Files
Odin/core/flags/internal_rtti.odin
2024-06-07 13:16:13 -04:00

549 lines
18 KiB
Odin

//+private
package flags
import "base:intrinsics"
import "base:runtime"
import "core:fmt"
import "core:mem"
@require import "core:net"
import "core:os"
import "core:reflect"
import "core:strconv"
import "core:strings"
@require import "core:time"
@require import "core:time/datetime"
import "core:unicode/utf8"
@(optimization_mode="size")
parse_and_set_pointer_by_base_type :: proc(ptr: rawptr, str: string, type_info: ^runtime.Type_Info) -> bool {
bounded_int :: proc(value, min, max: i128) -> (result: i128, ok: bool) {
return value, min <= value && value <= max
}
bounded_uint :: proc(value, max: u128) -> (result: u128, ok: bool) {
return value, value <= max
}
// NOTE(Feoramund): This procedure has been written with the goal in mind
// of generating the least amount of assembly, given that this library is
// likely to be called once and forgotten.
//
// I've rewritten the switch tables below in 3 different ways, and the
// current one generates the least amount of code for me on Linux AMD64.
//
// The other two ways were:
//
// - the original implementation: use of parametric polymorphism which led
// to dozens of functions generated, one for each type.
//
// - a `value, ok` assignment statement with the `or_return` done at the
// end of the switch, instead of inline.
//
// This seems to be the smallest way for now.
#partial switch specific_type_info in type_info.variant {
case runtime.Type_Info_Integer:
if specific_type_info.signed {
value := strconv.parse_i128(str) or_return
switch type_info.id {
case i8: (cast(^i8) ptr)^ = cast(i8) bounded_int(value, cast(i128)min(i8), cast(i128)max(i8) ) or_return
case i16: (cast(^i16) ptr)^ = cast(i16) bounded_int(value, cast(i128)min(i16), cast(i128)max(i16) ) or_return
case i32: (cast(^i32) ptr)^ = cast(i32) bounded_int(value, cast(i128)min(i32), cast(i128)max(i32) ) or_return
case i64: (cast(^i64) ptr)^ = cast(i64) bounded_int(value, cast(i128)min(i64), cast(i128)max(i64) ) or_return
case i128: (cast(^i128) ptr)^ = value
case int: (cast(^int) ptr)^ = cast(int) bounded_int(value, cast(i128)min(int), cast(i128)max(int) ) or_return
case i16le: (cast(^i16le) ptr)^ = cast(i16le) bounded_int(value, cast(i128)min(i16le), cast(i128)max(i16le) ) or_return
case i32le: (cast(^i32le) ptr)^ = cast(i32le) bounded_int(value, cast(i128)min(i32le), cast(i128)max(i32le) ) or_return
case i64le: (cast(^i64le) ptr)^ = cast(i64le) bounded_int(value, cast(i128)min(i64le), cast(i128)max(i64le) ) or_return
case i128le: (cast(^i128le)ptr)^ = cast(i128le) bounded_int(value, cast(i128)min(i128le), cast(i128)max(i128le)) or_return
case i16be: (cast(^i16be) ptr)^ = cast(i16be) bounded_int(value, cast(i128)min(i16be), cast(i128)max(i16be) ) or_return
case i32be: (cast(^i32be) ptr)^ = cast(i32be) bounded_int(value, cast(i128)min(i32be), cast(i128)max(i32be) ) or_return
case i64be: (cast(^i64be) ptr)^ = cast(i64be) bounded_int(value, cast(i128)min(i64be), cast(i128)max(i64be) ) or_return
case i128be: (cast(^i128be)ptr)^ = cast(i128be) bounded_int(value, cast(i128)min(i128be), cast(i128)max(i128be)) or_return
}
} else {
value := strconv.parse_u128(str) or_return
switch type_info.id {
case u8: (cast(^u8) ptr)^ = cast(u8) bounded_uint(value, cast(u128)max(u8) ) or_return
