mirror of
https://github.com/odin-lang/Odin.git
synced 2025-12-29 01:14:40 +00:00
12468 lines
365 KiB
C++
12468 lines
365 KiB
C++
enum CallArgumentError {
|
|
CallArgumentError_None,
|
|
CallArgumentError_NoneProcedureType,
|
|
CallArgumentError_WrongTypes,
|
|
CallArgumentError_NonVariadicExpand,
|
|
CallArgumentError_VariadicTuple,
|
|
CallArgumentError_MultipleVariadicExpand,
|
|
CallArgumentError_AmbiguousPolymorphicVariadic,
|
|
CallArgumentError_ArgumentCount,
|
|
CallArgumentError_TooFewArguments,
|
|
CallArgumentError_TooManyArguments,
|
|
CallArgumentError_InvalidFieldValue,
|
|
CallArgumentError_ParameterNotFound,
|
|
CallArgumentError_ParameterMissing,
|
|
CallArgumentError_DuplicateParameter,
|
|
CallArgumentError_NoneConstantParameter,
|
|
CallArgumentError_OutOfOrderParameters,
|
|
|
|
CallArgumentError_MAX,
|
|
};
|
|
gb_global char const *CallArgumentError_strings[CallArgumentError_MAX] = {
|
|
"None",
|
|
"NoneProcedureType",
|
|
"WrongTypes",
|
|
"NonVariadicExpand",
|
|
"VariadicTuple",
|
|
"MultipleVariadicExpand",
|
|
"AmbiguousPolymorphicVariadic",
|
|
"ArgumentCount",
|
|
"TooFewArguments",
|
|
"TooManyArguments",
|
|
"InvalidFieldValue",
|
|
"ParameterNotFound",
|
|
"ParameterMissing",
|
|
"DuplicateParameter",
|
|
"NoneConstantParameter",
|
|
"OutOfOrderParameters",
|
|
};
|
|
|
|
|
|
enum struct CallArgumentErrorMode {
|
|
NoErrors,
|
|
ShowErrors,
|
|
};
|
|
|
|
struct CallArgumentData {
|
|
Entity *gen_entity;
|
|
i64 score;
|
|
Type * result_type;
|
|
};
|
|
|
|
struct PolyProcData {
|
|
Entity * gen_entity;
|
|
ProcInfo *proc_info;
|
|
};
|
|
|
|
struct ValidIndexAndScore {
|
|
isize index;
|
|
i64 score;
|
|
};
|
|
|
|
gb_internal int valid_index_and_score_cmp(void const *a, void const *b) {
|
|
i64 si = (cast(ValidIndexAndScore const *)a)->score;
|
|
i64 sj = (cast(ValidIndexAndScore const *)b)->score;
|
|
return sj < si ? -1 : sj > si;
|
|
}
|
|
|
|
|
|
|
|
gb_internal void check_expr (CheckerContext *c, Operand *operand, Ast *expression);
|
|
gb_internal void check_multi_expr (CheckerContext *c, Operand *operand, Ast *expression);
|
|
gb_internal void check_multi_expr_or_type (CheckerContext *c, Operand *operand, Ast *expression);
|
|
gb_internal void check_multi_expr_with_type_hint(CheckerContext *c, Operand *o, Ast *e, Type *type_hint);
|
|
gb_internal void check_expr_or_type (CheckerContext *c, Operand *operand, Ast *expression, Type *type_hint);
|
|
gb_internal ExprKind check_expr_base (CheckerContext *c, Operand *operand, Ast *expression, Type *type_hint);
|
|
gb_internal void check_expr_with_type_hint (CheckerContext *c, Operand *o, Ast *e, Type *t);
|
|
gb_internal Type * check_type (CheckerContext *c, Ast *expression);
|
|
gb_internal Type * check_type_expr (CheckerContext *c, Ast *expression, Type *named_type);
|
|
gb_internal Type * make_optional_ok_type (Type *value, bool typed=true);
|
|
gb_internal Entity * check_selector (CheckerContext *c, Operand *operand, Ast *node, Type *type_hint);
|
|
gb_internal Entity * check_ident (CheckerContext *c, Operand *o, Ast *n, Type *named_type, Type *type_hint, bool allow_import_name);
|
|
gb_internal void check_not_tuple (CheckerContext *c, Operand *operand);
|
|
gb_internal void convert_to_typed (CheckerContext *c, Operand *operand, Type *target_type);
|
|
gb_internal gbString expr_to_string (Ast *expression);
|
|
gb_internal gbString expr_to_string (Ast *expression, gbAllocator allocator);
|
|
gb_internal void update_untyped_expr_type (CheckerContext *c, Ast *e, Type *type, bool final);
|
|
gb_internal bool check_is_terminating (Ast *node, String const &label);
|
|
gb_internal bool check_has_break (Ast *stmt, String const &label, bool implicit);
|
|
gb_internal void check_stmt (CheckerContext *c, Ast *node, u32 flags);
|
|
gb_internal void check_stmt_list (CheckerContext *c, Slice<Ast *> const &stmts, u32 flags);
|
|
gb_internal void check_init_constant (CheckerContext *c, Entity *e, Operand *operand);
|
|
gb_internal bool check_representable_as_constant(CheckerContext *c, ExactValue in_value, Type *type, ExactValue *out_value);
|
|
gb_internal bool check_procedure_type (CheckerContext *c, Type *type, Ast *proc_type_node, Array<Operand> const *operands = nullptr);
|
|
gb_internal void check_struct_type (CheckerContext *c, Type *struct_type, Ast *node, Array<Operand> *poly_operands,
|
|
Type *named_type = nullptr, Type *original_type_for_poly = nullptr);
|
|
gb_internal void check_union_type (CheckerContext *c, Type *union_type, Ast *node, Array<Operand> *poly_operands,
|
|
Type *named_type = nullptr, Type *original_type_for_poly = nullptr);
|
|
|
|
gb_internal Type * check_init_variable (CheckerContext *c, Entity *e, Operand *operand, String context_name);
|
|
|
|
|
|
gb_internal void check_assignment_error_suggestion(CheckerContext *c, Operand *o, Type *type, i64 max_bit_size=0);
|
|
gb_internal void add_map_key_type_dependencies(CheckerContext *ctx, Type *key);
|
|
|
|
gb_internal Type *make_soa_struct_fixed(CheckerContext *ctx, Ast *array_typ_expr, Ast *elem_expr, Type *elem, i64 count, Type *generic_type);
|
|
gb_internal Type *make_soa_struct_slice(CheckerContext *ctx, Ast *array_typ_expr, Ast *elem_expr, Type *elem);
|
|
gb_internal Type *make_soa_struct_dynamic_array(CheckerContext *ctx, Ast *array_typ_expr, Ast *elem_expr, Type *elem);
|
|
|
|
gb_internal bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32 id, Type *type_hint);
|
|
|
|
gb_internal void check_promote_optional_ok(CheckerContext *c, Operand *x, Type **val_type_, Type **ok_type_, bool change_operand=true);
|
|
|
|
gb_internal void check_or_else_right_type(CheckerContext *c, Ast *expr, String const &name, Type *right_type);
|
|
gb_internal void check_or_else_split_types(CheckerContext *c, Operand *x, String const &name, Type **left_type_, Type **right_type_);
|
|
gb_internal void check_or_else_expr_no_value_error(CheckerContext *c, String const &name, Operand const &x, Type *type_hint);
|
|
gb_internal void check_or_return_split_types(CheckerContext *c, Operand *x, String const &name, Type **left_type_, Type **right_type_);
|
|
|
|
gb_internal bool is_diverging_expr(Ast *expr);
|
|
|
|
gb_internal isize get_procedure_param_count_excluding_defaults(Type *pt, isize *param_count_);
|
|
|
|
gb_internal bool is_expr_inferred_fixed_array(Ast *type_expr);
|
|
|
|
gb_internal Entity *find_polymorphic_record_entity(GenTypesData *found_gen_types, isize param_count, Array<Operand> const &ordered_operands);
|
|
|
|
gb_internal bool complete_soa_type(Checker *checker, Type *t, bool wait_to_finish);
|
|
|
|
gb_internal bool check_is_castable_to(CheckerContext *c, Operand *operand, Type *y);
|
|
|
|
gb_internal bool is_exact_value_zero(ExactValue const &v);
|
|
|
|
gb_internal IntegerDivisionByZeroKind check_for_integer_division_by_zero(CheckerContext *c, Ast *node);
|
|
|
|
enum LoadDirectiveResult {
|
|
LoadDirective_Success = 0,
|
|
LoadDirective_Error = 1,
|
|
LoadDirective_NotFound = 2,
|
|
};
|
|
|
|
gb_internal bool is_load_directive_call(Ast *call) {
|
|
call = unparen_expr(call);
|
|
if (call->kind != Ast_CallExpr) {
|
|
return false;
|
|
}
|
|
ast_node(ce, CallExpr, call);
|
|
if (ce->proc->kind != Ast_BasicDirective) {
|
|
return false;
|
|
}
|
|
ast_node(bd, BasicDirective, ce->proc);
|
|
String name = bd->name.string;
|
|
return name == "load";
|
|
}
|
|
gb_internal LoadDirectiveResult check_load_directive(CheckerContext *c, Operand *operand, Ast *call, Type *type_hint, bool err_on_not_found);
|
|
|
|
gb_internal void check_did_you_mean_print(DidYouMeanAnswers *d, char const *prefix = "") {
|
|
auto results = did_you_mean_results(d);
|
|
if (results.count != 0) {
|
|
error_line("\tSuggestion: Did you mean?\n");
|
|
for (auto const &result : results) {
|
|
String const &target = result.target;
|
|
error_line("\t\t%s%.*s\n", prefix, LIT(target));
|
|
// error_line("\t\t%.*s %td\n", LIT(target), results[i].distance);
|
|
}
|
|
}
|
|
}
|
|
|
|
gb_internal void populate_check_did_you_mean_objc_entity(StringSet *set, Entity *e, bool is_type) {
|
|
if (e->kind != Entity_TypeName) {
|
|
return;
|
|
}
|
|
if (e->TypeName.objc_metadata == nullptr) {
|
|
return;
|
|
}
|
|
TypeNameObjCMetadata *objc_metadata = e->TypeName.objc_metadata;
|
|
Type *t = base_type(e->type);
|
|
GB_ASSERT(t->kind == Type_Struct);
|
|
|
|
if (is_type) {
|
|
for (auto const &entry : objc_metadata->type_entries) {
|
|
string_set_add(set, entry.name);
|
|
}
|
|
} else {
|
|
for (auto const &entry : objc_metadata->value_entries) {
|
|
string_set_add(set, entry.name);
|
|
}
|
|
}
|
|
|
|
for (Entity *f : t->Struct.fields) {
|
|
if (f->flags & EntityFlag_Using && f->type != nullptr) {
|
|
if (f->type->kind == Type_Named && f->type->Named.type_name) {
|
|
populate_check_did_you_mean_objc_entity(set, f->type->Named.type_name, is_type);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
gb_internal void check_did_you_mean_objc_entity(String const &name, Entity *e, bool is_type, char const *prefix = "") {
|
|
if (build_context.terse_errors) { return; }
|
|
|
|
ERROR_BLOCK();
|
|
GB_ASSERT(e->kind == Entity_TypeName);
|
|
GB_ASSERT(e->TypeName.objc_metadata != nullptr);
|
|
auto *objc_metadata = e->TypeName.objc_metadata;
|
|
MUTEX_GUARD(objc_metadata->mutex);
|
|
|
|
StringSet set = {};
|
|
defer (string_set_destroy(&set));
|
|
populate_check_did_you_mean_objc_entity(&set, e, is_type);
|
|
|
|
|
|
DidYouMeanAnswers d = did_you_mean_make(heap_allocator(), set.entries.count, name);
|
|
defer (did_you_mean_destroy(&d));
|
|
for (String const &target : set) {
|
|
did_you_mean_append(&d, target);
|
|
}
|
|
check_did_you_mean_print(&d, prefix);
|
|
}
|
|
|
|
gb_internal void check_did_you_mean_type(String const &name, Array<Entity *> const &fields, char const *prefix = "") {
|
|
if (build_context.terse_errors) { return; }
|
|
|
|
ERROR_BLOCK();
|
|
|
|
DidYouMeanAnswers d = did_you_mean_make(heap_allocator(), fields.count, name);
|
|
defer (did_you_mean_destroy(&d));
|
|
|
|
for (Entity *e : fields) {
|
|
did_you_mean_append(&d, e->token.string);
|
|
}
|
|
check_did_you_mean_print(&d, prefix);
|
|
}
|
|
|
|
|
|
gb_internal void check_did_you_mean_type(String const &name, Slice<Entity *> const &fields, char const *prefix = "") {
|
|
if (build_context.terse_errors) { return; }
|
|
|
|
ERROR_BLOCK();
|
|
|
|
DidYouMeanAnswers d = did_you_mean_make(heap_allocator(), fields.count, name);
|
|
defer (did_you_mean_destroy(&d));
|
|
|
|
for (Entity *e : fields) {
|
|
did_you_mean_append(&d, e->token.string);
|
|
}
|
|
check_did_you_mean_print(&d, prefix);
|
|
}
|
|
|
|
gb_internal void check_did_you_mean_scope(String const &name, Scope *scope, char const *prefix = "") {
|
|
if (build_context.terse_errors) { return; }
|
|
|
|
ERROR_BLOCK();
|
|
|
|
DidYouMeanAnswers d = did_you_mean_make(heap_allocator(), scope->elements.count, name);
|
|
defer (did_you_mean_destroy(&d));
|
|
|
|
rw_mutex_shared_lock(&scope->mutex);
|
|
for (auto const &entry : scope->elements) {
|
|
Entity *e = entry.value;
|
|
did_you_mean_append(&d, e->token.string);
|
|
}
|
|
rw_mutex_shared_unlock(&scope->mutex);
|
|
check_did_you_mean_print(&d, prefix);
|
|
}
|
|
|
|
gb_internal Entity *entity_from_expr(Ast *expr) {
|
|
expr = unparen_expr(expr);
|
|
if (expr == nullptr) {
|
|
return nullptr;
|
|
}
|
|
switch (expr->kind) {
|
|
case Ast_Ident:
|
|
return expr->Ident.entity;
|
|
case Ast_SelectorExpr:
|
|
return entity_from_expr(expr->SelectorExpr.selector);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
gb_internal void error_operand_not_expression(Operand *o) {
|
|
if (o->mode == Addressing_Type) {
|
|
gbString err = expr_to_string(o->expr);
|
|
error(o->expr, "'%s' is not an expression but a type", err);
|
|
gb_string_free(err);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
}
|
|
|
|
gb_internal void error_operand_no_value(Operand *o) {
|
|
if (o->mode == Addressing_NoValue) {
|
|
Ast *x = unparen_expr(o->expr);
|
|
|
|
if (x != nullptr && x->kind == Ast_CallExpr) {
|
|
Ast *p = unparen_expr(x->CallExpr.proc);
|
|
if (p->kind == Ast_BasicDirective) {
|
|
String tag = p->BasicDirective.name.string;
|
|
if (tag == "panic" ||
|
|
tag == "assert") {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
gbString err = expr_to_string(o->expr);
|
|
if (x != nullptr && x->kind == Ast_CallExpr) {
|
|
error(o->expr, "'%s' call does not return a value and cannot be used as a value", err);
|
|
} else {
|
|
error(o->expr, "'%s' used as a value", err);
|
|
}
|
|
gb_string_free(err);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
}
|
|
|
|
gb_internal void add_map_get_dependencies(CheckerContext *c) {
|
|
if (build_context.dynamic_map_calls) {
|
|
add_package_dependency(c, "runtime", "__dynamic_map_get");
|
|
} else {
|
|
add_package_dependency(c, "runtime", "map_desired_position");
|
|
add_package_dependency(c, "runtime", "map_probe_distance");
|
|
}
|
|
}
|
|
|
|
gb_internal void add_map_set_dependencies(CheckerContext *c) {
|
|
init_core_source_code_location(c->checker);
|
|
|
|
if (t_map_set_proc == nullptr) {
|
|
Type *map_set_args[5] = {/*map*/t_rawptr, /*hash*/t_uintptr, /*key*/t_rawptr, /*value*/t_rawptr, /*#caller_location*/t_source_code_location};
|
|
t_map_set_proc = alloc_type_proc_from_types(map_set_args, gb_count_of(map_set_args), t_rawptr, false, ProcCC_Odin);
|
|
}
|
|
|
|
if (build_context.dynamic_map_calls) {
|
|
add_package_dependency(c, "runtime", "__dynamic_map_set");
|
|
} else {
|
|
add_package_dependency(c, "runtime", "__dynamic_map_check_grow");
|
|
add_package_dependency(c, "runtime", "map_insert_hash_dynamic");
|
|
}
|
|
}
|
|
|
|
gb_internal void add_map_reserve_dependencies(CheckerContext *c) {
|
|
init_core_source_code_location(c->checker);
|
|
add_package_dependency(c, "runtime", "__dynamic_map_reserve");
|
|
}
|
|
|
|
|
|
|
|
gb_internal void check_scope_decls(CheckerContext *c, Slice<Ast *> const &nodes, isize reserve_size) {
|
|
Scope *s = c->scope;
|
|
|
|
check_collect_entities(c, nodes);
|
|
|
|
for (auto const &entry : s->elements) {
|
|
Entity *e = entry.value;\
|
|
switch (e->kind) {
|
|
case Entity_Constant:
|
|
case Entity_TypeName:
|
|
case Entity_Procedure:
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
DeclInfo *d = decl_info_of_entity(e);
|
|
if (d != nullptr) {
|
|
check_entity_decl(c, e, d, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
gb_internal bool find_or_generate_polymorphic_procedure(CheckerContext *old_c, Entity *base_entity, Type *type,
|
|
Array<Operand> const *param_operands, Ast *poly_def_node, PolyProcData *poly_proc_data) {
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// //
|
|
// TODO CLEANUP(bill): This procedure is very messy and hacky. Clean this!!! //
|
|
// //
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
CheckerInfo *info = old_c->info;
|
|
|
|
if (base_entity == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
if (!is_type_proc(base_entity->type)) {
|
|
return false;
|
|
}
|
|
|
|
if (base_entity->flags & EntityFlag_Disabled) {
|
|
return false;
|
|
}
|
|
|
|
String name = base_entity->token.string;
|
|
|
|
Type *src = base_type(base_entity->type);
|
|
Type *dst = nullptr;
|
|
if (type != nullptr) {
|
|
dst = base_type(type);
|
|
}
|
|
|
|
if (param_operands == nullptr) {
|
|
GB_ASSERT(dst != nullptr);
|
|
}
|
|
if (param_operands != nullptr) {
|
|
GB_ASSERT(dst == nullptr);
|
|
}
|
|
|
|
if (!src->Proc.is_polymorphic || src->Proc.is_poly_specialized) {
|
|
return false;
|
|
}
|
|
|
|
if (dst != nullptr) {
|
|
if (dst->Proc.is_polymorphic) {
|
|
return false;
|
|
}
|
|
|
|
if (dst->Proc.param_count != src->Proc.param_count ||
|
|
dst->Proc.result_count != src->Proc.result_count) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
DeclInfo *old_decl = decl_info_of_entity(base_entity);
|
|
if (old_decl == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
|
|
gbAllocator a = heap_allocator();
|
|
|
|
Array<Operand> operands = {};
|
|
if (param_operands) {
|
|
operands = *param_operands;
|
|
} else {
|
|
operands = array_make<Operand>(a, 0, dst->Proc.param_count);
|
|
for (isize i = 0; i < dst->Proc.param_count; i++) {
|
|
Entity *param = dst->Proc.params->Tuple.variables[i];
|
|
Operand o = {Addressing_Value};
|
|
o.type = param->type;
|
|
array_add(&operands, o);
|
|
}
|
|
}
|
|
|
|
defer (if (param_operands == nullptr) {
|
|
array_free(&operands);
|
|
});
|
|
|
|
|
|
CheckerContext nctx = *old_c;
|
|
|
|
Scope *scope = create_scope(info, base_entity->scope);
|
|
scope->flags |= ScopeFlag_Proc;
|
|
nctx.scope = scope;
|
|
nctx.allow_polymorphic_types = true;
|
|
if (nctx.polymorphic_scope == nullptr) {
|
|
nctx.polymorphic_scope = scope;
|
|
}
|
|
|
|
|
|
auto *pt = &src->Proc;
|
|
|
|
// NOTE(bill): This is slightly memory leaking if the type already exists
|
|
// Maybe it's better to check with the previous types first?
|
|
Type *final_proc_type = alloc_type_proc(scope, nullptr, 0, nullptr, 0, false, pt->calling_convention);
|
|
bool success = check_procedure_type(&nctx, final_proc_type, pt->node, &operands);
|
|
|
|
if (!success) {
|
|
return false;
|
|
}
|
|
|
|
GenProcsData *gen_procs = nullptr;
|
|
|
|
GB_ASSERT(base_entity->identifier.load()->kind == Ast_Ident);
|
|
GB_ASSERT(base_entity->kind == Entity_Procedure);
|
|
|
|
mutex_lock(&base_entity->Procedure.gen_procs_mutex); // @entity-mutex
|
|
gen_procs = base_entity->Procedure.gen_procs;
|
|
if (gen_procs) {
|
|
rw_mutex_shared_lock(&gen_procs->mutex); // @local-mutex
|
|
|
|
mutex_unlock(&base_entity->Procedure.gen_procs_mutex); // @entity-mutex
|
|
|
|
for (Entity *other : gen_procs->procs) {
|
|
Type *pt = base_type(other->type);
|
|
if (are_types_identical(pt, final_proc_type)) {
|
|
rw_mutex_shared_unlock(&gen_procs->mutex); // @local-mutex
|
|
|
|
if (poly_proc_data) {
|
|
poly_proc_data->gen_entity = other;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
rw_mutex_shared_unlock(&gen_procs->mutex); // @local-mutex
|
|
} else {
|
|
gen_procs = gb_alloc_item(permanent_allocator(), GenProcsData);
|
|
gen_procs->procs.allocator = heap_allocator();
|
|
base_entity->Procedure.gen_procs = gen_procs;
|
|
mutex_unlock(&base_entity->Procedure.gen_procs_mutex); // @entity-mutex
|
|
}
|
|
|
|
|
|
{
|
|
// LEAK NOTE(bill): This is technically a memory leak as it has to generate the type twice
|
|
bool prev_no_polymorphic_errors = nctx.no_polymorphic_errors;
|
|
defer (nctx.no_polymorphic_errors = prev_no_polymorphic_errors);
|
|
nctx.no_polymorphic_errors = false;
|
|
|
|
// NOTE(bill): Reset scope from the failed procedure type
|
|
scope->head_child.store(nullptr, std::memory_order_relaxed);
|
|
string_map_clear(&scope->elements);
|
|
ptr_set_clear(&scope->imported);
|
|
|
|
// LEAK NOTE(bill): Cloning this AST may be leaky but this is not really an issue due to arena-based allocation
|
|
Ast *cloned_proc_type_node = clone_ast(pt->node);
|
|
success = check_procedure_type(&nctx, final_proc_type, cloned_proc_type_node, &operands);
|
|
if (!success) {
|
|
return false;
|
|
}
|
|
|
|
rw_mutex_shared_lock(&gen_procs->mutex); // @local-mutex
|
|
for (Entity *other : gen_procs->procs) {
|
|
Type *pt = base_type(other->type);
|
|
if (are_types_identical(pt, final_proc_type)) {
|
|
rw_mutex_shared_unlock(&gen_procs->mutex); // @local-mutex
|
|
|
|
if (poly_proc_data) {
|
|
poly_proc_data->gen_entity = other;
|
|
}
|
|
|
|
DeclInfo *decl = other->decl_info;
|
|
if (decl->proc_checked_state != ProcCheckedState_Checked) {
|
|
ProcInfo *proc_info = gb_alloc_item(permanent_allocator(), ProcInfo);
|
|
proc_info->file = other->file;
|
|
proc_info->token = other->token;
|
|
proc_info->decl = decl;
|
|
proc_info->type = other->type;
|
|
proc_info->body = decl->proc_lit->ProcLit.body;
|
|
proc_info->tags = other->Procedure.tags;;
|
|
proc_info->generated_from_polymorphic = true;
|
|
proc_info->poly_def_node = poly_def_node;
|
|
|
|
check_procedure_later(nctx.checker, proc_info);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
rw_mutex_shared_unlock(&gen_procs->mutex); // @local-mutex
|
|
}
|
|
|
|
|
|
Ast *proc_lit = clone_ast(old_decl->proc_lit);
|
|
ast_node(pl, ProcLit, proc_lit);
|
|
// NOTE(bill): Associate the scope declared above withinth this procedure declaration's type
|
|
add_scope(&nctx, pl->type, final_proc_type->Proc.scope);
|
|
final_proc_type->Proc.is_poly_specialized = true;
|
|
final_proc_type->Proc.is_polymorphic = true;
|
|
|
|
final_proc_type->Proc.variadic = src->Proc.variadic;
|
|
final_proc_type->Proc.require_results = src->Proc.require_results;
|
|
final_proc_type->Proc.c_vararg = src->Proc.c_vararg;
|
|
final_proc_type->Proc.has_named_results = src->Proc.has_named_results;
|
|
final_proc_type->Proc.diverging = src->Proc.diverging;
|
|
final_proc_type->Proc.return_by_pointer = src->Proc.return_by_pointer;
|
|
final_proc_type->Proc.optional_ok = src->Proc.optional_ok;
|
|
final_proc_type->Proc.enable_target_feature = src->Proc.enable_target_feature;
|
|
final_proc_type->Proc.require_target_feature = src->Proc.require_target_feature;
|
|
|
|
|
|
for (isize i = 0; i < operands.count; i++) {
|
|
Operand o = operands[i];
|
|
if (final_proc_type == o.type ||
|
|
base_entity->type == o.type) {
|
|
// NOTE(bill): Cycle
|
|
final_proc_type->Proc.is_poly_specialized = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
u64 tags = base_entity->Procedure.tags;
|
|
Ast *ident = clone_ast(base_entity->identifier);
|
|
Token token = ident->Ident.token;
|
|
DeclInfo *d = make_decl_info(scope, old_decl->parent);
|
|
d->gen_proc_type = final_proc_type;
|
|
d->type_expr = pl->type;
|
|
d->proc_lit = proc_lit;
|
|
d->proc_checked_state = ProcCheckedState_Unchecked;
|
|
d->defer_use_checked = false;
|
|
|
|
Entity *entity = alloc_entity_procedure(nullptr, token, final_proc_type, tags);
|
|
entity->state.store(EntityState_Resolved);
|
|
entity->identifier = ident;
|
|
|
|
add_entity_and_decl_info(&nctx, ident, entity, d);
|
|
// NOTE(bill): Set the scope afterwards as this is not real overloading
|
|
entity->scope = scope->parent;
|
|
entity->file = base_entity->file;
|
|
entity->pkg = base_entity->pkg;
|
|
entity->flags = 0;
|
|
|
|
entity->Procedure.optimization_mode = base_entity->Procedure.optimization_mode;
|
|
|
|
if (base_entity->flags & EntityFlag_Cold) {
|
|
entity->flags |= EntityFlag_Cold;
|
|
}
|
|
if (base_entity->flags & EntityFlag_Disabled) {
|
|
entity->flags |= EntityFlag_Disabled;
|
|
}
|
|
|
|
d->entity = entity;
|
|
|
|
AstFile *file = nullptr;
|
|
{
|
|
Scope *s = entity->scope;
|
|
while (s != nullptr && s->file == nullptr) {
|
|
file = s->file;
|
|
s = s->parent;
|
|
}
|
|
}
|
|
|
|
rw_mutex_lock(&gen_procs->mutex); // @local-mutex
|
|
array_add(&gen_procs->procs, entity);
|
|
rw_mutex_unlock(&gen_procs->mutex); // @local-mutex
|
|
|
|
ProcInfo *proc_info = gb_alloc_item(permanent_allocator(), ProcInfo);
|
|
proc_info->file = file;
|
|
proc_info->token = token;
|
|
proc_info->decl = d;
|
|
proc_info->type = final_proc_type;
|
|
proc_info->body = pl->body;
|
|
proc_info->tags = tags;
|
|
proc_info->generated_from_polymorphic = true;
|
|
proc_info->poly_def_node = poly_def_node;
|
|
|
|
|
|
if (poly_proc_data) {
|
|
poly_proc_data->gen_entity = entity;
|
|
poly_proc_data->proc_info = proc_info;
|
|
entity->Procedure.generated_from_polymorphic = proc_info->generated_from_polymorphic;
|
|
}
|
|
|
|
// NOTE(bill): Check the newly generated procedure body
|
|
check_procedure_later(nctx.checker, proc_info);
|
|
|
|
return true;
|
|
}
|
|
|
|
gb_internal bool check_polymorphic_procedure_assignment(CheckerContext *c, Operand *operand, Type *type, Ast *poly_def_node, PolyProcData *poly_proc_data) {
|
|
if (operand->expr == nullptr) return false;
|
|
Entity *base_entity = entity_from_expr(operand->expr);
|
|
if (base_entity == nullptr) return false;
|
|
return find_or_generate_polymorphic_procedure(c, base_entity, type, nullptr, poly_def_node, poly_proc_data);
|
|
}
|
|
|
|
gb_internal bool find_or_generate_polymorphic_procedure_from_parameters(CheckerContext *c, Entity *base_entity, Array<Operand> const *operands, Ast *poly_def_node, PolyProcData *poly_proc_data) {
|
|
return find_or_generate_polymorphic_procedure(c, base_entity, nullptr, operands, poly_def_node, poly_proc_data);
|
|
}
|
|
|
|
gb_internal bool check_type_specialization_to(CheckerContext *c, Type *specialization, Type *type, bool compound, bool modify_type);
|
|
gb_internal bool is_polymorphic_type_assignable(CheckerContext *c, Type *poly, Type *source, bool compound, bool modify_type);
|
|
gb_internal bool check_cast_internal(CheckerContext *c, Operand *x, Type *type);
|
|
|
|
#define MAXIMUM_TYPE_DISTANCE 10
|
|
|
|
gb_internal i64 check_distance_between_types(CheckerContext *c, Operand *operand, Type *type, bool allow_array_programming) {
|
|
if (c == nullptr) {
|
|
GB_ASSERT(operand->mode == Addressing_Value);
|
|
GB_ASSERT(is_type_typed(operand->type));
|
|
}
|
|
if (operand->mode == Addressing_Invalid ||
|
|
type == t_invalid) {
|
|
return -1;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Builtin) {
|
|
return -1;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Type) {
|
|
if (is_type_typeid(type)) {
|
|
if (is_type_polymorphic(operand->type)) {
|
|
return -1;
|
|
}
|
|
add_type_info_type(c, operand->type);
|
|
return 4;
|
|
}
|
|
return -1;
|
|
}
|
|
if (operand->mode == Addressing_ProcGroup && !is_type_proc(type)) {
|
|
return -1;
|
|
}
|
|
|
|
Type *s = operand->type;
|
|
|
|
if (are_types_identical(s, type)) {
|
|
return 0;
|
|
}
|
|
|
|
Type *src = base_type(s);
|
|
Type *dst = base_type(type);
|
|
|
|
if (is_type_untyped_uninit(src)) {
|
|
return 1;
|
|
}
|
|
|
|
if (is_type_untyped_nil(src)) {
|
|
if (type_has_nil(dst)) {
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
if (is_type_untyped(src)) {
|
|
if (is_type_any(dst)) {
|
|
// NOTE(bill): Anything can cast to 'Any'
|
|
add_type_info_type(c, s);
|
|
return MAXIMUM_TYPE_DISTANCE;
|
|
}
|
|
if (dst->kind == Type_Basic) {
|
|
if (operand->mode == Addressing_Constant) {
|
|
if (check_representable_as_constant(c, operand->value, dst, nullptr)) {
|
|
if (is_type_typed(dst) && src->kind == Type_Basic) {
|
|
switch (src->Basic.kind) {
|
|
case Basic_UntypedBool:
|
|
if (is_type_boolean(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedRune:
|
|
if (is_type_integer(dst) || is_type_rune(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedInteger:
|
|
if (is_type_integer(dst) || is_type_rune(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedString:
|
|
if (is_type_string(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedFloat:
|
|
if (is_type_float(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedComplex:
|
|
if (is_type_complex(dst)) {
|
|
return 1;
|
|
}
|
|
if (is_type_quaternion(dst)) {
|
|
return 2;
|
|
}
|
|
break;
|
|
case Basic_UntypedQuaternion:
|
|
if (is_type_quaternion(dst)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return 2;
|
|
}
|
|
return -1;
|
|
}
|
|
if (src->kind == Type_Basic) {
|
|
Type *d = base_array_type(dst);
|
|
i64 score = -1;
|
|
switch (src->Basic.kind) {
|
|
case Basic_UntypedBool:
|
|
if (is_type_boolean(d)) {
|
|
score = 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedRune:
|
|
if (is_type_integer(d) || is_type_rune(d)) {
|
|
score = 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedInteger:
|
|
if (is_type_integer(d) || is_type_rune(d)) {
|
|
score = 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedString:
|
|
if (is_type_string(d)) {
|
|
score = 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedFloat:
|
|
if (is_type_float(d)) {
|
|
score = 1;
|
|
}
|
|
break;
|
|
case Basic_UntypedComplex:
|
|
if (is_type_complex(d)) {
|
|
score = 1;
|
|
}
|
|
if (is_type_quaternion(d)) {
|
|
score = 2;
|
|
}
|
|
break;
|
|
case Basic_UntypedQuaternion:
|
|
if (is_type_quaternion(d)) {
|
|
score = 1;
|
|
}
|
|
break;
|
|
}
|
|
if (score > 0) {
|
|
if (is_type_typed(d)) {
|
|
score += 1;
|
|
}
|
|
if (d != dst) {
|
|
score += 6;
|
|
}
|
|
}
|
|
return score;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_type_enum(dst) && are_types_identical(dst->Enum.base_type, operand->type)) {
|
|
if (c->in_enum_type) {
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
|
|
{
|
|
isize subtype_level = check_is_assignable_to_using_subtype(operand->type, type);
|
|
if (subtype_level > 0) {
|
|
return 4 + subtype_level;
|
|
}
|
|
}
|
|
|
|
// rawptr <- ^T
|
|
if (are_types_identical(type, t_rawptr) && is_type_pointer(src)) {
|
|
return 5;
|
|
}
|
|
// rawptr <- [^]T
|
|
if (are_types_identical(type, t_rawptr) && is_type_multi_pointer(src)) {
|
|
return 5;
|
|
}
|
|
// ^T <- [^]T
|
|
if (dst->kind == Type_Pointer && src->kind == Type_MultiPointer) {
|
|
if (are_types_identical(dst->Pointer.elem, src->MultiPointer.elem)) {
|
|
return 4;
|
|
}
|
|
}
|
|
// [^]T <- ^T
|
|
if (dst->kind == Type_MultiPointer && src->kind == Type_Pointer) {
|
|
if (are_types_identical(dst->MultiPointer.elem, src->Pointer.elem)) {
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
if (is_type_polymorphic(dst) && !is_type_polymorphic(src)) {
|
|
bool modify_type = !c->no_polymorphic_errors;
|
|
if (is_polymorphic_type_assignable(c, type, s, false, modify_type)) {
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
if (is_type_union(dst)) {
|
|
for (Type *vt : dst->Union.variants) {
|
|
if (are_types_identical(vt, s)) {
|
|
return 1;
|
|
}
|
|
if (is_type_proc(vt)) {
|
|
if (are_types_identical(base_type(vt), src)) {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dst->Union.variants.count == 1) {
|
|
Type *vt = dst->Union.variants[0];
|
|
i64 score = check_distance_between_types(c, operand, vt, allow_array_programming);
|
|
if (score >= 0) {
|
|
return score+2;
|
|
}
|
|
} else if (is_type_untyped(src)) {
|
|
i64 prev_lowest_score = -1;
|
|
i64 lowest_score = -1;
|
|
for (Type *vt : dst->Union.variants) {
|
|
i64 score = check_distance_between_types(c, operand, vt, allow_array_programming);
|
|
if (score >= 0) {
|
|
if (lowest_score < 0) {
|
|
lowest_score = score;
|
|
} else {
|
|
if (prev_lowest_score < 0) {
|
|
prev_lowest_score = lowest_score;
|
|
} else {
|
|
prev_lowest_score = gb_min(prev_lowest_score, lowest_score);
|
|
}
|
|
lowest_score = gb_min(lowest_score, score);
|
|
}
|
|
}
|
|
}
|
|
if (lowest_score >= 0) {
|
|
if (prev_lowest_score != lowest_score) { // remove possible ambiguities
|
|
return lowest_score+2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_type_proc(dst)) {
|
|
if (are_types_identical(src, dst)) {
|
|
return 3;
|
|
}
|
|
PolyProcData poly_proc_data = {};
|
|
if (check_polymorphic_procedure_assignment(c, operand, type, operand->expr, &poly_proc_data)) {
|
|
Entity *e = poly_proc_data.gen_entity;
|
|
add_type_and_value(c, operand->expr, Addressing_Value, e->type, {});
|
|
add_entity_use(c, operand->expr, e);
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
if (is_type_complex_or_quaternion(dst)) {
|
|
Type *elem = base_complex_elem_type(dst);
|
|
if (are_types_identical(elem, base_type(src))) {
|
|
return 5;
|
|
}
|
|
}
|
|
|
|
if (allow_array_programming) {
|
|
if (is_type_array(dst)) {
|
|
Type *elem = base_array_type(dst);
|
|
i64 distance = check_distance_between_types(c, operand, elem, allow_array_programming);
|
|
if (distance >= 0) {
|
|
return distance + 6;
|
|
}
|
|
}
|
|
|
|
if (is_type_simd_vector(dst)) {
|
|
Type *dst_elem = base_array_type(dst);
|
|
i64 distance = check_distance_between_types(c, operand, dst_elem, allow_array_programming);
|
|
if (distance >= 0) {
|
|
return distance + 6;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_type_matrix(dst)) {
|
|
if (are_types_identical(src, dst)) {
|
|
return 5;
|
|
}
|
|
if (dst->Matrix.row_count == dst->Matrix.column_count) {
|
|
Type *dst_elem = base_array_type(dst);
|
|
i64 distance = check_distance_between_types(c, operand, dst_elem, allow_array_programming);
|
|
if (distance >= 0) {
|
|
return distance + 7;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (is_type_any(dst)) {
|
|
if (!is_type_polymorphic(src)) {
|
|
if (operand->mode == Addressing_Context && operand->type == t_context) {
|
|
return -1;
|
|
} else {
|
|
// NOTE(bill): Anything can cast to 'Any'
|
|
add_type_info_type(c, s);
|
|
return MAXIMUM_TYPE_DISTANCE;
|
|
}
|
|
}
|
|
}
|
|
|
|
Ast *expr = unparen_expr(operand->expr);
|
|
if (expr != nullptr) {
|
|
if (expr->kind == Ast_AutoCast) {
|
|
Operand x = *operand;
|
|
x.expr = expr->AutoCast.expr;
|
|
if (check_cast_internal(c, &x, type)) {
|
|
return MAXIMUM_TYPE_DISTANCE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
gb_internal i64 assign_score_function(i64 distance, bool is_variadic=false) {
|
|
// 3*x^2 + 1 > x^2 + x + 1 (for positive x)
|
|
i64 const c = 3*MAXIMUM_TYPE_DISTANCE*MAXIMUM_TYPE_DISTANCE + 1;
|
|
|
|
// TODO(bill): A decent score function
|
|
i64 d = distance*distance; // x^2
|
|
if (is_variadic && d >= 0) {
|
|
d += distance + 1; // x^2 + x + 1
|
|
}
|
|
return gb_max(c - d, 0);
|
|
}
|
|
|
|
|
|
gb_internal bool check_is_assignable_to_with_score(CheckerContext *c, Operand *operand, Type *type, i64 *score_, bool is_variadic=false, bool allow_array_programming=true) {
|
|
if (c == nullptr) {
|
|
GB_ASSERT(operand->mode == Addressing_Value);
|
|
GB_ASSERT(is_type_typed(operand->type));
|
|
}
|
|
if (operand->mode == Addressing_Invalid || type == t_invalid) {
|
|
if (score_) *score_ = 0;
|
|
return false;
|
|
}
|
|
|
|
// Handle polymorphic procedure used as default parameter
|
|
if (operand->mode == Addressing_Value && is_type_proc(type) && is_type_proc(operand->type)) {
|
|
Entity *e = entity_from_expr(operand->expr);
|
|
if (e != nullptr && e->kind == Entity_Procedure && is_type_polymorphic(e->type) && !is_type_polymorphic(type)) {
|
|
// Special case: Allow a polymorphic procedure to be used as default value for concrete proc type
|
|
// during the initial check. It will be properly instantiated when actually used.
