Files
Odin/src/common_memory.cpp
gingerBill e9cfe698ba Make the heap_allocator just be the permanent_allocator
This improves the speed of the compiler with very little memory increase (which surprised me, Ginger Bill)
2023-01-12 00:20:25 +00:00

465 lines
13 KiB
C++

gb_internal gb_inline void zero_size(void *ptr, isize len) {
memset(ptr, 0, len);
}
#define zero_item(ptr) zero_size((ptr), gb_size_of(ptr))
template <typename U, typename V>
gb_internal gb_inline U bit_cast(V &v) { return reinterpret_cast<U &>(v); }
template <typename U, typename V>
gb_internal gb_inline U const &bit_cast(V const &v) { return reinterpret_cast<U const &>(v); }
gb_internal gb_inline i64 align_formula(i64 size, i64 align) {
i64 result = size + align-1;
return result - (i64)((u64)result%(u64)align);
}
gb_internal gb_inline isize align_formula_isize(isize size, isize align) {
isize result = size + align-1;
return result - (isize)((usize)result%(usize)align);
}
gb_internal gb_inline void *align_formula_ptr(void *ptr, isize align) {
uintptr result = (cast(uintptr)ptr) + align-1;
return (void *)(result - result%align);
}
gb_global BlockingMutex global_memory_block_mutex;
gb_internal void platform_virtual_memory_init(void);
gb_internal void virtual_memory_init(void) {
platform_virtual_memory_init();
}
struct MemoryBlock {
MemoryBlock *prev;
u8 * base;
isize size;
isize used;
};
struct Arena {
MemoryBlock * curr_block;
isize minimum_block_size;
BlockingMutex mutex;
};
enum { DEFAULT_MINIMUM_BLOCK_SIZE = 8ll*1024ll*1024ll };
gb_global isize DEFAULT_PAGE_SIZE = 4096;
gb_internal MemoryBlock *virtual_memory_alloc(isize size);
gb_internal void virtual_memory_dealloc(MemoryBlock *block);
gb_internal void *arena_alloc(Arena *arena, isize min_size, isize alignment);
gb_internal void arena_free_all(Arena *arena);
gb_internal isize arena_align_forward_offset(Arena *arena, isize alignment) {
isize alignment_offset = 0;
isize ptr = cast(isize)(arena->curr_block->base + arena->curr_block->used);
isize mask = alignment-1;
if (ptr & mask) {
alignment_offset = alignment - (ptr & mask);
}
return alignment_offset;
}
gb_internal void *arena_alloc(Arena *arena, isize min_size, isize alignment) {
GB_ASSERT(gb_is_power_of_two(alignment));
mutex_lock(&arena->mutex);
isize size = 0;
if (arena->curr_block != nullptr) {
size = min_size + arena_align_forward_offset(arena, alignment);
}
if (arena->curr_block == nullptr || (arena->curr_block->used + size) > arena->curr_block->size) {
size = align_formula_isize(min_size, alignment);
arena->minimum_block_size = gb_max(DEFAULT_MINIMUM_BLOCK_SIZE, arena->minimum_block_size);
isize block_size = gb_max(size, arena->minimum_block_size);
MemoryBlock *new_block = virtual_memory_alloc(block_size);
new_block->prev = arena->curr_block;
arena->curr_block = new_block;
}
MemoryBlock *curr_block = arena->curr_block;
GB_ASSERT((curr_block->used + size) <= curr_block->size);
u8 *ptr = curr_block->base + curr_block->used;
ptr += arena_align_forward_offset(arena, alignment);
curr_block->used += size;
GB_ASSERT(curr_block->used <= curr_block->size);
mutex_unlock(&arena->mutex);
// NOTE(bill): memory will be zeroed by default due to virtual memory
return ptr;
}
gb_internal void arena_free_all(Arena *arena) {
