s", str, err_str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
}
|
|
|
|
void check_set_mode_with_indirection(Operand *o, bool indirection) {
|
|
if (o->mode != Addressing_Immutable) {
|
|
if (indirection) {
|
|
o->mode = Addressing_Variable;
|
|
} else if (o->mode != Addressing_Variable &&
|
|
o->mode != Addressing_Constant) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool check_set_index_data(Operand *o, Type *type, bool indirection, i64 *max_count) {
|
|
Type *t = base_type(type_deref(type));
|
|
|
|
switch (t->kind) {
|
|
case Type_Basic:
|
|
if (t->Basic.kind == Basic_string) {
|
|
if (o->mode == Addressing_Constant) {
|
|
*max_count = o->value.value_string.len;
|
|
}
|
|
check_set_mode_with_indirection(o, indirection);
|
|
o->type = t_u8;
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
case Type_Array:
|
|
*max_count = t->Array.count;
|
|
check_set_mode_with_indirection(o, indirection);
|
|
o->type = t->Array.elem;
|
|
return true;
|
|
|
|
case Type_Slice:
|
|
o->type = t->Slice.elem;
|
|
if (o->mode != Addressing_Immutable) {
|
|
o->mode = Addressing_Variable;
|
|
}
|
|
return true;
|
|
|
|
case Type_DynamicArray:
|
|
o->type = t->DynamicArray.elem;
|
|
check_set_mode_with_indirection(o, indirection);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ternary_compare_types(Type *x, Type *y) {
|
|
if (is_type_untyped_undef(x) && type_has_undef(y)) {
|
|
return true;
|
|
} else if (is_type_untyped_nil(x) && type_has_nil(y)) {
|
|
return true;
|
|
} else if (is_type_untyped_undef(y) && type_has_undef(x)) {
|
|
return true;
|
|
} else if (is_type_untyped_nil(y) && type_has_nil(x)) {
|
|
return true;
|
|
}
|
|
return are_types_identical(x, y);
|
|
}
|
|
|
|
ExprKind check_expr_base_internal(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
|
|
ExprKind kind = Expr_Stmt;
|
|
|
|
o->mode = Addressing_Invalid;
|
|
o->type = t_invalid;
|
|
|
|
switch (node->kind) {
|
|
default:
|
|
return kind;
|
|
|
|
case_ast_node(be, BadExpr, node)
|
|
return kind;
|
|
case_end;
|
|
|
|
case_ast_node(i, Implicit, node)
|
|
switch (i->kind) {
|
|
case Token_context:
|
|
if (c->context.proc_name.len == 0) {
|
|
error(node, "'context' is only allowed within procedures");
|
|
return kind;
|
|
}
|
|
|
|
init_preload(c);
|
|
o->mode = Addressing_Value;
|
|
o->type = t_context;
|
|
break;
|
|
|
|
case Token_size_of:
|
|
o->mode = Addressing_Builtin;
|
|
o->builtin_id = BuiltinProc_size_of;
|
|
break;
|
|
case Token_align_of:
|
|
o->mode = Addressing_Builtin;
|
|
o->builtin_id = BuiltinProc_align_of;
|
|
break;
|
|
case Token_offset_of:
|
|
o->mode = Addressing_Builtin;
|
|
o->builtin_id = BuiltinProc_offset_of;
|
|
break;
|
|
case Token_type_of:
|
|
o->mode = Addressing_Builtin;
|
|
o->builtin_id = BuiltinProc_type_of;
|
|
break;
|
|
case Token_type_info_of:
|
|
o->mode = Addressing_Builtin;
|
|
o->builtin_id = BuiltinProc_type_info_of;
|
|
break;
|
|
|
|
default:
|
|
error(node, "Illegal implicit name '%.*s'", LIT(i->string));
|
|
return kind;
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(i, Ident, node);
|
|
check_ident(c, o, node, nullptr, type_hint, false);
|
|
case_end;
|
|
|
|
case_ast_node(u, Undef, node);
|
|
o->mode = Addressing_Value;
|
|
o->type = t_untyped_undef;
|
|
case_end;
|
|
|
|
|
|
case_ast_node(bl, BasicLit, node);
|
|
Type *t = t_invalid;
|
|
switch (bl->token.kind) {
|
|
case Token_Integer: t = t_untyped_integer; break;
|
|
case Token_Float: t = t_untyped_float; break;
|
|
case Token_String: t = t_untyped_string; break;
|
|
case Token_Rune: t = t_untyped_rune; break;
|
|
case Token_Imag: {
|
|
String s = bl->token.string;
|
|
Rune r = s[s.len-1];
|
|
switch (r) {
|
|
case 'i': t = t_untyped_complex; break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
default: GB_PANIC("Unknown literal"); break;
|
|
}
|
|
o->mode = Addressing_Constant;
|
|
o->type = t;
|
|
o->value = exact_value_from_basic_literal(bl->token);
|
|
case_end;
|
|
|
|
case_ast_node(bd, BasicDirective, node);
|
|
if (bd->name == "file") {
|
|
o->type = t_untyped_string;
|
|
o->value = exact_value_string(bd->token.pos.file);
|
|
} else if (bd->name == "line") {
|
|
o->type = t_untyped_integer;
|
|
o->value = exact_value_i64(bd->token.pos.line);
|
|
} else if (bd->name == "procedure") {
|
|
if (c->proc_stack.count == 0) {
|
|
error(node, "#procedure may only be used within procedures");
|
|
o->type = t_untyped_string;
|
|
o->value = exact_value_string(str_lit(""));
|
|
} else {
|
|
o->type = t_untyped_string;
|
|
o->value = exact_value_string(c->context.proc_name);
|
|
}
|
|
} else if (bd->name == "caller_location") {
|
|
init_preload(c);
|
|
error(node, "#caller_location may only be used as a default argument parameter");
|
|
o->type = t_source_code_location;
|
|
o->mode = Addressing_Value;
|
|
} else {
|
|
GB_PANIC("Unknown basic directive");
|
|
}
|
|
o->mode = Addressing_Constant;
|
|
case_end;
|
|
|
|
case_ast_node(pg, ProcGroup, node);
|
|
error(node, "Illegal use of a procedure group");
|
|
o->mode = Addressing_Invalid;
|
|
case_end;
|
|
|
|
case_ast_node(pl, ProcLit, node);
|
|
CheckerContext prev_context = c->context;
|
|
DeclInfo *decl = nullptr;
|
|
Type *type = alloc_type(Type_Proc);
|
|
check_open_scope(c, pl->type);
|
|
{
|
|
decl = make_declaration_info(c->allocator, c->context.scope, c->context.decl);
|
|
decl->proc_lit = node;
|
|
c->context.decl = decl;
|
|
|
|
if (pl->tags != 0) {
|
|
error(node, "A procedure literal cannot have tags");
|
|
pl->tags = 0; // TODO(bill): Should I zero this?!