|
|
if (score_) *score_ = assign_score_function(1);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
i64 score = check_distance_between_types(c, operand, type, allow_array_programming);
|
|
if (score >= 0) {
|
|
if (score_) *score_ = assign_score_function(score, is_variadic);
|
|
return true;
|
|
}
|
|
|
|
if (score_) *score_ = 0;
|
|
return false;
|
|
}
|
|
|
|
|
|
gb_internal bool check_is_assignable_to(CheckerContext *c, Operand *operand, Type *type, bool allow_array_programming=true) {
|
|
i64 score = 0;
|
|
return check_is_assignable_to_with_score(c, operand, type, &score, /*is_variadic*/false, allow_array_programming);
|
|
}
|
|
|
|
gb_internal bool internal_check_is_assignable_to(Type *src, Type *dst) {
|
|
Operand x = {};
|
|
x.type = src;
|
|
x.mode = Addressing_Value;
|
|
return check_is_assignable_to(nullptr, &x, dst);
|
|
}
|
|
|
|
gb_internal AstPackage *get_package_of_type(Type *type) {
|
|
for (;;) {
|
|
if (type == nullptr) {
|
|
return nullptr;
|
|
}
|
|
switch (type->kind) {
|
|
case Type_Basic:
|
|
return builtin_pkg;
|
|
case Type_Named:
|
|
if (type->Named.type_name != nullptr) {
|
|
return type->Named.type_name->pkg;
|
|
}
|
|
return nullptr;
|
|
case Type_Pointer:
|
|
type = type->Pointer.elem;
|
|
continue;
|
|
case Type_Array:
|
|
type = type->Array.elem;
|
|
continue;
|
|
case Type_Slice:
|
|
type = type->Slice.elem;
|
|
continue;
|
|
case Type_DynamicArray:
|
|
type = type->DynamicArray.elem;
|
|
continue;
|
|
}
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
// NOTE(bill): 'context_name' is for debugging and error messages
|
|
gb_internal void check_assignment(CheckerContext *c, Operand *operand, Type *type, String context_name) {
|
|
check_not_tuple(c, operand);
|
|
if (operand->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
|
|
// Grab definite or indefinite article matching `context_name`, or "" if not found.
|
|
String article = error_article(context_name);
|
|
|
|
if (is_type_untyped(operand->type)) {
|
|
Type *target_type = type;
|
|
if (type == nullptr || is_type_any(type)) {
|
|
if (type == nullptr && is_type_untyped_uninit(operand->type)) {
|
|
error(operand->expr, "Use of --- in %.*s%.*s", LIT(article), LIT(context_name));
|
|
operand->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
if (type == nullptr && is_type_untyped_nil(operand->type)) {
|
|
error(operand->expr, "Use of untyped nil in %.*s%.*s", LIT(article), LIT(context_name));
|
|
operand->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
target_type = default_type(operand->type);
|
|
if (type != nullptr && !is_type_any(type)) {
|
|
GB_ASSERT_MSG(is_type_typed(target_type), "%s", type_to_string(type));
|
|
}
|
|
add_type_info_type(c, type);
|
|
add_type_info_type(c, target_type);
|
|
}
|
|
|
|
convert_to_typed(c, operand, target_type);
|
|
if (operand->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
if (type == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (operand->mode == Addressing_ProcGroup) {
|
|
bool good = false;
|
|
if (type != nullptr && is_type_proc(type)) {
|
|
Array<Entity *> procs = proc_group_entities(c, *operand);
|
|
// NOTE(bill): These should be done
|
|
for (Entity *e : procs) {
|
|
Type *t = base_type(e->type);
|
|
if (t == t_invalid) {
|
|
continue;
|
|
}
|
|
Operand x = {};
|
|
x.mode = Addressing_Value;
|
|
x.type = t;
|
|
if (check_is_assignable_to(c, &x, type)) {
|
|
add_entity_use(c, operand->expr, e);
|
|
good = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!good) {
|
|
gbString expr_str = expr_to_string(operand->expr);
|
|
gbString op_type_str = type_to_string(operand->type);
|
|
gbString type_str = type_to_string(type);
|
|
|
|
defer (gb_string_free(type_str));
|
|
defer (gb_string_free(op_type_str));
|
|
defer (gb_string_free(expr_str));
|
|
|
|
// TODO(bill): is this a good enough error message?
|
|
error(operand->expr,
|
|
"Cannot assign overloaded procedure group '%s' to '%s' in %.*s%.*s",
|
|
expr_str,
|
|
op_type_str,
|
|
LIT(article),
|
|
LIT(context_name));
|
|
operand->mode = Addressing_Invalid;
|
|
}
|
|
|
|
convert_to_typed(c, operand, type);
|
|
return;
|
|
}
|
|
|
|
if (check_is_assignable_to(c, operand, type)) {
|
|
if (operand->mode == Addressing_Type && is_type_typeid(type)) {
|
|
add_type_info_type(c, operand->type);
|
|
add_type_and_value(c, operand->expr, Addressing_Value, type, exact_value_typeid(operand->type));
|
|
}
|
|
} else {
|
|
gbString expr_str = expr_to_string(operand->expr);
|
|
gbString op_type_str = type_to_string(operand->type);
|
|
gbString type_str = type_to_string(type);
|
|
|
|
defer (gb_string_free(type_str));
|
|
defer (gb_string_free(op_type_str));
|
|
defer (gb_string_free(expr_str));
|
|
|
|
switch (operand->mode) {
|
|
case Addressing_Builtin:
|
|
error(operand->expr,
|
|
"Cannot assign built-in procedure '%s' to %.*s%.*s",
|
|
expr_str,
|
|
LIT(article),
|
|
LIT(context_name));
|
|
break;
|
|
case Addressing_Type:
|
|
if (is_type_polymorphic(operand->type)) {
|
|
error(operand->expr,
|
|
"Cannot assign '%s', a polymorphic type, to %.*s%.*s",
|
|
op_type_str,
|
|
LIT(article),
|
|
LIT(context_name));
|
|
} else {
|
|
ERROR_BLOCK();
|
|
error(operand->expr,
|
|
"Cannot assign '%s', a type, to %.*s%.*s",
|
|
op_type_str,
|
|
LIT(article),
|
|
LIT(context_name));
|
|
if (type && are_types_identical(type, t_any)) {
|
|
error_line("\tSuggestion: 'typeid_of(%s)'", expr_str);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
// TODO(bill): is this a good enough error message?
|
|
{
|
|
gbString op_type_extra = gb_string_make(heap_allocator(), "");
|
|
gbString type_extra = gb_string_make(heap_allocator(), "");
|
|
defer (gb_string_free(op_type_extra));
|
|
defer (gb_string_free(type_extra));
|
|
|
|
isize on = gb_string_length(op_type_str);
|
|
isize tn = gb_string_length(type_str);
|
|
if (on == tn && gb_strncmp(op_type_str, type_str, on) == 0) {
|
|
AstPackage *op_pkg = get_package_of_type(operand->type);
|
|
AstPackage *type_pkg = get_package_of_type(type);
|
|
if (op_pkg != nullptr) {
|
|
op_type_extra = gb_string_append_fmt(op_type_extra, " (package %.*s)", LIT(op_pkg->name));
|
|
}
|
|
if (type_pkg != nullptr) {
|
|
type_extra = gb_string_append_fmt(type_extra, " (package %.*s)", LIT(type_pkg->name));
|
|
}
|
|
}
|
|
|
|
ERROR_BLOCK();
|
|
error(operand->expr,
|
|
"Cannot assign value '%s' of type '%s%s' to '%s%s' in %.*s%.*s",
|
|
expr_str,
|
|
op_type_str, op_type_extra,
|
|
type_str, type_extra,
|
|
LIT(article),
|
|
LIT(context_name));
|
|
check_assignment_error_suggestion(c, operand, type);
|
|
|
|
Type *src = base_type(operand->type);
|
|
Type *dst = base_type(type);
|
|
if (context_name == "procedure argument") {
|
|
if (is_type_slice(src) && are_types_identical(src->Slice.elem, dst)) {
|
|
gbString a = expr_to_string(operand->expr);
|
|
error_line("\tSuggestion: Did you mean to pass the slice into the variadic parameter with ..%s?\n\n", a);
|
|
gb_string_free(a);
|
|
}
|
|
}
|
|
if (src->kind == dst->kind && src->kind == Type_Proc) {
|
|
Type *x = src;
|
|
Type *y = dst;
|
|
bool same_inputs = are_types_identical_internal(x->Proc.params, y->Proc.params, false);
|
|
bool same_outputs = are_types_identical_internal(x->Proc.results, y->Proc.results, false);
|
|
if (same_inputs && same_outputs &&
|
|
x->Proc.calling_convention != y->Proc.calling_convention) {
|
|
gbString s_expected = type_to_string(y);
|
|
gbString s_got = type_to_string(x);
|
|
|
|
error_line("\tNote: The calling conventions differ between the procedure signature types\n");
|
|
error_line("\t Expected \"%s\", got \"%s\"\n",
|
|
proc_calling_convention_strings[y->Proc.calling_convention],
|
|
proc_calling_convention_strings[x->Proc.calling_convention]);
|
|
error_line("\t Expected: %s\n", s_expected);
|
|
error_line("\t Got: %s\n", s_got);
|
|
gb_string_free(s_got);
|
|
gb_string_free(s_expected);
|
|
} else if (same_inputs && same_outputs &&
|
|
x->Proc.diverging != y->Proc.diverging) {
|
|
|
|
gbString s_expected = type_to_string(y);
|
|
if (y->Proc.diverging) {
|
|
s_expected = gb_string_appendc(s_expected, " -> !");
|
|
}
|
|
|
|
gbString s_got = type_to_string(x);
|
|
if (x->Proc.diverging) {
|
|
s_got = gb_string_appendc(s_got, " -> !");
|
|
}
|
|
|
|
error_line("\tNote: One of the procedures is diverging while the other isn't\n");
|
|
error_line("\t Expected: %s\n", s_expected);
|
|
error_line("\t Got: %s\n", s_got);
|
|
gb_string_free(s_got);
|
|
gb_string_free(s_expected);
|
|
} else if (same_inputs && !same_outputs) {
|
|
gbString s_expected = type_to_string(y->Proc.results);
|
|
gbString s_got = type_to_string(x->Proc.results);
|
|
error_line("\tNote: The return types differ between the procedure signature types\n");
|
|
error_line("\t Expected: %s\n", s_expected);
|
|
error_line("\t Got: %s\n", s_got);
|
|
gb_string_free(s_got);
|
|
gb_string_free(s_expected);
|
|
} else if (!same_inputs && same_outputs) {
|
|
gbString s_expected = type_to_string(y->Proc.params);
|
|
gbString s_got = type_to_string(x->Proc.params);
|
|
error_line("\tNote: The input parameter types differ between the procedure signature types\n");
|
|
error_line("\t Expected: %s\n", s_expected);
|
|
error_line("\t Got: %s\n", s_got);
|
|
gb_string_free(s_got);
|
|
gb_string_free(s_expected);
|
|
} else {
|
|
gbString s_expected = type_to_string(y);
|
|
gbString s_got = type_to_string(x);
|
|
error_line("\tNote: The signature type do not match whatsoever\n");
|
|
error_line("\t Expected: %s\n", s_expected);
|
|
error_line("\t Got: %s\n", s_got);
|
|
gb_string_free(s_got);
|
|
gb_string_free(s_expected);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
operand->mode = Addressing_Invalid;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
gb_internal bool polymorphic_assign_index(Type **gt_, i64 *dst_count, i64 source_count) {
|
|
Type *gt = *gt_;
|
|
|
|
GB_ASSERT(gt->kind == Type_Generic);
|
|
Entity *e = scope_lookup(gt->Generic.scope, gt->Generic.name);
|
|
GB_ASSERT(e != nullptr);
|
|
if (e->kind == Entity_TypeName) {
|
|
*gt_ = nullptr;
|
|
*dst_count = source_count;
|
|
|
|
e->kind = Entity_Constant;
|
|
e->Constant.value = exact_value_i64(source_count);
|
|
e->type = t_untyped_integer;
|
|
return true;
|
|
} else if (e->kind == Entity_Constant) {
|
|
*gt_ = nullptr;
|
|
if (e->Constant.value.kind != ExactValue_Integer) {
|
|
return false;
|
|
}
|
|
i64 count = big_int_to_i64(&e->Constant.value.value_integer);
|
|
if (count != source_count) {
|
|
return false;
|
|
}
|
|
*dst_count = source_count;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
gb_internal bool is_polymorphic_type_assignable(CheckerContext *c, Type *poly, Type *source, bool compound, bool modify_type) {
|
|
Operand o = {Addressing_Value};
|
|
o.type = source;
|
|
switch (poly->kind) {
|
|
case Type_Basic:
|
|
if (compound) return are_types_identical(poly, source);
|
|
return check_is_assignable_to(c, &o, poly);
|
|
|
|
case Type_Named: {
|
|
if (check_type_specialization_to(c, poly, source, compound, modify_type)) {
|
|
return true;
|
|
}
|
|
if (compound || !is_type_generic(poly)) {
|
|
return are_types_identical(poly, source);
|
|
}
|
|
return check_is_assignable_to(c, &o, poly);
|
|
}
|
|
|
|
case Type_Generic: {
|
|
if (poly->Generic.specialized != nullptr) {
|
|
Type *s = poly->Generic.specialized;
|
|
if (!check_type_specialization_to(c, s, source, compound, modify_type)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (modify_type) {
|
|
Type *ds = default_type(source);
|
|
gb_memmove(poly, ds, gb_size_of(Type));
|
|
}
|
|
return true;
|
|
}
|
|
case Type_Pointer:
|
|
if (source->kind == Type_Pointer) {
|
|
isize level = check_is_assignable_to_using_subtype(source->Pointer.elem, poly->Pointer.elem, /*level*/0, /*src_is_ptr*/false, /*allow_polymorphic*/true);
|
|
if (level > 0) {
|
|
return true;
|
|
}
|
|
return is_polymorphic_type_assignable(c, poly->Pointer.elem, source->Pointer.elem, true, modify_type);
|
|
} else if (source->kind == Type_MultiPointer) {
|
|
isize level = check_is_assignable_to_using_subtype(source->MultiPointer.elem, poly->Pointer.elem);
|
|
if (level > 0) {
|
|
return true;
|
|
}
|
|
return is_polymorphic_type_assignable(c, poly->Pointer.elem, source->MultiPointer.elem, true, modify_type);
|
|
}
|
|
return false;
|
|
|
|
case Type_MultiPointer:
|
|
if (source->kind == Type_MultiPointer) {
|
|
isize level = check_is_assignable_to_using_subtype(source->MultiPointer.elem, poly->MultiPointer.elem);
|
|
if (level > 0) {
|
|
return true;
|
|
}
|
|
return is_polymorphic_type_assignable(c, poly->MultiPointer.elem, source->MultiPointer.elem, true, modify_type);
|
|
} else if (source->kind == Type_Pointer) {
|
|
isize level = check_is_assignable_to_using_subtype(source->Pointer.elem, poly->MultiPointer.elem);
|
|
if (level > 0) {
|
|
return true;
|
|
}
|
|
return is_polymorphic_type_assignable(c, poly->MultiPointer.elem, source->Pointer.elem, true, modify_type);
|
|
}
|
|
return false;
|
|
case Type_Array:
|
|
if (source->kind == Type_Array) {
|
|
if (poly->Array.generic_count != nullptr) {
|
|
if (!polymorphic_assign_index(&poly->Array.generic_count, &poly->Array.count, source->Array.count)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (poly->Array.count == source->Array.count) {
|
|
return is_polymorphic_type_assignable(c, poly->Array.elem, source->Array.elem, true, modify_type);
|
|
}
|
|
} else if (source->kind == Type_EnumeratedArray) {
|
|
if (poly->Array.generic_count != nullptr) {
|
|
Type *gt = poly->Array.generic_count;
|
|
GB_ASSERT(gt->kind == Type_Generic);
|
|
Entity *e = scope_lookup(gt->Generic.scope, gt->Generic.name);
|
|
GB_ASSERT(e != nullptr);
|
|
if (e->kind == Entity_TypeName) {
|
|
Type *index = source->EnumeratedArray.index;
|
|
Type *it = base_type(index);
|
|
if (it->kind != Type_Enum) {
|
|
return false;
|
|
}
|
|
|
|
poly->kind = Type_EnumeratedArray;
|
|
poly->cached_size = -1;
|
|
poly->cached_align = -1;
|
|
poly->flags.exchange(source->flags);
|
|
poly->failure = false;
|
|
poly->EnumeratedArray.elem = source->EnumeratedArray.elem;
|
|
poly->EnumeratedArray.index = source->EnumeratedArray.index;
|
|
poly->EnumeratedArray.min_value = source->EnumeratedArray.min_value;
|
|
poly->EnumeratedArray.max_value = source->EnumeratedArray.max_value;
|
|
poly->EnumeratedArray.count = source->EnumeratedArray.count;
|
|
poly->EnumeratedArray.op = source->EnumeratedArray.op;
|
|
|
|
e->kind = Entity_TypeName;
|
|
e->TypeName.is_type_alias = true;
|
|
e->type = index;
|
|
|
|
if (poly->EnumeratedArray.count == source->EnumeratedArray.count) {
|
|
return is_polymorphic_type_assignable(c, poly->EnumeratedArray.elem, source->EnumeratedArray.elem, true, modify_type);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
case Type_EnumeratedArray:
|
|
if (source->kind == Type_EnumeratedArray) {
|
|
if (poly->EnumeratedArray.op != source->EnumeratedArray.op) {
|
|
return false;
|
|
}
|
|
if (poly->EnumeratedArray.op) {
|
|
if (poly->EnumeratedArray.count != source->EnumeratedArray.count) {
|
|
return false;
|
|
}
|
|
if (compare_exact_values(Token_NotEq, *poly->EnumeratedArray.min_value, *source->EnumeratedArray.min_value)) {
|
|
return false;
|
|
}
|
|
if (compare_exact_values(Token_NotEq, *poly->EnumeratedArray.max_value, *source->EnumeratedArray.max_value)) {
|
|
return false;
|
|
}
|
|
return is_polymorphic_type_assignable(c, poly->EnumeratedArray.index, source->EnumeratedArray.index, true, modify_type);
|
|
}
|
|
bool index = is_polymorphic_type_assignable(c, poly->EnumeratedArray.index, source->EnumeratedArray.index, true, modify_type);
|
|
bool elem = is_polymorphic_type_assignable(c, poly->EnumeratedArray.elem, source->EnumeratedArray.elem, true, modify_type);
|
|
return index || elem;
|
|
}
|
|
return false;
|
|
|
|
case Type_DynamicArray:
|
|
if (source->kind == Type_DynamicArray) {
|
|
return is_polymorphic_type_assignable(c, poly->DynamicArray.elem, source->DynamicArray.elem, true, modify_type);
|
|
}
|
|
return false;
|
|
case Type_Slice:
|
|
if (source->kind == Type_Slice) {
|
|
return is_polymorphic_type_assignable(c, poly->Slice.elem, source->Slice.elem, true, modify_type);
|
|
}
|
|
return false;
|
|
|
|
case Type_Enum:
|
|
return false;
|
|
|
|
case Type_BitSet:
|
|
if (source->kind == Type_BitSet) {
|
|
if (!is_polymorphic_type_assignable(c, poly->BitSet.elem, source->BitSet.elem, true, modify_type)) {
|
|
return false;
|
|
}
|
|
|
|
// For generic types like bit_set[$T] the upper and lower of the poly type will be zeroes since
|
|
// it could not figure that stuff out when the poly type was created.