case u16: (cast(^u16) ptr)^ = cast(u16) bounded_uint(value, cast(u128)max(u16) ) or_return
case u32: (cast(^u32) ptr)^ = cast(u32) bounded_uint(value, cast(u128)max(u32) ) or_return
case u64: (cast(^u64) ptr)^ = cast(u64) bounded_uint(value, cast(u128)max(u64) ) or_return
case u128: (cast(^u128) ptr)^ = value
case uint: (cast(^uint) ptr)^ = cast(uint) bounded_uint(value, cast(u128)max(uint) ) or_return
case uintptr: (cast(^uintptr)ptr)^ = cast(uintptr) bounded_uint(value, cast(u128)max(uintptr)) or_return
case u16le: (cast(^u16le) ptr)^ = cast(u16le) bounded_uint(value, cast(u128)max(u16le) ) or_return
case u32le: (cast(^u32le) ptr)^ = cast(u32le) bounded_uint(value, cast(u128)max(u32le) ) or_return
case u64le: (cast(^u64le) ptr)^ = cast(u64le) bounded_uint(value, cast(u128)max(u64le) ) or_return
case u128le: (cast(^u128le) ptr)^ = cast(u128le) bounded_uint(value, cast(u128)max(u128le) ) or_return
case u16be: (cast(^u16be) ptr)^ = cast(u16be) bounded_uint(value, cast(u128)max(u16be) ) or_return
case u32be: (cast(^u32be) ptr)^ = cast(u32be) bounded_uint(value, cast(u128)max(u32be) ) or_return
case u64be: (cast(^u64be) ptr)^ = cast(u64be) bounded_uint(value, cast(u128)max(u64be) ) or_return
case u128be: (cast(^u128be) ptr)^ = cast(u128be) bounded_uint(value, cast(u128)max(u128be) ) or_return
}
}
case runtime.Type_Info_Rune:
if utf8.rune_count_in_string(str) != 1 {
return false
}
(cast(^rune)ptr)^ = utf8.rune_at_pos(str, 0)
case runtime.Type_Info_Float:
value := strconv.parse_f64(str) or_return
switch type_info.id {
case f16: (cast(^f16) ptr)^ = cast(f16) value
case f32: (cast(^f32) ptr)^ = cast(f32) value
case f64: (cast(^f64) ptr)^ = value
case f16le: (cast(^f16le)ptr)^ = cast(f16le) value
case f32le: (cast(^f32le)ptr)^ = cast(f32le) value
case f64le: (cast(^f64le)ptr)^ = cast(f64le) value
case f16be: (cast(^f16be)ptr)^ = cast(f16be) value
case f32be: (cast(^f32be)ptr)^ = cast(f32be) value
case f64be: (cast(^f64be)ptr)^ = cast(f64be) value
}
case runtime.Type_Info_Complex:
value := strconv.parse_complex128(str) or_return
switch type_info.id {
case complex128: (cast(^complex128)ptr)^ = value
case complex64: (cast(^complex64) ptr)^ = cast(complex64)value
case complex32: (cast(^complex32) ptr)^ = cast(complex32)value
}
case runtime.Type_Info_Quaternion:
value := strconv.parse_quaternion256(str) or_return
switch type_info.id {
case quaternion256: (cast(^quaternion256)ptr)^ = value
case quaternion128: (cast(^quaternion128)ptr)^ = cast(quaternion128)value
case quaternion64: (cast(^quaternion64) ptr)^ = cast(quaternion64)value
}
case runtime.Type_Info_String:
if specific_type_info.is_cstring {
cstr_ptr := cast(^cstring)ptr
if cstr_ptr != nil {
// Prevent memory leaks from us setting this value multiple times.
delete(cstr_ptr^)
}
cstr_ptr^ = strings.clone_to_cstring(str)
} else {
(cast(^string)ptr)^ = str
}
case runtime.Type_Info_Boolean:
value := strconv.parse_bool(str) or_return
switch type_info.id {
case bool: (cast(^bool) ptr)^ = value
case b8: (cast(^b8) ptr)^ = cast(b8) value
case b16: (cast(^b16) ptr)^ = cast(b16) value
case b32: (cast(^b32) ptr)^ = cast(b32) value
case b64: (cast(^b64) ptr)^ = cast(b64) value
}
case runtime.Type_Info_Bit_Set:
// Parse a string of 1's and 0's, from left to right,
// least significant bit to most significant bit.