|
|
}
|
|
|
|
check_procedure_type(c, type, pl->type);
|
|
if (!is_type_proc(type)) {
|
|
gbString str = expr_to_string(node);
|
|
error(node, "Invalid procedure literal '%s'", str);
|
|
gb_string_free(str);
|
|
check_close_scope(c);
|
|
return kind;
|
|
}
|
|
|
|
if (pl->body == nullptr) {
|
|
error(node, "A procedure literal must have a body");
|
|
return kind;
|
|
}
|
|
|
|
check_procedure_later(c, c->curr_ast_file, empty_token, decl, type, pl->body, pl->tags);
|
|
}
|
|
check_close_scope(c);
|
|
|
|
c->context = prev_context;
|
|
|
|
o->mode = Addressing_Value;
|
|
o->type = type;
|
|
case_end;
|
|
|
|
case_ast_node(te, TernaryExpr, node);
|
|
Operand cond = {Addressing_Invalid};
|
|
check_expr(c, &cond, te->cond);
|
|
if (cond.mode != Addressing_Invalid && !is_type_boolean(cond.type)) {
|
|
error(te->cond, "Non-boolean condition in if expression");
|
|
}
|
|
|
|
Operand x = {Addressing_Invalid};
|
|
Operand y = {Addressing_Invalid};
|
|
check_expr_or_type(c, &x, te->x, type_hint);
|
|
|
|
if (te->y != nullptr) {
|
|
check_expr_or_type(c, &y, te->y, type_hint);
|
|
} else {
|
|
error(node, "A ternary expression must have an else clause");
|
|
return kind;
|
|
}
|
|
|
|
if (x.type == nullptr || x.type == t_invalid ||
|
|
y.type == nullptr || y.type == t_invalid) {
|
|
return kind;
|
|
}
|
|
|
|
if (x.mode == Addressing_Type && y.mode == Addressing_Type &&
|
|
cond.mode == Addressing_Constant && is_type_boolean(cond.type)) {
|
|
o->mode = Addressing_Type;
|
|
if (cond.value.value_bool) {
|
|
o->type = x.type;
|
|
o->expr = x.expr;
|
|
} else {
|
|
o->type = y.type;
|
|
o->expr = y.expr;
|
|
}
|
|
return Expr_Expr;
|
|
}
|
|
|
|
convert_to_typed(c, &x, y.type);
|
|
if (x.mode == Addressing_Invalid) {
|
|
return kind;
|
|
}
|
|
convert_to_typed(c, &y, x.type);
|
|
if (y.mode == Addressing_Invalid) {
|
|
x.mode = Addressing_Invalid;
|
|
return kind;
|
|
}
|
|
|
|
if (!ternary_compare_types(x.type, y.type)) {
|
|
gbString its = type_to_string(x.type);
|
|
gbString ets = type_to_string(y.type);
|
|
error(node, "Mismatched types in ternary expression, %s vs %s", its, ets);
|
|
gb_string_free(ets);
|
|
gb_string_free(its);
|
|
return kind;
|
|
}
|
|
|
|
Type *type = x.type;
|
|
if (is_type_untyped_nil(type) || is_type_untyped_undef(type)) {
|
|
type = y.type;
|
|
}
|
|
|
|
o->type = type;
|
|
o->mode = Addressing_Value;
|
|
|
|
if (cond.mode == Addressing_Constant && is_type_boolean(cond.type) &&
|
|
x.mode == Addressing_Constant &&
|
|
y.mode == Addressing_Constant) {
|
|
|
|
o->mode = Addressing_Constant;
|
|
|
|
if (cond.value.value_bool) {
|
|
o->value = x.value;
|
|
} else {
|
|
o->value = y.value;
|
|
}
|
|
}
|
|
|
|
case_end;
|
|
|
|
case_ast_node(cl, CompoundLit, node);
|
|
Type *type = type_hint;
|
|
bool is_to_be_determined_array_count = false;
|
|
bool is_constant = true;
|
|
if (cl->type != nullptr) {
|
|
type = nullptr;
|
|
|
|
// [?]Type
|
|
if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != nullptr) {
|
|
AstNode *count = cl->type->ArrayType.count;
|
|
if (count->kind == AstNode_UnaryExpr &&
|
|
count->UnaryExpr.op.kind == Token_Question) {
|
|
type = alloc_type_array(check_type(c, cl->type->ArrayType.elem), -1);
|
|
is_to_be_determined_array_count = true;
|
|
}
|
|
}
|
|
|
|
if (type == nullptr) {
|
|
type = check_type(c, cl->type);
|
|
}
|
|
}
|
|
|
|
if (type == nullptr) {
|
|
error(node, "Missing type in compound literal");
|
|
return kind;
|
|
}
|
|
|
|
|
|
Type *t = base_type(type);
|
|
if (is_type_polymorphic(t)) {
|
|
gbString str = type_to_string(type);
|
|
error(node, "Cannot use a polymorphic type for a compound literal, got '%s'", str);
|
|
o->expr = node;
|
|
o->type = type;
|
|
gb_string_free(str);
|
|
return kind;
|
|
}
|
|
|
|
|
|
switch (t->kind) {
|
|
case Type_Struct: {
|
|
if (is_type_union(t)) {
|
|
is_constant = false;
|
|
}
|
|
if (cl->elems.count == 0) {
|
|
break; // NOTE(bill): No need to init
|
|
}
|
|
if (!is_type_struct(t)) {
|
|
if (cl->elems.count != 0) {
|
|
gbString type_str = type_to_string(type);
|
|
error(node, "Illegal compound literal type '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
}
|
|
break;
|
|
}
|
|
|
|
{ // Checker values
|
|
isize field_count = t->Struct.fields.count;
|
|
isize min_field_count = t->Struct.fields.count;
|
|
for (isize i = min_field_count-1; i >= 0; i--) {
|
|
Entity *e = t->Struct.fields[i];
|
|
GB_ASSERT(e->kind == Entity_Variable);
|
|
if (e->Variable.default_is_nil) {
|
|
min_field_count--;
|
|
} else if (e->Variable.default_is_undef) {
|
|
min_field_count--;
|
|
} else if (e->Variable.default_value.kind != ExactValue_Invalid) {
|
|
min_field_count--;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cl->elems[0]->kind == AstNode_FieldValue) {
|
|
bool *fields_visited = gb_alloc_array(c->allocator, bool, field_count);
|
|
|
|
for_array(i, cl->elems) {
|
|
AstNode *elem = cl->elems[i];
|
|
if (elem->kind != AstNode_FieldValue) {
|
|
error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