|
|
if (poly->BitSet.upper == 0 && modify_type) {
|
|
poly->BitSet.upper = source->BitSet.upper;
|
|
}
|
|
if (poly->BitSet.lower == 0 && modify_type) {
|
|
poly->BitSet.lower = source->BitSet.lower;
|
|
}
|
|
|
|
if (poly->BitSet.underlying == nullptr) {
|
|
if (modify_type) {
|
|
poly->BitSet.underlying = source->BitSet.underlying;
|
|
}
|
|
} else if (!is_polymorphic_type_assignable(c, poly->BitSet.underlying, source->BitSet.underlying, true, modify_type)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
case Type_Union:
|
|
if (source->kind == Type_Union) {
|
|
TypeUnion *x = &poly->Union;
|
|
TypeUnion *y = &source->Union;
|
|
if (x->variants.count != y->variants.count) {
|
|
return false;
|
|
}
|
|
for_array(i, x->variants) {
|
|
Type *a = x->variants[i];
|
|
Type *b = y->variants[i];
|
|
bool ok = is_polymorphic_type_assignable(c, a, b, false, modify_type);
|
|
if (!ok) return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
case Type_Struct:
|
|
if (source->kind == Type_Struct) {
|
|
if (poly->Struct.soa_kind == source->Struct.soa_kind &&
|
|
poly->Struct.soa_kind != StructSoa_None) {
|
|
bool ok = is_polymorphic_type_assignable(c, poly->Struct.soa_elem, source->Struct.soa_elem, true, modify_type);
|
|
if (ok) switch (source->Struct.soa_kind) {
|
|
case StructSoa_None:
|
|
default:
|
|
GB_PANIC("Unhandled SOA Kind");
|
|
break;
|
|
case StructSoa_Fixed:
|
|
if (modify_type) {
|
|
Type *type = make_soa_struct_fixed(c, nullptr, poly->Struct.node, poly->Struct.soa_elem, poly->Struct.soa_count, nullptr);
|
|
gb_memmove(poly, type, gb_size_of(*type));
|
|
}
|
|
break;
|
|
case StructSoa_Slice:
|
|
if (modify_type) {
|
|
Type *type = make_soa_struct_slice(c, nullptr, poly->Struct.node, poly->Struct.soa_elem);
|
|
gb_memmove(poly, type, gb_size_of(*type));
|
|
}
|
|
break;
|
|
case StructSoa_Dynamic:
|
|
if (modify_type) {
|
|
Type *type = make_soa_struct_dynamic_array(c, nullptr, poly->Struct.node, poly->Struct.soa_elem);
|
|
gb_memmove(poly, type, gb_size_of(*type));
|
|
}
|
|
break;
|
|
}
|
|
return ok;
|
|
|
|
}
|
|
|
|
// NOTE(bill): Check for subtypes of
|
|
// return check_is_assignable_to(c, &o, poly); // && is_type_subtype_of_and_allow_polymorphic(o.type, poly);
|
|
}
|
|
return false;
|
|
|
|
case Type_BitField:
|
|
if (source->kind == Type_BitField) {
|
|
return is_polymorphic_type_assignable(c, poly->BitField.backing_type, source->BitField.backing_type, true, modify_type);
|
|
}
|
|
return false;
|
|
|
|
case Type_Tuple:
|
|
GB_PANIC("This should never happen");
|
|
return false;
|
|
case Type_Proc:
|
|
if (source->kind == Type_Proc) {
|
|
TypeProc *x = &poly->Proc;
|
|
TypeProc *y = &source->Proc;
|
|
if (x->calling_convention != y->calling_convention) {
|
|
return false;
|
|
}
|
|
if (x->c_vararg != y->c_vararg) {
|
|
return false;
|
|
}
|
|
if (x->variadic != y->variadic) {
|
|
return false;
|
|
}
|
|
if (x->param_count != y->param_count) {
|
|
return false;
|
|
}
|
|
if (x->result_count != y->result_count) {
|
|
return false;
|
|
}
|
|
|
|
for (isize i = 0; i < x->param_count; i++) {
|
|
Entity *a = x->params->Tuple.variables[i];
|
|
Entity *b = y->params->Tuple.variables[i];
|
|
bool ok = is_polymorphic_type_assignable(c, a->type, b->type, false, modify_type);
|
|
if (!ok) return false;
|
|
}
|
|
for (isize i = 0; i < x->result_count; i++) {
|
|
Entity *a = x->results->Tuple.variables[i];
|
|
Entity *b = y->results->Tuple.variables[i];
|
|
bool ok = is_polymorphic_type_assignable(c, a->type, b->type, false, modify_type);
|
|
if (!ok) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
case Type_Map:
|
|
if (source->kind == Type_Map) {
|
|
bool key = is_polymorphic_type_assignable(c, poly->Map.key, source->Map.key, true, modify_type);
|
|
bool value = is_polymorphic_type_assignable(c, poly->Map.value, source->Map.value, true, modify_type);
|
|
if (key || value) {
|
|
poly->Map.lookup_result_type = nullptr;
|
|
init_map_internal_types(poly);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
|
|
case Type_Matrix:
|
|
if (source->kind == Type_Matrix) {
|
|
if (poly->Matrix.generic_row_count != nullptr) {
|
|
poly->Matrix.stride_in_bytes = 0;
|
|
if (!polymorphic_assign_index(&poly->Matrix.generic_row_count, &poly->Matrix.row_count, source->Matrix.row_count)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (poly->Matrix.generic_column_count != nullptr) {
|
|
poly->Matrix.stride_in_bytes = 0;
|
|
if (!polymorphic_assign_index(&poly->Matrix.generic_column_count, &poly->Matrix.column_count, source->Matrix.column_count)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (poly->Matrix.row_count == source->Matrix.row_count &&
|
|
poly->Matrix.column_count == source->Matrix.column_count) {
|
|
return is_polymorphic_type_assignable(c, poly->Matrix.elem, source->Matrix.elem, true, modify_type);
|
|
}
|
|
}
|
|
return false;
|
|
|
|
case Type_SimdVector:
|
|
if (source->kind == Type_SimdVector) {
|
|
if (poly->SimdVector.generic_count != nullptr) {
|
|
if (!polymorphic_assign_index(&poly->SimdVector.generic_count, &poly->SimdVector.count, source->SimdVector.count)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (poly->SimdVector.count == source->SimdVector.count) {
|
|
return is_polymorphic_type_assignable(c, poly->SimdVector.elem, source->SimdVector.elem, true, modify_type);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
gb_internal bool check_cycle(CheckerContext *c, Entity *curr, bool report) {
|
|
if (curr->state != EntityState_InProgress) {
|
|
return false;
|
|
}
|
|
for_array(i, *c->type_path) {
|
|
Entity *prev = c->type_path->data[i];
|
|
if (prev == curr) {
|
|
if (report) {
|
|
error(curr->token, "Illegal declaration cycle of `%.*s`", LIT(curr->token.string));
|
|
for (isize j = i; j < c->type_path->count; j++) {
|
|
Entity *curr = (*c->type_path)[j];
|
|
error(curr->token, "\t%.*s refers to", LIT(curr->token.string));
|
|
}
|
|
error(curr->token, "\t%.*s", LIT(curr->token.string));
|
|
curr->type = t_invalid;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct CIdentSuggestion {
|
|
String name;
|
|
String msg;
|
|
};
|
|
|
|
// NOTE(bill): this linear look-up table might be slow but because it's an error case, it should be fine
|
|
gb_internal CIdentSuggestion const c_ident_suggestions[] = {
|
|
{str_lit("while"), str_lit("'for'? Odin only has one loop construct: 'for'")},
|
|
|
|
{str_lit("sizeof"), str_lit("'size_of'?")},
|
|
{str_lit("alignof"), str_lit("'align_of'?")},
|
|
{str_lit("offsetof"), str_lit("'offset_of'?")},
|
|
|
|
{str_lit("_Bool"), str_lit("'bool'?")},
|
|
|
|
{str_lit("char"), str_lit("'u8', 'i8', or 'c.char' (which is part of 'core:c')?")},
|
|
{str_lit("short"), str_lit("'i16' or 'c.short' (which is part of 'core:c')?")},
|
|
{str_lit("long"), str_lit("'c.long' (which is part of 'core:c')?")},
|
|
{str_lit("float"), str_lit("'f32'?")},
|
|
{str_lit("double"), str_lit("'f64'?")},
|
|
{str_lit("unsigned"), str_lit("'c.uint' (which is part of 'core:c')?")},
|
|
{str_lit("signed"), str_lit("'c.int' (which is part of 'core:c')?")},
|
|
|
|
{str_lit("size_t"), str_lit("'uint', or 'c.size_t' (which is part of 'core:c')?")},
|
|
{str_lit("ssize_t"), str_lit("'int', or 'c.ssize_t' (which is part of 'core:c')?")},
|
|
|
|
{str_lit("uintptr_t"), str_lit("'uintptr'?")},
|
|
{str_lit("intptr_t"), str_lit("'uintptr' or `int` or something else?")},
|
|
{str_lit("ptrdiff_t"), str_lit("'int' or 'c.ptrdiff_t' (which is part of 'core:c')?")},
|
|
{str_lit("intmax_t"), str_lit("'c.intmax_t' (which is part of 'core:c')?")},
|
|
{str_lit("uintmax_t"), str_lit("'c.uintmax_t' (which is part of 'core:c')?")},
|
|
|
|
{str_lit("uint8_t"), str_lit("'u8'?")},
|
|
{str_lit("int8_t"), str_lit("'i8'?")},
|
|
{str_lit("uint16_t"), str_lit("'u16'?")},
|
|
{str_lit("int16_t"), str_lit("'i16'?")},
|
|
{str_lit("uint32_t"), str_lit("'u32'?")},
|
|
{str_lit("int32_t"), str_lit("'i32'?")},
|
|
{str_lit("uint64_t"), str_lit("'u64'?")},
|
|
{str_lit("int64_t"), str_lit("'i64'?")},
|
|
{str_lit("uint128_t"), str_lit("'u128'?")},
|
|
{str_lit("int128_t"), str_lit("'i128'?")},
|
|
|
|
{str_lit("float32"), str_lit("'f32'?")},
|
|
{str_lit("float64"), str_lit("'f64'?")},
|
|
{str_lit("float32_t"), str_lit("'f32'?")},
|
|
{str_lit("float64_t"), str_lit("'f64'?")},
|
|
};
|
|
|
|
gb_internal Entity *check_ident(CheckerContext *c, Operand *o, Ast *n, Type *named_type, Type *type_hint, bool allow_import_name) {
|
|
GB_ASSERT(n->kind == Ast_Ident);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = n;
|
|
String name = n->Ident.token.string;
|
|
|
|
Entity *e = scope_lookup(c->scope, name);
|
|
if (e == nullptr) {
|
|
if (is_blank_ident(name)) {
|
|
error(n, "'_' cannot be used as a value");
|
|
} else {
|
|
ERROR_BLOCK();
|
|
error(n, "Undeclared name: %.*s", LIT(name));
|
|
|
|
// NOTE(bill): Loads of checks for C programmers
|
|
|
|
for (CIdentSuggestion const &suggestion : c_ident_suggestions) {
|
|
if (name == suggestion.name) {
|
|
error_line("\tSuggestion: Did you mean %.*s\n", LIT(suggestion.msg));
|
|
}
|
|
}
|
|
}
|
|
o->type = t_invalid;
|
|
o->mode = Addressing_Invalid;
|
|
if (named_type != nullptr) {
|
|
set_base_type(named_type, t_invalid);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
GB_ASSERT((e->flags & EntityFlag_Overridden) == 0);
|
|
|
|
if (e->parent_proc_decl != nullptr &&
|
|
e->parent_proc_decl != c->curr_proc_decl) {
|
|
if (e->kind == Entity_Variable) {
|
|
if ((e->flags & EntityFlag_Static) == 0) {
|
|
error(n, "Nested procedures do not capture its parent's variables: %.*s", LIT(name));
|
|
return nullptr;
|
|
}
|
|
} else if (e->kind == Entity_Label) {
|
|
error(n, "Nested procedures do not capture its parent's labels: %.*s", LIT(name));
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (e->kind == Entity_ProcGroup) {
|
|
auto *pge = &e->ProcGroup;
|
|
|
|
DeclInfo *d = decl_info_of_entity(e);
|
|
check_entity_decl(c, e, d, nullptr);
|
|
|
|
|
|
Array<Entity *> procs = pge->entities;
|
|
bool skip = false;
|
|
|
|
if (type_hint != nullptr && is_type_proc(type_hint)) {
|
|
// NOTE(bill): These should be done
|
|
for (Entity *proc : procs) {
|
|
Type *t = base_type(proc->type);
|
|
if (t == t_invalid) {
|
|
continue;
|
|
}
|
|
Operand x = {};
|
|
x.mode = Addressing_Value;
|
|
x.type = t;
|
|
if (check_is_assignable_to(c, &x, type_hint)) {
|
|
e = proc;
|
|
add_entity_use(c, n, e);
|
|
skip = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!skip) {
|
|
o->mode = Addressing_ProcGroup;
|
|
o->type = t_invalid;
|
|
o->proc_group = e;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
add_entity_use(c, n, e);
|
|
if (e->state == EntityState_Unresolved) {
|
|
check_entity_decl(c, e, nullptr, named_type);
|
|
}
|
|
if (e->type == nullptr) {
|
|
// TODO(bill): Which is correct? return or compiler_error?
|
|
// compiler_error("How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(name));
|
|
return nullptr;
|
|
}
|
|
|
|
e->flags |= EntityFlag_Used;
|
|
|
|
Type *type = e->type;
|
|
|
|
o->type = type;
|
|
|
|
switch (e->kind) {
|
|
case Entity_Constant:
|
|
if (type == t_invalid) {
|
|
o->type = t_invalid;
|
|
return e;
|
|
}
|
|
o->value = e->Constant.value;
|
|
if (o->value.kind == ExactValue_Invalid) {
|
|
return e;
|
|
}
|
|
if (o->value.kind == ExactValue_Procedure) {
|
|
Entity *proc = strip_entity_wrapping(o->value.value_procedure);
|
|
if (proc != nullptr) {
|
|
o->mode = Addressing_Value;
|
|
o->type = proc->type;
|
|
return proc;
|
|
}
|
|
}
|
|
o->mode = Addressing_Constant;
|
|
break;
|
|
|
|
case Entity_Variable:
|
|
e->flags |= EntityFlag_Used;
|
|
if (type == t_invalid) {
|
|
o->type = t_invalid;
|
|
return e;
|
|
}
|
|
o->mode = Addressing_Variable;
|
|
if (e->flags & EntityFlag_Value) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
break;
|
|
|
|
case Entity_Procedure:
|
|
o->mode = Addressing_Value;
|
|
o->value = exact_value_procedure(n);
|
|
break;
|
|
|
|
case Entity_Builtin:
|
|
o->builtin_id = cast(BuiltinProcId)e->Builtin.id;
|
|
o->mode = Addressing_Builtin;
|
|
break;
|
|
|
|
case Entity_TypeName:
|
|
o->mode = Addressing_Type;
|
|
if (check_cycle(c, e, true)) {
|
|
o->type = t_invalid;
|
|
}
|
|
if (o->type != nullptr && o->type->kind == Type_Named && o->type->Named.type_name->TypeName.is_type_alias) {
|
|
Type *bt = base_type(o->type);
|
|
if (bt != nullptr) {
|
|
o->type = bt;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case Entity_ImportName:
|
|
if (!allow_import_name) {
|
|
error(n, "Use of import name '%.*s' not in the form of 'x.y'", LIT(name));
|
|
}
|
|
return e;
|
|
case Entity_LibraryName:
|
|
if (!allow_import_name) {
|
|
error(n, "Use of library '%.*s' not in foreign block", LIT(name));
|
|
}
|
|
return e;
|
|
|
|
case Entity_Label:
|
|
o->mode = Addressing_NoValue;
|
|
break;
|
|
|
|
case Entity_Nil:
|
|
o->mode = Addressing_Value;
|
|
break;
|
|
|
|
default:
|
|
compiler_error("Unknown EntityKind %.*s", LIT(entity_strings[e->kind]));
|
|
break;
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
|
|
gb_internal bool check_unary_op(CheckerContext *c, Operand *o, Token op) {
|
|
if (o->type == nullptr) {
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Expression has no value '%s'", str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
if (o->mode == Addressing_Type) {
|
|
gbString str = type_to_string(o->type);
|
|
error(o->expr, "Expected an expression for operator '%.*s', got type '%s'", LIT(op.string), str);
|
|
gb_string_free(str);
|
|
return false;
|
|
}
|
|
|
|
Type *type = base_type(core_array_type(o->type));
|
|
gbString str = nullptr;
|
|
switch (op.kind) {
|
|
case Token_Add:
|
|
case Token_Sub:
|
|
if (!is_type_numeric(type)) {
|
|
str = expr_to_string(o->expr);
|
|
error(op, "Operator '%.*s' is not allowed with '%s'", LIT(op.string), str);
|
|
gb_string_free(str);
|
|
}
|
|
break;
|
|
|
|
case Token_Xor:
|
|
if (!is_type_integer(type) && !is_type_boolean(type) && !is_type_bit_set(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with integers, booleans, or bit sets", LIT(op.string));
|
|
}
|
|
break;
|
|
|
|
case Token_Not:
|
|
if (!is_type_boolean(type) || is_type_array_like(o->type)) {
|
|
ERROR_BLOCK();
|
|
error(op, "Operator '%.*s' is only allowed on boolean expressions", LIT(op.string));
|
|
if (is_type_integer(type)) {
|
|
str = expr_to_string(o->expr);
|
|
error_line("\tSuggestion: Did you mean to do one of the following?\n");
|
|
error_line("\t\t'%s == 0'?\n", str);
|
|
error_line("\t\tUse of the bitwise not operator '~'?\n");
|
|
gb_string_free(str);
|
|
}
|
|
} else {
|
|
o->type = t_untyped_bool;
|
|
}
|
|
break;
|
|
|
|
case Token_Mul:
|
|
{
|
|
ERROR_BLOCK();
|
|
error(op, "Operator '%.*s' is not a valid unary operator in Odin", LIT(op.string));
|
|
if (is_type_pointer(o->type)) {
|
|
str = expr_to_string(o->expr);
|
|
error_line("\tSuggestion: Did you mean '%s^'?\n", str);
|
|
o->type = type_deref(o->type);
|
|
} else if (is_type_multi_pointer(o->type)) {
|
|
str = expr_to_string(o->expr);
|
|
error_line("\tSuggestion: The value is a multi-pointer, did you mean '%s[0]'?\n", str);
|
|
o->type = type_deref(o->type, true);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
error(op, "Unknown operator '%.*s'", LIT(op.string));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
gb_internal bool check_binary_op(CheckerContext *c, Operand *o, Token op) {
|
|
Type *main_type = o->type;
|
|
|
|
Type *type = base_type(core_array_type(main_type));
|
|
Type *ct = core_type(type);
|
|
|
|
switch (op.kind) {
|
|
case Token_Sub:
|
|
case Token_SubEq:
|
|
if (is_type_bit_set(type)) {
|
|
return true;
|
|
} else if (!is_type_numeric(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with numeric expressions", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_Quo:
|
|
case Token_QuoEq:
|
|
if (is_type_matrix(main_type)) {
|
|
error(op, "Operator '%.*s' is not allowed with matrix types", LIT(op.string));
|
|
return false;
|
|
} else if (is_type_simd_vector(main_type) && is_type_integer(type)) {
|
|
error(op, "Operator '%.*s' is not allowed with #simd types with integer elements", LIT(op.string));
|
|
return false;
|
|
}
|
|
/*fallthrough*/
|
|
case Token_Mul:
|
|
case Token_MulEq:
|
|
case Token_AddEq:
|
|
if (is_type_bit_set(type)) {
|
|
return true;
|
|
} else if (!is_type_numeric(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with numeric expressions", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_Add:
|
|
if (is_type_string(type)) {
|
|
if (o->mode == Addressing_Constant) {
|
|
return true;
|
|
}
|
|
error(op, "String concatenation is only allowed with constant strings");
|
|
return false;
|
|
} else if (is_type_bit_set(type)) {
|
|
return true;
|
|
} else if (!is_type_numeric(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with numeric expressions", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_And:
|
|
case Token_Or:
|
|
case Token_AndEq:
|
|
case Token_OrEq:
|
|
case Token_Xor:
|
|
case Token_XorEq:
|
|
if (!is_type_integer(ct) && !is_type_boolean(ct) && !is_type_bit_set(ct)) {
|
|
error(op, "Operator '%.*s' is only allowed with integers, booleans, or bit sets", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_Mod:
|
|
case Token_ModMod:
|
|
case Token_ModEq:
|
|
case Token_ModModEq:
|
|
if (is_type_matrix(main_type)) {
|
|
error(op, "Operator '%.*s' is not allowed with matrix types", LIT(op.string));
|
|
return false;
|
|
}
|
|
if (!is_type_integer(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with integers", LIT(op.string));
|
|
return false;
|
|
} else if (is_type_simd_vector(main_type)) {
|
|
error(op, "Operator '%.*s' is not allowed with #simd types with integer elements", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_AndNot:
|
|
case Token_AndNotEq:
|
|
if (!is_type_integer(ct) && !is_type_bit_set(ct)) {
|
|
error(op, "Operator '%.*s' is only allowed with integers and bit sets", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Token_CmpAnd:
|
|
case Token_CmpOr:
|
|
case Token_CmpAndEq:
|
|
case Token_CmpOrEq:
|
|
if (!is_type_boolean(type)) {
|
|
error(op, "Operator '%.*s' is only allowed with boolean expressions", LIT(op.string));
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error(op, "Unknown operator '%.*s'", LIT(op.string));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
gb_internal bool check_representable_as_constant(CheckerContext *c, ExactValue in_value, Type *type, ExactValue *out_value) {
|
|
if (in_value.kind == ExactValue_Invalid) {
|
|
// NOTE(bill): There's already been an error
|
|
return true;
|
|
}
|
|
|
|
type = core_type(type);
|
|
if (type == t_invalid) {
|
|
return false;
|
|
} else if (is_type_boolean(type)) {
|
|
return in_value.kind == ExactValue_Bool;
|
|
} else if (is_type_string(type)) {
|
|
if (in_value.kind == ExactValue_String16) {
|
|
return is_type_string16(type) || is_type_cstring16(type);
|
|
}
|
|
return in_value.kind == ExactValue_String;
|
|
} else if (is_type_integer(type) || is_type_rune(type)) {
|
|
if (in_value.kind == ExactValue_Bool) {
|
|
return false;
|
|
}
|
|
ExactValue v = exact_value_to_integer(in_value);
|
|
if (v.kind != ExactValue_Integer) {
|
|
return false;
|
|
}
|
|
if (out_value) *out_value = v;
|
|
|
|
|
|
if (is_type_untyped(type)) {
|
|
return true;
|
|
}
|
|
|
|
BigInt i = v.value_integer;
|
|
|
|
i64 byte_size = type_size_of(type);
|
|
BigInt umax = {};
|
|
BigInt imin = {};
|
|
BigInt imax = {};
|
|
|
|
if (c->bit_field_bit_size > 0) {
|
|
i64 bit_size = gb_min(cast(i64)(8*byte_size), cast(i64)c->bit_field_bit_size);
|
|
|
|
big_int_from_u64(&umax, 1);
|
|
big_int_from_i64(&imin, 1);
|
|
big_int_from_i64(&imax, 1);
|
|
|
|
BigInt bu = {};
|
|
BigInt bi = {};
|
|
big_int_from_i64(&bu, bit_size);
|
|
big_int_from_i64(&bi, bit_size-1);
|
|
|
|
big_int_shl_eq(&umax, &bu);
|
|
mp_decr(&umax);
|
|
|
|
big_int_shl_eq(&imin, &bi);
|
|
big_int_neg(&imin, &imin);
|
|
|
|
big_int_shl_eq(&imax, &bi);
|
|
mp_decr(&imax);
|
|
} else {
|
|
if (byte_size < 16) {
|
|
big_int_from_u64(&umax, unsigned_integer_maxs[byte_size]);
|
|
big_int_from_i64(&imin, signed_integer_mins[byte_size]);
|
|
big_int_from_i64(&imax, signed_integer_maxs[byte_size]);
|
|
} else {
|
|
big_int_from_u64(&umax, 1);
|
|
big_int_from_i64(&imin, 1);
|
|
big_int_from_i64(&imax, 1);
|
|
|
|
BigInt bi128 = {};
|
|
BigInt bi127 = {};
|
|
big_int_from_i64(&bi128, 128);
|
|
big_int_from_i64(&bi127, 127);
|
|
|
|
big_int_shl_eq(&umax, &bi128);
|
|
mp_decr(&umax);
|
|
|
|
big_int_shl_eq(&imin, &bi127);
|
|
big_int_neg(&imin, &imin);
|
|
|
|
big_int_shl_eq(&imax, &bi127);
|
|
mp_decr(&imax);
|
|
}
|
|
}
|
|
|
|
switch (type->Basic.kind) {
|
|
case Basic_rune:
|
|
case Basic_i8:
|
|
case Basic_i16:
|
|
case Basic_i32:
|
|
case Basic_i64:
|
|
case Basic_i128:
|
|
case Basic_int:
|
|
|
|
case Basic_i16le:
|
|
case Basic_i32le:
|
|
case Basic_i64le:
|
|
case Basic_i128le:
|
|
case Basic_i16be:
|
|
case Basic_i32be:
|
|
case Basic_i64be:
|
|
case Basic_i128be:
|
|
{
|
|
// return imin <= i && i <= imax;
|
|
int a = big_int_cmp(&imin, &i);
|
|
int b = big_int_cmp(&i, &imax);
|
|
return (a <= 0) && (b <= 0);
|
|
}
|
|
|
|
case Basic_u8:
|
|
case Basic_u16:
|
|
case Basic_u32:
|
|
case Basic_u64:
|
|
case Basic_u128:
|
|
case Basic_uint:
|
|
case Basic_uintptr:
|
|
|
|
case Basic_u16le:
|
|
case Basic_u32le:
|
|
case Basic_u64le:
|
|
case Basic_u128le:
|
|
case Basic_u16be:
|
|
case Basic_u32be:
|
|
case Basic_u64be:
|
|
case Basic_u128be:
|
|
{
|
|
// return 0ull <= i && i <= umax;
|
|
int b = big_int_cmp(&i, &umax);
|
|
return !i.sign && (b <= 0);
|
|
}
|
|
|
|
case Basic_UntypedInteger:
|
|
return true;
|
|
|
|
default: GB_PANIC("Compiler error: Unknown integer type!"); break;
|
|
}
|
|
} else if (is_type_float(type)) {
|
|
ExactValue v = exact_value_to_float(in_value);
|
|
if (v.kind != ExactValue_Float) {
|
|
return false;
|
|
}
|
|
if (out_value) *out_value = v;
|
|
|
|
switch (type->Basic.kind) {
|
|
case Basic_f16:
|
|
case Basic_f32:
|
|
case Basic_f64:
|
|
return true;
|
|
|
|
case Basic_f16le:
|
|
case Basic_f16be:
|
|
case Basic_f32le:
|
|
case Basic_f32be:
|
|
case Basic_f64le:
|
|
case Basic_f64be:
|
|
return true;
|
|
|
|
case Basic_UntypedFloat:
|
|
return true;
|
|
|
|
default: GB_PANIC("Compiler error: Unknown float type!"); break;
|
|
}
|
|
} else if (is_type_complex(type)) {
|
|
ExactValue v = exact_value_to_complex(in_value);
|
|
if (v.kind != ExactValue_Complex) {
|
|
return false;
|
|
}
|
|
|
|
switch (type->Basic.kind) {
|
|
case Basic_complex32:
|
|
case Basic_complex64:
|
|
case Basic_complex128: {
|
|
ExactValue real = exact_value_real(v);
|
|
ExactValue imag = exact_value_imag(v);
|
|
if (real.kind != ExactValue_Invalid &&
|
|
imag.kind != ExactValue_Invalid) {
|
|
if (out_value) *out_value = exact_value_complex(exact_value_to_f64(real), exact_value_to_f64(imag));
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case Basic_UntypedComplex:
|
|
return true;
|
|
|
|
default: GB_PANIC("Compiler error: Unknown complex type!"); break;
|
|
}
|
|
|
|
return false;
|
|
} else if (is_type_quaternion(type)) {
|
|
ExactValue v = exact_value_to_quaternion(in_value);
|
|
if (v.kind != ExactValue_Quaternion) {
|
|
return false;
|
|
}
|
|
|
|
switch (type->Basic.kind) {
|
|
case Basic_quaternion64:
|
|
case Basic_quaternion128:
|
|
case Basic_quaternion256: {
|
|
ExactValue real = exact_value_real(v);
|
|
ExactValue imag = exact_value_imag(v);
|
|
ExactValue jmag = exact_value_jmag(v);
|
|
ExactValue kmag = exact_value_kmag(v);
|
|
if (real.kind != ExactValue_Invalid &&
|
|
imag.kind != ExactValue_Invalid) {
|
|
if (out_value) *out_value = exact_value_quaternion(exact_value_to_f64(real), exact_value_to_f64(imag), exact_value_to_f64(jmag), exact_value_to_f64(kmag));
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case Basic_UntypedComplex:
|
|
if (out_value) *out_value = exact_value_to_quaternion(*out_value);
|
|
return true;
|
|
case Basic_UntypedQuaternion:
|
|
return true;
|
|
|
|
default: GB_PANIC("Compiler error: Unknown complex type!"); break;
|
|
}
|
|
|
|
return false;
|
|
} else if (is_type_pointer(type)) {
|
|
if (in_value.kind == ExactValue_Pointer) {
|
|
return true;
|
|
}
|
|
if (in_value.kind == ExactValue_Integer) {
|
|
return false;
|
|
// return true;
|
|
}
|
|
if (in_value.kind == ExactValue_String) {
|
|
return false;
|
|
}
|
|
if (in_value.kind == ExactValue_String16) {
|
|
return false;
|
|
}
|
|
if (out_value) *out_value = in_value;
|
|
} else if (is_type_bit_set(type)) {
|
|
if (in_value.kind == ExactValue_Integer) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
gb_internal bool check_integer_exceed_suggestion(CheckerContext *c, Operand *o, Type *type, i64 max_bit_size=0) {
|
|
if (is_type_integer(type) && o->value.kind == ExactValue_Integer) {
|
|
gbString b = type_to_string(type);
|
|
defer (gb_string_free(b));
|
|
|
|
if (is_type_enum(o->type)) {
|
|
if (check_is_castable_to(c, o, type)) {
|
|
gbString ot = type_to_string(o->type);
|
|
error_line("\tSuggestion: Try casting the '%s' expression to '%s'", ot, b);
|
|
gb_string_free(ot);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
i64 sz = type_size_of(type);
|
|
i64 bit_size = 8*sz;
|
|
bool size_changed = false;
|
|
if (max_bit_size > 0) {
|
|
size_changed = (bit_size != max_bit_size);
|
|
bit_size = gb_min(bit_size, max_bit_size);
|
|
}
|
|
BigInt *bi = &o->value.value_integer;
|
|
if (is_type_unsigned(type)) {
|
|
BigInt one = big_int_make_u64(1);
|
|
BigInt max_size = big_int_make_u64(1);
|
|
BigInt bits = big_int_make_i64(bit_size);
|
|
big_int_shl_eq(&max_size, &bits);
|
|
big_int_sub_eq(&max_size, &one);
|
|
|
|
if (big_int_is_neg(bi)) {
|
|
error_line("\tA negative value cannot be represented by the unsigned integer type '%s'\n", b);
|
|
BigInt dst = {};
|
|
big_int_neg(&dst, bi);
|
|
if (big_int_cmp(&dst, &max_size) < 0) {
|
|
big_int_sub_eq(&dst, &one);
|
|
String dst_str = big_int_to_string(temporary_allocator(), &dst);
|
|
gbString t = type_to_string(type);
|
|
error_line("\tSuggestion: ~%s(%.*s)\n", t, LIT(dst_str));
|
|
gb_string_free(t);
|
|
}
|
|
} else {
|
|
String max_size_str = big_int_to_string(temporary_allocator(), &max_size);
|
|
|
|
if (size_changed) {
|
|
error_line("\tThe maximum value that can be represented with that bit_field's field of '%s | %u' is '%.*s'\n", b, bit_size, LIT(max_size_str));
|
|
} else {
|
|
error_line("\tThe maximum value that can be represented by '%s' is '%.*s'\n", b, LIT(max_size_str));
|
|
}
|
|
}
|
|
} else {
|
|
BigInt zero = big_int_make_u64(0);
|
|
BigInt one = big_int_make_u64(1);
|
|
BigInt max_size = big_int_make_u64(1);
|
|
BigInt bits = big_int_make_i64(bit_size - 1);
|
|
big_int_shl_eq(&max_size, &bits);
|
|
|
|
String max_size_str = {};
|
|
if (big_int_is_neg(bi)) {
|
|
big_int_neg(&max_size, &max_size);
|
|
max_size_str = big_int_to_string(temporary_allocator(), &max_size);
|
|
} else {
|
|
big_int_sub_eq(&max_size, &one);
|
|
max_size_str = big_int_to_string(temporary_allocator(), &max_size);
|
|
}
|
|
|
|
if (size_changed) {
|
|
error_line("\tThe maximum value that can be represented with that bit_field's field of '%s | %u' is '%.*s'\n", b, bit_size, LIT(max_size_str));
|
|
} else {
|
|
error_line("\tThe maximum value that can be represented by '%s' is '%.*s'\n", b, LIT(max_size_str));
|
|
}
|
|
}
|
|
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
gb_internal void check_assignment_error_suggestion(CheckerContext *c, Operand *o, Type *type, i64 max_bit_size) {
|
|
gbString a = expr_to_string(o->expr);
|
|
gbString b = type_to_string(type);
|
|
defer(
|
|
gb_string_free(b);
|
|
gb_string_free(a);
|
|
);
|
|
|
|
Type *src = base_type(o->type);
|
|
Type *dst = base_type(type);
|
|
|
|
if (is_type_array(src) && is_type_slice(dst)) {
|
|
Type *s = src->Array.elem;
|
|
Type *d = dst->Slice.elem;
|
|
if (are_types_identical(s, d)) {
|
|
error_line("\tSuggestion: The array expression may be sliced with %s[:]\n", a);
|
|
}
|
|
} else if (is_type_dynamic_array(src) && is_type_slice(dst)) {
|
|
Type *s = src->DynamicArray.elem;
|
|
Type *d = dst->Slice.elem;
|
|
if (are_types_identical(s, d)) {
|
|
error_line("\tSuggestion: The dynamic array expression may be sliced with %s[:]\n", a);
|
|
}
|
|
}else if (are_types_identical(src, dst) && !are_types_identical(o->type, type)) {
|
|
error_line("\tSuggestion: The expression may be directly casted to type %s\n", b);
|
|
} else if (are_types_identical(src, t_string) && is_type_u8_slice(dst)) {
|
|
error_line("\tSuggestion: A string may be transmuted to %s\n", b);
|
|
error_line("\t This is an UNSAFE operation as string data is assumed to be immutable,\n");
|
|
error_line("\t whereas slices in general are assumed to be mutable.\n");
|
|
} else if (is_type_u8_slice(src) && are_types_identical(dst, t_string) && o->mode != Addressing_Constant) {
|
|
error_line("\tSuggestion: The expression may be casted to %s\n", b);
|
|
} else if (check_integer_exceed_suggestion(c, o, type, max_bit_size)) {
|
|
return;
|
|
} else if (is_expr_inferred_fixed_array(c->type_hint_expr) && is_type_array_like(type) && is_type_array_like(o->type)) {
|
|
gbString s = expr_to_string(c->type_hint_expr);
|
|
error_line("\tSuggestion: Make sure that `%s` is attached to the compound literal directly\n", s);
|
|
gb_string_free(s);
|
|
} else if (is_type_pointer(type) &&
|
|
o->mode == Addressing_Variable &&
|
|
are_types_identical(type_deref(type), o->type)) {
|
|
gbString s = expr_to_string(o->expr);
|
|
error_line("\tSuggestion: Did you mean `&%s`\n", s);
|
|
gb_string_free(s);
|
|
} else if (is_type_pointer(o->type) &&
|
|
are_types_identical(type_deref(o->type), type)) {
|
|
gbString s = expr_to_string(o->expr);
|
|
error_line("\tSuggestion: Did you mean `%s^`\n", s);
|
|
gb_string_free(s);
|
|
}
|
|
}
|
|
|
|
gb_internal void check_cast_error_suggestion(CheckerContext *c, Operand *o, Type *type) {
|
|
gbString a = expr_to_string(o->expr);
|
|
gbString b = type_to_string(type);
|
|
defer(
|
|
gb_string_free(b);
|
|
gb_string_free(a);
|
|
);
|
|
|
|
Type *src = base_type(o->type);
|
|
Type *dst = base_type(type);
|
|
|
|
if (is_type_array(src) && is_type_slice(dst)) {
|
|
Type *s = src->Array.elem;
|
|
Type *d = dst->Slice.elem;
|
|
if (are_types_identical(s, d)) {
|
|
error_line("\tSuggestion: the array expression may be sliced with %s[:]\n", a);
|
|
}
|
|
} else if (is_type_pointer(o->type) && is_type_integer(type)) {
|
|
if (is_type_uintptr(type)) {
|
|
error_line("\tSuggestion: a pointer may be directly casted to %s\n", b);
|
|
} else {
|
|
error_line("\tSuggestion: for a pointer to be casted to an integer, it must be converted to 'uintptr' first\n");
|
|
i64 x = type_size_of(o->type);
|
|
i64 y = type_size_of(type);
|
|
if (x != y) {
|
|
error_line("\tNote: the type of expression and the type of the cast have a different size in bytes, %lld vs %lld\n", x, y);
|
|
}
|
|
}
|
|
} else if (is_type_integer(o->type) && is_type_pointer(type)) {
|
|
if (is_type_uintptr(o->type)) {
|
|
error_line("\tSuggestion: %a may be directly casted to %s\n", a, b);
|
|
} else {
|
|
error_line("\tSuggestion: for an integer to be casted to a pointer, it must be converted to 'uintptr' first\n");
|
|
}
|
|
} else if (are_types_identical(src, t_string) && is_type_u8_slice(dst)) {
|
|
error_line("\tSuggestion: a string may be transmuted to %s\n", b);
|
|
} else if (check_integer_exceed_suggestion(c, o, type)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
gb_internal bool check_is_expressible(CheckerContext *ctx, Operand *o, Type *type) {
|
|
GB_ASSERT(o->mode == Addressing_Constant);
|
|
ExactValue out_value = o->value;
|
|
if (is_type_constant_type(type) && check_representable_as_constant(ctx, o->value, type, &out_value)) {
|
|
o->value = out_value;
|
|
return true;
|
|
} else {
|
|
o->value = out_value;
|
|
|
|
gbString a = expr_to_string(o->expr);
|
|
gbString b = type_to_string(type);
|
|
gbString c = type_to_string(o->type);
|
|
gbString s = exact_value_to_string(o->value);
|
|
defer(
|
|
gb_string_free(s);
|
|
gb_string_free(c);
|
|
gb_string_free(b);
|
|
gb_string_free(a);
|
|
o->mode = Addressing_Invalid;
|
|
);
|
|
|
|
ERROR_BLOCK();
|
|
|
|
if (is_type_numeric(o->type) && is_type_numeric(type)) {
|
|
if (!is_type_integer(o->type) && is_type_integer(type)) {
|
|
error(o->expr, "'%s' truncated to '%s', got %s", a, b, s);
|
|
} else {
|
|
i64 max_bit_size = 0;
|
|
if (ctx->bit_field_bit_size) {
|
|
max_bit_size = ctx->bit_field_bit_size;
|
|
}
|
|
|
|
if (are_types_identical(o->type, type)) {
|
|
error(o->expr, "Numeric value '%s' from '%s' cannot be represented by '%s'", s, a, b);
|
|
} else {
|
|
error(o->expr, "Cannot convert numeric value '%s' from '%s' to '%s' from '%s'", s, a, b, c);
|
|
}
|
|
|
|
check_assignment_error_suggestion(ctx, o, type, max_bit_size);
|
|
}
|
|
} else {
|
|
error(o->expr, "Cannot convert '%s' to '%s' from '%s', got %s", a, b, c, s);
|
|
check_assignment_error_suggestion(ctx, o, type);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
gb_internal bool check_is_not_addressable(CheckerContext *c, Operand *o) {
|
|
if (o->expr && o->expr->kind == Ast_SelectorExpr) {
|
|
if (o->expr->SelectorExpr.is_bit_field) {
|
|
return true;
|
|
}
|
|
}
|
|