while (arena->curr_block != nullptr) {
MemoryBlock *free_block = arena->curr_block;
arena->curr_block = free_block->prev;
virtual_memory_dealloc(free_block);
}
}
struct PlatformMemoryBlock {
MemoryBlock block; // IMPORTANT NOTE: must be at the start
isize total_size;
PlatformMemoryBlock *prev, *next;
};
gb_global std::atomic<isize> global_platform_memory_total_usage;
gb_global PlatformMemoryBlock global_platform_memory_block_sentinel;
gb_internal PlatformMemoryBlock *platform_virtual_memory_alloc(isize total_size);
gb_internal void platform_virtual_memory_free(PlatformMemoryBlock *block);
gb_internal void platform_virtual_memory_protect(void *memory, isize size);
#if defined(GB_SYSTEM_WINDOWS)
gb_internal void platform_virtual_memory_init(void) {
global_platform_memory_block_sentinel.prev = &global_platform_memory_block_sentinel;
global_platform_memory_block_sentinel.next = &global_platform_memory_block_sentinel;
SYSTEM_INFO sys_info = {};
GetSystemInfo(&sys_info);
DEFAULT_PAGE_SIZE = gb_max(DEFAULT_PAGE_SIZE, cast(isize)sys_info.dwPageSize);
GB_ASSERT(gb_is_power_of_two(DEFAULT_PAGE_SIZE));
}
gb_internal PlatformMemoryBlock *platform_virtual_memory_alloc(isize total_size) {
PlatformMemoryBlock *pmblock = (PlatformMemoryBlock *)VirtualAlloc(0, total_size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
if (pmblock == nullptr) {
gb_printf_err("Out of Virtual memory, oh no...\n");
gb_printf_err("Requested: %lld bytes\n", cast(long long)total_size);
gb_printf_err("Total Usage: %lld bytes\n", cast(long long)global_platform_memory_total_usage);
GB_ASSERT_MSG(pmblock != nullptr, "Out of Virtual Memory, oh no...");
}
global_platform_memory_total_usage.fetch_add(total_size);
return pmblock;
}
gb_internal void platform_virtual_memory_free(PlatformMemoryBlock *block) {
global_platform_memory_total_usage.fetch_sub(block->total_size);
GB_ASSERT(VirtualFree(block, 0, MEM_RELEASE));
}
gb_internal void platform_virtual_memory_protect(void *memory, isize size) {
DWORD old_protect = 0;
BOOL is_protected = VirtualProtect(memory, size, PAGE_NOACCESS, &old_protect);
GB_ASSERT(is_protected);
}
#else
gb_internal void platform_virtual_memory_init(void) {
global_platform_memory_block_sentinel.prev = &global_platform_memory_block_sentinel;
global_platform_memory_block_sentinel.next = &global_platform_memory_block_sentinel;
DEFAULT_PAGE_SIZE = gb_max(DEFAULT_PAGE_SIZE, cast(isize)sysconf(_SC_PAGE_SIZE));
GB_ASSERT(gb_is_power_of_two(DEFAULT_PAGE_SIZE));
}
gb_internal PlatformMemoryBlock *platform_virtual_memory_alloc(isize total_size) {
PlatformMemoryBlock *pmblock = (PlatformMemoryBlock *)mmap(nullptr, total_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (pmblock == nullptr) {
gb_printf_err("Out of Virtual memory, oh no...\n");
gb_printf_err("Requested: %lld bytes\n", cast(long long)total_size);
gb_printf_err("Total Usage: %lld bytes\n", cast(long long)global_platform_memory_total_usage);
GB_ASSERT_MSG(pmblock != nullptr, "Out of Virtual Memory, oh no...");
}
global_platform_memory_total_usage += total_size;
return pmblock;
}
gb_internal void platform_virtual_memory_free(PlatformMemoryBlock *block) {
isize size = block->total_size;
global_platform_memory_total_usage -= size;