if (fv->field->kind != AstNode_Ident) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(elem, "Invalid field name '%s' in structure literal", expr_str);
|
|
gb_string_free(expr_str);
|
|
continue;
|
|
}
|
|
String name = fv->field->Ident.token.string;
|
|
|
|
Selection sel = lookup_field(type, name, o->mode == Addressing_Type);
|
|
bool is_unknown = sel.entity == nullptr;
|
|
if (is_unknown) {
|
|
error(elem, "Unknown field '%.*s' in structure literal", LIT(name));
|
|
continue;
|
|
}
|
|
|
|
if (sel.index.count > 1) {
|
|
error(elem, "Cannot assign to an anonymous field '%.*s' in a structure literal (at the moment)", LIT(name));
|
|
continue;
|
|
}
|
|
|
|
Entity *field = t->Struct.fields[sel.index[0]];
|
|
add_entity_use(c, fv->field, field);
|
|
|
|
if (fields_visited[sel.index[0]]) {
|
|
error(elem, "Duplicate field '%.*s' in structure literal", LIT(name));
|
|
continue;
|
|
}
|
|
|
|
fields_visited[sel.index[0]] = true;
|
|
check_expr_with_type_hint(c, o, fv->value, field->type);
|
|
|
|
if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) {
|
|
is_constant = false;
|
|
}
|
|
if (is_constant) {
|
|
is_constant = o->mode == Addressing_Constant;
|
|
}
|
|
|
|
|
|
check_assignment(c, o, field->type, str_lit("structure literal"));
|
|
}
|
|
} else {
|
|
bool seen_field_value = false;
|
|
|
|
for_array(index, cl->elems) {
|
|
Entity *field = nullptr;
|
|
AstNode *elem = cl->elems[index];
|
|
if (elem->kind == AstNode_FieldValue) {
|
|
seen_field_value = true;
|
|
// error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
|
|
// continue;
|
|
} else if (seen_field_value) {
|
|
error(elem, "Value elements cannot be used after a 'field = value'");
|
|
continue;
|
|
}
|
|
if (index >= field_count) {
|
|
error(o->expr, "Too many values in structure literal, expected %td, got %td", field_count, cl->elems.count);
|
|
break;
|
|
}
|
|
|
|
if (field == nullptr) {
|
|
field = t->Struct.fields[index];
|
|
}
|
|
|
|
check_expr_with_type_hint(c, o, elem, field->type);
|
|
|
|
if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) {
|
|
is_constant = false;
|
|
}
|
|
if (is_constant) {
|
|
is_constant = o->mode == Addressing_Constant;
|
|
}
|
|
|
|
check_assignment(c, o, field->type, str_lit("structure literal"));
|
|
}
|
|
if (cl->elems.count < field_count) {
|
|
if (min_field_count < field_count) {
|
|
if (cl->elems.count < min_field_count) {
|
|
error(cl->close, "Too few values in structure literal, expected at least %td, got %td", min_field_count, cl->elems.count);
|
|
}
|
|
} else {
|
|
error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Type_Slice:
|
|
case Type_Array:
|
|
case Type_DynamicArray:
|
|
{
|
|
Type *elem_type = nullptr;
|
|
String context_name = {};
|
|
i64 max_type_count = -1;
|
|
if (t->kind == Type_Slice) {
|
|
elem_type = t->Slice.elem;
|
|
context_name = str_lit("slice literal");
|
|
} else if (t->kind == Type_Array) {
|
|
elem_type = t->Array.elem;
|
|
context_name = str_lit("array literal");
|
|
if (!is_to_be_determined_array_count) {
|
|
max_type_count = t->Array.count;
|
|
}
|
|
} else if (t->kind == Type_DynamicArray) {
|
|
elem_type = t->DynamicArray.elem;
|
|
context_name = str_lit("dynamic array literal");
|
|
is_constant = false;
|
|
} else {
|
|
GB_PANIC("unreachable");
|
|
}
|
|
|
|
|
|
i64 max = 0;
|
|
isize index = 0;
|
|
|
|
Type *bet = base_type(elem_type);
|
|
if (!elem_type_can_be_constant(bet)) {
|
|
is_constant = false;
|
|
}
|
|
|
|
if (bet == t_invalid) {
|
|
break;
|
|
}
|
|
|
|
for (; index < cl->elems.count; index++) {
|
|
AstNode *e = cl->elems[index];
|
|
if (e == nullptr) {
|
|
error(node, "Invalid literal element");
|
|
continue;
|
|
}
|
|
|
|
if (e->kind == AstNode_FieldValue) {
|
|
error(e, "'field = value' is only allowed in struct literals");
|
|
continue;
|
|
}
|
|
|
|
if (0 <= max_type_count && max_type_count <= index) {
|
|
error(e, "Index %lld is out of bounds (>= %lld) for %.*s", index, max_type_count, LIT(context_name));
|
|
}
|
|
|
|
Operand operand = {};
|
|
check_expr_with_type_hint(c, &operand, e, elem_type);
|
|
check_assignment(c, &operand, elem_type, context_name);
|
|
|
|
is_constant = is_constant && operand.mode == Addressing_Constant;
|
|
}
|
|
if (max < index) {
|
|
max = index;
|
|
}
|
|
|
|
if (t->kind == Type_Array) {
|
|
if (is_to_be_determined_array_count) {
|
|
t->Array.count = max;
|
|
} else if (0 < max && max < t->Array.count) {
|
|
error(node, "Expected %lld values for this array literal, got %lld", cast(long long)t->Array.count, cast(long long)max);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Type_Basic: {
|
|
if (!is_type_any(t)) {
|
|
if (cl->elems.count != 0) {
|
|
error(node, "Illegal compound literal");
|
|
}
|
|
break;
|
|
}
|
|
if (cl->elems.count == 0) {
|
|
break; // NOTE(bill): No need to init
|
|
}
|
|
{ // Checker values
|
|
Type *field_types[2] = {t_rawptr, t_type_info_ptr};
|
|
isize field_count = 2;
|
|
if (cl->elems[0]->kind == AstNode_FieldValue) {
|
|
bool fields_visited[2] = {};
|
|
|
|
for_array(i, cl->elems) {
|
|
AstNode *elem = cl->elems[i];