if (o->mode == Addressing_OptionalOk) {
|
|
Ast *expr = unselector_expr(o->expr);
|
|
if (expr->kind != Ast_TypeAssertion) {
|
|
return true;
|
|
}
|
|
ast_node(ta, TypeAssertion, expr);
|
|
TypeAndValue tv = ta->expr->tav;
|
|
if (is_type_pointer(tv.type)) {
|
|
return false;
|
|
}
|
|
if (is_type_union(tv.type) && tv.mode == Addressing_Variable) {
|
|
return false;
|
|
}
|
|
if (is_type_any(tv.type)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
if (o->mode == Addressing_MapIndex) {
|
|
return false;
|
|
}
|
|
|
|
Ast *expr = unparen_expr(o->expr);
|
|
if (expr->kind == Ast_CompoundLit) {
|
|
return false;
|
|
}
|
|
|
|
return o->mode != Addressing_Variable && o->mode != Addressing_SoaVariable;
|
|
}
|
|
|
|
gb_internal ExactValue exact_bit_set_all_set_mask(Type *type) {
|
|
type = base_type(type);
|
|
GB_ASSERT(type->kind == Type_BitSet);
|
|
|
|
i64 lower = type->BitSet.lower;
|
|
i64 upper = type->BitSet.upper;
|
|
Type *elem = type->BitSet.elem;
|
|
Type *underlying = type->BitSet.underlying;
|
|
bool is_backed = underlying != nullptr;
|
|
gb_unused(is_backed);
|
|
|
|
BigInt b_lower = {};
|
|
BigInt b_upper = {};
|
|
big_int_from_i64(&b_lower, lower);
|
|
big_int_from_i64(&b_upper, upper);
|
|
|
|
|
|
BigInt one = {};
|
|
big_int_from_u64(&one, 1);
|
|
|
|
BigInt mask = {};
|
|
|
|
if (elem == nullptr) {
|
|
big_int_from_i64(&mask, -1);
|
|
} else if (is_type_enum(elem)) {
|
|
Type *e = base_type(elem);
|
|
GB_ASSERT(e->kind == Type_Enum);
|
|
gb_unused(e);
|
|
|
|
if ((big_int_cmp(&e->Enum.min_value->value_integer, &b_lower) == 0 || is_backed) &&
|
|
big_int_cmp(&e->Enum.max_value->value_integer, &b_upper) == 0) {
|
|
|
|
i64 lower_base = is_backed ? gb_min(0, lower) : lower;
|
|
BigInt b_lower_base = {};
|
|
big_int_from_i64(&b_lower_base, lower_base);
|
|
|
|
for (Entity *f : e->Enum.fields) {
|
|
if (f->kind != Entity_Constant) {
|
|
continue;
|
|
}
|
|
if (f->Constant.value.kind != ExactValue_Integer) {
|
|
continue;
|
|
}
|
|
|
|
BigInt shift_amount = {};
|
|
big_int_sub(&shift_amount, &f->Constant.value.value_integer, &b_lower_base);
|
|
|
|
BigInt value = {};
|
|
big_int_shl(&value, &one, &shift_amount);
|
|
|
|
big_int_or(&mask, &mask, &value);
|
|
}
|
|
|
|
} else {
|
|
// TODO(bill): enum range based");
|
|
big_int_from_i64(&mask, -1);
|
|
}
|
|
} else {
|
|
i64 lower_base = lower;
|
|
for (i64 x = lower; x <= upper; x++) {
|
|
BigInt shift_amount = {};
|
|
big_int_from_i64(&shift_amount, x - lower_base);
|
|
|
|
BigInt value = {};
|
|
big_int_shl(&value, &one, &shift_amount);
|
|
|
|
big_int_or(&mask, &mask, &value);
|
|
}
|
|
}
|
|
|
|
|
|
ExactValue res = {};
|
|
res.kind = ExactValue_Integer;
|
|
res.value_integer = mask;
|
|
return res;
|
|
}
|
|
|
|
gb_internal void check_unary_expr(CheckerContext *c, Operand *o, Token op, Ast *node) {
|
|
switch (op.kind) {
|
|
case Token_And: { // Pointer address
|
|
if (check_is_not_addressable(c, o)) {
|
|
if (ast_node_expect(node, Ast_UnaryExpr)) {
|
|
ast_node(ue, UnaryExpr, node);
|
|
gbString str = expr_to_string(ue->expr);
|
|
defer (gb_string_free(str));
|
|
|
|
Entity *e = entity_of_node(ue->expr);
|
|
if (e != nullptr && (e->flags & EntityFlag_Param) != 0) {
|
|
error(op, "Cannot take the pointer address of '%s' which is a procedure parameter", str);
|
|
} else if (e != nullptr && (e->flags & EntityFlag_BitFieldField) != 0) {
|
|
error(op, "Cannot take the pointer address of '%s' which is a bit_field's field", str);
|
|
} else {
|
|
switch (o->mode) {
|
|
case Addressing_Constant:
|
|
error(op, "Cannot take the pointer address of '%s' which is a constant", str);
|
|
break;
|
|
case Addressing_SwizzleValue:
|
|
case Addressing_SwizzleVariable:
|
|
error(op, "Cannot take the pointer address of '%s' which is a swizzle intermediate array value", str);
|
|
break;
|
|
default:
|
|
{
|
|
ERROR_BLOCK();
|
|
error(op, "Cannot take the pointer address of '%s'", str);
|
|
if (e == nullptr) {
|
|
break;
|
|
}
|
|
if ((e->flags & EntityFlag_ForValue) != 0) {
|
|
Type *parent_type = type_deref(e->Variable.for_loop_parent_type);
|
|
|
|
if (parent_type != nullptr && is_type_string(parent_type)) {
|
|
error_line("\tSuggestion: Iterating over a string produces an intermediate 'rune' value which cannot be addressed.\n");
|
|
} else if (parent_type != nullptr && is_type_tuple(parent_type)) {
|
|
error_line("\tSuggestion: Iterating over a procedure does not produce values which are addressable.\n");
|
|
} else {
|
|
error_line("\tSuggestion: Did you want to pass the iterable value to the for statement by pointer to get addressable semantics?\n");
|
|
}
|
|
|
|
if (parent_type != nullptr && is_type_map(parent_type)) {
|
|
error_line("\t Prefer doing 'for key, &%.*s in ...'\n", LIT(e->token.string));
|
|
} else {
|
|
error_line("\t Prefer doing 'for &%.*s in ...'\n", LIT(e->token.string));
|
|
}
|
|
}
|
|
if ((e->flags & EntityFlag_SwitchValue) != 0) {
|
|
error_line("\tSuggestion: Did you want to pass the value to the switch statement by pointer to get addressable semantics?\n");
|
|
|
|
error_line("\t Prefer doing 'switch &%.*s in ...'\n", LIT(e->token.string));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (o->mode == Addressing_SoaVariable) {
|
|
ast_node(ue, UnaryExpr, node);
|
|
if (ast_node_expect(ue->expr, Ast_IndexExpr)) {
|
|
ast_node(ie, IndexExpr, ue->expr);
|
|
Type *soa_type = type_deref(type_of_expr(ie->expr));
|
|
GB_ASSERT(is_type_soa_struct(soa_type));
|
|
o->type = alloc_type_soa_pointer(soa_type);
|
|
} else {
|
|
o->type = alloc_type_pointer(o->type);
|
|
}
|
|
} else {
|
|
o->type = alloc_type_pointer(o->type);
|
|
}
|
|
|
|
switch (o->mode) {
|
|
case Addressing_OptionalOk:
|
|
case Addressing_MapIndex:
|
|
o->mode = Addressing_OptionalOkPtr;
|
|
break;
|
|
default:
|
|
o->mode = Addressing_Value;
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!check_unary_op(c, o, op)) {
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (o->mode == Addressing_Constant) {
|
|
Type *type = base_type(o->type);
|
|
if (!is_type_constant_type(o->type)) {
|
|
if (is_type_array_like(o->type)) {
|
|
o->mode = Addressing_Value;
|
|
return;
|
|
}
|
|
|
|
gbString xt = type_to_string(o->type);
|
|
gbString err_str = expr_to_string(node);
|
|
error(op, "Invalid type, '%s', for constant unary expression '%s'", xt, err_str);
|
|
gb_string_free(err_str);
|
|
gb_string_free(xt);
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
if (op.kind == Token_Xor && is_type_untyped(type)) {
|
|
gbString err_str = expr_to_string(node);
|
|
error(op, "Bitwise not cannot be applied to untyped constants '%s'", err_str);
|
|
gb_string_free(err_str);
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
if (op.kind == Token_Sub && is_type_unsigned(type)) {
|
|
gbString err_str = expr_to_string(node);
|
|
error(op, "A unsigned constant cannot be negated '%s'", err_str);
|
|
gb_string_free(err_str);
|
|
o->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
i32 precision = 0;
|
|
if (is_type_typed(type)) {
|
|
precision = cast(i32)(8 * type_size_of(type));
|
|
}
|
|
|
|
bool is_unsigned = is_type_unsigned(type);
|
|
if (is_type_rune(type)) {
|
|
GB_ASSERT(!is_unsigned);
|
|
}
|
|
|
|
o->value = exact_unary_operator_value(op.kind, o->value, precision, is_unsigned);
|
|
if (op.kind == Token_Xor && is_type_bit_set(type)) {
|
|
ExactValue mask = exact_bit_set_all_set_mask(type);
|
|
o->value = exact_binary_operator_value(Token_And, o->value, mask);
|
|
}
|
|
|
|
if (is_type_typed(type)) {
|
|
if (node != nullptr) {
|
|
o->expr = node;
|
|
}
|
|
check_is_expressible(c, o, type);
|
|
}
|
|
return;
|
|
}
|
|
|
|
o->mode = Addressing_Value;
|
|
}
|
|
|
|
gb_internal void add_comparison_procedures_for_fields(CheckerContext *c, Type *t) {
|
|
if (t == nullptr) {
|
|
return;
|
|
}
|
|
t = base_type(t);
|
|
if (!is_type_comparable(t)) {
|
|
return;
|
|
}
|
|
switch (t->kind) {
|
|
case Type_Basic:
|
|
switch (t->Basic.kind) {
|
|
case Basic_complex32:
|
|
add_package_dependency(c, "runtime", "complex32_eq");
|
|
add_package_dependency(c, "runtime", "complex32_ne");
|
|
break;
|
|
case Basic_complex64:
|
|
add_package_dependency(c, "runtime", "complex64_eq");
|
|
add_package_dependency(c, "runtime", "complex64_ne");
|
|
break;
|
|
case Basic_complex128:
|
|
add_package_dependency(c, "runtime", "complex128_eq");
|
|
add_package_dependency(c, "runtime", "complex128_ne");
|
|
break;
|
|
case Basic_quaternion64:
|
|
add_package_dependency(c, "runtime", "quaternion64_eq");
|
|
add_package_dependency(c, "runtime", "quaternion64_ne");
|
|
break;
|
|
case Basic_quaternion128:
|
|
add_package_dependency(c, "runtime", "quaternion128_eq");
|
|
add_package_dependency(c, "runtime", "quaternion128_ne");
|
|
break;
|
|
case Basic_quaternion256:
|
|
add_package_dependency(c, "runtime", "quaternion256_eq");
|
|
add_package_dependency(c, "runtime", "quaternion256_ne");
|
|
break;
|
|
case Basic_cstring:
|
|
add_package_dependency(c, "runtime", "cstring_eq");
|
|
add_package_dependency(c, "runtime", "cstring_ne");
|
|
break;
|
|
case Basic_string:
|
|
add_package_dependency(c, "runtime", "string_eq");
|
|
add_package_dependency(c, "runtime", "string_ne");
|
|
break;
|
|
case Basic_cstring16:
|
|
add_package_dependency(c, "runtime", "cstring16_eq");
|
|
add_package_dependency(c, "runtime", "cstring16_ne");
|
|
break;
|
|
case Basic_string16:
|
|
add_package_dependency(c, "runtime", "string16_eq");
|
|
add_package_dependency(c, "runtime", "string16_ne");
|
|
break;
|
|
}
|
|
break;
|
|
case Type_Struct:
|
|
for (Entity *field : t->Struct.fields) {
|
|
add_comparison_procedures_for_fields(c, field->type);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
gb_internal void check_comparison(CheckerContext *c, Ast *node, Operand *x, Operand *y, TokenKind op) {
|
|
if (x->mode == Addressing_Type && y->mode == Addressing_Type) {
|
|
bool comp = are_types_identical(x->type, y->type);
|
|
switch (op) {
|
|
case Token_CmpEq: /* comp = comp; */ break;
|
|
case Token_NotEq: comp = !comp; break;
|
|
}
|
|
x->mode = Addressing_Constant;
|
|
x->type = t_untyped_bool;
|
|
x->value = exact_value_bool(comp);
|
|
return;
|
|
}
|
|
|
|
if (x->mode == Addressing_Type && is_type_typeid(y->type)) {
|
|
add_type_info_type(c, x->type);
|
|
add_type_info_type(c, y->type);
|
|
add_type_and_value(c, x->expr, Addressing_Value, y->type, exact_value_typeid(x->type));
|
|
|
|
x->mode = Addressing_Value;
|
|
x->type = t_untyped_bool;
|
|
return;
|
|
} else if (is_type_typeid(x->type) && y->mode == Addressing_Type) {
|
|
add_type_info_type(c, x->type);
|
|
add_type_info_type(c, y->type);
|
|
add_type_and_value(c, y->expr, Addressing_Value, x->type, exact_value_typeid(y->type));
|
|
|
|
x->mode = Addressing_Value;
|
|
x->type = t_untyped_bool;
|
|
return;
|
|
}
|
|
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
gbString err_str = nullptr;
|
|
|
|
if (check_is_assignable_to(c, x, y->type) ||
|
|
check_is_assignable_to(c, y, x->type)) {
|
|
Type *err_type = x->type;
|
|
bool defined = false;
|
|
switch (op) {
|
|
case Token_CmpEq:
|
|
case Token_NotEq:
|
|
defined = (is_type_comparable(x->type) && is_type_comparable(y->type)) ||
|
|
(is_operand_nil(*x) && type_has_nil(y->type)) ||
|
|
(is_operand_nil(*y) && type_has_nil(x->type));
|
|
break;
|
|
case Token_Lt:
|
|
case Token_Gt:
|
|
case Token_LtEq:
|
|
case Token_GtEq:
|
|
if (are_types_identical(x->type, y->type) && is_type_bit_set(x->type)) {
|
|
defined = true;
|
|
} else {
|
|
defined = is_type_ordered(x->type) && is_type_ordered(y->type);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!defined) {
|
|
gbString xs = type_to_string(x->type, temporary_allocator());
|
|
gbString ys = type_to_string(y->type, temporary_allocator());
|
|
|
|
if (!is_type_comparable(x->type)) {
|
|
err_str = gb_string_make(temporary_allocator(),
|
|
gb_bprintf("Type '%s' is not simply comparable, so operator '%.*s' is not defined for it", xs, LIT(token_strings[op]))
|
|
);
|
|
} else if (!is_type_comparable(y->type)) {
|
|
err_str = gb_string_make(temporary_allocator(),
|
|
gb_bprintf("Type '%s' is not simply comparable, so operator '%.*s' is not defined for it", ys, LIT(token_strings[op]))
|
|
);
|
|
} else {
|
|
err_str = gb_string_make(temporary_allocator(),
|
|
gb_bprintf("Operator '%.*s' not defined between the types '%s' and '%s'", LIT(token_strings[op]), xs, ys)
|
|
);
|
|
}
|
|
} else {
|
|
Type *comparison_type = x->type;
|
|
if (x->type == err_type && is_operand_nil(*x)) {
|
|
comparison_type = y->type;
|
|
}
|
|
|
|
add_comparison_procedures_for_fields(c, comparison_type);
|
|
}
|
|
} else {
|
|
gbString xt, yt;
|
|
if (x->mode == Addressing_ProcGroup) {
|
|
xt = gb_string_make(temporary_allocator(), "procedure group");
|
|
} else {
|
|
xt = type_to_string(x->type);
|
|
}
|
|
if (y->mode == Addressing_ProcGroup) {
|
|
yt = gb_string_make(temporary_allocator(), "procedure group");
|
|
} else {
|
|
yt = type_to_string(y->type);
|
|
}
|
|
err_str = gb_string_make(temporary_allocator(), gb_bprintf("Mismatched types '%s' and '%s'", xt, yt));
|
|
}
|
|
|
|
if (err_str != nullptr) {
|
|
error(node, "Cannot compare expression. %s.", err_str);
|
|
x->type = t_untyped_bool;
|
|
} else {
|
|
if (x->mode == Addressing_Constant &&
|
|
y->mode == Addressing_Constant) {
|
|
if (is_type_constant_type(x->type)) {
|
|
if (is_type_bit_set(x->type)) {
|
|
switch (op) {
|
|
case Token_CmpEq:
|
|
case Token_NotEq:
|
|
x->value = exact_value_bool(compare_exact_values(op, x->value, y->value));
|
|
break;
|
|
case Token_Lt:
|
|
case Token_LtEq:
|
|
{
|
|
ExactValue lhs = x->value;
|
|
ExactValue rhs = y->value;
|
|
ExactValue res = exact_binary_operator_value(Token_And, lhs, rhs);
|
|
res = exact_value_bool(compare_exact_values(op, res, lhs));
|
|
if (op == Token_Lt) {
|
|
res = exact_binary_operator_value(Token_And, res, exact_value_bool(compare_exact_values(op, lhs, rhs)));
|
|
}
|
|
x->value = res;
|
|
break;
|
|
}
|
|
case Token_Gt:
|
|
case Token_GtEq:
|
|
{
|
|
ExactValue lhs = x->value;
|
|
ExactValue rhs = y->value;
|
|
ExactValue res = exact_binary_operator_value(Token_And, lhs, rhs);
|
|
res = exact_value_bool(compare_exact_values(op, res, rhs));
|
|
if (op == Token_Gt) {
|
|
res = exact_binary_operator_value(Token_And, res, exact_value_bool(compare_exact_values(op, lhs, rhs)));
|
|
}
|
|
x->value = res;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
x->value = exact_value_bool(compare_exact_values(op, x->value, y->value));
|
|
}
|
|
} else {
|
|
x->mode = Addressing_Value;
|
|
}
|
|
} else {
|
|
x->mode = Addressing_Value;
|
|
|
|
update_untyped_expr_type(c, x->expr, default_type(x->type), true);
|
|
update_untyped_expr_type(c, y->expr, default_type(y->type), true);
|
|
|
|
i64 size = 0;
|
|
if (!is_type_untyped(x->type)) size = gb_max(size, type_size_of(x->type));
|
|
if (!is_type_untyped(y->type)) size = gb_max(size, type_size_of(y->type));
|
|
|
|
if (is_type_cstring(x->type) && is_type_cstring(y->type)) {
|
|
switch (op) {
|
|
case Token_CmpEq: add_package_dependency(c, "runtime", "cstring_eq"); break;
|
|
case Token_NotEq: add_package_dependency(c, "runtime", "cstring_ne"); break;
|
|
case Token_Lt: add_package_dependency(c, "runtime", "cstring_lt"); break;
|
|
case Token_Gt: add_package_dependency(c, "runtime", "cstring_gt"); break;
|
|
case Token_LtEq: add_package_dependency(c, "runtime", "cstring_le"); break;
|
|
case Token_GtEq: add_package_dependency(c, "runtime", "cstring_gt"); break;
|
|
}
|
|
} else if (is_type_cstring16(x->type) && is_type_cstring16(y->type)) {
|
|
switch (op) {
|
|
case Token_CmpEq: add_package_dependency(c, "runtime", "cstring16_eq"); break;
|
|
case Token_NotEq: add_package_dependency(c, "runtime", "cstring16_ne"); break;
|
|
case Token_Lt: add_package_dependency(c, "runtime", "cstring16_lt"); break;
|
|
case Token_Gt: add_package_dependency(c, "runtime", "cstring16_gt"); break;
|
|
case Token_LtEq: add_package_dependency(c, "runtime", "cstring16_le"); break;
|
|
case Token_GtEq: add_package_dependency(c, "runtime", "cstring16_gt"); break;
|
|
}
|
|
} else if (is_type_string16(x->type) || is_type_string16(y->type)) {
|
|
switch (op) {
|
|
case Token_CmpEq: add_package_dependency(c, "runtime", "string16_eq"); break;
|
|
case Token_NotEq: add_package_dependency(c, "runtime", "string16_ne"); break;
|
|
case Token_Lt: add_package_dependency(c, "runtime", "string16_lt"); break;
|
|
case Token_Gt: add_package_dependency(c, "runtime", "string16_gt"); break;
|
|
case Token_LtEq: add_package_dependency(c, "runtime", "string16_le"); break;
|
|
case Token_GtEq: add_package_dependency(c, "runtime", "string16_gt"); break;
|
|
}
|
|
} else if (is_type_string(x->type) || is_type_string(y->type)) {
|
|
switch (op) {
|
|
case Token_CmpEq: add_package_dependency(c, "runtime", "string_eq"); break;
|
|
case Token_NotEq: add_package_dependency(c, "runtime", "string_ne"); break;
|
|
case Token_Lt: add_package_dependency(c, "runtime", "string_lt"); break;
|
|
case Token_Gt: add_package_dependency(c, "runtime", "string_gt"); break;
|
|
case Token_LtEq: add_package_dependency(c, "runtime", "string_le"); break;
|
|
case Token_GtEq: add_package_dependency(c, "runtime", "string_gt"); break;
|
|
}
|
|
} else if (is_type_complex(x->type) || is_type_complex(y->type)) {
|
|
switch (op) {
|
|
case Token_CmpEq:
|
|
switch (8*size) {
|
|
case 64: add_package_dependency(c, "runtime", "complex64_eq"); break;
|
|
case 128: add_package_dependency(c, "runtime", "complex128_eq"); break;
|
|
}
|
|
break;
|
|
case Token_NotEq:
|
|
switch (8*size) {
|
|
case 64: add_package_dependency(c, "runtime", "complex64_ne"); break;
|
|
case 128: add_package_dependency(c, "runtime", "complex128_ne"); break;
|
|
}
|
|
break;
|
|
}
|
|
} else if (is_type_quaternion(x->type) || is_type_quaternion(y->type)) {
|
|
switch (op) {
|
|
case Token_CmpEq:
|
|
switch (8*size) {
|
|
case 128: add_package_dependency(c, "runtime", "quaternion128_eq"); break;
|
|
case 256: add_package_dependency(c, "runtime", "quaternion256_eq"); break;
|
|
}
|
|
break;
|
|
case Token_NotEq:
|
|
switch (8*size) {
|
|
case 128: add_package_dependency(c, "runtime", "quaternion128_ne"); break;
|
|
case 256: add_package_dependency(c, "runtime", "quaternion256_ne"); break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
x->type = t_untyped_bool;
|
|
}
|
|
|
|
}
|
|
|
|
gb_internal void check_shift(CheckerContext *c, Operand *x, Operand *y, Ast *node, Type *type_hint) {
|
|
GB_ASSERT(node->kind == Ast_BinaryExpr);
|
|
ast_node(be, BinaryExpr, node);
|
|
|
|
bool y_is_untyped = is_type_untyped(y->type);
|
|
if (y_is_untyped) {
|
|
convert_to_typed(c, y, t_untyped_integer);
|
|
if (y->mode == Addressing_Invalid) {
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
} else if (!is_type_unsigned(y->type)) {
|
|
gbString y_str = expr_to_string(y->expr);
|
|
error(y->expr, "Shift amount '%s' must be an unsigned integer", y_str);
|
|
gb_string_free(y_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
bool x_is_untyped = is_type_untyped(x->type);
|
|
if (!(x_is_untyped || is_type_integer(x->type))) {
|
|
gbString x_str = expr_to_string(x->expr);
|
|
error(x->expr, "Shifted operand '%s' must be an integer", x_str);
|
|
gb_string_free(x_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (y->mode == Addressing_Constant) {
|
|
if (big_int_is_neg(&y->value.value_integer)) {
|
|
gbString y_str = expr_to_string(y->expr);
|
|
error(y->expr, "Shift amount '%s' cannot be negative", y_str);
|
|
gb_string_free(y_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
BigInt max_shift = {};
|
|
big_int_from_u64(&max_shift, MAX_BIG_INT_SHIFT);
|
|
|
|
if (big_int_cmp(&y->value.value_integer, &max_shift) > 0) {
|
|
gbString y_str = expr_to_string(y->expr);
|
|
error(y->expr, "Shift amount '%s' must be <= %u", y_str, MAX_BIG_INT_SHIFT);
|
|
gb_string_free(y_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (x->mode == Addressing_Constant) {
|
|
if (x_is_untyped) {
|
|
convert_to_typed(c, x, t_untyped_integer);
|
|
if (x->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
|
|
x->expr = node;
|
|
x->value = exact_value_shift(be->op.kind, exact_value_to_integer(x->value), exact_value_to_integer(y->value));
|
|
|
|
return;
|
|
}
|
|
|
|
x->expr = node;
|
|
x->value = exact_value_shift(be->op.kind, x->value, y->value);
|
|
|
|
check_is_expressible(c, x, x->type);
|
|
|
|
return;
|
|
}
|
|
|
|
if (y_is_untyped) {
|
|
convert_to_typed(c, y, t_uint);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (x->mode == Addressing_Constant) {
|
|
if (x_is_untyped) {
|
|
if (type_hint) {
|
|
if (is_type_integer(type_hint)) {
|
|
convert_to_typed(c, x, type_hint);
|
|
} else if (is_type_any(type_hint)) {
|
|
convert_to_typed(c, x, default_type(t_untyped_integer));
|
|
} else {
|
|
gbString x_str = expr_to_string(x->expr);
|
|
gbString type_str = type_to_string(type_hint);
|
|
error(x->expr, "Shifted operand '%s' cannot convert to non-integer type '%s'", x_str, type_str);
|
|
gb_string_free(x_str);
|
|
gb_string_free(type_str);
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
} else {
|
|
check_is_expressible(c, x, default_type(t_untyped_integer));
|
|
}
|
|
if (x->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
x->mode = Addressing_Value;
|
|
}
|
|
}
|
|
|
|
gb_internal bool check_is_castable_to(CheckerContext *c, Operand *operand, Type *y) {
|
|
if (check_is_assignable_to(c, operand, y)) {
|
|
return true;
|
|
}
|
|
|
|
bool is_constant = operand->mode == Addressing_Constant;
|
|
|
|
Type *x = operand->type;
|
|
Type *src = core_type(x);
|
|
Type *dst = core_type(y);
|
|
if (are_types_identical(src, dst)) {
|
|
return true;
|
|
}
|
|
|
|
// if (is_type_tuple(src)) {
|
|
// Ast *expr = unparen_expr(operand->expr);
|
|
// if (expr && expr->kind == Ast_CallExpr) {
|
|
// // NOTE(bill, 2021-04-19): Allow casting procedure calls with #optional_ok
|
|
// ast_node(ce, CallExpr, expr);
|
|
// Type *pt = base_type(type_of_expr(ce->proc));
|
|
// if (pt->kind == Type_Proc && pt->Proc.optional_ok) {
|
|
// if (pt->Proc.result_count > 0) {
|
|
// Operand op = *operand;
|
|
// op.type = pt->Proc.results->Tuple.variables[0]->type;
|
|
// bool ok = check_is_castable_to(c, &op, y);
|
|
// if (ok) {
|
|
// ce->optional_ok_one = true;
|
|
// }
|
|
// return ok;
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
if (is_constant && is_type_untyped(src) && is_type_string(src)) {
|
|
if (is_type_u8_array(dst)) {
|
|
String s = operand->value.value_string;
|
|
return s.len == dst->Array.count;
|
|
}
|
|
if (is_type_rune_array(dst)) {
|
|
String s = operand->value.value_string;
|
|
return gb_utf8_strnlen(s.text, s.len) == dst->Array.count;
|
|
}
|
|
}
|
|
|
|
|
|
if (dst->kind == Type_Array && src->kind == Type_Array) {
|
|
if (are_types_identical(dst->Array.elem, src->Array.elem)) {
|
|
return dst->Array.count == src->Array.count;
|
|
}
|
|
}
|
|
|
|
if (dst->kind == Type_Slice && src->kind == Type_Slice) {
|
|
return are_types_identical(dst->Slice.elem, src->Slice.elem);
|
|
}
|
|
|
|
// Cast between booleans and integers
|
|
if (is_type_boolean(src) || is_type_integer(src)) {
|
|
if (is_type_boolean(dst) || is_type_integer(dst)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Cast between numbers
|
|
if (is_type_integer(src) || is_type_float(src)) {
|
|
if (is_type_integer(dst) || is_type_float(dst)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (is_type_bit_field(src)) {
|
|
return are_types_identical(core_type(src->BitField.backing_type), dst);
|
|
}
|
|
if (is_type_bit_field(dst)) {
|
|
return are_types_identical(src, core_type(dst->BitField.backing_type));
|
|
}
|
|
|
|
if (is_type_integer(src) && is_type_rune(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_rune(src) && is_type_integer(dst)) {
|
|
return true;
|
|
}
|
|
|
|
if (is_type_complex(src) && is_type_complex(dst)) {
|
|
return true;
|
|
}
|
|
|
|
if (is_type_float(src) && is_type_complex(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_float(src) && is_type_quaternion(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_complex(src) && is_type_quaternion(dst)) {
|
|
return true;
|
|
}
|
|
|
|
if (is_type_quaternion(src) && is_type_quaternion(dst)) {
|
|
return true;
|
|
}
|
|
|
|
if (is_type_matrix(src) && is_type_matrix(dst)) {
|
|
GB_ASSERT(src->kind == Type_Matrix);
|
|
GB_ASSERT(dst->kind == Type_Matrix);
|
|
Operand op = *operand;
|
|
op.type = src->Matrix.elem;
|
|
if (!check_is_castable_to(c, &op, dst->Matrix.elem)) {
|
|
return false;
|
|
}
|
|
|
|
if (src->Matrix.row_count != src->Matrix.column_count) {
|
|
i64 src_count = src->Matrix.row_count*src->Matrix.column_count;
|
|
i64 dst_count = dst->Matrix.row_count*dst->Matrix.column_count;
|
|
return src_count == dst_count;
|
|
}
|
|
|
|
return is_matrix_square(dst) && is_matrix_square(src);
|
|
}
|
|
|
|
|
|
// Cast between pointers
|
|
if (is_type_pointer(src) && is_type_pointer(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_multi_pointer(src) && is_type_multi_pointer(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_multi_pointer(src) && is_type_pointer(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_pointer(src) && is_type_multi_pointer(dst)) {
|
|
return true;
|
|
}
|
|
|
|
// uintptr <-> pointer
|
|
if (is_type_uintptr(src) && is_type_pointer(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_pointer(src) && is_type_uintptr(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_uintptr(src) && is_type_multi_pointer(dst)) {
|
|
return true;
|
|
}
|
|
if (is_type_multi_pointer(src) && is_type_uintptr(dst)) {
|
|
return true;
|
|
}
|
|
|
|
// []byte/[]u8 <-> string (not cstring)
|
|
if (is_type_u8_slice(src) && (is_type_string(dst) && !is_type_cstring(dst))) {
|
|
return true;
|
|
}
|
|
|
|
// []u16 <-> string16 (not cstring16)
|
|
if (is_type_u16_slice(src) && (is_type_string16(dst) && !is_type_cstring16(dst))) {
|
|
return true;
|
|
}
|
|
|
|
// cstring -> string
|
|
if (are_types_identical(src, t_cstring) && are_types_identical(dst, t_string)) {
|
|
if (operand->mode != Addressing_Constant) {
|
|
add_package_dependency(c, "runtime", "cstring_to_string");
|
|
}
|
|
return true;
|
|
}
|
|
// cstring16 -> string16
|
|
if (are_types_identical(src, t_cstring16) && are_types_identical(dst, t_string16)) {
|
|
if (operand->mode != Addressing_Constant) {
|
|
add_package_dependency(c, "runtime", "cstring16_to_string16");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// cstring -> ^u8
|
|
if (are_types_identical(src, t_cstring) && is_type_u8_ptr(dst)) {
|
|
return !is_constant;
|
|
}
|
|
// cstring -> [^]u8
|
|
if (are_types_identical(src, t_cstring) && is_type_u8_multi_ptr(dst)) {
|
|
return !is_constant;
|
|
}
|
|
// cstring -> rawptr
|
|
if (are_types_identical(src, t_cstring) && is_type_rawptr(dst)) {
|
|
return !is_constant;
|
|
}
|
|
|
|
// ^u8 -> cstring
|
|
if (is_type_u8_ptr(src) && are_types_identical(dst, t_cstring)) {
|
|
return !is_constant;
|
|
}
|
|
// [^]u8 -> cstring
|
|
if (is_type_u8_multi_ptr(src) && are_types_identical(dst, t_cstring)) {
|
|
return !is_constant;
|
|
}
|
|
// rawptr -> cstring
|
|
if (is_type_rawptr(src) && are_types_identical(dst, t_cstring)) {
|
|
return !is_constant;
|
|
}
|
|
|
|
// cstring -> ^u16
|
|
if (are_types_identical(src, t_cstring16) && is_type_u16_ptr(dst)) {
|
|
return !is_constant;
|
|
}
|
|
// cstring -> [^]u16
|
|
if (are_types_identical(src, t_cstring16) && is_type_u16_multi_ptr(dst)) {
|
|
return !is_constant;
|
|
}
|
|
// cstring16 -> rawptr
|
|
if (are_types_identical(src, t_cstring16) && is_type_rawptr(dst)) {
|
|
return !is_constant;
|
|
}
|
|
|
|
|
|
// ^u16 -> cstring16
|
|
if (is_type_u16_ptr(src) && are_types_identical(dst, t_cstring16)) {
|
|
return !is_constant;
|
|
}
|
|
// [^]u16 -> cstring
|
|
if (is_type_u16_multi_ptr(src) && are_types_identical(dst, t_cstring16)) {
|
|
return !is_constant;
|
|
}
|
|
// rawptr -> cstring16
|
|
if (is_type_rawptr(src) && are_types_identical(dst, t_cstring16)) {
|
|
return !is_constant;
|
|
}
|
|
|
|
// proc <-> proc
|
|
if (is_type_proc(src) && is_type_proc(dst)) {
|
|
if (is_type_polymorphic(dst)) {
|
|
if (is_type_polymorphic(src) &&
|
|
operand->mode == Addressing_Variable) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// proc -> rawptr
|
|
if (is_type_proc(src) && is_type_rawptr(dst)) {
|
|
return true;
|
|
}
|
|
// rawptr -> proc
|
|
if (is_type_rawptr(src) && is_type_proc(dst)) {
|
|
return true;
|
|
}
|
|
|
|
|
|
if (is_type_array(dst)) {
|
|
Type *elem = base_array_type(dst);
|
|
if (check_is_castable_to(c, operand, elem)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (is_type_simd_vector(src) && is_type_simd_vector(dst)) {
|
|
if (src->SimdVector.count != dst->SimdVector.count) {
|
|
return false;
|
|
}
|
|
Type *elem_src = base_array_type(src);
|
|
Type *elem_dst = base_array_type(dst);
|
|
Operand x = {};
|
|
x.type = elem_src;
|
|
x.mode = Addressing_Value;
|
|
return check_is_castable_to(c, &x, elem_dst);
|
|
}
|
|
|
|
if (is_type_simd_vector(dst)) {
|
|
Type *elem = base_array_type(dst);
|
|
if (check_is_castable_to(c, operand, elem)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
return false;
|
|
}
|
|
|
|
gb_internal bool check_cast_internal(CheckerContext *c, Operand *x, Type *type) {
|
|
bool is_const_expr = x->mode == Addressing_Constant;
|
|
|
|
Type *bt = base_type(type);
|
|
if (is_const_expr && is_type_constant_type(bt)) {
|
|
if (core_type(bt)->kind == Type_Basic) {
|
|
if (check_representable_as_constant(c, x->value, bt, &x->value)) {
|
|
return true;
|
|
} else if (check_is_castable_to(c, x, type)) {
|
|
if (is_type_pointer(type)) {
|
|
return true;
|
|
}
|
|
}
|
|
} else if (check_is_castable_to(c, x, type)) {
|
|
x->value = {};
|
|
x->mode = Addressing_Value;
|
|
return true;
|
|
}
|
|
} else if (check_is_castable_to(c, x, type)) {
|
|
if (x->mode != Addressing_Constant) {
|
|
x->mode = Addressing_Value;
|
|
} else if (is_type_slice(type) && is_type_string(x->type)) {
|
|
x->mode = Addressing_Value;
|
|
} else if (is_type_union(type)) {
|
|
x->mode = Addressing_Value;
|
|
}
|
|
if (x->mode == Addressing_Value) {
|
|
x->value = {};
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
}
|
|
|
|
gb_internal void check_cast(CheckerContext *c, Operand *x, Type *type, bool forbid_identical = false) {
|
|
if (!is_operand_value(*x)) {
|
|
error(x->expr, "Only values can be casted");
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
bool is_const_expr = x->mode == Addressing_Constant;
|
|
bool can_convert = check_cast_internal(c, x, type);
|
|
if (!can_convert) {
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
gbString expr_str = expr_to_string(x->expr, temporary_allocator());
|
|
gbString to_type = type_to_string(type, temporary_allocator());
|
|
gbString from_type = type_to_string(x->type, temporary_allocator());
|
|
|
|
x->mode = Addressing_Invalid;
|
|
|
|
ERROR_BLOCK();
|
|
error(x->expr, "Cannot cast '%s' as '%s' from '%s'", expr_str, to_type, from_type);
|
|
if (is_const_expr) {
|
|
gbString val_str = exact_value_to_string(x->value);
|
|
if (is_type_float(x->type) && is_type_integer(type)) {
|
|
error_line("\t%s cannot be represented without truncation/rounding as the type '%s'\n", val_str, to_type);
|
|
|
|
// NOTE(bill): keep the mode and modify the type to minimize errors further on
|
|
x->mode = Addressing_Constant;
|
|
x->type = type;
|
|
} else {
|
|
error_line("\t'%s' cannot be represented as the type '%s'\n", val_str, to_type);
|
|
if (is_type_numeric(type)) {
|
|
// NOTE(bill): keep the mode and modify the type to minimize errors further on
|
|
x->mode = Addressing_Constant;
|
|
x->type = type;
|
|
}
|
|
}
|
|
gb_string_free(val_str);
|
|
|
|
}
|
|
check_cast_error_suggestion(c, x, type);
|
|
|
|
return;
|
|
}
|
|
|
|
if (is_type_untyped(x->type)) {
|
|
Type *final_type = type;
|
|
if (is_const_expr && !is_type_constant_type(type)) {
|
|
if (is_type_union(type)) {
|
|
convert_to_typed(c, x, type);
|
|
}
|
|
final_type = default_type(x->type);
|
|
}
|
|
update_untyped_expr_type(c, x->expr, final_type, true);
|
|
} else {
|
|
Type *src = core_type(x->type);
|
|
Type *dst = core_type(type);
|
|
if (src != dst) {
|
|
bool const REQUIRE = true;
|
|
if (is_type_integer_128bit(src) && is_type_float(dst)) {
|
|
add_package_dependency(c, "runtime", "floattidf_unsigned", REQUIRE);
|
|
add_package_dependency(c, "runtime", "floattidf", REQUIRE);
|
|
} else if (is_type_integer_128bit(dst) && is_type_float(src)) {
|
|
add_package_dependency(c, "runtime", "fixunsdfti", REQUIRE);
|
|
add_package_dependency(c, "runtime", "fixunsdfdi", REQUIRE);
|
|
} else if (src == t_f16 && is_type_float(dst)) {
|
|
add_package_dependency(c, "runtime", "gnu_h2f_ieee", REQUIRE);
|
|
add_package_dependency(c, "runtime", "extendhfsf2", REQUIRE);
|
|
} else if (is_type_float(dst) && dst == t_f16) {
|
|
add_package_dependency(c, "runtime", "truncsfhf2", REQUIRE);
|
|
add_package_dependency(c, "runtime", "truncdfhf2", REQUIRE);
|
|
add_package_dependency(c, "runtime", "gnu_f2h_ieee", REQUIRE);
|
|
}
|
|
}
|
|
// If we check polymorphic procedures, we risk erring on
|
|
// identical casts that cannot be foreseen or otherwise
|
|
// forbidden, so just skip them.