munmap(block, size);
}
gb_internal void platform_virtual_memory_protect(void *memory, isize size) {
int err = mprotect(memory, size, PROT_NONE);
GB_ASSERT(err == 0);
}
#endif
gb_internal MemoryBlock *virtual_memory_alloc(isize size) {
isize const page_size = DEFAULT_PAGE_SIZE;
isize total_size = size + gb_size_of(PlatformMemoryBlock);
isize base_offset = gb_size_of(PlatformMemoryBlock);
isize protect_offset = 0;
bool do_protection = false;
{ // overflow protection
isize rounded_size = align_formula_isize(size, page_size);
total_size = rounded_size + 2*page_size;
base_offset = page_size + rounded_size - size;
protect_offset = page_size + rounded_size;
do_protection = true;
}
PlatformMemoryBlock *pmblock = platform_virtual_memory_alloc(total_size);
GB_ASSERT_MSG(pmblock != nullptr, "Out of Virtual Memory, oh no...");
pmblock->block.base = cast(u8 *)pmblock + base_offset;
// Should be zeroed
GB_ASSERT(pmblock->block.used == 0);
GB_ASSERT(pmblock->block.prev == nullptr);
if (do_protection) {
platform_virtual_memory_protect(cast(u8 *)pmblock + protect_offset, page_size);
}
pmblock->block.size = size;
pmblock->total_size = total_size;
PlatformMemoryBlock *sentinel = &global_platform_memory_block_sentinel;
mutex_lock(&global_memory_block_mutex);
pmblock->next = sentinel;
pmblock->prev = sentinel->prev;
pmblock->prev->next = pmblock;
pmblock->next->prev = pmblock;
mutex_unlock(&global_memory_block_mutex);
return &pmblock->block;
}
gb_internal void virtual_memory_dealloc(MemoryBlock *block_to_free) {
PlatformMemoryBlock *block = cast(PlatformMemoryBlock *)block_to_free;
if (block != nullptr) {
mutex_lock(&global_memory_block_mutex);
block->prev->next = block->next;
block->next->prev = block->prev;
mutex_unlock(&global_memory_block_mutex);
platform_virtual_memory_free(block);
}
}
gb_internal GB_ALLOCATOR_PROC(arena_allocator_proc);
gb_internal gbAllocator arena_allocator(Arena *arena) {
gbAllocator a;
a.proc = arena_allocator_proc;
a.data = arena;
return a;
}
gb_internal GB_ALLOCATOR_PROC(arena_allocator_proc) {
void *ptr = nullptr;
Arena *arena = cast(Arena *)allocator_data;
GB_ASSERT_NOT_NULL(arena);
switch (type) {
case gbAllocation_Alloc:
ptr = arena_alloc(arena, size, alignment);
break;
case gbAllocation_Free:
break;
case gbAllocation_Resize:
if (size == 0) {
ptr = nullptr;
} else if (size <= old_size) {
ptr = old_memory;
} else {
ptr = arena_alloc(arena, size, alignment);
gb_memmove(ptr, old_memory, old_size);
}
break;
case gbAllocation_FreeAll:
GB_PANIC("use arena_free_all directly");
arena_free_all(arena);
break;
}
return ptr;
}
gb_global gb_thread_local Arena permanent_arena = {nullptr, DEFAULT_MINIMUM_BLOCK_SIZE};
gb_internal gbAllocator permanent_allocator() {
return arena_allocator(&permanent_arena);
}
gb_internal gbAllocator temporary_allocator() {
return permanent_allocator();
}
gb_internal GB_ALLOCATOR_PROC(heap_allocator_proc);
gb_internal gbAllocator heap_allocator(void) {
return arena_allocator(&permanent_arena);
// gbAllocator a;
// a.proc = heap_allocator_proc;
// a.data = nullptr;
// return a;
}
gb_internal GB_ALLOCATOR_PROC(heap_allocator_proc) {
void *ptr = nullptr;
gb_unused(allocator_data);
gb_unused(old_size);
// TODO(bill): Throughly test!