|
|
if (elem->kind != AstNode_FieldValue) {
|
|
error(elem, "Mixture of 'field = value' and value elements in a 'any' literal is not allowed");
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
if (fv->field->kind != AstNode_Ident) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(elem, "Invalid field name '%s' in 'any' literal", expr_str);
|
|
gb_string_free(expr_str);
|
|
continue;
|
|
}
|
|
String name = fv->field->Ident.token.string;
|
|
|
|
Selection sel = lookup_field(type, name, o->mode == Addressing_Type);
|
|
if (sel.entity == nullptr) {
|
|
error(elem, "Unknown field '%.*s' in 'any' literal", LIT(name));
|
|
continue;
|
|
}
|
|
|
|
isize index = sel.index[0];
|
|
|
|
if (fields_visited[index]) {
|
|
error(elem, "Duplicate field '%.*s' in 'any' literal", LIT(name));
|
|
continue;
|
|
}
|
|
|
|
fields_visited[index] = true;
|
|
check_expr(c, o, fv->value);
|
|
|
|
// NOTE(bill): 'any' literals can never be constant
|
|
is_constant = false;
|
|
|
|
check_assignment(c, o, field_types[index], str_lit("'any' literal"));
|
|
}
|
|
} else {
|
|
for_array(index, cl->elems) {
|
|
AstNode *elem = cl->elems[index];
|
|
if (elem->kind == AstNode_FieldValue) {
|
|
error(elem, "Mixture of 'field = value' and value elements in a 'any' literal is not allowed");
|
|
continue;
|
|
}
|
|
|
|
|
|
check_expr(c, o, elem);
|
|
if (index >= field_count) {
|
|
error(o->expr, "Too many values in 'any' literal, expected %td", field_count);
|
|
break;
|
|
}
|
|
|
|
// NOTE(bill): 'any' literals can never be constant
|
|
is_constant = false;
|
|
|
|
check_assignment(c, o, field_types[index], str_lit("'any' literal"));
|
|
}
|
|
if (cl->elems.count < field_count) {
|
|
error(cl->close, "Too few values in 'any' literal, expected %td, got %td", field_count, cl->elems.count);
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Type_Map: {
|
|
if (cl->elems.count == 0) {
|
|
break;
|
|
}
|
|
is_constant = false;
|
|
{ // Checker values
|
|
for_array(i, cl->elems) {
|
|
AstNode *elem = cl->elems[i];
|
|
if (elem->kind != AstNode_FieldValue) {
|
|
error(elem, "Only 'field = value' elements are allowed in a map literal");
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
check_expr_with_type_hint(c, o, fv->field, t->Map.key);
|
|
check_assignment(c, o, t->Map.key, str_lit("map literal"));
|
|
if (o->mode == Addressing_Invalid) {
|
|
continue;
|
|
}
|
|
|
|
check_expr_with_type_hint(c, o, fv->value, t->Map.value);
|
|
check_assignment(c, o, t->Map.value, str_lit("map literal"));
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
if (cl->elems.count == 0) {
|
|
break; // NOTE(bill): No need to init
|
|
}
|
|
|
|
gbString str = type_to_string(type);
|
|
error(node, "Invalid compound literal type '%s'", str);
|
|
gb_string_free(str);
|
|
return kind;
|
|
}
|
|
}
|
|
|
|
if (is_constant) {
|
|
o->mode = Addressing_Constant;
|
|
o->value = exact_value_compound(node);
|
|
} else {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
o->type = type;
|
|
case_end;
|
|
|
|
case_ast_node(pe, ParenExpr, node);
|
|
kind = check_expr_base(c, o, pe->expr, type_hint);
|
|
o->expr = node;
|
|
case_end;
|
|
|
|
case_ast_node(te, TagExpr, node);
|
|
String name = te->name.string;
|
|
error(node, "Unknown tag expression, #%.*s", LIT(name));
|
|
if (te->expr) {
|
|
kind = check_expr_base(c, o, te->expr, type_hint);
|
|
}
|
|
o->expr = node;
|
|
case_end;
|
|
|
|
case_ast_node(re, RunExpr, node);
|
|
// TODO(bill): Tag expressions
|
|
kind = check_expr_base(c, o, re->expr, type_hint);
|
|
o->expr = node;
|
|
case_end;
|
|
|
|
case_ast_node(ta, TypeAssertion, node);
|
|
check_expr(c, o, ta->expr);
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
Type *t = check_type(c, ta->type);
|
|
|
|
if (o->mode == Addressing_Constant) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
error(o->expr, "A type assertion cannot be applied to a constant expression: '%s'", expr_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
if (is_type_untyped(o->type)) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
error(o->expr, "A type assertion cannot be applied to an untyped expression: '%s'", expr_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
bool src_is_ptr = is_type_pointer(o->type);
|
|
Type *src = type_deref(o->type);
|
|
Type *dst = t;
|
|
Type *bsrc = base_type(src);
|
|
Type *bdst = base_type(dst);
|
|
|
|
|
|
if (is_type_union(src)) {
|
|
bool ok = false;
|
|
for_array(i, bsrc->Union.variants) {
|
|
Type *vt = bsrc->Union.variants[i];
|
|
if (are_types_identical(vt, dst)) {
|
|
ok = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ok) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
gbString dst_type_str = type_to_string(t);
|
|
defer (gb_string_free(expr_str));
|
|
defer (gb_string_free(dst_type_str));
|
|
if (bsrc->Union.variants.count == 0) {
|
|
error(o->expr, "Cannot type assert '%s' to '%s' as this is an empty union", expr_str, dst_type_str);
|
|
} else {
|
|
error(o->expr, "Cannot type assert '%s' to '%s' as it is not a variant of that union", expr_str, dst_type_str);