|
|
if (forbid_identical && check_vet_flags(c) & VetFlag_Cast &&
|
|
(c->curr_proc_sig == nullptr || !is_type_polymorphic(c->curr_proc_sig))) {
|
|
Type *src_exact = x->type;
|
|
Type *dst_exact = type;
|
|
|
|
if (src_exact != nullptr &&
|
|
dst_exact != nullptr &&
|
|
are_types_identical(src_exact, dst_exact)
|
|
) {
|
|
gbString oper_str = expr_to_string(x->expr);
|
|
gbString to_type = type_to_string(dst_exact);
|
|
error(x->expr, "Unneeded cast of '%s' to identical type '%s'", oper_str, to_type);
|
|
gb_string_free(oper_str);
|
|
gb_string_free(to_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
x->type = type;
|
|
}
|
|
|
|
gb_internal bool check_transmute(CheckerContext *c, Ast *node, Operand *o, Type *t, bool forbid_identical = false) {
|
|
if (!is_operand_value(*o)) {
|
|
error(o->expr, "'transmute' can only be applied to values");
|
|
o->mode = Addressing_Invalid;
|
|
return false;
|
|
}
|
|
|
|
Operand src = *o;
|
|
|
|
Type *src_t = o->type;
|
|
Type *dst_t = t;
|
|
Type *src_bt = base_type(src_t);
|
|
Type *dst_bt = base_type(dst_t);
|
|
|
|
if (is_type_untyped(src_t)) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot transmute untyped expression: '%s'", expr_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return false;
|
|
}
|
|
|
|
if (dst_bt == nullptr || dst_bt == t_invalid) {
|
|
GB_ASSERT(global_error_collector.count != 0);
|
|
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return false;
|
|
}
|
|
|
|
if (src_bt == nullptr || src_bt == t_invalid) {
|
|
// NOTE(bill): this should be an error
|
|
GB_ASSERT(global_error_collector.count != 0);
|
|
o->mode = Addressing_Value;
|
|
o->expr = node;
|
|
o->type = dst_t;
|
|
return true;
|
|
}
|
|
|
|
|
|
i64 srcz = type_size_of(src_t);
|
|
i64 dstz = type_size_of(dst_t);
|
|
if (srcz != dstz) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
gbString type_str = type_to_string(dst_t);
|
|
error(o->expr, "Cannot transmute '%s' to '%s', %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
|
|
gb_string_free(type_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return false;
|
|
}
|
|
|
|
o->expr = node;
|
|
o->type = dst_t;
|
|
if (o->mode == Addressing_Constant) {
|
|
if (are_types_identical(src_bt, dst_bt)) {
|
|
return true;
|
|
}
|
|
if ((is_type_integer(src_t) && is_type_integer(dst_t)) ||
|
|
is_type_integer(src_t) && is_type_bit_set(dst_t)) {
|
|
if (types_have_same_internal_endian(src_t, dst_t)) {
|
|
ExactValue src_v = exact_value_to_integer(o->value);
|
|
GB_ASSERT(src_v.kind == ExactValue_Integer || src_v.kind == ExactValue_Invalid);
|
|
BigInt v = src_v.value_integer;
|
|
|
|
BigInt smax = {};
|
|
BigInt umax = {};
|
|
|
|
big_int_from_u64(&smax, 0);
|
|
big_int_not(&smax, &smax, cast(i32)(srcz*8 - 1), false);
|
|
|
|
big_int_from_u64(&umax, 1);
|
|
BigInt sz_in_bits = big_int_make_i64(srcz*8);
|
|
big_int_shl_eq(&umax, &sz_in_bits);
|
|
|
|
if (is_type_unsigned(src_t) && !is_type_unsigned(dst_t)) {
|
|
if (big_int_cmp(&v, &smax) >= 0) {
|
|
big_int_sub_eq(&v, &umax);
|
|
}
|
|
} else if (!is_type_unsigned(src_t) && is_type_unsigned(dst_t)) {
|
|
if (big_int_is_neg(&v)) {
|
|
big_int_add_eq(&v, &umax);
|
|
}
|
|
}
|
|
|
|
o->value.kind = ExactValue_Integer;
|
|
o->value.value_integer = v;
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
// If we check polymorphic procedures, we risk erring on
|
|
// identical casts that cannot be foreseen or otherwise
|
|
// forbidden, so just skip them.
|
|
if (forbid_identical && check_vet_flags(c) & VetFlag_Cast &&
|
|
(c->curr_proc_sig == nullptr || !is_type_polymorphic(c->curr_proc_sig)) &&
|
|
check_is_castable_to(c, &src, dst_t)) {
|
|
if (are_types_identical(src_t, dst_t)) {
|
|
gbString oper_str = expr_to_string(o->expr);
|
|
gbString to_type = type_to_string(dst_t);
|
|
error(o->expr, "Unneeded transmute of '%s' to identical type '%s'", oper_str, to_type);
|
|
gb_string_free(oper_str);
|
|
gb_string_free(to_type);
|
|
} else if (is_type_internally_pointer_like(src_t) &&
|
|
is_type_internally_pointer_like(dst_t)) {
|
|
error(o->expr, "Use of 'transmute' where 'cast' would be preferred since the types are pointer-like");
|
|
} else if (are_types_identical(src_bt, dst_bt)) {
|
|
gbString oper_str = expr_to_string(o->expr);
|
|
gbString to_type = type_to_string(dst_t);
|
|
error(o->expr, "Unneeded transmute of '%s' to identical type '%s'", oper_str, to_type);
|
|
gb_string_free(oper_str);
|
|
gb_string_free(to_type);
|
|
} else if (is_type_integer(src_t) && is_type_integer(dst_t) &&
|
|
types_have_same_internal_endian(src_t, dst_t) &&
|
|
type_endian_kind_of(src_t) == type_endian_kind_of(dst_t)) {
|
|
gbString oper_type = type_to_string(src_t);
|
|
gbString to_type = type_to_string(dst_t);
|
|
error(o->expr, "Use of 'transmute' where 'cast' would be preferred since both are integers of the same endianness, from '%s' to '%s'", oper_type, to_type);
|
|
gb_string_free(to_type);
|
|
gb_string_free(oper_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
o->mode = Addressing_Value;
|
|
o->value = {};
|
|
return true;
|
|
}
|
|
|
|
gb_internal bool check_binary_array_expr(CheckerContext *c, Token op, Operand *x, Operand *y) {
|
|
if (is_type_array_like(x->type) || is_type_array_like(y->type)) {
|
|
if (op.kind == Token_CmpAnd || op.kind == Token_CmpOr) {
|
|
error(op, "Array programming is not allowed with the operator '%.*s'", LIT(op.string));
|
|
}
|
|
}
|
|
if (is_type_array(x->type) && !is_type_array(y->type)) {
|
|
if (check_is_assignable_to(c, y, x->type)) {
|
|
if (check_binary_op(c, x, op)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
if (is_type_simd_vector(x->type) && !is_type_simd_vector(y->type)) {
|
|
if (check_is_assignable_to(c, y, x->type)) {
|
|
if (check_binary_op(c, x, op)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
gb_internal bool is_ise_expr(Ast *node) {
|
|
node = unparen_expr(node);
|
|
return node->kind == Ast_ImplicitSelectorExpr;
|
|
}
|
|
|
|
gb_internal bool can_use_other_type_as_type_hint(bool use_lhs_as_type_hint, Type *other_type) {
|
|
if (use_lhs_as_type_hint) { // RHS in this case
|
|
return other_type != nullptr && other_type != t_invalid && is_type_typed(other_type);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
gb_internal Type *check_matrix_type_hint(Type *matrix, Type *type_hint) {
|
|
Type *xt = base_type(matrix);
|
|
if (type_hint != nullptr) {
|
|
Type *th = base_type(type_hint);
|
|
if (are_types_identical(th, xt)) {
|
|
return type_hint;
|
|
} else if (xt->kind == Type_Matrix && th->kind == Type_Matrix) {
|
|
if (!are_types_identical(xt->Matrix.elem, th->Matrix.elem)) {
|
|
// ignore
|
|
} if (xt->Matrix.row_count == th->Matrix.row_count &&
|
|
xt->Matrix.column_count == th->Matrix.column_count) {
|
|
return type_hint;
|
|
}
|
|
} else if (xt->kind == Type_Matrix && th->kind == Type_Array) {
|
|
if (!are_types_identical(xt->Matrix.elem, th->Array.elem)) {
|
|
// ignore
|
|
} else if (xt->Matrix.row_count == 1 && xt->Matrix.column_count == th->Array.count) {
|
|
return type_hint;
|
|
} else if (xt->Matrix.column_count == 1 && xt->Matrix.row_count == th->Array.count) {
|
|
return type_hint;
|
|
}
|
|
}
|
|
}
|
|
return matrix;
|
|
}
|
|
|
|
|
|
gb_internal void check_binary_matrix(CheckerContext *c, Token const &op, Operand *x, Operand *y, Type *type_hint, bool use_lhs_as_type_hint) {
|
|
if (!check_binary_op(c, x, op)) {
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
Type *xt = base_type(x->type);
|
|
Type *yt = base_type(y->type);
|
|
|
|
if (is_type_matrix(x->type)) {
|
|
GB_ASSERT(xt->kind == Type_Matrix);
|
|
if (op.kind == Token_Mul) {
|
|
if (yt->kind == Type_Matrix) {
|
|
if (!are_types_identical(xt->Matrix.elem, yt->Matrix.elem)) {
|
|
goto matrix_error;
|
|
}
|
|
|
|
if (xt->Matrix.column_count != yt->Matrix.row_count) {
|
|
goto matrix_error;
|
|
}
|
|
|
|
if (xt->Matrix.is_row_major != yt->Matrix.is_row_major) {
|
|
goto matrix_error;
|
|
}
|
|
|
|
x->mode = Addressing_Value;
|
|
if (are_types_identical(xt, yt)) {
|
|
if (are_types_identical(x->type, y->type)) {
|
|
return;
|
|
}
|
|
if (!is_type_named(x->type) && is_type_named(y->type)) {
|
|
// prefer the named type
|
|
x->type = y->type;
|
|
}
|
|
} else {
|
|
bool is_row_major = xt->Matrix.is_row_major && yt->Matrix.is_row_major;
|
|
x->type = alloc_type_matrix(xt->Matrix.elem, xt->Matrix.row_count, yt->Matrix.column_count, nullptr, nullptr, is_row_major);
|
|
}
|
|
goto matrix_success;
|
|
} else if (yt->kind == Type_Array) {
|
|
if (!are_types_identical(xt->Matrix.elem, yt->Array.elem)) {
|
|
goto matrix_error;
|
|
}
|
|
|
|
if (xt->Matrix.column_count != yt->Array.count) {
|
|
goto matrix_error;
|
|
}
|
|
|
|
// Treat arrays as column vectors
|
|
x->mode = Addressing_Value;
|
|
if (xt->Matrix.row_count == yt->Array.count) {
|
|
x->type = y->type;
|
|
} else {
|
|
x->type = alloc_type_matrix(xt->Matrix.elem, xt->Matrix.row_count, 1, nullptr, nullptr, xt->Matrix.is_row_major);
|
|
}
|
|
goto matrix_success;
|
|
}
|
|
}
|
|
if (!are_types_identical(xt, yt)) {
|
|
goto matrix_error;
|
|
}
|
|
x->mode = Addressing_Value;
|
|
x->type = xt;
|
|
goto matrix_success;
|
|
} else {
|
|
GB_ASSERT(!is_type_matrix(xt));
|
|
GB_ASSERT(is_type_matrix(yt));
|
|
|
|
if (op.kind == Token_Mul) {
|
|
// NOTE(bill): no need to handle the matrix case here since it should be handled above
|
|
if (xt->kind == Type_Array) {
|
|
if (!are_types_identical(yt->Matrix.elem, xt->Array.elem)) {
|
|
goto matrix_error;
|
|
}
|
|
|
|
if (xt->Array.count != yt->Matrix.row_count) {
|
|
goto matrix_error;
|
|
}
|
|
|
|
// Treat arrays as row vectors
|
|
x->mode = Addressing_Value;
|
|
if (yt->Matrix.column_count == xt->Array.count) {
|
|
x->type = x->type;
|
|
} else {
|
|
x->type = alloc_type_matrix(yt->Matrix.elem, 1, yt->Matrix.column_count, nullptr, nullptr, yt->Matrix.is_row_major);
|
|
}
|
|
goto matrix_success;
|
|
} else if (are_types_identical(yt->Matrix.elem, xt)) {
|
|
x->type = check_matrix_type_hint(y->type, type_hint);
|
|
return;
|
|
}
|
|
}
|
|
if (!are_types_identical(xt, yt)) {
|
|
goto matrix_error;
|
|
}
|
|
x->mode = Addressing_Value;
|
|
x->type = xt;
|
|
goto matrix_success;
|
|
}
|
|
|
|
matrix_success:
|
|
x->type = check_matrix_type_hint(x->type, type_hint);
|
|
return;
|
|
|
|
|
|
matrix_error:
|
|
gbString xts = type_to_string(x->type);
|
|
gbString yts = type_to_string(y->type);
|
|
gbString expr_str = expr_to_string(x->expr);
|
|
error(op, "Mismatched types in binary matrix expression '%s' for operator '%.*s' : '%s' vs '%s'", expr_str, LIT(op.string), xts, yts);
|
|
gb_string_free(expr_str);
|
|
gb_string_free(yts);
|
|
gb_string_free(xts);
|
|
x->type = t_invalid;
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
|
|
}
|
|
|
|
gb_internal void check_binary_expr_dependency(CheckerContext *c, Token op, Type *bt, bool REQUIRE) {
|
|
if (op.kind == Token_Mod || op.kind == Token_ModEq ||
|
|
op.kind == Token_ModMod || op.kind == Token_ModModEq) {
|
|
if (bt->kind == Type_Basic) switch (bt->Basic.kind) {
|
|
case Basic_u128: add_package_dependency(c, "runtime", "umodti3", REQUIRE); break;
|
|
case Basic_i128: add_package_dependency(c, "runtime", "modti3", REQUIRE); break;
|
|
}
|
|
} else if (op.kind == Token_Quo || op.kind == Token_QuoEq) {
|
|
if (bt->kind == Type_Basic) switch (bt->Basic.kind) {
|
|
case Basic_complex32: add_package_dependency(c, "runtime", "quo_complex32"); break;
|
|
case Basic_complex64: add_package_dependency(c, "runtime", "quo_complex64"); break;
|
|
case Basic_complex128: add_package_dependency(c, "runtime", "quo_complex128"); break;
|
|
case Basic_quaternion64: add_package_dependency(c, "runtime", "quo_quaternion64"); break;
|
|
case Basic_quaternion128: add_package_dependency(c, "runtime", "quo_quaternion128"); break;
|
|
case Basic_quaternion256: add_package_dependency(c, "runtime", "quo_quaternion256"); break;
|
|
|
|
case Basic_u128: add_package_dependency(c, "runtime", "udivti3", REQUIRE); break;
|
|
case Basic_i128: add_package_dependency(c, "runtime", "divti3", REQUIRE); break;
|
|
}
|
|
} else if (op.kind == Token_Mul || op.kind == Token_MulEq) {
|
|
if (bt->kind == Type_Basic) switch (bt->Basic.kind) {
|
|
case Basic_quaternion64: add_package_dependency(c, "runtime", "mul_quaternion64"); break;
|
|
case Basic_quaternion128: add_package_dependency(c, "runtime", "mul_quaternion128"); break;
|
|
case Basic_quaternion256: add_package_dependency(c, "runtime", "mul_quaternion256"); break;
|
|
|
|
|
|
case Basic_u128:
|
|
case Basic_i128:
|
|
if (is_arch_wasm()) {
|
|
add_package_dependency(c, "runtime", "__multi3", REQUIRE);
|
|
}
|
|
break;
|
|
}
|
|
} else if (op.kind == Token_Shl || op.kind == Token_ShlEq) {
|
|
if (bt->kind == Type_Basic) switch (bt->Basic.kind) {
|
|
case Basic_u128:
|
|
case Basic_i128:
|
|
if (is_arch_wasm()) {
|
|
add_package_dependency(c, "runtime", "__ashlti3", REQUIRE);
|
|
}
|
|
break;
|
|
}
|
|
} else if (op.kind == Token_Shr || op.kind == Token_ShrEq) {
|
|
if (bt->kind == Type_Basic) switch (bt->Basic.kind) {
|
|
case Basic_u128:
|
|
case Basic_i128:
|
|
if (is_arch_wasm()) {
|
|
add_package_dependency(c, "runtime", "__lshrti3", REQUIRE);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
gb_internal void check_binary_expr(CheckerContext *c, Operand *x, Ast *node, Type *type_hint, bool use_lhs_as_type_hint=false) {
|
|
GB_ASSERT(node->kind == Ast_BinaryExpr);
|
|
Operand y_ = {}, *y = &y_;
|
|
|
|
ast_node(be, BinaryExpr, node);
|
|
|
|
defer({
|
|
node->viral_state_flags |= be->left->viral_state_flags;
|
|
node->viral_state_flags |= be->right->viral_state_flags;
|
|
});
|
|
|
|
Token op = be->op;
|
|
switch (op.kind) {
|
|
case Token_CmpEq:
|
|
case Token_NotEq: {
|
|
// NOTE(bill): Allow comparisons between types
|
|
if (is_ise_expr(be->left)) {
|
|
// Evalute the right before the left for an '.X' expression
|
|
check_expr_or_type(c, y, be->right, nullptr /* ignore type hint */);
|
|
check_expr_or_type(c, x, be->left, y->type);
|
|
} else {
|
|
check_expr_or_type(c, x, be->left, nullptr /* ignore type hint */);
|
|
check_expr_or_type(c, y, be->right, x->type);
|
|
}
|
|
bool xt = x->mode == Addressing_Type;
|
|
bool yt = y->mode == Addressing_Type;
|
|
// If only one is a type, this is an error
|
|
if (xt ^ yt) {
|
|
GB_ASSERT(xt != yt);
|
|
if (xt) {
|
|
if (!is_type_typeid(y->type)) {
|
|
error_operand_not_expression(x);
|
|
}
|
|
}
|
|
if (yt) {
|
|
if (!is_type_typeid(x->type)) {
|
|
error_operand_not_expression(y);
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Token_in:
|
|
case Token_not_in:
|
|
{
|
|
// IMPORTANT NOTE(bill): This uses right-left evaluation in type checking only no in
|
|
check_expr(c, y, be->right);
|
|
Type *rhs_type = type_deref(y->type);
|
|
if (rhs_type == nullptr) {
|
|
error(y->expr, "Cannot use '%.*s' on an expression with no value", LIT(op.string));
|
|
x->mode = Addressing_Invalid;
|
|
x->expr = node;
|
|
return;
|
|
}
|
|
|
|
if (is_type_bit_set(rhs_type)) {
|
|
Type *elem = base_type(rhs_type)->BitSet.elem;
|
|
check_expr_with_type_hint(c, x, be->left, elem);
|
|
} else if (is_type_map(rhs_type)) {
|
|
Type *key = base_type(rhs_type)->Map.key;
|
|
check_expr_with_type_hint(c, x, be->left, key);
|
|
} else {
|
|
check_expr(c, x, be->left);
|
|
}
|
|
|
|
if (x->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
if (y->mode == Addressing_Invalid) {
|
|
x->mode = Addressing_Invalid;
|
|
x->expr = y->expr;
|
|
return;
|
|
}
|
|
|
|
if (is_type_map(rhs_type)) {
|
|
Type *yt = base_type(rhs_type);
|
|
if (op.kind == Token_in) {
|
|
check_assignment(c, x, yt->Map.key, str_lit("map 'in'"));
|
|
} else {
|
|
check_assignment(c, x, yt->Map.key, str_lit("map 'not_in'"));
|
|
}
|
|
|
|
add_map_get_dependencies(c);
|
|
} else if (is_type_bit_set(rhs_type)) {
|
|
Type *yt = base_type(rhs_type);
|
|
|
|
if (op.kind == Token_in) {
|
|
check_assignment(c, x, yt->BitSet.elem, str_lit("bit_set 'in'"));
|
|
} else {
|
|
check_assignment(c, x, yt->BitSet.elem, str_lit("bit_set 'not_in'"));
|
|
}
|
|
if (x->mode == Addressing_Constant && y->mode == Addressing_Constant) {
|
|
ExactValue k = exact_value_to_integer(x->value);
|
|
ExactValue v = exact_value_to_integer(y->value);
|
|
GB_ASSERT(k.kind == ExactValue_Integer);
|
|
GB_ASSERT(v.kind == ExactValue_Integer);
|
|
i64 key = big_int_to_i64(&k.value_integer);
|
|
i64 lower = yt->BitSet.lower;
|
|
i64 upper = yt->BitSet.upper;
|
|
|
|
if (lower <= key && key <= upper) {
|
|
i64 bit = 1ll<<key;
|
|
i64 bits = big_int_to_i64(&v.value_integer);
|
|
|
|
x->mode = Addressing_Constant;
|
|
x->type = t_untyped_bool;
|
|
if (op.kind == Token_in) {
|
|
x->value = exact_value_bool((bit & bits) != 0);
|
|
} else {
|
|
x->value = exact_value_bool((bit & bits) == 0);
|
|
}
|
|
x->expr = node;
|
|
return;
|
|
} else {
|
|
error(x->expr, "key '%lld' out of range of bit set, %lld..%lld", key, lower, upper);
|
|
x->mode = Addressing_Invalid;
|
|
}
|
|
}
|
|
} else {
|
|
gbString t = type_to_string(y->type);
|
|
error(x->expr, "expected either a map or bitset for 'in', got %s", t);
|
|
gb_string_free(t);
|
|
x->expr = node;
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
if (x->mode != Addressing_Invalid) {
|
|
x->mode = Addressing_Value;
|
|
x->type = t_untyped_bool;
|
|
}
|
|
x->expr = node;
|
|
|
|
return;
|
|
}
|
|
|
|
default:
|
|
if (is_ise_expr(be->left)) {
|
|
// Evalute the right before the left for an '.X' expression
|
|
check_expr_or_type(c, y, be->right, type_hint);
|
|
|
|
if (can_use_other_type_as_type_hint(use_lhs_as_type_hint, y->type)) { // RHS in this case
|
|
check_expr_or_type(c, x, be->left, y->type);
|
|
} else {
|
|
check_expr_with_type_hint(c, x, be->left, type_hint);
|
|
}
|
|
} else {
|
|
check_expr_with_type_hint(c, x, be->left, type_hint);
|
|
if (can_use_other_type_as_type_hint(use_lhs_as_type_hint, x->type)) {
|
|
check_expr_with_type_hint(c, y, be->right, x->type);
|
|
} else {
|
|
check_expr_with_type_hint(c, y, be->right, type_hint);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
if (x->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
if (y->mode == Addressing_Invalid) {
|
|
x->mode = Addressing_Invalid;
|
|
x->expr = y->expr;
|
|
return;
|
|
}
|
|
|
|
if (x->mode == Addressing_Builtin) {
|
|
x->mode = Addressing_Invalid;
|
|
error(x->expr, "built-in expression in binary expression");
|
|
return;
|
|
}
|
|
if (y->mode == Addressing_Builtin) {
|
|
x->mode = Addressing_Invalid;
|
|
error(y->expr, "built-in expression in binary expression");
|
|
return;
|
|
}
|
|
if (x->mode == Addressing_ProcGroup) {
|
|
x->mode = Addressing_Invalid;
|
|
if (x->proc_group != nullptr) {
|
|
error(x->expr, "procedure group '%.*s' used in binary expression", LIT(x->proc_group->token.string));
|
|
} else {
|
|
error(x->expr, "procedure group used in binary expression");
|
|
}
|
|
return;
|
|
}
|
|
if (y->mode == Addressing_ProcGroup) {
|
|
x->mode = Addressing_Invalid;
|
|
if (x->proc_group != nullptr) {
|
|
error(y->expr, "procedure group '%.*s' used in binary expression", LIT(y->proc_group->token.string));
|
|
} else {
|
|
error(y->expr, "procedure group used in binary expression");
|
|
}
|
|
return;
|
|
}
|
|
|
|
bool REQUIRE = true;
|
|
Type *btx = base_type(x->type);
|
|
Type *bty = base_type(y->type);
|
|
check_binary_expr_dependency(c, op, btx, REQUIRE);
|
|
check_binary_expr_dependency(c, op, bty, REQUIRE);
|
|
|
|
if (token_is_shift(op.kind)) {
|
|
check_shift(c, x, y, node, type_hint);
|
|
return;
|
|
}
|
|
|
|
switch (op.kind) {
|
|
case Token_Quo:
|
|
case Token_Mod:
|
|
case Token_ModMod:
|
|
case Token_QuoEq:
|
|
case Token_ModEq:
|
|
case Token_ModModEq:
|
|
if (is_type_integer(y->type) && !is_type_untyped(y->type) &&
|
|
is_type_float(x->type) && is_type_untyped(x->type)) {
|
|
char const *suggestion = "\tSuggestion: Try explicitly casting the constant value for clarity";
|
|
|
|
gbString t = type_to_string(y->type);
|
|
if (x->value.kind != ExactValue_Invalid) {
|
|
gbString s = exact_value_to_string(x->value);
|
|
warning(node, "Dividing an untyped float '%s' by '%s' will perform integer division\n%s", s, t, suggestion);
|
|
gb_string_free(s);
|
|
} else {
|
|
warning(node, "Dividing an untyped float by '%s' will perform integer division\n%s", t, suggestion);
|
|
}
|
|
gb_string_free(t);
|
|
}
|
|
break;
|
|
}
|
|
|
|
convert_to_typed(c, x, y->type);
|
|
if (x->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
convert_to_typed(c, y, x->type);
|
|
if (y->mode == Addressing_Invalid) {
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
if (token_is_comparison(op.kind)) {
|
|
check_comparison(c, node, x, y, op.kind);
|
|
return;
|
|
}
|
|
|
|
if (check_binary_array_expr(c, op, x, y)) {
|
|
x->mode = Addressing_Value;
|
|
x->type = x->type;
|
|
return;
|
|
}
|
|
if (check_binary_array_expr(c, op, y, x)) {
|
|
x->mode = Addressing_Value;
|
|
x->type = y->type;
|
|
return;
|
|
}
|
|
if (is_type_matrix(x->type) || is_type_matrix(y->type)) {
|
|
check_binary_matrix(c, op, x, y, type_hint, use_lhs_as_type_hint);
|
|
x->expr = node;
|
|
return;
|
|
}
|
|
|
|
if ((op.kind == Token_CmpAnd || op.kind == Token_CmpOr) &&
|
|
is_type_boolean(x->type) && is_type_boolean(y->type)) {
|
|
// NOTE(bill, 2022-06-26)
|
|
// Allow any boolean types within `&&` and `||`
|
|
// This is an exception to all other binary expressions since the result
|
|
// of a comparison will always be an untyped boolean, and allowing
|
|
// any boolean between these two simplifies a lot of expressions
|
|
} else if (!are_types_identical(x->type, y->type)) {
|
|
if (x->type != t_invalid &&
|
|
y->type != t_invalid) {
|
|
gbString xt = type_to_string(x->type);
|
|
gbString yt = type_to_string(y->type);
|
|
gbString expr_str = expr_to_string(node);
|
|
error(op, "Mismatched types in binary expression '%s' : '%s' vs '%s'", expr_str, xt, yt);
|
|
gb_string_free(expr_str);
|
|
gb_string_free(yt);
|
|
gb_string_free(xt);
|
|
}
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
if (!check_binary_op(c, x, op)) {
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
switch (op.kind) {
|
|
case Token_Quo:
|
|
case Token_Mod:
|
|
case Token_ModMod:
|
|
case Token_QuoEq:
|
|
case Token_ModEq:
|
|
case Token_ModModEq:
|
|
if ((x->mode == Addressing_Constant || is_type_integer(x->type)) &&
|
|
y->mode == Addressing_Constant) {
|
|
bool fail = false;
|
|
switch (y->value.kind) {
|
|
case ExactValue_Integer:
|
|
if (big_int_is_zero(&y->value.value_integer)) {
|
|
fail = true;
|
|
}
|
|
break;
|
|
case ExactValue_Float:
|
|
if (y->value.value_float == 0.0) {
|
|
fail = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (fail) {
|
|
if (is_type_integer(x->type) || (x->mode == Addressing_Constant && x->value.kind == ExactValue_Integer)) {
|
|
if (check_for_integer_division_by_zero(c, node) != IntegerDivisionByZero_Trap) {
|
|
// Okay
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (op.kind) {
|
|
case Token_Mod:
|
|
case Token_ModMod:
|
|
case Token_ModEq:
|
|
case Token_ModModEq:
|
|
error(y->expr, "Division by zero through '%.*s' not allowed", LIT(token_strings[op.kind]));
|
|
break;
|
|
case Token_Quo:
|
|
case Token_QuoEq:
|
|
error(y->expr, "Division by zero not allowed");
|
|
break;
|
|
}
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Token_CmpAnd:
|
|
case Token_CmpOr:
|
|
if (be->left->viral_state_flags & ViralStateFlag_ContainsDeferredProcedure) {
|
|
error(be->left, "Procedure calls that have an associated deferred procedure are not allowed within logical binary expressions");
|
|
}
|
|
if (be->right->viral_state_flags & ViralStateFlag_ContainsDeferredProcedure) {
|
|
error(be->right, "Procedure calls that have an associated deferred procedure are not allowed within logical binary expressions");
|
|
}
|
|
break;
|
|
|
|
}
|
|
|
|
if (x->mode == Addressing_Constant &&
|
|
y->mode == Addressing_Constant) {
|
|
ExactValue a = x->value;
|
|
ExactValue b = y->value;
|
|
|
|
if (!is_type_constant_type(x->type)) {
|
|
x->mode = Addressing_Value;
|
|
return;
|
|
}
|
|
|
|
if (op.kind == Token_Quo && is_type_integer(x->type)) {
|
|
op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers
|
|
}
|
|
|
|
if (is_type_bit_set(x->type)) {
|
|
switch (op.kind) {
|
|
case Token_Add: op.kind = Token_Or; break;
|
|
case Token_Sub: op.kind = Token_AndNot; break;
|
|
}
|
|
}
|
|
|
|
match_exact_values(&a, &b);
|
|
|
|
|
|
IntegerDivisionByZeroKind zero_behaviour = check_for_integer_division_by_zero(c, node);
|
|
if (zero_behaviour != IntegerDivisionByZero_Trap &&
|
|
b.kind == ExactValue_Integer && big_int_is_zero(&b.value_integer) &&
|
|
(op.kind == Token_QuoEq || op.kind == Token_Mod || op.kind == Token_ModMod)) {
|
|
if (op.kind == Token_QuoEq) {
|
|
if (zero_behaviour == IntegerDivisionByZero_Zero) {
|
|
// x/0 == 0
|
|
x->value = b;
|
|
} else {
|
|
// x/0 == x
|
|
x->value = a;
|
|
}
|
|
} else {
|
|
/*
|
|
NOTE(bill): @integer division by zero rules
|
|
|
|
truncated: r = a - b*trunc(a/b)
|
|
floored: r = a - b*floor(a/b)
|
|
|
|
IFF a/0 == 0, then (a%0 == a) or (a%%0 == a)
|
|
IFF a/0 == a, then (a%0 == 0) or (a%%0 == 0)
|
|
*/
|
|
|
|
if (zero_behaviour == IntegerDivisionByZero_Zero) {
|
|
// x%0 == x
|
|
x->value = a;
|
|
} else {
|
|
// x%0 == 0
|
|
x->value = b;
|
|
}
|
|
}
|
|
} else {
|
|
x->value = exact_binary_operator_value(op.kind, a, b);
|
|
}
|
|
|
|
if (is_type_typed(x->type)) {
|
|
if (node != nullptr) {
|
|
x->expr = node;
|
|
}
|
|
check_is_expressible(c, x, x->type);
|
|
}
|
|
return;
|
|
} else if (is_type_string(x->type)) {
|
|
error(node, "String concatenation is only allowed with constant strings");
|
|
x->mode = Addressing_Invalid;
|
|
return;
|
|
}
|
|
|
|
x->mode = Addressing_Value;
|
|
}
|
|
|
|
gb_internal Operand make_operand_from_node(Ast *node) {
|
|
GB_ASSERT(node != nullptr);
|
|
Operand x = {};
|
|
x.expr = node;
|
|
x.mode = node->tav.mode;
|
|
x.type = node->tav.type;
|
|
x.value = node->tav.value;
|
|
return x;
|
|
}
|
|
|
|
|
|
gb_internal void update_untyped_expr_type(CheckerContext *c, Ast *e, Type *type, bool final) {
|
|
GB_ASSERT(e != nullptr);
|
|
ExprInfo *old = check_get_expr_info(c, e);
|
|
if (old == nullptr) {
|
|
if (type != nullptr && type != t_invalid) {
|
|
if (e->tav.type == nullptr || e->tav.type == t_invalid) {
|
|
add_type_and_value(c, e, e->tav.mode, type ? type : e->tav.type, e->tav.value);
|
|
if (e->kind == Ast_TernaryIfExpr) {
|
|
update_untyped_expr_type(c, e->TernaryIfExpr.x, type, final);
|
|
update_untyped_expr_type(c, e->TernaryIfExpr.y, type, final);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (e->kind) {
|
|
case_ast_node(ue, UnaryExpr, e);
|
|
if (old->value.kind != ExactValue_Invalid) {
|
|
// NOTE(bill): if 'e' is constant, the operands will be constant too.