value: u128
// NOTE: `upper` is inclusive, i.e: `0..=31`
max_bit_index := cast(u128)(1 + specific_type_info.upper - specific_type_info.lower)
bit_index : u128 = 0
#no_bounds_check for string_index : uint = 0; string_index < len(str); string_index += 1 {
if bit_index == max_bit_index {
// The string's too long for this bit_set.
return false
}
switch str[string_index] {
case '1':
value |= 1 << bit_index
bit_index += 1
case '0':
bit_index += 1
continue
case '_':
continue
case:
return false
}
}
if specific_type_info.underlying != nil {
set_unbounded_integer_by_type(ptr, value, specific_type_info.underlying.id)
} else {
switch 8*type_info.size {
case 8: (cast(^u8) ptr)^ = cast(u8) value
case 16: (cast(^u16) ptr)^ = cast(u16) value
case 32: (cast(^u32) ptr)^ = cast(u32) value
case 64: (cast(^u64) ptr)^ = cast(u64) value
case 128: (cast(^u128) ptr)^ = cast(u128) value
}
}
case:
fmt.panicf("Unsupported base data type: %v", specific_type_info)
}
return true
}
// This proc exists to make error handling easier, since everything in the base
// type one above works on booleans. It's a simple parsing error if it's false.
//
// However, here we have to be more careful about how we handle errors,
// especially with files.
//
// We want to provide as informative as an error as we can.
@(optimization_mode="size", disabled=NO_CORE_NAMED_TYPES)
parse_and_set_pointer_by_named_type :: proc(ptr: rawptr, str: string, data_type: typeid, arg_tag: string, out_error: ^Error) {
// Core types currently supported:
//
// - os.Handle
// - time.Time
// - datetime.DateTime
// - net.Host_Or_Endpoint
GENERIC_RFC_3339_ERROR :: "Invalid RFC 3339 string. Try this format: `yyyy-mm-ddThh:mm:ssZ`, for example `2024-02-29T16:30:00Z`."
out_error^ = nil
if data_type == os.Handle {
// NOTE: `os` is hopefully available everywhere, even if it might panic on some calls.
wants_read := false
wants_write := false
mode: int
if file, ok := get_struct_subtag(arg_tag, SUBTAG_FILE); ok {
for i := 0; i < len(file); i += 1 {
#no_bounds_check switch file[i] {
case 'r': wants_read = true
case 'w': wants_write = true
case 'c': mode |= os.O_CREATE
case 'a': mode |= os.O_APPEND
case 't': mode |= os.O_TRUNC
}
}
}
// Sane default.
// owner/group/other: r--r--r--
perms: int = 0o444
if wants_read && wants_write {
mode |= os.O_RDWR
perms |= 0o200
} else if wants_write {
mode |= os.O_WRONLY
perms |= 0o200
} else {
mode |= os.O_RDONLY
}
if permstr, ok := get_struct_subtag(arg_tag, SUBTAG_PERMS); ok {
if value, parse_ok := strconv.parse_u64_of_base(permstr, 8); parse_ok {
perms = cast(int)value
}
}
handle, errno := os.open(str, mode, perms)
if errno != 0 {
// NOTE(Feoramund): os.Errno is system-dependent, and there's
// currently no good way to translate them all into strings.
//
// The upcoming `os2` package will hopefully solve this.
//
// We can at least provide the number for now, so the user can look
// it up.
out_error^ = Open_File_Error {
str,
errno,
mode,
perms,
}
return
}
(cast(^os.Handle)ptr)^ = handle
return
}
when IMPORTING_TIME {
if data_type == time.Time {
// NOTE: The leap second data is discarded.
res, consumed := time.rfc3339_to_time_utc(str)
if consumed == 0 {
// The RFC 3339 parsing facilities provide no indication as to what
// went wrong, so just treat it as a regular parsing error.
out_error^ = Parse_Error {
.Bad_Value,
GENERIC_RFC_3339_ERROR,
}
return
}
(cast(^time.Time)ptr)^ = res
return
} else if data_type == datetime.DateTime {
// NOTE: The UTC offset and leap second data are discarded.
res, _, _, consumed := time.rfc3339_to_components(str)
if consumed == 0 {
out_error^ = Parse_Error {
.Bad_Value,
GENERIC_RFC_3339_ERROR,
}
return
}
(cast(^datetime.DateTime)ptr)^ = res
return
}
}
when IMPORTING_NET {
if data_type == net.Host_Or_Endpoint {
addr, net_error := net.parse_hostname_or_endpoint(str)
if net_error != nil {
// We pass along `net.Error` here.
out_error^ = Parse_Error {
net_error,
"Invalid Host/Endpoint.",
}
return
}
(cast(^net.Host_Or_Endpoint)ptr)^ = addr
return
}
}
out_error ^= Parse_Error {
// The caller will add more details.