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
add_type_info_type(c, o->type);
|
|
add_type_info_type(c, t);
|
|
|
|
o->type = t;
|
|
o->mode = Addressing_OptionalOk;
|
|
} else if (is_type_any(src)) {
|
|
o->type = t;
|
|
o->mode = Addressing_OptionalOk;
|
|
|
|
add_type_info_type(c, o->type);
|
|
add_type_info_type(c, t);
|
|
} else {
|
|
gbString str = type_to_string(o->type);
|
|
error(o->expr, "Type assertions can only operate on unions and 'any', got %s", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(tc, TypeCast, node);
|
|
check_expr_or_type(c, o, tc->type);
|
|
if (o->mode != Addressing_Type) {
|
|
gbString str = expr_to_string(tc->type);
|
|
error(tc->type, "Expected a type, got %s", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
Type *type = o->type;
|
|
check_expr_base(c, o, tc->expr, type);
|
|
if (o->mode != Addressing_Invalid) {
|
|
switch (tc->token.kind) {
|
|
case Token_transmute:
|
|
check_transmute(c, node, o, type);
|
|
break;
|
|
case Token_cast:
|
|
check_cast(c, o, type);
|
|
break;
|
|
default:
|
|
error(node, "Invalid AST: Invalid casting expression");
|
|
o->mode = Addressing_Invalid;
|
|
break;
|
|
}
|
|
}
|
|
return Expr_Expr;
|
|
case_end;
|
|
|
|
case_ast_node(ac, AutoCast, node);
|
|
check_expr_base(c, o, ac->expr, type_hint);
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
if (type_hint) {
|
|
check_cast(c, o, type_hint);
|
|
}
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
case_end;
|
|
|
|
case_ast_node(ue, UnaryExpr, node);
|
|
check_expr_base(c, o, ue->expr, type_hint);
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
check_unary_expr(c, o, ue->op, node);
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
case_end;
|
|
|
|
|
|
case_ast_node(be, BinaryExpr, node);
|
|
check_binary_expr(c, o, node);
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
case_end;
|
|
|
|
|
|
|
|
case_ast_node(se, SelectorExpr, node);
|
|
check_selector(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
|
|
case_ast_node(ie, IndexExpr, node);
|
|
check_expr(c, o, ie->expr);
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
Type *t = base_type(type_deref(o->type));
|
|
bool is_ptr = is_type_pointer(o->type);
|
|
bool is_const = o->mode == Addressing_Constant;
|
|
|
|
if (is_type_map(t)) {
|
|
Operand key = {};
|
|
check_expr(c, &key, ie->index);
|
|
check_assignment(c, &key, t->Map.key, str_lit("map index"));
|
|
if (key.mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
o->mode = Addressing_MapIndex;
|
|
o->type = t->Map.value;
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
i64 max_count = -1;
|
|
bool valid = check_set_index_data(o, t, is_ptr, &max_count);
|
|
|
|
if (is_const) {
|
|
valid = false;
|
|
}
|
|
|
|
if (!valid) {
|
|
gbString str = expr_to_string(o->expr);
|
|
gbString type_str = type_to_string(o->type);
|
|
defer (gb_string_free(str));
|
|
defer (gb_string_free(type_str));
|
|
if (is_const) {
|
|
error(o->expr, "Cannot index a constant '%s'", str);
|
|
} else {
|
|
error(o->expr, "Cannot index '%s' of type '%s'", str, type_str);
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
if (ie->index == nullptr) {
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Missing index for '%s'", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
i64 index = 0;
|
|
bool ok = check_index_value(c, false, ie->index, max_count, &index);
|
|
|
|
case_end;
|
|
|
|
|
|
|
|
case_ast_node(se, SliceExpr, node);
|
|
check_expr(c, o, se->expr);
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
bool valid = false;
|
|
i64 max_count = -1;
|
|
Type *t = base_type(type_deref(o->type));
|
|
switch (t->kind) {
|
|
case Type_Basic:
|
|
if (t->Basic.kind == Basic_string) {
|
|
valid = true;
|
|
if (o->mode == Addressing_Constant) {
|
|
max_count = o->value.value_string.len;
|
|
}
|
|
o->type = t_string;
|
|
}
|
|
break;
|
|
|
|
case Type_Array:
|
|
valid = true;
|
|
max_count = t->Array.count;
|
|
if (o->mode != Addressing_Variable) {
|
|
gbString str = expr_to_string(node);
|
|
error(node, "Cannot slice array '%s', value is not addressable", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
o->type = alloc_type_slice(t->Array.elem);
|
|
break;
|
|
|
|
case Type_Slice:
|
|
valid = true;
|
|
o->type = type_deref(o->type);
|
|
break;
|
|
|
|
case Type_DynamicArray:
|
|
valid = true;
|
|
o->type = alloc_type_slice(t->DynamicArray.elem);
|
|
break;
|
|
}
|
|
|
|
if (!valid) {
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot slice '%s'", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
if (o->mode != Addressing_Immutable) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
|
|
if (se->low == nullptr && se->high != nullptr) {
|
|
// error(se->interval0, "1st index is required if a 2nd index is specified");
|
|
// It is okay to continue as it will assume the 1st index is zero
|
|
}
|
|
|
|
TokenKind interval_kind = se->interval.kind;
|
|
|
|
i64 indices[2] = {};
|
|
AstNode *nodes[2] = {se->low, se->high};