|
|
// They don't need to be updated as they will be updated later and
|
|
// checked at the end of general checking stage.
|
|
break;
|
|
}
|
|
update_untyped_expr_type(c, ue->expr, type, final);
|
|
case_end;
|
|
|
|
case_ast_node(be, BinaryExpr, e);
|
|
if (old->value.kind != ExactValue_Invalid) {
|
|
// See above note in UnaryExpr case
|
|
break;
|
|
}
|
|
if (token_is_comparison(be->op.kind)) {
|
|
// NOTE(bill): Do nothing as the types are fine
|
|
} else if (token_is_shift(be->op.kind)) {
|
|
update_untyped_expr_type(c, be->left, type, final);
|
|
} else {
|
|
update_untyped_expr_type(c, be->left, type, final);
|
|
update_untyped_expr_type(c, be->right, type, final);
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(te, TernaryIfExpr, e);
|
|
if (old->value.kind != ExactValue_Invalid) {
|
|
// See above note in UnaryExpr case
|
|
break;
|
|
}
|
|
|
|
// NOTE(bill): This is a bit of a hack to get around the edge cases of ternary if expressions
|
|
// having an untyped value
|
|
Operand x = make_operand_from_node(te->x);
|
|
Operand y = make_operand_from_node(te->y);
|
|
if (x.mode != Addressing_Constant || check_is_expressible(c, &x, type)) {
|
|
update_untyped_expr_type(c, te->x, type, final);
|
|
}
|
|
if (y.mode != Addressing_Constant || check_is_expressible(c, &y, type)) {
|
|
update_untyped_expr_type(c, te->y, type, final);
|
|
}
|
|
|
|
case_end;
|
|
|
|
case_ast_node(te, TernaryWhenExpr, e);
|
|
if (old->value.kind != ExactValue_Invalid) {
|
|
// See above note in UnaryExpr case
|
|
break;
|
|
}
|
|
|
|
update_untyped_expr_type(c, te->x, type, final);
|
|
update_untyped_expr_type(c, te->y, type, final);
|
|
case_end;
|
|
|
|
case_ast_node(ore, OrReturnExpr, e);
|
|
if (old->value.kind != ExactValue_Invalid) {
|
|
// See above note in UnaryExpr case
|
|
break;
|
|
}
|
|
|
|
update_untyped_expr_type(c, ore->expr, type, final);
|
|
case_end;
|
|
|
|
case_ast_node(obe, OrBranchExpr, e);
|
|
if (old->value.kind != ExactValue_Invalid) {
|
|
// See above note in UnaryExpr case
|
|
break;
|
|
}
|
|
|
|
update_untyped_expr_type(c, obe->expr, type, final);
|
|
case_end;
|
|
|
|
case_ast_node(oee, OrElseExpr, e);
|
|
if (old->value.kind != ExactValue_Invalid) {
|
|
// See above note in UnaryExpr case
|
|
break;
|
|
}
|
|
|
|
update_untyped_expr_type(c, oee->x, type, final);
|
|
update_untyped_expr_type(c, oee->y, type, final);
|
|
case_end;
|
|
|
|
case_ast_node(pe, ParenExpr, e);
|
|
update_untyped_expr_type(c, pe->expr, type, final);
|
|
case_end;
|
|
}
|
|
|
|
if (!final && is_type_untyped(type)) {
|
|
old->type = base_type(type);
|
|
return;
|
|
}
|
|
|
|
// We need to remove it and then give it a new one
|
|
check_remove_expr_info(c, e);
|
|
|
|
if (old->is_lhs && !is_type_integer(type)) {
|
|
gbString expr_str = expr_to_string(e);
|
|
gbString type_str = type_to_string(type);
|
|
error(e, "Shifted operand %s must be an integer, got %s", expr_str, type_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(expr_str);
|
|
return;
|
|
}
|
|
|
|
add_type_and_value(c, e, old->mode, type, old->value);
|
|
}
|
|
|
|
gb_internal void update_untyped_expr_value(CheckerContext *c, Ast *e, ExactValue value) {
|
|
GB_ASSERT(e != nullptr);
|
|
ExprInfo *found = check_get_expr_info(c, e);
|
|
if (found) {
|
|
found->value = value;
|
|
}
|
|
}
|
|
|
|
gb_internal void convert_untyped_error(CheckerContext *c, Operand *operand, Type *target_type, bool ignore_error_block=false) {
|
|
gbString expr_str = expr_to_string(operand->expr);
|
|
gbString type_str = type_to_string(target_type);
|
|
gbString from_type_str = type_to_string(operand->type);
|
|
char const *extra_text = "";
|
|
|
|
if (operand->mode == Addressing_Constant) {
|
|
if (big_int_is_zero(&operand->value.value_integer)) {
|
|
if (make_string_c(expr_str) != "nil") { // HACK NOTE(bill): Just in case
|
|
// NOTE(bill): Doesn't matter what the type is as it's still zero in the union
|
|
extra_text = " - Did you want 'nil'?";
|
|
}
|
|
}
|
|
}
|
|
if (!ignore_error_block) {
|
|
begin_error_block();
|
|
}
|
|
|
|
error(operand->expr, "Cannot convert untyped value '%s' to '%s' from '%s'%s", expr_str, type_str, from_type_str, extra_text);
|
|
if (operand->value.kind == ExactValue_String) {
|
|
String key = operand->value.value_string;
|
|
if (is_type_string(operand->type) && is_type_enum(target_type)) {
|
|
Type *et = base_type(target_type);
|
|
check_did_you_mean_type(key, et->Enum.fields, ".");
|
|
}
|
|
}
|
|
|
|
gb_string_free(from_type_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(expr_str);
|
|
operand->mode = Addressing_Invalid;
|
|
|
|
if (!ignore_error_block) {
|
|
end_error_block();
|
|
}
|
|
|
|
}
|
|
|
|
gb_internal ExactValue convert_exact_value_for_type(ExactValue v, Type *type) {
|
|
Type *t = core_type(type);
|
|
if (is_type_boolean(t)) {
|
|
// v = exact_value_to_boolean(v);
|
|
} else if (is_type_float(t)) {
|
|
v = exact_value_to_float(v);
|
|
} else if (is_type_integer(t)) {
|
|
v = exact_value_to_integer(v);
|
|
} else if (is_type_pointer(t)) {
|
|
v = exact_value_to_integer(v);
|
|
} else if (is_type_complex(t)) {
|
|
v = exact_value_to_complex(v);
|
|
} else if (is_type_quaternion(t)) {
|
|
v = exact_value_to_quaternion(v);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
gb_internal void convert_to_typed(CheckerContext *c, Operand *operand, Type *target_type) {
|
|
// GB_ASSERT_NOT_NULL(target_type);
|
|
if (target_type == nullptr || operand->mode == Addressing_Invalid ||
|
|
operand->mode == Addressing_Type ||
|
|
is_type_typed(operand->type) ||
|
|
target_type == t_invalid) {
|
|
return;
|
|
}
|
|
|
|
if (is_type_untyped(target_type)) {
|
|
GB_ASSERT(operand->type->kind == Type_Basic);
|
|
GB_ASSERT(target_type->kind == Type_Basic);
|
|
BasicKind x_kind = operand->type->Basic.kind;
|
|
BasicKind y_kind = target_type->Basic.kind;
|
|
if (is_type_numeric(operand->type) && is_type_numeric(target_type)) {
|
|
if (x_kind < y_kind) {
|
|
operand->type = target_type;
|
|
update_untyped_expr_type(c, operand->expr, target_type, false);
|
|
}
|
|
} else if (x_kind != y_kind) {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
Type *t = base_type(target_type);
|
|
if (c->in_enum_type) {
|
|
t = core_type(target_type);
|
|
}
|
|
|
|
switch (t->kind) {
|
|
case Type_Basic:
|
|
if (operand->mode == Addressing_Constant) {
|
|
check_is_expressible(c, operand, t);
|
|
if (operand->mode == Addressing_Invalid) {
|
|
return;
|
|
}
|
|
update_untyped_expr_value(c, operand->expr, operand->value);
|
|
} else {
|
|
switch (operand->type->Basic.kind) {
|
|
case Basic_UntypedBool:
|
|
if (!is_type_boolean(target_type)) {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
break;
|
|
case Basic_UntypedInteger:
|
|
case Basic_UntypedFloat:
|
|
case Basic_UntypedComplex:
|
|
case Basic_UntypedQuaternion:
|
|
case Basic_UntypedRune:
|
|
if (!is_type_numeric(target_type)) {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case Basic_UntypedNil:
|
|
if (is_type_any(target_type)) {
|
|
// target_type = t_untyped_nil;
|
|
} else if (is_type_cstring(target_type)) {
|
|
// target_type = t_untyped_nil;
|
|
} else if (is_type_cstring16(target_type)) {
|
|
// target_type = t_untyped_nil;
|
|
} else if (!type_has_nil(target_type)) {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Type_Array: {
|
|
Type *elem = base_array_type(t);
|
|
if (check_is_assignable_to(c, operand, elem)) {
|
|
operand->mode = Addressing_Value;
|
|
} else {
|
|
if (operand->value.kind == ExactValue_String) {
|
|
String s = operand->value.value_string;
|
|
if (is_type_u8_array(t)) {
|
|
if (s.len == t->Array.count) {
|
|
break;
|
|
}
|
|
} else if (is_type_rune_array(t)) {
|
|
isize rune_count = gb_utf8_strnlen(s.text, s.len);
|
|
if (rune_count == t->Array.count) {
|
|
break;
|
|
}
|
|
}
|
|
} else if (operand->value.kind == ExactValue_String16) {
|
|
String16 s = operand->value.value_string16;
|
|
if (is_type_u16_array(t)) {
|
|
if (s.len == t->Array.count) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Type_SimdVector: {
|
|
Type *elem = base_array_type(t);
|
|
if (check_is_assignable_to(c, operand, elem)) {
|
|
operand->mode = Addressing_Value;
|
|
} else {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Type_Matrix: {
|
|
Type *elem = base_array_type(t);
|
|
if (check_is_assignable_to(c, operand, elem)) {
|
|
if (t->Matrix.row_count != t->Matrix.column_count) {
|
|
operand->mode = Addressing_Invalid;
|
|
ERROR_BLOCK();
|
|
|
|
convert_untyped_error(c, operand, target_type, true);
|
|
error_line("\tNote: Only a square matrix types can be initialized with a scalar value\n");
|
|
return;
|
|
} else {
|
|
operand->mode = Addressing_Value;
|
|
}
|
|
} else {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
case Type_Union:
|
|
// IMPORTANT NOTE HACK(bill): This is just to allow for comparisons against `0` with the `os.Error` type
|
|
// as a kind of transition period
|
|
if (!build_context.strict_style &&
|
|
operand->mode == Addressing_Constant &&
|
|
target_type->kind == Type_Named &&
|
|
(c->pkg == nullptr || c->pkg->name != "os") &&
|
|
target_type->Named.name == "Error") {
|
|
Entity *e = target_type->Named.type_name;
|
|
if (e->pkg && e->pkg->name == "os") {
|
|
if (is_exact_value_zero(operand->value) &&
|
|
(operand->value.kind == ExactValue_Integer ||
|
|
operand->value.kind == ExactValue_Float)) {
|
|
operand->mode = Addressing_Value;
|
|
// target_type = t_untyped_nil;
|
|
operand->value = empty_exact_value;
|
|
update_untyped_expr_value(c, operand->expr, operand->value);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// "fallthrough"
|
|
if (!is_operand_nil(*operand) && !is_operand_uninit(*operand)) {
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
|
|
isize count = t->Union.variants.count;
|
|
ValidIndexAndScore *valids = gb_alloc_array(temporary_allocator(), ValidIndexAndScore, count);
|
|
isize valid_count = 0;
|
|
isize first_success_index = -1;
|
|
for_array(i, t->Union.variants) {
|
|
Type *vt = t->Union.variants[i];
|
|
i64 score = 0;
|
|
if (check_is_assignable_to_with_score(c, operand, vt, &score)) {
|
|
valids[valid_count].index = i;
|
|
valids[valid_count].score = score;
|
|
valid_count += 1;
|
|
if (first_success_index < 0) {
|
|
first_success_index = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (valid_count > 1) {
|
|
gb_sort_array(valids, valid_count, valid_index_and_score_cmp);
|
|
i64 best_score = valids[0].score;
|
|
for (isize i = 1; i < valid_count; i++) {
|
|
auto v = valids[i];
|
|
if (best_score > v.score) {
|
|
valid_count = i;
|
|
break;
|
|
}
|
|
best_score = v.score;
|
|
}
|
|
first_success_index = valids[0].index;
|
|
}
|
|
|
|
gbString type_str = type_to_string(target_type);
|
|
defer (gb_string_free(type_str));
|
|
|
|
if (valid_count == 1) {
|
|
Type *new_type = t->Union.variants[first_success_index];
|
|
target_type = new_type;
|
|
if (is_type_union(new_type)) {
|
|
convert_to_typed(c, operand, new_type);
|
|
break;
|
|
}
|
|
operand->type = new_type;
|
|
operand->mode = Addressing_Value;
|
|
break;
|
|
} else if (valid_count > 1) {
|
|
ERROR_BLOCK();
|
|
|
|
GB_ASSERT(first_success_index >= 0);
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type, true);
|
|
|
|
error_line("Ambiguous type conversion to '%s', which variant did you mean:\n\t", type_str);
|
|
i32 j = 0;
|
|
for (i32 i = 0; i < valid_count; i++) {
|
|
ValidIndexAndScore valid = valids[i];
|
|
if (j > 0 && valid_count > 2) error_line(", ");
|
|
if (j == valid_count-1) {
|
|
if (valid_count == 2) error_line(" ");
|
|
error_line("or ");
|
|
}
|
|
gbString str = type_to_string(t->Union.variants[valid.index]);
|
|
error_line("'%s'", str);
|
|
gb_string_free(str);
|
|
j++;
|
|
}
|
|
error_line("\n\n");
|
|
|
|
return;
|
|
} else if (is_type_untyped_uninit(operand->type)) {
|
|
target_type = t_untyped_uninit;
|
|
} else if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) {
|
|
ERROR_BLOCK();
|
|
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type, true);
|
|
if (count > 0) {
|
|
error_line("'%s' is a union which only excepts the following types:\n", type_str);
|
|
|
|
error_line("\t");
|
|
for (i32 i = 0; i < count; i++) {
|
|
Type *v = t->Union.variants[i];
|
|
if (i > 0 && count > 2) error_line(", ");
|
|
if (i == count-1) {
|
|
if (count == 2) error_line(" ");
|
|
if (count > 1) {
|
|
error_line("or ");
|
|
}
|
|
}
|
|
gbString str = type_to_string(v);
|
|
error_line("'%s'", str);
|
|
gb_string_free(str);
|
|
}
|
|
error_line("\n\n");
|
|
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
/* fallthrough */
|
|
|
|
|
|
default:
|
|
if (is_type_untyped_uninit(operand->type)) {
|
|
target_type = t_untyped_uninit;
|
|
} else if (is_type_untyped_nil(operand->type) && type_has_nil(target_type)) {
|
|
target_type = t_untyped_nil;
|
|
} else {
|
|
operand->mode = Addressing_Invalid;
|
|
convert_untyped_error(c, operand, target_type);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (is_type_any(target_type) && is_type_untyped(operand->type)) {
|
|
if (is_type_untyped_nil(operand->type) && is_type_untyped_uninit(operand->type)) {
|
|
|
|
} else {
|
|
target_type = default_type(operand->type);
|
|
}
|
|
}
|
|
|
|
update_untyped_expr_type(c, operand->expr, target_type, true);
|
|
operand->type = target_type;
|
|
}
|
|
|
|
gb_internal bool check_index_value(CheckerContext *c, Type *main_type, bool open_range, Ast *index_value, i64 max_count, i64 *value, Type *type_hint=nullptr) {
|
|
Operand operand = {Addressing_Invalid};
|
|
check_expr_with_type_hint(c, &operand, index_value, type_hint);
|
|
if (operand.mode == Addressing_Invalid) {
|
|
if (value) *value = 0;
|
|
// NOTE(bill): return true here to propagate the errors better
|
|
return true;
|
|
}
|
|
|
|
Type *index_type = t_int;
|
|
if (type_hint != nullptr) {
|
|
index_type = type_hint;
|
|
}
|
|
convert_to_typed(c, &operand, index_type);
|
|
if (operand.mode == Addressing_Invalid) {
|
|
if (value) *value = 0;
|
|
return false;
|
|
}
|
|
|
|
if (type_hint != nullptr) {
|
|
if (!check_is_assignable_to(c, &operand, type_hint)) {
|
|
gbString expr_str = expr_to_string(operand.expr);
|
|
gbString index_type_str = type_to_string(type_hint);
|
|
error(operand.expr, "Index '%s' must be an enum of type '%s'", expr_str, index_type_str);
|
|
gb_string_free(index_type_str);
|
|
gb_string_free(expr_str);
|
|
if (value) *value = 0;
|
|
return false;
|
|
}
|
|
} else if (!is_type_integer(operand.type) && !is_type_enum(operand.type)) {
|
|
gbString expr_str = expr_to_string(operand.expr);
|
|
gbString type_str = type_to_string(operand.type);
|
|
error(operand.expr, "Index '%s' must be an integer, got %s", expr_str, type_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(expr_str);
|
|
if (value) *value = 0;
|
|
return false;
|
|
}
|
|
|
|
if (operand.mode == Addressing_Constant &&
|
|
(c->state_flags & StateFlag_no_bounds_check) == 0) {
|
|
BigInt i = exact_value_to_integer(operand.value).value_integer;
|
|
if (i.sign && !is_type_enum(index_type) && !is_type_multi_pointer(main_type)) {
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
String idx_str = big_int_to_string(temporary_allocator(), &i);
|
|
gbString expr_str = expr_to_string(operand.expr, temporary_allocator());
|
|
error(operand.expr, "Index '%s' cannot be a negative value, got %.*s", expr_str, LIT(idx_str));
|
|
if (value) *value = 0;
|
|
return false;
|
|
}
|
|
|
|
if (max_count >= 0) {
|
|
if (is_type_enum(index_type)) {
|
|
Type *bt = base_type(index_type);
|
|
GB_ASSERT(bt->kind == Type_Enum);
|
|
ExactValue const &lo = *bt->Enum.min_value;
|
|
ExactValue const &hi = *bt->Enum.max_value;
|
|
String lo_str = {};
|
|
String hi_str = {};
|
|
if (bt->Enum.fields.count > 0) {
|
|
isize lo_idx = gb_clamp(bt->Enum.min_value_index, 0, bt->Enum.fields.count - 1);
|
|
isize hi_idx = gb_clamp(bt->Enum.max_value_index, 0, bt->Enum.fields.count - 1);
|
|
|
|
lo_str = bt->Enum.fields[lo_idx]->token.string;
|
|
hi_str = bt->Enum.fields[hi_idx]->token.string;
|
|
}
|
|
|
|
bool out_of_bounds = false;
|
|
|
|
if (compare_exact_values(Token_Lt, operand.value, lo) || compare_exact_values(Token_Gt, operand.value, hi)) {
|
|
out_of_bounds = true;
|
|
}
|
|
|
|
if (out_of_bounds) {
|
|
gbString expr_str = expr_to_string(operand.expr);
|
|
if (lo_str.len > 0) {
|
|
error(operand.expr, "Index '%s' is out of bounds range %.*s ..= %.*s", expr_str, LIT(lo_str), LIT(hi_str));
|
|
} else {
|
|
gbString index_type_str = type_to_string(index_type);
|
|
error(operand.expr, "Index '%s' is out of bounds range of enum type %s", expr_str, index_type_str);
|
|
gb_string_free(index_type_str);
|
|
}
|
|
gb_string_free(expr_str);
|
|
return false;
|
|
}
|
|
|
|
if (value) *value = exact_value_to_i64(exact_value_sub(operand.value, lo));
|
|
|
|
return true;
|
|
|
|
} else { // NOTE(bill): Do array bound checking
|
|
i64 v = -1;
|
|
if (i.used <= 1) {
|
|
v = big_int_to_i64(&i);
|
|
}
|
|
if (value) *value = v;
|
|
bool out_of_bounds = false;
|
|
if (v < 0) {
|
|
out_of_bounds = true;
|
|
} else if (open_range) {
|
|
out_of_bounds = v > max_count;
|
|
} else {
|
|
out_of_bounds = v >= max_count;
|
|
}
|
|
|
|
if (out_of_bounds) {
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
String idx_str = big_int_to_string(temporary_allocator(), &i);
|
|
gbString expr_str = expr_to_string(operand.expr, temporary_allocator());
|
|
error(operand.expr, "Index '%s' is out of bounds range 0..<%lld, got %.*s", expr_str, max_count, LIT(idx_str));
|
|
return false;
|
|
}
|
|
|
|
|
|
return true;
|
|
}
|
|
} else {
|
|
if (value) *value = exact_value_to_i64(operand.value);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// NOTE(bill): It's alright :D
|
|
if (value) *value = -1;
|
|
return true;
|
|
}
|
|
|
|
gb_internal ExactValue get_constant_field_single(CheckerContext *c, ExactValue value, i32 index, bool *success_, bool *finish_) {
|
|
if (value.kind == ExactValue_String) {
|
|
GB_ASSERT(0 <= index && index < value.value_string.len);
|
|
u8 val = value.value_string[index];
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = true;
|
|
return exact_value_u64(val);
|
|
} else if (value.kind == ExactValue_String16) {
|
|
GB_ASSERT(0 <= index && index < value.value_string.len);
|
|
u16 val = value.value_string16[index];
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = true;
|
|
return exact_value_u64(val);
|
|
}
|
|
if (value.kind != ExactValue_Compound) {
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = true;
|
|
return value;
|
|
}
|
|
|
|
|
|
Ast *node = value.value_compound;
|
|
switch (node->kind) {
|
|
case_ast_node(cl, CompoundLit, node);
|
|
if (cl->elems.count == 0) {
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = true;
|
|
return empty_exact_value;
|
|
}
|
|
|
|
if (cl->elems[0]->kind == Ast_FieldValue) {
|
|
if (is_type_struct(node->tav.type)) {
|
|
bool found = false;
|
|
for (Ast *elem : cl->elems) {
|
|
if (elem->kind != Ast_FieldValue) {
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
String name = fv->field->Ident.token.string;
|
|
Selection sub_sel = lookup_field(node->tav.type, name, false);
|
|
defer (array_free(&sub_sel.index));
|
|
if (sub_sel.index.count > 0 &&
|
|
sub_sel.index[0] == index) {
|
|
value = fv->value->tav.value;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
// Use the zero value if it is not found
|
|
value = {};
|
|
}
|
|
} else if (is_type_array(node->tav.type) || is_type_enumerated_array(node->tav.type)) {
|
|
for (Ast *elem : cl->elems) {
|
|
if (elem->kind != Ast_FieldValue) {
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
if (is_ast_range(fv->field)) {
|
|
ast_node(ie, BinaryExpr, fv->field);
|
|
TypeAndValue lo_tav = ie->left->tav;
|
|
TypeAndValue hi_tav = ie->right->tav;
|
|
GB_ASSERT(lo_tav.mode == Addressing_Constant);
|
|
GB_ASSERT(hi_tav.mode == Addressing_Constant);
|
|
|
|
TokenKind op = ie->op.kind;
|
|
i64 lo = exact_value_to_i64(lo_tav.value);
|
|
i64 hi = exact_value_to_i64(hi_tav.value);
|
|
|
|
i64 corrected_index = index;
|
|
|
|
if (is_type_enumerated_array(node->tav.type)) {
|
|
Type *bt = base_type(node->tav.type);
|
|
GB_ASSERT(bt->kind == Type_EnumeratedArray);
|
|
corrected_index = index + exact_value_to_i64(*bt->EnumeratedArray.min_value);
|
|
}
|
|
if (op != Token_RangeHalf) {
|
|
if (lo <= corrected_index && corrected_index <= hi) {
|
|
TypeAndValue tav = fv->value->tav;
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = false;
|
|
return tav.value;
|
|
}
|
|
} else {
|
|
if (lo <= corrected_index && corrected_index < hi) {
|
|
TypeAndValue tav = fv->value->tav;
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = false;
|
|
return tav.value;
|
|
}
|
|
}
|
|
} else {
|
|
TypeAndValue index_tav = fv->field->tav;
|
|
GB_ASSERT(index_tav.mode == Addressing_Constant);
|
|
ExactValue index_value = index_tav.value;
|
|
if (is_type_enumerated_array(node->tav.type)) {
|
|
Type *bt = base_type(node->tav.type);
|
|
GB_ASSERT(bt->kind == Type_EnumeratedArray);
|
|
index_value = exact_value_sub(index_value, *bt->EnumeratedArray.min_value);
|
|
}
|
|
|
|
i64 field_index = exact_value_to_i64(index_value);
|
|
if (index == field_index) {
|
|
TypeAndValue tav = fv->value->tav;
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = false;
|
|
return tav.value;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
} else {
|
|
i32 count = (i32)cl->elems.count;
|
|
if (count < index) {
|
|
if (success_) *success_ = false;
|
|
if (finish_) *finish_ = true;
|
|
return empty_exact_value;
|
|
}
|
|
if (cl->elems.count <= index) {
|
|
if (success_) *success_ = false;
|
|
if (finish_) *finish_ = false;
|
|
return value;
|
|
}
|
|
|
|
TypeAndValue tav = cl->elems[index]->tav;
|
|
if (tav.mode == Addressing_Constant) {
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = false;
|
|
return tav.value;
|
|
} else if (is_type_proc(tav.type)) {
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = false;
|
|
return tav.value;
|
|
} else {
|
|
GB_ASSERT_MSG(is_type_untyped_nil(tav.type), "%s", type_to_string(tav.type));
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = false;
|
|
return tav.value;
|
|
}
|
|
}
|
|
|
|
case_end;
|
|
|
|
default:
|
|
if (success_) *success_ = true;
|
|
if (finish_) *finish_ = true;
|
|
return empty_exact_value;
|
|
}
|
|
|
|
if (finish_) *finish_ = false;
|
|
return value;
|
|
}
|
|
|
|
|
|
|
|
gb_internal ExactValue get_constant_field(CheckerContext *c, Operand const *operand, Selection sel, bool *success_) {
|
|
if (operand->mode != Addressing_Constant) {
|
|
if (success_) *success_ = false;
|
|
return empty_exact_value;
|
|
}
|
|
|
|
if (sel.indirect) {
|
|
if (success_) *success_ = false;
|
|
return empty_exact_value;
|
|
}
|
|
|
|
if (sel.index.count == 0) {
|
|
if (success_) *success_ = false;
|
|
return empty_exact_value;
|
|
}
|
|
|
|
|
|
ExactValue value = operand->value;
|
|
if (value.kind == ExactValue_Compound) {
|
|
while (sel.index.count > 0) {
|
|
i32 index = sel.index[0];
|
|
sel = sub_selection(sel, 1);
|
|
|
|
bool finish = false;
|
|
value = get_constant_field_single(c, value, index, success_, &finish);
|
|
if (finish) {
|
|
return value;
|
|
}
|
|
}
|
|
if (success_) *success_ = true;
|
|
return value;
|
|
} else if (value.kind == ExactValue_Quaternion) {
|
|
// @QuaternionLayout
|
|
Quaternion256 q = *value.value_quaternion;
|
|
GB_ASSERT(sel.index.count == 1);
|
|
|
|
switch (sel.index[0]) {
|
|
case 3: // w
|
|
if (success_) *success_ = true;
|
|
return exact_value_float(q.real);
|
|
|
|
case 0: // x
|
|
if (success_) *success_ = true;
|
|
return exact_value_float(q.imag);
|
|
|
|
case 1: // y
|
|
if (success_) *success_ = true;
|
|
return exact_value_float(q.jmag);
|
|
|
|
case 2: // z
|
|
if (success_) *success_ = true;
|
|
return exact_value_float(q.kmag);
|
|
}
|
|
|
|
if (success_) *success_ = false;
|
|
return empty_exact_value;
|
|
} else if (value.kind == ExactValue_Complex) {
|
|
// @QuaternionLayout
|
|
Complex128 c = *value.value_complex;
|
|
GB_ASSERT(sel.index.count == 1);
|
|
|
|
switch (sel.index[0]) {
|
|
case 0: // real
|
|
if (success_) *success_ = true;
|
|
return exact_value_float(c.real);
|
|
|
|
case 1: // imag
|
|
if (success_) *success_ = true;
|
|
return exact_value_float(c.imag);
|
|
}
|
|
|
|
if (success_) *success_ = false;
|
|
return empty_exact_value;
|
|
}
|
|
|
|
if (success_) *success_ = true;
|
|
return empty_exact_value;
|
|
}
|
|
|
|
gb_internal Type *determine_swizzle_array_type(Type *original_type, Type *type_hint, isize new_count) {
|
|
Type *array_type = base_type(type_deref(original_type));
|
|
GB_ASSERT(array_type->kind == Type_Array || array_type->kind == Type_SimdVector);
|
|
if (array_type->kind == Type_SimdVector) {
|
|