.Unsupported_Type,
"",
}
}
@(optimization_mode="size")
set_unbounded_integer_by_type :: proc(ptr: rawptr, value: $T, data_type: typeid) where intrinsics.type_is_integer(T) {
switch data_type {
case i8: (cast(^i8) ptr)^ = cast(i8) value
case i16: (cast(^i16) ptr)^ = cast(i16) value
case i32: (cast(^i32) ptr)^ = cast(i32) value
case i64: (cast(^i64) ptr)^ = cast(i64) value
case i128: (cast(^i128) ptr)^ = cast(i128) value
case int: (cast(^int) ptr)^ = cast(int) value
case i16le: (cast(^i16le) ptr)^ = cast(i16le) value
case i32le: (cast(^i32le) ptr)^ = cast(i32le) value
case i64le: (cast(^i64le) ptr)^ = cast(i64le) value
case i128le: (cast(^i128le) ptr)^ = cast(i128le) value
case i16be: (cast(^i16be) ptr)^ = cast(i16be) value
case i32be: (cast(^i32be) ptr)^ = cast(i32be) value
case i64be: (cast(^i64be) ptr)^ = cast(i64be) value
case i128be: (cast(^i128be) ptr)^ = cast(i128be) value
case u8: (cast(^u8) ptr)^ = cast(u8) value
case u16: (cast(^u16) ptr)^ = cast(u16) value
case u32: (cast(^u32) ptr)^ = cast(u32) value
case u64: (cast(^u64) ptr)^ = cast(u64) value
case u128: (cast(^u128) ptr)^ = cast(u128) value
case uint: (cast(^uint) ptr)^ = cast(uint) value
case uintptr: (cast(^uintptr)ptr)^ = cast(uintptr) value
case u16le: (cast(^u16le) ptr)^ = cast(u16le) value
case u32le: (cast(^u32le) ptr)^ = cast(u32le) value
case u64le: (cast(^u64le) ptr)^ = cast(u64le) value
case u128le: (cast(^u128le) ptr)^ = cast(u128le) value
case u16be: (cast(^u16be) ptr)^ = cast(u16be) value
case u32be: (cast(^u32be) ptr)^ = cast(u32be) value
case u64be: (cast(^u64be) ptr)^ = cast(u64be) value
case u128be: (cast(^u128be) ptr)^ = cast(u128be) value
case rune: (cast(^rune) ptr)^ = cast(rune) value
case:
fmt.panicf("Unsupported integer backing type: %v", data_type)
}
}
@(optimization_mode="size")
parse_and_set_pointer_by_type :: proc(ptr: rawptr, str: string, type_info: ^runtime.Type_Info, arg_tag: string) -> (error: Error) {
#partial switch specific_type_info in type_info.variant {
case runtime.Type_Info_Named:
if global_custom_type_setter != nil {
// The program gets to go first.
error_message, handled, alloc_error := global_custom_type_setter(ptr, type_info.id, str, arg_tag)
if alloc_error != nil {
// There was an allocation error. Bail out.
return Parse_Error {
alloc_error,
"Custom type setter encountered allocation error.",
}
}
if handled {
// The program handled the type.
if len(error_message) != 0 {
// However, there was an error. Pass it along.
error = Parse_Error {
.Bad_Value,
error_message,
}
}
return
}
}
// Might be a named enum. Need to check here first, since we handle all enums.
if enum_type_info, is_enum := specific_type_info.base.variant.(runtime.Type_Info_Enum); is_enum {
if value, ok := reflect.enum_from_name_any(type_info.id, str); ok {
set_unbounded_integer_by_type(ptr, value, enum_type_info.base.id)
} else {
return Parse_Error {
.Bad_Value,
fmt.tprintf("Invalid value name. Valid names are: %s", enum_type_info.names),
}
}
} else {
parse_and_set_pointer_by_named_type(ptr, str, type_info.id, arg_tag, &error)
if error != nil {
// So far, it's none of the types that we recognize.