|
|
for (isize i = 0; i < gb_count_of(nodes); i++) {
|
|
i64 index = max_count;
|
|
if (nodes[i] != nullptr) {
|
|
i64 capacity = -1;
|
|
if (max_count >= 0) {
|
|
capacity = max_count;
|
|
}
|
|
i64 j = 0;
|
|
if (check_index_value(c, interval_kind == Token_Ellipsis, nodes[i], capacity, &j)) {
|
|
index = j;
|
|
}
|
|
} else if (i == 0) {
|
|
index = 0;
|
|
}
|
|
indices[i] = index;
|
|
}
|
|
|
|
for (isize i = 0; i < gb_count_of(indices); i++) {
|
|
i64 a = indices[i];
|
|
for (isize j = i+1; j < gb_count_of(indices); j++) {
|
|
i64 b = indices[j];
|
|
if (a > b && b >= 0) {
|
|
error(se->close, "Invalid slice indices: [%td > %td]", a, b);
|
|
}
|
|
}
|
|
}
|
|
|
|
case_end;
|
|
|
|
|
|
case_ast_node(ce, CallExpr, node);
|
|
return check_call_expr(c, o, node);
|
|
case_end;
|
|
|
|
case_ast_node(de, DerefExpr, node);
|
|
check_expr_or_type(c, o, de->expr);
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
} else {
|
|
Type *t = base_type(o->type);
|
|
if (t->kind == Type_Pointer && !is_type_empty_union(t->Pointer.elem)) {
|
|
if (o->mode != Addressing_Immutable) {
|
|
o->mode = Addressing_Variable;
|
|
}
|
|
o->type = t->Pointer.elem;
|
|
} else {
|
|
gbString str = expr_to_string(o->expr);
|
|
gbString typ = type_to_string(o->type);
|
|
error(o->expr, "Cannot dereference '%s' of type '%s'", str, typ);
|
|
gb_string_free(typ);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
}
|
|
case_end;
|
|
|
|
case AstNode_TypeType:
|
|
case AstNode_PolyType:
|
|
case AstNode_ProcType:
|
|
case AstNode_PointerType:
|
|
case AstNode_ArrayType:
|
|
case AstNode_DynamicArrayType:
|
|
case AstNode_StructType:
|
|
case AstNode_UnionType:
|
|
// case AstNode_RawUnionType:
|
|
case AstNode_EnumType:
|
|
case AstNode_MapType:
|
|
o->mode = Addressing_Type;
|
|
o->type = check_type(c, node);
|
|
break;
|
|
}
|
|
|
|
kind = Expr_Expr;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
ExprKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
|
|
ExprKind kind = check_expr_base_internal(c, o, node, type_hint);
|
|
Type *type = nullptr;
|
|
ExactValue value = {ExactValue_Invalid};
|
|
switch (o->mode) {
|
|
case Addressing_Invalid:
|
|
type = t_invalid;
|
|
break;
|
|
case Addressing_NoValue:
|
|
type = nullptr;
|
|
break;
|
|
case Addressing_Constant:
|
|
type = o->type;
|
|
value = o->value;
|
|
break;
|
|
default:
|
|
type = o->type;
|
|
break;
|
|
}
|
|
|
|
if (type != nullptr && is_type_untyped(type)) {
|
|
add_untyped(&c->info, node, false, o->mode, type, value);
|
|
} else {
|
|
add_type_and_value(&c->info, node, o->mode, type, value);
|
|
}
|
|
return kind;
|
|
}
|
|
|
|
|
|
|
|
void check_multi_expr(Checker *c, Operand *o, AstNode *e) {
|
|
check_expr_base(c, o, e, nullptr);
|
|
switch (o->mode) {
|
|
default:
|
|
return; // NOTE(bill): Valid
|
|
case Addressing_NoValue:
|
|
error_operand_no_value(o);
|
|
break;
|
|
case Addressing_Type:
|
|
error_operand_not_expression(o);
|
|
break;
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
|
|
void check_not_tuple(Checker *c, Operand *o) {
|
|
if (o->mode == Addressing_Value) {
|
|
// NOTE(bill): Tuples are not first class thus never named
|
|
if (o->type->kind == Type_Tuple) {
|
|
isize count = o->type->Tuple.variables.count;
|
|
GB_ASSERT(count != 1);
|
|
error(o->expr,
|
|
"%td-valued tuple found where single value expected", count);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
}
|
|
}
|
|
|
|
void check_expr(Checker *c, Operand *o, AstNode *e) {
|
|
check_multi_expr(c, o, e);
|
|
check_not_tuple(c, o);
|
|
}
|
|
|
|
|
|
void check_expr_or_type(Checker *c, Operand *o, AstNode *e, Type *type_hint) {
|
|
check_expr_base(c, o, e, type_hint);
|
|
check_not_tuple(c, o);
|
|
error_operand_no_value(o);
|
|
}
|
|
|
|
|
|
gbString write_expr_to_string(gbString str, AstNode *node);
|
|
|
|
gbString write_struct_fields_to_string(gbString str, Array<AstNode *> params) {
|
|
for_array(i, params) {
|
|
if (i > 0) {
|
|
str = gb_string_appendc(str, ", ");
|
|
}
|
|
str = write_expr_to_string(str, params[i]);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
gbString string_append_string(gbString str, String string) {
|
|
if (string.len > 0) {
|
|
return gb_string_append_length(str, &string[0], string.len);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
|
|
gbString string_append_token(gbString str, Token token) {
|
|
return string_append_string(str, token.string);
|
|
}
|
|
|
|
|
|
gbString write_expr_to_string(gbString str, AstNode *node) {
|
|
if (node == nullptr)
|
|
return str;
|
|
|
|
if (is_ast_node_stmt(node)) {
|
|
GB_ASSERT("stmt passed to write_expr_to_string");
|
|
}
|
|
|
|
switch (node->kind) {
|
|
default:
|
|
str = gb_string_appendc(str, "(BadExpr)");
|
|
break;
|
|
|
|
case_ast_node(i, Ident, node);
|
|
str = string_append_token(str, i->token);
|
|
case_end;
|
|
|
|
case_ast_node(i, Implicit, node);
|
|
str = string_append_token(str, *i);
|
|
case_end;
|
|
|
|
case_ast_node(bl, BasicLit, node);
|
|
str = string_append_token(str, bl->token);
|
|