Type *elem_type = array_type->SimdVector.elem;
|
|
return alloc_type_simd_vector(new_count, elem_type);
|
|
}
|
|
Type *elem_type = array_type->Array.elem;
|
|
|
|
Type *swizzle_array_type = nullptr;
|
|
Type *bth = base_type(type_deref(type_hint));
|
|
if (bth != nullptr && bth->kind == Type_Array &&
|
|
bth->Array.count == new_count &&
|
|
are_types_identical(bth->Array.elem, elem_type)) {
|
|
swizzle_array_type = type_hint;
|
|
} else {
|
|
i64 max_count = array_type->Array.count;
|
|
if (new_count == max_count) {
|
|
swizzle_array_type = original_type;
|
|
} else {
|
|
swizzle_array_type = alloc_type_array(elem_type, new_count);
|
|
}
|
|
}
|
|
return swizzle_array_type;
|
|
}
|
|
|
|
|
|
gb_internal bool is_entity_declared_for_selector(Entity *entity, Scope *import_scope, bool *allow_builtin) {
|
|
bool is_declared = entity != nullptr;
|
|
if (is_declared) {
|
|
if (entity->kind == Entity_Builtin) {
|
|
// NOTE(bill): Builtin's are in the universal scope which is part of every scopes hierarchy
|
|
// This means that we should just ignore the found result through it
|
|
*allow_builtin = entity->scope == import_scope ||
|
|
(entity->scope != builtin_pkg->scope && entity->scope != intrinsics_pkg->scope);
|
|
} else if ((entity->scope->flags&ScopeFlag_Global) == ScopeFlag_Global && (import_scope->flags&ScopeFlag_Global) == 0) {
|
|
is_declared = false;
|
|
}
|
|
}
|
|
return is_declared;
|
|
}
|
|
|
|
// NOTE(bill, 2022-02-03): see `check_const_decl` for why it exists reasoning
|
|
gb_internal Entity *check_entity_from_ident_or_selector(CheckerContext *c, Ast *node, bool ident_only) {
|
|
if (node == nullptr) {
|
|
return nullptr;
|
|
}
|
|
/*if (node->kind == Ast_TernaryWhenExpr) {
|
|
ast_node(we, TernaryWhenExpr, node);
|
|
if (we->cond == nullptr) {
|
|
return nullptr;
|
|
}
|
|
if (we->cond->tav.mode != Addressing_Constant) {
|
|
return nullptr;
|
|
}
|
|
if (we->cond->tav.value.kind != ExactValue_Bool) {
|
|
return nullptr;
|
|
}
|
|
if (we->cond->tav.value.value_bool) {
|
|
return check_entity_from_ident_or_selector(c, we->x, ident_only);
|
|
} else {
|
|
Entity *e = check_entity_from_ident_or_selector(c, we->y, ident_only);
|
|
return e;
|
|
}
|
|
} else */if (node->kind == Ast_Ident) {
|
|
String name = node->Ident.token.string;
|
|
return scope_lookup(c->scope, name);
|
|
} else if (!ident_only) if (node->kind == Ast_SelectorExpr) {
|
|
ast_node(se, SelectorExpr, node);
|
|
if (se->token.kind == Token_ArrowRight) {
|
|
return nullptr;
|
|
}
|
|
|
|
Ast *op_expr = se->expr;
|
|
Ast *selector = unparen_expr(se->selector);
|
|
if (selector == nullptr) {
|
|
return nullptr;
|
|
}
|
|
if (selector->kind != Ast_Ident) {
|
|
return nullptr;
|
|
}
|
|
|
|
Entity *entity = nullptr;
|
|
Entity *expr_entity = nullptr;
|
|
bool check_op_expr = true;
|
|
|
|
if (op_expr->kind == Ast_Ident) {
|
|
String op_name = op_expr->Ident.token.string;
|
|
Entity *e = scope_lookup(c->scope, op_name);
|
|
if (e == nullptr) {
|
|
return nullptr;
|
|
}
|
|
add_entity_use(c, op_expr, e);
|
|
expr_entity = e;
|
|
|
|
if (e != nullptr && e->kind == Entity_ImportName && selector->kind == Ast_Ident) {
|
|
// IMPORTANT NOTE(bill): This is very sloppy code but it's also very fragile
|
|
// It pretty much needs to be in this order and this way
|
|
// If you can clean this up, please do but be really careful
|
|
String import_name = op_name;
|
|
Scope *import_scope = e->ImportName.scope;
|
|
String entity_name = selector->Ident.token.string;
|
|
|
|
check_op_expr = false;
|
|
entity = scope_lookup_current(import_scope, entity_name);
|
|
bool allow_builtin = false;
|
|
if (!is_entity_declared_for_selector(entity, import_scope, &allow_builtin)) {
|
|
return nullptr;
|
|
}
|
|
|
|
check_entity_decl(c, entity, nullptr, nullptr);
|
|
if (entity->kind == Entity_ProcGroup) {
|
|
return entity;
|
|
}
|
|
GB_ASSERT_MSG(entity->type != nullptr, "%.*s (%.*s)", LIT(entity->token.string), LIT(entity_strings[entity->kind]));
|
|
}
|
|
}
|
|
|
|
Operand operand = {};
|
|
if (check_op_expr) {
|
|
check_expr_base(c, &operand, op_expr, nullptr);
|
|
if (operand.mode == Addressing_Invalid) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (entity == nullptr && selector->kind == Ast_Ident) {
|
|
String field_name = selector->Ident.token.string;
|
|
if (is_type_dynamic_array(type_deref(operand.type))) {
|
|
init_mem_allocator(c->checker);
|
|
}
|
|
auto sel = lookup_field(operand.type, field_name, operand.mode == Addressing_Type);
|
|
entity = sel.entity;
|
|
}
|
|
|
|
if (entity != nullptr) {
|
|
return entity;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
gb_internal Entity *check_selector(CheckerContext *c, Operand *operand, Ast *node, Type *type_hint) {
|
|
ast_node(se, SelectorExpr, node);
|
|
|
|
bool check_op_expr = true;
|
|
Entity *expr_entity = nullptr;
|
|
Entity *entity = nullptr;
|
|
Selection sel = {}; // NOTE(bill): Not used if it's an import name
|
|
|
|
if (!c->allow_arrow_right_selector_expr && se->token.kind == Token_ArrowRight) {
|
|
ERROR_BLOCK();
|
|
error(node, "Illegal use of -> selector shorthand outside of a call");
|
|
gbString x = expr_to_string(se->expr);
|
|
gbString y = expr_to_string(se->selector);
|
|
error_line("\tSuggestion: Did you mean '%s.%s'?\n", x, y);
|
|
gb_string_free(y);
|
|
gb_string_free(x);
|
|
|
|
// TODO(bill): Should this terminate here or propagate onwards?
|
|
// operand->mode = Addressing_Invalid;
|
|
// operand->expr = node;
|
|
// return nullptr;
|
|
}
|
|
|
|
operand->expr = node;
|
|
|
|
Ast *op_expr = se->expr;
|
|
Ast *selector = unparen_expr(se->selector);
|
|
if (selector == nullptr) {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
if (selector->kind != Ast_Ident) {
|
|
error(selector, "Illegal selector kind: '%.*s'", LIT(ast_strings[selector->kind]));
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
if (op_expr->kind == Ast_Ident) {
|
|
String op_name = op_expr->Ident.token.string;
|
|
Entity *e = scope_lookup(c->scope, op_name);
|
|
add_entity_use(c, op_expr, e);
|
|
expr_entity = e;
|
|
|
|
if (e != nullptr && (e->kind == Entity_Procedure || e->kind == Entity_ProcGroup) && selector->kind == Ast_Ident) {
|
|
gbString sel_str = expr_to_string(selector);
|
|
error(node, "'%s' is not declared by by '%.*s'", sel_str, LIT(e->token.string));
|
|
gb_string_free(sel_str);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
} else if (e != nullptr && e->kind == Entity_ImportName && selector->kind == Ast_Ident) {
|
|
// IMPORTANT NOTE(bill): This is very sloppy code but it's also very fragile
|
|
// It pretty much needs to be in this order and this way
|
|
// If you can clean this up, please do but be really careful
|
|
String import_name = op_name;
|
|
Scope *import_scope = e->ImportName.scope;
|
|
String entity_name = selector->Ident.token.string;
|
|
|
|
if (import_scope == nullptr) {
|
|
ERROR_BLOCK();
|
|
error(node, "'%.*s' is not imported in this file, '%.*s' is unavailable", LIT(import_name), LIT(entity_name));
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
check_op_expr = false;
|
|
entity = scope_lookup_current(import_scope, entity_name);
|
|
bool allow_builtin = false;
|
|
if (!is_entity_declared_for_selector(entity, import_scope, &allow_builtin)) {
|
|
ERROR_BLOCK();
|
|
error(node, "'%.*s' is not declared by '%.*s'", LIT(entity_name), LIT(import_name));
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
|
|
check_did_you_mean_scope(entity_name, import_scope);
|
|
return nullptr;
|
|
}
|
|
|
|
if (!is_entity_exported(entity, allow_builtin)) {
|
|
gbString sel_str = expr_to_string(selector);
|
|
error(node, "'%s' is not exported by '%.*s'", sel_str, LIT(import_name));
|
|
gb_string_free(sel_str);
|
|
// NOTE(bill): make the state valid still, even if it's "invalid"
|
|
// operand->mode = Addressing_Invalid;
|
|
// operand->expr = node;
|
|
// return nullptr;
|
|
}
|
|
|
|
check_entity_decl(c, entity, nullptr, nullptr);
|
|
if (entity->kind == Entity_ProcGroup) {
|
|
operand->mode = Addressing_ProcGroup;
|
|
operand->proc_group = entity;
|
|
|
|
add_type_and_value(c, operand->expr, operand->mode, operand->type, operand->value);
|
|
return entity;
|
|
}
|
|
GB_ASSERT_MSG(entity->type != nullptr, "%.*s (%.*s)", LIT(entity->token.string), LIT(entity_strings[entity->kind]));
|
|
}
|
|
}
|
|
|
|
if (check_op_expr) {
|
|
check_expr_base(c, operand, op_expr, nullptr);
|
|
if (operand->mode == Addressing_Invalid) {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if (operand->type && is_type_soa_struct(type_deref(operand->type))) {
|
|
complete_soa_type(c->checker, type_deref(operand->type), false);
|
|
}
|
|
|
|
if (entity == nullptr && selector->kind == Ast_Ident) {
|
|
String field_name = selector->Ident.token.string;
|
|
Type *t = type_deref(operand->type);
|
|
if (t == nullptr) {
|
|
error(operand->expr, "Cannot use a selector expression on 0-value expression");
|
|
} else {
|
|
if (is_type_dynamic_array(t)) {
|
|
init_mem_allocator(c->checker);
|
|
}
|
|
sel = lookup_field(operand->type, field_name, operand->mode == Addressing_Type);
|
|
entity = sel.entity;
|
|
|
|
// NOTE(bill): Add type info needed for fields like 'names'
|
|
if (entity != nullptr && (entity->flags&EntityFlag_TypeField)) {
|
|
add_type_info_type(c, operand->type);
|
|
}
|
|
if (is_type_enum(operand->type)) {
|
|
add_type_info_type(c, operand->type);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (operand->type && is_type_simd_vector(type_deref(operand->type))) {
|
|
String field_name = selector->Ident.token.string;
|
|
if (field_name.len == 1) {
|
|
error(op_expr, "Extracting an element from a #simd array using .%.*s syntax is disallowed, prefer `simd.extract`", LIT(field_name));
|
|
} else {
|
|
error(op_expr, "Extracting elements from a #simd array using .%.*s syntax is disallowed, prefer `swizzle`", LIT(field_name));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
if (entity == nullptr && selector->kind == Ast_Ident && operand->type != nullptr &&
|
|
(is_type_array(type_deref(operand->type)))) {
|
|
String field_name = selector->Ident.token.string;
|
|
if (1 < field_name.len && field_name.len <= 4) {
|
|
u8 swizzles_xyzw[4] = {'x', 'y', 'z', 'w'};
|
|
u8 swizzles_rgba[4] = {'r', 'g', 'b', 'a'};
|
|
bool found_xyzw = false;
|
|
bool found_rgba = false;
|
|
for (isize i = 0; i < field_name.len; i++) {
|
|
bool valid = false;
|
|
for (isize j = 0; j < 4; j++) {
|
|
if (field_name.text[i] == swizzles_xyzw[j]) {
|
|
found_xyzw = true;
|
|
valid = true;
|
|
break;
|
|
}
|
|
if (field_name.text[i] == swizzles_rgba[j]) {
|
|
found_rgba = true;
|
|
valid = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!valid) {
|
|
goto end_of_array_selector_swizzle;
|
|
}
|
|
}
|
|
|
|
u8 *swizzles = nullptr;
|
|
|
|
u8 index_count = cast(u8)field_name.len;
|
|
if (found_xyzw && found_rgba) {
|
|
gbString op_str = expr_to_string(op_expr);
|
|
error(op_expr, "Mixture of swizzle kinds for field index, got %s", op_str);
|
|
gb_string_free(op_str);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
u8 indices = 0;
|
|
|
|
if (found_xyzw) {
|
|
swizzles = swizzles_xyzw;
|
|
} else if (found_rgba) {
|
|
swizzles = swizzles_rgba;
|
|
}
|
|
for (isize i = 0; i < field_name.len; i++) {
|
|
for (isize j = 0; j < 4; j++) {
|
|
if (field_name.text[i] == swizzles[j]) {
|
|
indices |= cast(u8)(j)<<(i*2);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
Type *original_type = operand->type;
|
|
Type *array_type = base_type(type_deref(original_type));
|
|
GB_ASSERT(array_type->kind == Type_Array);
|
|
|
|
i64 array_count = get_array_type_count(array_type);
|
|
|
|
for (u8 i = 0; i < index_count; i++) {
|
|
u8 idx = indices>>(i*2) & 3;
|
|
if (idx >= array_count) {
|
|
char c = 0;
|
|
if (found_xyzw) {
|
|
c = swizzles_xyzw[idx];
|
|
} else if (found_rgba) {
|
|
c = swizzles_rgba[idx];
|
|
} else {
|
|
GB_PANIC("unknown swizzle kind");
|
|
}
|
|
error(selector->Ident.token, "Swizzle value is out of bounds, got %c, max count %lld", c, array_count);
|
|
break;
|
|
}
|
|
}
|
|
|
|
se->swizzle_count = index_count;
|
|
se->swizzle_indices = indices;
|
|
|
|
AddressingMode prev_mode = operand->mode;
|
|
operand->mode = Addressing_SwizzleValue;
|
|
operand->type = determine_swizzle_array_type(original_type, type_hint, index_count);
|
|
operand->expr = node;
|
|
|
|
switch (prev_mode) {
|
|
case Addressing_Variable:
|
|
case Addressing_SoaVariable:
|
|
case Addressing_SwizzleVariable:
|
|
operand->mode = Addressing_SwizzleVariable;
|
|
break;
|
|
case Addressing_Value:
|
|
if (is_type_pointer(original_type)) {
|
|
operand->mode = Addressing_SwizzleVariable;
|
|
}
|
|
break;
|
|
}
|
|
|
|
Entity *swizzle_entity = alloc_entity_variable(nullptr, make_token_ident(field_name), operand->type, EntityState_Resolved);
|
|
add_type_and_value(c, operand->expr, operand->mode, operand->type, operand->value);
|
|
return swizzle_entity;
|
|
}
|
|
end_of_array_selector_swizzle:;
|
|
}
|
|
|
|
if (entity == nullptr) {
|
|
gbString op_str = expr_to_string(op_expr);
|
|
gbString type_str = type_to_string_shorthand(operand->type);
|
|
gbString sel_str = expr_to_string(selector);
|
|
|
|
if (operand->mode == Addressing_Type) {
|
|
if (is_type_polymorphic(operand->type, true)) {
|
|
error(op_expr, "Type '%s' has no field nor polymorphic parameter '%s'", op_str, sel_str);
|
|
} else {
|
|
error(op_expr, "Type '%s' has no field '%s'", op_str, sel_str);
|
|
}
|
|
} else {
|
|
ERROR_BLOCK();
|
|
|
|
error(op_expr, "'%s' of type '%s' has no field '%s'", op_str, type_str, sel_str);
|
|
|
|
if (operand->type != nullptr && selector->kind == Ast_Ident) {
|
|
String const &name = selector->Ident.token.string;
|
|
Type *bt = base_type(operand->type);
|
|
if (operand->type->kind == Type_Named &&
|
|
operand->type->Named.type_name &&
|
|
operand->type->Named.type_name->kind == Entity_TypeName &&
|
|
operand->type->Named.type_name->TypeName.objc_metadata) {
|
|
check_did_you_mean_objc_entity(name, operand->type->Named.type_name, operand->mode == Addressing_Type);
|
|
} else if (bt->kind == Type_Struct) {
|
|
check_did_you_mean_type(name, bt->Struct.fields);
|
|
} else if (bt->kind == Type_Enum) {
|
|
check_did_you_mean_type(name, bt->Enum.fields);
|
|
}
|
|
}
|
|
}
|
|
|
|
gb_string_free(sel_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(op_str);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
if (expr_entity != nullptr && expr_entity->kind == Entity_Constant && entity->kind != Entity_Constant) {
|
|
bool success = false;
|
|
ExactValue field_value = get_constant_field(c, operand, sel, &success);
|
|
if (success) {
|
|
operand->mode = Addressing_Constant;
|
|
operand->expr = node;
|
|
operand->value = field_value;
|
|
operand->type = entity->type;
|
|
add_entity_use(c, selector, entity);
|
|
add_type_and_value(c, operand->expr, operand->mode, operand->type, operand->value);
|
|
return entity;
|
|
}
|
|
|
|
gbString op_str = expr_to_string(op_expr);
|
|
gbString type_str = type_to_string_shorthand(operand->type);
|
|
gbString sel_str = expr_to_string(selector);
|
|
error(op_expr, "Cannot access non-constant field '%s' from '%s'", sel_str, op_str);
|
|
gb_string_free(sel_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(op_str);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Constant && entity->kind != Entity_Constant) {
|
|
bool success = false;
|
|
ExactValue field_value = get_constant_field(c, operand, sel, &success);
|
|
if (success) {
|
|
operand->mode = Addressing_Constant;
|
|
operand->expr = node;
|
|
operand->value = field_value;
|
|
operand->type = entity->type;
|
|
add_entity_use(c, selector, entity);
|
|
add_type_and_value(c, operand->expr, operand->mode, operand->type, operand->value);
|
|
return entity;
|
|
}
|
|
|
|
gbString op_str = expr_to_string(op_expr);
|
|
gbString type_str = type_to_string_shorthand(operand->type);
|
|
gbString sel_str = expr_to_string(selector);
|
|
error(op_expr, "Cannot access non-constant field '%s' from '%s'", sel_str, op_str);
|
|
gb_string_free(sel_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(op_str);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
if (expr_entity != nullptr && is_type_polymorphic(expr_entity->type)) {
|
|
gbString op_str = expr_to_string(op_expr);
|
|
gbString type_str = type_to_string_shorthand(operand->type);
|
|
gbString sel_str = expr_to_string(selector);
|
|
error(op_expr, "Cannot access field '%s' from non-specialized polymorphic type '%s'", sel_str, op_str);
|
|
gb_string_free(sel_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(op_str);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = node;
|
|
return nullptr;
|
|
}
|
|
|
|
add_entity_use(c, selector, entity);
|
|
|
|
operand->type = entity->type;
|
|
operand->expr = node;
|
|
|
|
if (entity->flags & EntityFlag_BitFieldField) {
|
|
add_package_dependency(c, "runtime", "__write_bits");
|
|
add_package_dependency(c, "runtime", "__read_bits");
|
|
}
|
|
|
|
switch (entity->kind) {
|
|
case Entity_Constant:
|
|
operand->value = entity->Constant.value;
|
|
operand->mode = Addressing_Constant;
|
|
if (operand->value.kind == ExactValue_Procedure) {
|
|
Entity *proc = strip_entity_wrapping(operand->value.value_procedure);
|
|
if (proc != nullptr) {
|
|
operand->mode = Addressing_Value;
|
|
operand->type = proc->type;
|
|
}
|
|
}
|
|
break;
|
|
case Entity_Variable:
|
|
if (sel.is_bit_field) {
|
|
se->is_bit_field = true;
|
|
}
|
|
if (sel.indirect) {
|
|
operand->mode = Addressing_Variable;
|
|
} else if (operand->mode == Addressing_Context) {
|
|
// Do nothing
|
|
} else if (operand->mode == Addressing_MapIndex) {
|
|
operand->mode = Addressing_Value;
|
|
} else if (entity->flags & EntityFlag_SoaPtrField) {
|
|
operand->mode = Addressing_SoaVariable;
|
|
} else if (operand->mode == Addressing_OptionalOk || operand->mode == Addressing_OptionalOkPtr) {
|
|
operand->mode = Addressing_Value;
|
|
} else if (operand->mode == Addressing_SoaVariable) {
|
|
operand->mode = Addressing_Variable;
|
|
} else if (operand->mode != Addressing_Value) {
|
|
operand->mode = Addressing_Variable;
|
|
} else {
|
|
operand->mode = Addressing_Value;
|
|
}
|
|
break;
|
|
case Entity_TypeName:
|
|
operand->mode = Addressing_Type;
|
|
break;
|
|
case Entity_Procedure:
|
|
operand->mode = Addressing_Value;
|
|
operand->value = exact_value_procedure(node);
|
|
break;
|
|
case Entity_Builtin:
|
|
operand->mode = Addressing_Builtin;
|
|
operand->builtin_id = cast(BuiltinProcId)entity->Builtin.id;
|
|
break;
|
|
|
|
case Entity_ProcGroup:
|
|
operand->mode = Addressing_ProcGroup;
|
|
operand->proc_group = entity;
|
|
break;
|
|
|
|
// NOTE(bill): These cases should never be hit but are here for sanity reasons
|
|
case Entity_Nil:
|
|
operand->mode = Addressing_Value;
|
|
break;
|
|
}
|
|
|
|
add_type_and_value(c, operand->expr, operand->mode, operand->type, operand->value);
|
|
|
|
return entity;
|
|
}
|
|
|
|
gb_internal bool is_type_normal_pointer(Type *ptr, Type **elem) {
|
|
ptr = base_type(ptr);
|
|
if (is_type_pointer(ptr)) {
|
|
if (is_type_rawptr(ptr)) {
|
|
return false;
|
|
}
|
|
if (elem) *elem = ptr->Pointer.elem;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
gb_internal bool is_type_valid_atomic_type(Type *elem) {
|
|
elem = core_type(elem);
|
|
if (is_type_internally_pointer_like(elem)) {
|
|
return true;
|
|
}
|
|
if (elem->kind == Type_BitSet) {
|
|
elem = bit_set_to_int(elem);
|
|
}
|
|
if (elem->kind != Type_Basic) {
|
|
return false;
|
|
}
|
|
return (elem->Basic.flags & (BasicFlag_Boolean|BasicFlag_OrderedNumeric)) != 0;
|
|
}
|
|
|
|
gb_internal bool check_identifier_exists(Scope *s, Ast *node, bool nested = false, Scope **out_scope = nullptr) {
|
|
switch (node->kind) {
|
|
case_ast_node(i, Ident, node);
|
|
String name = i->token.string;
|
|
if (nested) {
|
|
Entity *e = scope_lookup_current(s, name);
|
|
if (e != nullptr) {
|
|
if (out_scope) *out_scope = e->scope;
|
|
return true;
|
|
}
|
|
} else {
|
|
Entity *e = scope_lookup(s, name);
|
|
if (e != nullptr) {
|
|
if (out_scope) *out_scope = e->scope;
|
|
return true;
|
|
}
|
|
}
|
|
case_end;
|
|
case_ast_node(se, SelectorExpr, node);
|
|
Ast *lhs = se->expr;
|
|
Ast *rhs = se->selector;
|
|
Scope *lhs_scope = nullptr;
|
|
if (check_identifier_exists(s, lhs, nested, &lhs_scope)) {
|
|
return check_identifier_exists(lhs_scope, rhs, true);
|
|
}
|
|
case_end;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
gb_internal bool check_assignment_arguments(CheckerContext *ctx, Array<Operand> const &lhs, Array<Operand> *operands, Slice<Ast *> const &rhs) {
|
|
bool optional_ok = false;
|
|
isize tuple_index = 0;
|
|
for (Ast *rhs_expr : rhs) {
|
|
CheckerContext c_ = *ctx;
|
|
CheckerContext *c = &c_;
|
|
|
|
Operand o = {};
|
|
|
|
Type *type_hint = nullptr;
|
|
|
|
if (tuple_index < lhs.count) {
|
|
type_hint = lhs[tuple_index].type;
|
|
}
|
|
|
|
check_expr_base(c, &o, rhs_expr, type_hint);
|
|
if (o.mode == Addressing_NoValue) {
|
|
error_operand_no_value(&o);
|
|
o.mode = Addressing_Invalid;
|
|
}
|
|
|
|
if (o.type == nullptr || o.type->kind != Type_Tuple) {
|
|
if (lhs.count == 2 && rhs.count == 1 &&
|
|
(o.mode == Addressing_MapIndex || o.mode == Addressing_OptionalOk || o.mode == Addressing_OptionalOkPtr)) {
|
|
Ast *expr = unparen_expr(o.expr);
|
|
|
|
Operand val0 = o;
|
|
Operand val1 = o;
|
|
val0.mode = Addressing_Value;
|
|
val1.mode = Addressing_Value;
|
|
val1.type = t_untyped_bool;
|
|
|
|
check_promote_optional_ok(c, &o, nullptr, &val1.type);
|
|
|
|
if (expr->kind == Ast_TypeAssertion &&
|
|
(o.mode == Addressing_OptionalOk || o.mode == Addressing_OptionalOkPtr)) {
|
|
// NOTE(bill): Used only for optimizations in the backend
|
|
if (is_blank_ident(lhs[0].expr)) {
|
|
expr->TypeAssertion.ignores[0] = true;
|
|
}
|
|
if (is_blank_ident(lhs[1].expr)) {
|
|
expr->TypeAssertion.ignores[1] = true;
|
|
}
|
|
}
|
|
|
|
array_add(operands, val0);
|
|
array_add(operands, val1);
|
|
optional_ok = true;
|
|
tuple_index += 2;
|
|
} else if (o.mode == Addressing_OptionalOk && is_type_tuple(o.type)) {
|
|
Type *tuple = o.type;
|
|
GB_ASSERT(tuple->Tuple.variables.count == 2);
|
|
Ast *expr = unparen_expr(o.expr);
|
|
if (expr->kind == Ast_CallExpr) {
|
|
expr->CallExpr.optional_ok_one = true;
|
|
}
|
|
Operand val = o;
|
|
val.type = tuple->Tuple.variables[0]->type;
|
|
val.mode = Addressing_Value;
|
|
array_add(operands, val);
|
|
tuple_index += tuple->Tuple.variables.count;
|
|
} else {
|
|
array_add(operands, o);
|
|
tuple_index += 1;
|
|
}
|
|
} else {
|
|
TypeTuple *tuple = &o.type->Tuple;
|
|
for (Entity *e : tuple->variables) {
|
|
o.type = e->type;
|
|
array_add(operands, o);
|
|
}
|
|
|
|
tuple_index += tuple->variables.count;
|
|
}
|
|
}
|
|
|
|
return optional_ok;
|
|
}
|
|
|
|
|
|
typedef u32 UnpackFlags;
|
|
enum UnpackFlag : u32 {
|
|
UnpackFlag_None = 0,
|
|
UnpackFlag_AllowOk = 1<<0,
|
|
UnpackFlag_AllowUndef = 1<<1,
|
|
};
|
|
|
|
|
|
gb_internal bool check_unpack_arguments(CheckerContext *ctx, Entity **lhs, isize lhs_count, Array<Operand> *operands, Slice<Ast *> const &rhs_arguments, UnpackFlags flags,
|
|
isize variadic_index = -1) {
|
|
auto const &add_dependencies_from_unpacking = [](CheckerContext *c, Entity **lhs, isize lhs_count, isize tuple_index, isize tuple_count) -> isize {
|
|
if (lhs == nullptr || c->decl == nullptr) {
|
|
return tuple_count;
|
|
}
|
|
for (isize j = 0; (tuple_index + j) < lhs_count && j < tuple_count; j++) {
|
|
Entity *e = lhs[tuple_index + j];
|
|
if (e == nullptr) {
|
|
continue;
|
|
}
|
|
DeclInfo *decl = decl_info_of_entity(e);
|
|
if (decl == nullptr) {
|
|
continue;
|
|
}
|
|
rw_mutex_shared_lock(&decl->deps_mutex);
|
|
rw_mutex_lock(&c->decl->deps_mutex);
|
|
for (Entity *dep : decl->deps) {
|
|
ptr_set_add(&c->decl->deps, dep);
|
|
}
|
|
rw_mutex_unlock(&c->decl->deps_mutex);
|
|
rw_mutex_shared_unlock(&decl->deps_mutex);
|
|
}
|
|
return tuple_count;
|
|
};
|
|
|
|
bool allow_ok = (flags & UnpackFlag_AllowOk) != 0;
|
|
bool allow_undef = (flags & UnpackFlag_AllowUndef) != 0;
|
|
|
|
bool is_variadic = variadic_index > -1;
|
|
if (!is_variadic) {
|
|
variadic_index = lhs_count;
|
|
}
|
|
|
|
bool optional_ok = false;
|
|
isize tuple_index = 0;
|
|
for (Ast *rhs : rhs_arguments) {
|
|
if (rhs->kind == Ast_FieldValue) {
|
|
error(rhs, "Invalid use of 'field = value'");
|
|
rhs = rhs->FieldValue.value;
|
|
}
|
|
|
|
CheckerContext c_ = *ctx;
|
|
CheckerContext *c = &c_;
|
|
|
|
Operand o = {};
|
|
|
|
Type *type_hint = nullptr;
|
|
|
|
if (lhs != nullptr) {
|
|
if (tuple_index < variadic_index) {
|
|
// NOTE(bill): override DeclInfo for dependency
|
|
Entity *e = lhs[tuple_index];
|
|
if (e != nullptr) {
|
|
type_hint = e->type;
|
|
}
|
|