switch (type) {
#if defined(GB_COMPILER_MSVC)
case gbAllocation_Alloc:
if (size == 0) {
return NULL;
} else {
isize aligned_size = align_formula_isize(size, alignment);
// TODO(bill): Make sure this is aligned correctly
ptr = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, aligned_size);
}
break;
case gbAllocation_Free:
if (old_memory != nullptr) {
HeapFree(GetProcessHeap(), 0, old_memory);
}
break;
case gbAllocation_Resize:
if (old_memory != nullptr && size > 0) {
isize aligned_size = align_formula_isize(size, alignment);
ptr = HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, old_memory, aligned_size);
} else if (old_memory != nullptr) {
HeapFree(GetProcessHeap(), 0, old_memory);
} else if (size != 0) {
isize aligned_size = align_formula_isize(size, alignment);
// TODO(bill): Make sure this is aligned correctly
ptr = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, aligned_size);
}
break;
#elif defined(GB_SYSTEM_LINUX)
// TODO(bill): *nix version that's decent
case gbAllocation_Alloc: {
ptr = aligned_alloc(alignment, (size + alignment - 1) & ~(alignment - 1));
gb_zero_size(ptr, size);
} break;
case gbAllocation_Free:
if (old_memory != nullptr) {
free(old_memory);
}
break;
case gbAllocation_Resize:
if (size == 0) {
if (old_memory != nullptr) {
free(old_memory);
}
break;
}
alignment = gb_max(alignment, gb_align_of(max_align_t));
if (old_memory == nullptr) {
ptr = aligned_alloc(alignment, (size + alignment - 1) & ~(alignment - 1));
gb_zero_size(ptr, size);
break;
}
if (size <= old_size) {
ptr = old_memory;
break;
}
ptr = aligned_alloc(alignment, (size + alignment - 1) & ~(alignment - 1));
gb_memmove(ptr, old_memory, old_size);
free(old_memory);
gb_zero_size(cast(u8 *)ptr + old_size, gb_max(size-old_size, 0));
break;
#else
// TODO(bill): *nix version that's decent
case gbAllocation_Alloc: {
int err = 0;
alignment = gb_max(alignment, gb_align_of(max_align_t));
err = posix_memalign(&ptr, alignment, size);
GB_ASSERT_MSG(err == 0, "posix_memalign err: %d", err);
gb_zero_size(ptr, size);
} break;
case gbAllocation_Free:
if (old_memory != nullptr) {
free(old_memory);
}
break;
case gbAllocation_Resize: {
int err = 0;
if (size == 0) {
free(old_memory);
break;
}
alignment = gb_max(alignment, gb_align_of(max_align_t));
if (old_memory == nullptr) {
err = posix_memalign(&ptr, alignment, size);
GB_ASSERT_MSG(err == 0, "posix_memalign err: %d", err);
GB_ASSERT(ptr != nullptr);
gb_zero_size(ptr, size);
break;
}
if (size <= old_size) {
ptr = old_memory;
break;
}
err = posix_memalign(&ptr, alignment, size);
GB_ASSERT_MSG(err == 0, "posix_memalign err: %d", err);
GB_ASSERT(ptr != nullptr);
gb_memmove(ptr, old_memory, old_size);
free(old_memory);
gb_zero_size(cast(u8 *)ptr + old_size, gb_max(size-old_size, 0));
} break;
#endif
case gbAllocation_FreeAll:
break;
}
return ptr;
}
template <typename T>
gb_internal void resize_array_raw(T **array, gbAllocator const &a, isize old_count, isize new_count) {
GB_ASSERT(new_count >= 0);
if (new_count == 0) {
gb_free(a, *array);
*array = nullptr;
return;
}
if (new_count < old_count) {
return;
}
isize old_size = old_count * gb_size_of(T);
isize new_size = new_count * gb_size_of(T);
isize alignment = gb_align_of(T);
auto new_data = cast(T *)gb_resize_align(a, *array, old_size, new_size, alignment);
GB_ASSERT(new_data != nullptr);
*array = new_data;
}