case_end;
|
|
|
|
case_ast_node(bd, BasicDirective, node);
|
|
str = gb_string_append_rune(str, '#');
|
|
str = string_append_string(str, bd->name);
|
|
case_end;
|
|
|
|
case_ast_node(ud, Undef, node);
|
|
str = gb_string_appendc(str, "---");
|
|
case_end;
|
|
|
|
case_ast_node(pg, ProcGroup, node);
|
|
str = gb_string_appendc(str, "proc[");
|
|
for_array(i, pg->args) {
|
|
if (i > 0) str = gb_string_appendc(str, ", ");
|
|
str = write_expr_to_string(str, pg->args[i]);
|
|
}
|
|
str = gb_string_append_rune(str, ']');
|
|
case_end;
|
|
|
|
case_ast_node(pl, ProcLit, node);
|
|
str = write_expr_to_string(str, pl->type);
|
|
case_end;
|
|
|
|
case_ast_node(cl, CompoundLit, node);
|
|
str = write_expr_to_string(str, cl->type);
|
|
str = gb_string_append_rune(str, '{');
|
|
for_array(i, cl->elems) {
|
|
if (i > 0) str = gb_string_appendc(str, ", ");
|
|
str = write_expr_to_string(str, cl->elems[i]);
|
|
}
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
|
|
|
|
case_ast_node(te, TagExpr, node);
|
|
str = gb_string_append_rune(str, '#');
|
|
str = string_append_token(str, te->name);
|
|
str = write_expr_to_string(str, te->expr);
|
|
case_end;
|
|
|
|
case_ast_node(ue, UnaryExpr, node);
|
|
str = string_append_token(str, ue->op);
|
|
str = write_expr_to_string(str, ue->expr);
|
|
case_end;
|
|
|
|
case_ast_node(de, DerefExpr, node);
|
|
str = write_expr_to_string(str, de->expr);
|
|
str = gb_string_append_rune(str, '^');
|
|
case_end;
|
|
|
|
case_ast_node(be, BinaryExpr, node);
|
|
str = write_expr_to_string(str, be->left);
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = string_append_token(str, be->op);
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = write_expr_to_string(str, be->right);
|
|
case_end;
|
|
|
|
case_ast_node(te, TernaryExpr, node);
|
|
str = write_expr_to_string(str, te->cond);
|
|
str = gb_string_appendc(str, " ? ");
|
|
str = write_expr_to_string(str, te->x);
|
|
str = gb_string_appendc(str, " : ");
|
|
str = write_expr_to_string(str, te->y);
|
|
case_end;
|
|
|
|
|
|
case_ast_node(pe, ParenExpr, node);
|
|
str = gb_string_append_rune(str, '(');
|
|
str = write_expr_to_string(str, pe->expr);
|
|
str = gb_string_append_rune(str, ')');
|
|
case_end;
|
|
|
|
case_ast_node(se, SelectorExpr, node);
|
|
str = write_expr_to_string(str, se->expr);
|
|
str = gb_string_append_rune(str, '.');
|
|
str = write_expr_to_string(str, se->selector);
|
|
case_end;
|
|
|
|
case_ast_node(ta, TypeAssertion, node);
|
|
str = write_expr_to_string(str, ta->expr);
|
|
str = gb_string_appendc(str, ".(");
|
|
str = write_expr_to_string(str, ta->type);
|
|
str = gb_string_append_rune(str, ')');
|
|
case_end;
|
|
|
|
case_ast_node(tc, TypeCast, node);
|
|
str = string_append_token(str, tc->token);
|
|
str = gb_string_append_rune(str, '(');
|
|
str = write_expr_to_string(str, tc->type);
|
|
str = gb_string_append_rune(str, ')');
|
|
str = write_expr_to_string(str, tc->expr);
|
|
case_end;
|
|
|
|
case_ast_node(ac, AutoCast, node);
|
|
str = string_append_token(str, ac->token);
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = write_expr_to_string(str, ac->expr);
|
|
case_end;
|
|
|
|
case_ast_node(ie, IndexExpr, node);
|
|
str = write_expr_to_string(str, ie->expr);
|
|
str = gb_string_append_rune(str, '[');
|
|
str = write_expr_to_string(str, ie->index);
|
|
str = gb_string_append_rune(str, ']');
|
|
case_end;
|
|
|
|
case_ast_node(se, SliceExpr, node);
|
|
str = write_expr_to_string(str, se->expr);
|
|
str = gb_string_append_rune(str, '[');
|
|
str = write_expr_to_string(str, se->low);
|
|
str = string_append_token(str, se->interval);
|
|
str = write_expr_to_string(str, se->high);
|
|
str = gb_string_append_rune(str, ']');
|
|
case_end;
|
|
|
|
case_ast_node(e, Ellipsis, node);
|
|
str = gb_string_appendc(str, "...");
|
|
str = write_expr_to_string(str, e->expr);
|
|
case_end;
|
|
|
|
case_ast_node(fv, FieldValue, node);
|
|
str = write_expr_to_string(str, fv->field);
|
|
str = gb_string_appendc(str, " = ");
|
|
str = write_expr_to_string(str, fv->value);
|
|
case_end;
|
|
|
|
case_ast_node(ht, HelperType, node);
|
|
str = gb_string_appendc(str, "#type ");
|
|
str = write_expr_to_string(str, ht->type);
|
|
case_end;
|
|
|
|
case_ast_node(ht, DistinctType, node);
|
|
str = gb_string_appendc(str, "distinct ");
|
|
str = write_expr_to_string(str, ht->type);
|
|
case_end;
|
|
|
|
case_ast_node(pt, PolyType, node);
|
|
str = gb_string_append_rune(str, '$');
|
|
str = write_expr_to_string(str, pt->type);
|
|
if (pt->specialization != nullptr) {
|
|
str = gb_string_append_rune(str, '/');
|
|
str = write_expr_to_string(str, pt->specialization);
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(pt, PointerType, node);
|
|
str = gb_string_append_rune(str, '^');
|
|
str = write_expr_to_string(str, pt->type);
|
|
case_end;
|
|
|
|
case_ast_node(at, ArrayType, node);
|
|
str = gb_string_append_rune(str, '[');
|
|
if (at->count != nullptr &&
|
|
at->count->kind == AstNode_UnaryExpr &&
|
|
at->count->UnaryExpr.op.kind == Token_Question) {