// Check to see if we can set it by base type, if allowed.
if _, is_indistinct := get_struct_subtag(arg_tag, SUBTAG_INDISTINCT); is_indistinct {
return parse_and_set_pointer_by_type(ptr, str, specific_type_info.base, arg_tag)
}
}
}
case runtime.Type_Info_Dynamic_Array:
ptr := cast(^runtime.Raw_Dynamic_Array)ptr
// Try to convert the value first.
elem_backing, alloc_error := mem.alloc_bytes(specific_type_info.elem.size, specific_type_info.elem.align)
if alloc_error != nil {
return Parse_Error {
alloc_error,
"Failed to allocate element backing for dynamic array.",
}
}
defer delete(elem_backing)
parse_and_set_pointer_by_type(raw_data(elem_backing), str, specific_type_info.elem, arg_tag) or_return
if !runtime.__dynamic_array_resize(ptr, specific_type_info.elem.size, specific_type_info.elem.align, ptr.len + 1) {
// NOTE: This is purely an assumption that it's OOM.
// Regardless, the resize failed.
return Parse_Error {
runtime.Allocator_Error.Out_Of_Memory,
"Failed to resize dynamic array.",
}
}
subptr := cast(rawptr)(
cast(uintptr)ptr.data +
cast(uintptr)((ptr.len - 1) * specific_type_info.elem.size))
mem.copy(subptr, raw_data(elem_backing), len(elem_backing))
case runtime.Type_Info_Enum:
// This is a nameless enum.
// The code here is virtually the same as above for named enums.
if value, ok := reflect.enum_from_name_any(type_info.id, str); ok {
set_unbounded_integer_by_type(ptr, value, specific_type_info.base.id)
} else {
return Parse_Error {
.Bad_Value,
fmt.tprintf("Invalid value name. Valid names are: %s", specific_type_info.names),
}
}
case:
if !parse_and_set_pointer_by_base_type(ptr, str, type_info) {
return Parse_Error {
// The caller will add more details.
.Bad_Value,
"",
}
}
}
return
}
get_struct_subtag :: get_subtag
get_field_name :: proc(field: reflect.Struct_Field) -> string {
if args_tag, ok := reflect.struct_tag_lookup(field.tag, TAG_ARGS); ok {
if name_subtag, name_ok := get_struct_subtag(args_tag, SUBTAG_NAME); name_ok {
return name_subtag
}
}
name, _ := strings.replace_all(field.name, "_", "-", context.temp_allocator)
return name
}
get_field_pos :: proc(field: reflect.Struct_Field) -> (int, bool) {
if args_tag, ok := reflect.struct_tag_lookup(field.tag, TAG_ARGS); ok {
if pos_subtag, pos_ok := get_struct_subtag(args_tag, SUBTAG_POS); pos_ok {
if value, parse_ok := strconv.parse_u64_of_base(pos_subtag, 10); parse_ok {
return cast(int)value, true
}
}
}
return 0, false
}
// Get a struct field by its field name or `name` subtag.
get_field_by_name :: proc(model: ^$T, name: string) -> (result: reflect.Struct_Field, index: int, error: Error) {
for field, i in reflect.struct_fields_zipped(T) {
if get_field_name(field) == name {
return field, i, nil
}
}
error = Parse_Error {
.Missing_Flag,
fmt.tprintf("Unable to find any flag named `%s`.", name),
}
return
}
// Get a struct field by its `pos` subtag.
get_field_by_pos :: proc(model: ^$T, pos: int) -> (result: reflect.Struct_Field, index: int, ok: bool) {
for field, i in reflect.struct_fields_zipped(T) {
args_tag, tag_ok := reflect.struct_tag_lookup(field.tag, TAG_ARGS)
if !tag_ok {
continue
}
pos_subtag, pos_ok := get_struct_subtag(args_tag, SUBTAG_POS)
if !pos_ok {
continue
}
value, parse_ok := strconv.parse_u64_of_base(pos_subtag, 10)
if parse_ok && cast(int)value == pos {
return field, i, true
}
}
return
}