|
|
str = gb_string_appendc(str, "?");
|
|
} else {
|
|
str = write_expr_to_string(str, at->count);
|
|
}
|
|
str = gb_string_append_rune(str, ']');
|
|
str = write_expr_to_string(str, at->elem);
|
|
case_end;
|
|
|
|
case_ast_node(at, DynamicArrayType, node);
|
|
str = gb_string_appendc(str, "[dynamic]");
|
|
str = write_expr_to_string(str, at->elem);
|
|
case_end;
|
|
|
|
case_ast_node(mt, MapType, node);
|
|
str = gb_string_appendc(str, "map[");
|
|
str = write_expr_to_string(str, mt->key);
|
|
str = gb_string_append_rune(str, ']');
|
|
str = write_expr_to_string(str, mt->value);
|
|
case_end;
|
|
|
|
case_ast_node(f, Field, node);
|
|
if (f->flags&FieldFlag_using) {
|
|
str = gb_string_appendc(str, "using ");
|
|
}
|
|
if (f->flags&FieldFlag_no_alias) {
|
|
str = gb_string_appendc(str, "#no_alias ");
|
|
}
|
|
if (f->flags&FieldFlag_c_vararg) {
|
|
str = gb_string_appendc(str, "#c_vararg ");
|
|
}
|
|
|
|
for_array(i, f->names) {
|
|
AstNode *name = f->names[i];
|
|
if (i > 0) str = gb_string_appendc(str, ", ");
|
|
str = write_expr_to_string(str, name);
|
|
}
|
|
if (f->names.count > 0) {
|
|
if (f->type == nullptr && f->default_value != nullptr) {
|
|
str = gb_string_append_rune(str, ' ');
|
|
}
|
|
str = gb_string_appendc(str, ":");
|
|
}
|
|
if (f->type != nullptr) {
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = write_expr_to_string(str, f->type);
|
|
}
|
|
if (f->default_value != nullptr) {
|
|
if (f->type != nullptr) {
|
|
str = gb_string_append_rune(str, ' ');
|
|
}
|
|
str = gb_string_appendc(str, "= ");
|
|
str = write_expr_to_string(str, f->default_value);
|
|
}
|
|
|
|
case_end;
|
|
|
|
case_ast_node(f, FieldList, node);
|
|
bool has_name = false;
|
|
for_array(i, f->list) {
|
|
ast_node(field, Field, f->list[i]);
|
|
if (field->names.count > 1) {
|
|
has_name = true;
|
|
break;
|
|
}
|
|
|
|
if (field->names.count == 0) {
|
|
continue;
|
|
}
|
|
if (!is_blank_ident(field->names[0])) {
|
|
has_name = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for_array(i, f->list) {
|
|
if (i > 0) str = gb_string_appendc(str, ", ");
|
|
if (has_name) {
|
|
str = write_expr_to_string(str, f->list[i]);
|
|
} else {
|
|
ast_node(field, Field, f->list[i]);
|
|
|
|
if (field->flags&FieldFlag_using) {
|
|
str = gb_string_appendc(str, "using ");
|
|
}
|
|
if (field->flags&FieldFlag_no_alias) {
|
|
str = gb_string_appendc(str, "#no_alias ");
|
|
}
|
|
if (field->flags&FieldFlag_c_vararg) {
|
|
str = gb_string_appendc(str, "#c_vararg ");
|
|
}
|
|
|
|
str = write_expr_to_string(str, field->type);
|
|
}
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(f, UnionField, node);
|
|
str = write_expr_to_string(str, f->name);
|
|
str = gb_string_append_rune(str, '{');
|
|
str = write_expr_to_string(str, f->list);
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
|
|
case_ast_node(ce, CallExpr, node);
|
|
str = write_expr_to_string(str, ce->proc);
|
|
str = gb_string_appendc(str, "(");
|
|
|
|
for_array(i, ce->args) {
|
|
AstNode *arg = ce->args[i];
|
|
if (i > 0) {
|
|
str = gb_string_appendc(str, ", ");
|
|
}
|
|
str = write_expr_to_string(str, arg);
|
|
}
|
|
str = gb_string_appendc(str, ")");
|
|
case_end;
|
|
|
|
case_ast_node(tt, TypeType, node);
|
|
str = gb_string_appendc(str, "type");
|
|
if (tt->specialization) {
|
|
str = gb_string_appendc(str, "/");
|
|
str = write_expr_to_string(str, tt->specialization);
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(pt, ProcType, node);
|
|
str = gb_string_appendc(str, "proc(");
|
|
str = write_expr_to_string(str, pt->params);
|
|
str = gb_string_appendc(str, ")");
|
|
if (pt->results != nullptr) {
|
|
str = gb_string_appendc(str, " -> ");
|
|
str = write_expr_to_string(str, pt->results);
|
|
}
|
|
|
|
case_end;
|
|
|
|
case_ast_node(st, StructType, node);
|
|
str = gb_string_appendc(str, "struct ");
|
|
if (st->is_packed) str = gb_string_appendc(str, "#packed ");
|
|
if (st->is_raw_union) str = gb_string_appendc(str, "#raw_union ");
|
|
str = gb_string_append_rune(str, '{');
|
|
str = write_struct_fields_to_string(str, st->fields);
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
|
|
|
|
case_ast_node(st, UnionType, node);
|
|
str = gb_string_appendc(str, "union ");
|
|
str = gb_string_append_rune(str, '{');
|
|
str = write_struct_fields_to_string(str, st->variants);
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
|
|
case_ast_node(et, EnumType, node);
|
|
str = gb_string_appendc(str, "enum ");
|
|
if (et->base_type != nullptr) {
|
|
str = write_expr_to_string(str, et->base_type);
|
|
str = gb_string_append_rune(str, ' ');
|
|
}
|
|
str = gb_string_append_rune(str, '{');
|
|
for_array(i, et->fields) {
|
|
if (i > 0) {
|
|
str = gb_string_appendc(str, ", ");
|
|
}
|
|
str = write_expr_to_string(str, et->fields[i]);
|
|
}
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
}
|
|
|
|
return str;
|
|
}
|
|
|
|
gbString expr_to_string(AstNode *expression) {
|
|
return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression);
|
|
}
|