} else if (is_variadic) {
|
|
Entity *e = lhs[variadic_index];
|
|
if (e != nullptr) {
|
|
GB_ASSERT(e->flags & EntityFlag_Ellipsis);
|
|
GB_ASSERT(is_type_slice(e->type));
|
|
type_hint = e->type->Slice.elem;
|
|
}
|
|
}
|
|
}
|
|
|
|
Ast *rhs_expr = unparen_expr(rhs);
|
|
if (allow_undef && rhs_expr != nullptr && rhs_expr->kind == Ast_Uninit) {
|
|
// NOTE(bill): Just handle this very specific logic here
|
|
o.type = t_untyped_uninit;
|
|
o.mode = Addressing_Value;
|
|
o.expr = rhs;
|
|
add_type_and_value(c, rhs, o.mode, o.type, o.value);
|
|
} else {
|
|
check_expr_base(c, &o, rhs, type_hint);
|
|
}
|
|
if (o.mode == Addressing_NoValue) {
|
|
error_operand_no_value(&o);
|
|
o.mode = Addressing_Invalid;
|
|
}
|
|
|
|
if (o.type == nullptr || o.type->kind != Type_Tuple) {
|
|
if (allow_ok && lhs_count == 2 && rhs_arguments.count == 1 &&
|
|
(o.mode == Addressing_MapIndex || o.mode == Addressing_OptionalOk || o.mode == Addressing_OptionalOkPtr)) {
|
|
Ast *expr = unparen_expr(o.expr);
|
|
|
|
Operand val0 = o;
|
|
Operand val1 = o;
|
|
val0.mode = Addressing_Value;
|
|
val1.mode = Addressing_Value;
|
|
val1.type = t_untyped_bool;
|
|
|
|
check_promote_optional_ok(c, &o, nullptr, &val1.type);
|
|
|
|
if (expr->kind == Ast_TypeAssertion &&
|
|
(o.mode == Addressing_OptionalOk || o.mode == Addressing_OptionalOkPtr)) {
|
|
// NOTE(bill): Used only for optimizations in the backend
|
|
if (is_blank_ident(lhs[0]->token)) {
|
|
expr->TypeAssertion.ignores[0] = true;
|
|
}
|
|
if (is_blank_ident(lhs[1]->token)) {
|
|
expr->TypeAssertion.ignores[1] = true;
|
|
}
|
|
}
|
|
|
|
array_add(operands, val0);
|
|
array_add(operands, val1);
|
|
optional_ok = true;
|
|
tuple_index += add_dependencies_from_unpacking(c, lhs, lhs_count, tuple_index, 2);
|
|
} else {
|
|
array_add(operands, o);
|
|
tuple_index += 1;
|
|
}
|
|
} else {
|
|
TypeTuple *tuple = &o.type->Tuple;
|
|
for (Entity *e : tuple->variables) {
|
|
o.type = e->type;
|
|
array_add(operands, o);
|
|
}
|
|
|
|
isize count = tuple->variables.count;
|
|
tuple_index += add_dependencies_from_unpacking(c, lhs, lhs_count, tuple_index, count);
|
|
}
|
|
}
|
|
|
|
return optional_ok;
|
|
}
|
|
|
|
gb_internal isize get_procedure_param_count_excluding_defaults(Type *pt, isize *param_count_) {
|
|
GB_ASSERT(pt != nullptr);
|
|
GB_ASSERT(pt->kind == Type_Proc);
|
|
isize param_count = 0;
|
|
isize param_count_excluding_defaults = 0;
|
|
bool variadic = pt->Proc.variadic;
|
|
TypeTuple *param_tuple = nullptr;
|
|
|
|
if (pt->Proc.params != nullptr) {
|
|
param_tuple = &pt->Proc.params->Tuple;
|
|
|
|
param_count = param_tuple->variables.count;
|
|
if (variadic) {
|
|
for (isize i = param_count-1; i >= 0; i--) {
|
|
Entity *e = param_tuple->variables[i];
|
|
if (e->kind == Entity_TypeName) {
|
|
break;
|
|
}
|
|
|
|
if (e->kind == Entity_Variable) {
|
|
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
|
|
param_count--;
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
param_count--;
|
|
}
|
|
}
|
|
|
|
param_count_excluding_defaults = param_count;
|
|
if (param_tuple != nullptr) {
|
|
for (isize i = param_count-1; i >= 0; i--) {
|
|
Entity *e = param_tuple->variables[i];
|
|
if (e->kind == Entity_TypeName) {
|
|
break;
|
|
}
|
|
|
|
if (e->kind == Entity_Variable) {
|
|
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
|
|
param_count_excluding_defaults--;
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (param_count_) *param_count_ = param_count;
|
|
return param_count_excluding_defaults;
|
|
}
|
|
|
|
|
|
gb_internal isize lookup_procedure_parameter(TypeProc *pt, String const ¶meter_name) {
|
|
isize param_count = pt->param_count;
|
|
for (isize i = 0; i < param_count; i++) {
|
|
Entity *e = pt->params->Tuple.variables[i];
|
|
String name = e->token.string;
|
|
if (is_blank_ident(name)) {
|
|
continue;
|
|
}
|
|
if (name == parameter_name) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
gb_internal isize lookup_procedure_parameter(Type *type, String const ¶meter_name) {
|
|
type = base_type(type);
|
|
GB_ASSERT(type->kind == Type_Proc);
|
|
return lookup_procedure_parameter(&type->Proc, parameter_name);
|
|
}
|
|
|
|
gb_internal CallArgumentError check_call_arguments_internal(CheckerContext *c, Ast *call,
|
|
Entity *entity, Type *proc_type,
|
|
Array<Operand> positional_operands, Array<Operand> const &named_operands,
|
|
CallArgumentErrorMode show_error_mode,
|
|
CallArgumentData *data) {
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
|
|
CallArgumentError err = CallArgumentError_None;
|
|
|
|
ast_node(ce, CallExpr, call);
|
|
GB_ASSERT(is_type_proc(proc_type));
|
|
proc_type = base_type(proc_type);
|
|
TypeProc *pt = &proc_type->Proc;
|
|
|
|
isize param_count = 0;
|
|
isize param_count_excluding_defaults = get_procedure_param_count_excluding_defaults(proc_type, ¶m_count);
|
|
bool variadic = pt->variadic;
|
|
bool vari_expand = (ce->ellipsis.pos.line != 0);
|
|
i64 score = 0;
|
|
bool show_error = show_error_mode == CallArgumentErrorMode::ShowErrors;
|
|
|
|
Type *final_proc_type = proc_type;
|
|
Entity *gen_entity = nullptr;
|
|
|
|
if (vari_expand && !variadic) {
|
|
if (show_error) {
|
|
error(ce->ellipsis,
|
|
"Cannot use '..' in call to a non-variadic procedure: '%.*s'",
|
|
LIT(ce->proc->Ident.token.string));
|
|
}
|
|
err = CallArgumentError_NonVariadicExpand;
|
|
} else if (vari_expand && pt->c_vararg) {
|
|
if (show_error) {
|
|
error(ce->ellipsis,
|
|
"Cannot use '..' in call to a '#c_vararg' variadic procedure: '%.*s'",
|
|
LIT(ce->proc->Ident.token.string));
|
|
}
|
|
err = CallArgumentError_NonVariadicExpand;
|
|
}
|
|
|
|
GB_ASSERT(ce->split_args);
|
|
auto visited = slice_make<bool>(temporary_allocator(), pt->param_count);
|
|
auto ordered_operands = array_make<Operand>(temporary_allocator(), pt->param_count);
|
|
defer ({
|
|
for (Operand const &o : ordered_operands) {
|
|
if (o.expr != nullptr) {
|
|
call->viral_state_flags |= o.expr->viral_state_flags;
|
|
}
|
|
}
|
|
});
|
|
|
|
isize positional_operand_count = positional_operands.count;
|
|
if (variadic) {
|
|
positional_operand_count = gb_min(positional_operands.count, pt->variadic_index);
|
|
} else if (positional_operand_count > pt->param_count) {
|
|
err = CallArgumentError_TooManyArguments;
|
|
char const *err_fmt = "Too many arguments for '%s', expected %td arguments, got %td";
|
|
if (show_error) {
|
|
gbString proc_str = expr_to_string(ce->proc);
|
|
defer (gb_string_free(proc_str));
|
|
error(call, err_fmt, proc_str, param_count_excluding_defaults, positional_operands.count);
|
|
}
|
|
return err;
|
|
}
|
|
positional_operand_count = gb_min(positional_operand_count, pt->param_count);
|
|
|
|
for (isize i = 0; i < positional_operand_count; i++) {
|
|
ordered_operands[i] = positional_operands[i];
|
|
visited[i] = true;
|
|
}
|
|
|
|
auto variadic_operands = slice(slice_from_array(positional_operands), positional_operand_count, positional_operands.count);
|
|
|
|
bool named_variadic_param = false;
|
|
|
|
if (named_operands.count != 0) {
|
|
GB_ASSERT(ce->split_args->named.count == named_operands.count);
|
|
for_array(i, ce->split_args->named) {
|
|
Ast *arg = ce->split_args->named[i];
|
|
Operand operand = named_operands[i];
|
|
|
|
ast_node(fv, FieldValue, arg);
|
|
if (fv->field->kind != Ast_Ident) {
|
|
if (show_error) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(arg, "Invalid parameter name '%s' in procedure call", expr_str);
|
|
gb_string_free(expr_str);
|
|
}
|
|
err = CallArgumentError_InvalidFieldValue;
|
|
continue;
|
|
}
|
|
String name = fv->field->Ident.token.string;
|
|
isize param_index = lookup_procedure_parameter(pt, name);
|
|
if (param_index < 0) {
|
|
if (show_error) {
|
|
error(arg, "No parameter named '%.*s' for this procedure type", LIT(name));
|
|
}
|
|
err = CallArgumentError_ParameterNotFound;
|
|
continue;
|
|
}
|
|
if (pt->variadic && param_index == pt->variadic_index) {
|
|
named_variadic_param = true;
|
|
}
|
|
if (visited[param_index]) {
|
|
if (show_error) {
|
|
error(arg, "Duplicate parameter '%.*s' in procedure call", LIT(name));
|
|
}
|
|
err = CallArgumentError_DuplicateParameter;
|
|
continue;
|
|
}
|
|
|
|
visited[param_index] = true;
|
|
ordered_operands[param_index] = operand;
|
|
}
|
|
}
|
|
|
|
isize dummy_argument_count = 0;
|
|
bool actually_variadic = false;
|
|
|
|
if (variadic) {
|
|
if (visited[pt->variadic_index] &&
|
|
positional_operand_count < positional_operands.count) {
|
|
if (show_error) {
|
|
String name = pt->params->Tuple.variables[pt->variadic_index]->token.string;
|
|
error(call, "Variadic parameters already handled with a named argument '%.*s' in procedure call", LIT(name));
|
|
}
|
|
err = CallArgumentError_DuplicateParameter;
|
|
} else if (!visited[pt->variadic_index]) {
|
|
visited[pt->variadic_index] = true;
|
|
|
|
Operand *variadic_operand = &ordered_operands[pt->variadic_index];
|
|
|
|
if (vari_expand) {
|
|
if (variadic_operands.count == 0) {
|
|
error(call, "'..' in the wrong position");
|
|
} else {
|
|
GB_ASSERT(variadic_operands.count != 0);
|
|
*variadic_operand = variadic_operands[0];
|
|
variadic_operand->type = default_type(variadic_operand->type);
|
|
actually_variadic = true;
|
|
}
|
|
} else {
|
|
AstFile *f = call->file();
|
|
|
|
// HACK(bill): this is an awful hack
|
|
Operand o = {};
|
|
o.mode = Addressing_Value;
|
|
o.expr = ast_ident(f, make_token_ident("nil"));
|
|
o.expr->Ident.token.pos = ast_token(call).pos;
|
|
if (variadic_operands.count != 0) {
|
|
actually_variadic = true;
|
|
o.expr->Ident.token.pos = ast_token(variadic_operands[0].expr).pos;
|
|
|
|
Entity *vt = pt->params->Tuple.variables[pt->variadic_index];
|
|
o.type = vt->type;
|
|
} else {
|
|
dummy_argument_count += 1;
|
|
o.type = t_untyped_nil;
|
|
}
|
|
*variadic_operand = o;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
for (isize i = 0; i < pt->param_count; i++) {
|
|
if (!visited[i]) {
|
|
Entity *e = pt->params->Tuple.variables[i];
|
|
bool context_allocator_error = false;
|
|
if (e->kind == Entity_Variable) {
|
|
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
|
|
if (ast_file_vet_explicit_allocators(c->file)) {
|
|
// NOTE(lucas): check if we are trying to default to context.allocator or context.temp_allocator
|
|
if (e->Variable.param_value.original_ast_expr->kind == Ast_SelectorExpr) {
|
|
auto& expr = e->Variable.param_value.original_ast_expr->SelectorExpr.expr;
|
|
auto& selector = e->Variable.param_value.original_ast_expr->SelectorExpr.selector;
|
|
if (expr->kind == Ast_Implicit &&
|
|
expr->Implicit.string == STR_LIT("context") &&
|
|
selector->kind == Ast_Ident &&
|
|
(selector->Ident.token.string == STR_LIT("allocator") ||
|
|
selector->Ident.token.string == STR_LIT("temp_allocator"))) {
|
|
context_allocator_error = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!context_allocator_error) {
|
|
ordered_operands[i].mode = Addressing_Value;
|
|
ordered_operands[i].type = e->type;
|
|
ordered_operands[i].expr = e->Variable.param_value.original_ast_expr;
|
|
|
|
dummy_argument_count += 1;
|
|
score += assign_score_function(1);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (show_error) {
|
|
if (context_allocator_error) {
|
|
gbString str = type_to_string(e->type);
|
|
error(call, "Parameter '%.*s' of type '%s' must be explicitly provided in procedure call",
|
|
LIT(e->token.string), str);
|
|
gb_string_free(str);
|
|
} else if (e->kind == Entity_TypeName) {
|
|
error(call, "Type parameter '%.*s' is missing in procedure call",
|
|
LIT(e->token.string));
|
|
} else if (e->kind == Entity_Constant && e->Constant.value.kind != ExactValue_Invalid) {
|
|
// Ignore
|
|
} else {
|
|
gbString str = type_to_string(e->type);
|
|
error(call, "Parameter '%.*s' of type '%s' is missing in procedure call",
|
|
LIT(e->token.string), str);
|
|
gb_string_free(str);
|
|
}
|
|
}
|
|
err = CallArgumentError_ParameterMissing;
|
|
}
|
|
}
|
|
|
|
auto eval_param_and_score = [](CheckerContext *c, Operand *o, Type *param_type, CallArgumentError &err, bool param_is_variadic, Entity *e, bool show_error) -> i64 {
|
|
bool allow_array_programming = !(e && (e->flags & EntityFlag_NoBroadcast));
|
|
i64 s = 0;
|
|
if (!check_is_assignable_to_with_score(c, o, param_type, &s, param_is_variadic, allow_array_programming)) {
|
|
bool ok = false;
|
|
if (e && (e->flags & EntityFlag_AnyInt)) {
|
|
if (is_type_integer(param_type)) {
|
|
ok = check_is_castable_to(c, o, param_type);
|
|
}
|
|
}
|
|
if (!allow_array_programming && check_is_assignable_to_with_score(c, o, param_type, nullptr, param_is_variadic, !allow_array_programming)) {
|
|
if (show_error) {
|
|
error(o->expr, "'#no_broadcast' disallows automatic broadcasting a value across all elements of an array-like type in a procedure argument");
|
|
}
|
|
}
|
|
if (ok) {
|
|
s = assign_score_function(MAXIMUM_TYPE_DISTANCE);
|
|
} else {
|
|
if (show_error) {
|
|
check_assignment(c, o, param_type, str_lit("procedure argument"));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
} else if (show_error) {
|
|
check_assignment(c, o, param_type, str_lit("procedure argument"));
|
|
}
|
|
|
|
if (e && e->flags & EntityFlag_ConstInput) {
|
|
if (o->mode != Addressing_Constant) {
|
|
if (show_error) {
|
|
error(o->expr, "Expected a constant value for the argument '%.*s'", LIT(e->token.string));
|
|
}
|
|
err = CallArgumentError_NoneConstantParameter;
|
|
}
|
|
}
|
|
|
|
|
|
if (!err && is_type_any(param_type)) {
|
|
add_type_info_type(c, o->type);
|
|
}
|
|
if (o->mode == Addressing_Type && is_type_typeid(param_type)) {
|
|
add_type_info_type(c, o->type);
|
|
add_type_and_value(c, o->expr, Addressing_Value, param_type, exact_value_typeid(o->type));
|
|
} else if (show_error && is_type_untyped(o->type)) {
|
|
update_untyped_expr_type(c, o->expr, param_type, true);
|
|
}
|
|
|
|
return s;
|
|
};
|
|
|
|
|
|
if (ordered_operands.count == 0 && param_count_excluding_defaults == 0) {
|
|
err = CallArgumentError_None;
|
|
|
|
if (variadic) {
|
|
GB_ASSERT(pt->params != nullptr && pt->params->Tuple.variables.count > 0);
|
|
Type *t = pt->params->Tuple.variables[0]->type;
|
|
if (is_type_polymorphic(t)) {
|
|
if (show_error) {
|
|
error(call, "Ambiguous call to a polymorphic variadic procedure with no variadic input");
|
|
}
|
|
err = CallArgumentError_AmbiguousPolymorphicVariadic;
|
|
}
|
|
}
|
|
} else {
|
|
if (pt->is_polymorphic && !pt->is_poly_specialized && err == CallArgumentError_None) {
|
|
PolyProcData poly_proc_data = {};
|
|
if (find_or_generate_polymorphic_procedure_from_parameters(c, entity, &ordered_operands, call, &poly_proc_data)) {
|
|
gen_entity = poly_proc_data.gen_entity;
|
|
Type *gept = base_type(gen_entity->type);
|
|
GB_ASSERT(is_type_proc(gept));
|
|
final_proc_type = gen_entity->type;
|
|
pt = &gept->Proc;
|
|
|
|
} else {
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
}
|
|
|
|
for (isize i = 0; i < pt->param_count; i++) {
|
|
Operand *o = &ordered_operands[i];
|
|
if (o->mode == Addressing_Invalid) {
|
|
continue;
|
|
}
|
|
|
|
Entity *e = pt->params->Tuple.variables[i];
|
|
bool param_is_variadic = pt->variadic && pt->variadic_index == i;
|
|
|
|
if (e->kind == Entity_TypeName) {
|
|
GB_ASSERT(pt->is_polymorphic);
|
|
if (o->mode != Addressing_Type) {
|
|
if (show_error) {
|
|
error(o->expr, "Expected a type for the argument '%.*s'", LIT(e->token.string));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
if (are_types_identical(e->type, o->type)) {
|
|
score += assign_score_function(1);
|
|
} else {
|
|
score += assign_score_function(MAXIMUM_TYPE_DISTANCE);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (param_is_variadic) {
|
|
if (!named_variadic_param) {
|
|
continue;
|
|
}
|
|
}
|
|
score += eval_param_and_score(c, o, e->type, err, false, e, show_error);
|
|
}
|
|
}
|
|
|
|
if (variadic) {
|
|
Entity *var_entity = pt->params->Tuple.variables[pt->variadic_index];
|
|
Type *slice = var_entity->type;
|
|
GB_ASSERT(is_type_slice(slice));
|
|
Type *elem = base_type(slice)->Slice.elem;
|
|
Type *t = elem;
|
|
|
|
if (is_type_polymorphic(t)) {
|
|
if (show_error) {
|
|
error(call, "Ambiguous call to a polymorphic variadic procedure with no variadic input %s", type_to_string(final_proc_type));
|
|
}
|
|
err = CallArgumentError_AmbiguousPolymorphicVariadic;
|
|
}
|
|
|
|
for_array(operand_index, variadic_operands) {
|
|
Operand *o = &variadic_operands[operand_index];
|
|
if (vari_expand) {
|
|
t = slice;
|
|
if (operand_index > 0) {
|
|
if (show_error) {
|
|
error(o->expr, "'..' in a variadic procedure can only have one variadic argument at the end");
|
|
}
|
|
if (data) {
|
|
data->score = score;
|
|
data->result_type = final_proc_type->Proc.results;
|
|
data->gen_entity = gen_entity;
|
|
}
|
|
return CallArgumentError_MultipleVariadicExpand;
|
|
}
|
|
}
|
|
score += eval_param_and_score(c, o, t, err, true, var_entity, show_error);
|
|
}
|
|
|
|
if (!vari_expand && variadic_operands.count != 0) {
|
|
// NOTE(bill, 2024-07-14): minimize the stack usage for variadic parameters with the backing array
|
|
if (c->decl) {
|
|
bool found = false;
|
|
for (auto &vr : c->decl->variadic_reuses) {
|
|
if (are_types_identical(slice, vr.slice_type)) {
|
|
vr.max_count = gb_max(vr.max_count, variadic_operands.count);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
array_add(&c->decl->variadic_reuses, VariadicReuseData{slice, variadic_operands.count});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (data) {
|
|
data->score = score;
|
|
data->result_type = final_proc_type->Proc.results;
|
|
data->gen_entity = gen_entity;
|
|
|
|
|
|
Ast *proc_lit = nullptr;
|
|
if (ce->proc->tav.value.kind == ExactValue_Procedure) {
|
|
Ast *vp = unparen_expr(ce->proc->tav.value.value_procedure);
|
|
if (vp && vp->kind == Ast_ProcLit) {
|
|
proc_lit = vp;
|
|
}
|
|
}
|
|
if (proc_lit == nullptr) {
|
|
add_type_and_value(c, ce->proc, Addressing_Value, final_proc_type, {});
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
gb_internal bool is_call_expr_field_value(AstCallExpr *ce) {
|
|
GB_ASSERT(ce != nullptr);
|
|
|
|
if (ce->args.count == 0) {
|
|
return false;
|
|
}
|
|
return ce->args[0]->kind == Ast_FieldValue;
|
|
}
|
|
|
|
gb_internal Entity **populate_proc_parameter_list(CheckerContext *c, Type *proc_type, isize *lhs_count_) {
|
|
Entity **lhs = nullptr;
|
|
isize lhs_count = -1;
|
|
|
|
if (proc_type == nullptr || proc_type == t_invalid) {
|
|
return nullptr;
|
|
}
|
|
|
|
GB_ASSERT(is_type_proc(proc_type));
|
|
TypeProc *pt = &base_type(proc_type)->Proc;
|
|
|
|
if (!pt->is_polymorphic || pt->is_poly_specialized) {
|
|
if (pt->params != nullptr) {
|
|
lhs = pt->params->Tuple.variables.data;
|
|
lhs_count = pt->params->Tuple.variables.count;
|
|
}
|
|
} else {
|
|
// NOTE(bill): Create 'lhs' list in order to ignore parameters which are polymorphic
|
|
if (pt->params == nullptr) {
|
|
lhs_count = 0;
|
|
} else {
|
|
lhs_count = pt->params->Tuple.variables.count;
|
|
}
|
|
lhs = gb_alloc_array(permanent_allocator(), Entity *, lhs_count);
|
|
for (isize i = 0; i < lhs_count; i++) {
|
|
Entity *e = pt->params->Tuple.variables[i];
|
|
if (!is_type_polymorphic(e->type)) {
|
|
lhs[i] = e;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (lhs_count_) *lhs_count_ = lhs_count;
|
|
|
|
return lhs;
|
|
}
|
|
|
|
|
|
gb_internal bool evaluate_where_clauses(CheckerContext *ctx, Ast *call_expr, Scope *scope, Slice<Ast *> *clauses, bool print_err) {
|
|
if (clauses != nullptr) {
|
|
for (Ast *clause : *clauses) {
|
|
Operand o = {};
|
|
check_expr(ctx, &o, clause);
|
|
if (o.mode != Addressing_Constant) {
|
|
if (print_err) error(clause, "'where' clauses expect a constant boolean evaluation");
|
|
if (print_err && call_expr) error(call_expr, "at caller location");
|
|
return false;
|
|
} else if (o.value.kind != ExactValue_Bool) {
|
|
if (print_err) error(clause, "'where' clauses expect a constant boolean evaluation");
|
|
if (print_err && call_expr) error(call_expr, "at caller location");
|
|
return false;
|
|
} else if (!o.value.value_bool) {
|
|
if (print_err) {
|
|
ERROR_BLOCK();
|
|
|
|
gbString str = expr_to_string(clause);
|
|
error(clause, "'where' clause evaluated to false:\n\t%s", str);
|
|
gb_string_free(str);
|
|
|
|
if (scope != nullptr) {
|
|
isize print_count = 0;
|
|
for (auto const &entry : scope->elements) {
|
|
Entity *e = entry.value;
|
|
switch (e->kind) {
|
|
case Entity_TypeName: {
|
|
// if (print_count == 0) error_line("\n\tWith the following definitions:\n");
|
|
|
|
gbString str = type_to_string(e->type);
|
|
error_line("\t\t%.*s :: %s;\n", LIT(e->token.string), str);
|
|
gb_string_free(str);
|
|
print_count += 1;
|
|
break;
|
|
}
|
|
case Entity_Constant: {
|
|
if (print_count == 0) error_line("\n\tWith the following definitions:\n");
|
|
|
|
gbString str = exact_value_to_string(e->Constant.value);
|
|
if (is_type_untyped(e->type)) {
|
|
error_line("\t\t%.*s :: %s;\n", LIT(e->token.string), str);
|
|
} else {
|
|
gbString t = type_to_string(e->type);
|
|
error_line("\t\t%.*s : %s : %s;\n", LIT(e->token.string), t, str);
|
|
gb_string_free(t);
|
|
}
|
|
gb_string_free(str);
|
|
|
|
print_count += 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (call_expr) {
|
|
TokenPos pos = ast_token(call_expr).pos;
|
|
error_line("%s at caller location\n", token_pos_to_string(pos));
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (ast_file_vet_style(ctx->file)) {
|
|
Ast *c = unparen_expr(clause);
|
|
if (c->kind == Ast_BinaryExpr && c->BinaryExpr.op.kind == Token_CmpAnd) {
|
|
ERROR_BLOCK();
|
|
error(c, "Prefer to separate 'where' clauses with a comma rather than '&&'");
|
|
gbString x = expr_to_string(c->BinaryExpr.left);
|
|
gbString y = expr_to_string(c->BinaryExpr.right);
|
|
error_line("\tSuggestion: '%s, %s'\n", x, y);
|
|
gb_string_free(y);
|
|
gb_string_free(x);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
gb_internal bool check_named_arguments(CheckerContext *c, Type *type, Slice<Ast *> const &named_args, Array<Operand> *named_operands, bool show_error) {
|
|
bool success = true;
|
|
|
|
type = base_type(type);
|
|
if (named_args.count > 0) {
|
|
TypeProc *pt = nullptr;
|
|
if (is_type_proc(type)) {
|
|
pt = &type->Proc;
|
|
}
|
|
|
|
for_array(i, named_args) {
|
|
Ast *arg = named_args[i];
|
|
if (arg->kind != Ast_FieldValue) {
|
|
if (show_error) {
|
|
error(arg, "Expected a 'field = value'");
|
|
}
|
|
return false;
|
|
}
|
|
ast_node(fv, FieldValue, arg);
|
|
if (fv->field->kind != Ast_Ident) {
|
|
if (show_error) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(arg, "Invalid parameter name '%s' in procedure call", expr_str);
|
|
gb_string_free(expr_str);
|
|
}
|
|
success = false;
|
|
continue;
|
|
}
|
|
String key = fv->field->Ident.token.string;
|
|
Ast *value = fv->value;
|
|
|
|
Type *type_hint = nullptr;
|
|
if (pt) {
|
|
isize param_index = lookup_procedure_parameter(pt, key);
|
|
if (param_index < 0) {
|
|
if (show_error) {
|
|
error(value, "No parameter named '%.*s' for this procedure type", LIT(key));
|
|
}
|
|
success = false;
|
|
continue;
|
|
}
|
|
|
|
Entity *e = pt->params->Tuple.variables[param_index];
|
|
if (!is_type_polymorphic(e->type)) {
|
|
type_hint = e->type;
|
|
}
|
|
|
|
}
|
|
Operand o = {};
|
|
check_expr_with_type_hint(c, &o, value, type_hint);
|
|
if (o.mode == Addressing_Invalid) {
|
|
success = false;
|
|
}
|
|
array_add(named_operands, o);
|
|
}
|
|
|
|
}
|
|
return success;
|
|
}
|
|
|
|
gb_internal bool check_call_arguments_single(CheckerContext *c, Ast *call, Operand *operand,
|
|
Entity *e, Type *proc_type,
|
|
Array<Operand> const &positional_operands, Array<Operand> const &named_operands,
|
|
CallArgumentErrorMode show_error_mode,
|
|
CallArgumentData *data) {
|
|
|
|
bool return_on_failure = show_error_mode == CallArgumentErrorMode::NoErrors;
|
|
|
|
Ast *ident = operand->expr;
|
|
while (ident->kind == Ast_SelectorExpr) {
|
|
Ast *s = ident->SelectorExpr.selector;
|
|
ident = s;
|
|
}
|
|
|
|
if (e == nullptr) {
|
|
e = entity_of_node(ident);
|
|
if (e != nullptr) {
|
|
proc_type = e->type;
|
|
}
|
|
}
|
|
|
|
GB_ASSERT(proc_type != nullptr);
|
|
proc_type = base_type(proc_type);
|
|
if (proc_type == t_invalid) {
|
|
return false;
|
|
}
|
|
GB_ASSERT(proc_type->kind == Type_Proc);
|
|
|
|
CallArgumentError err = check_call_arguments_internal(c, call, e, proc_type, positional_operands, named_operands, show_error_mode, data);
|
|
if (return_on_failure && err != CallArgumentError_None) {
|
|
return false;
|
|
}
|
|
|
|
Entity *entity_to_use = data->gen_entity != nullptr ? data->gen_entity : e;
|
|
if (!return_on_failure && entity_to_use != nullptr) {
|
|
add_entity_use(c, ident, entity_to_use);
|
|
update_untyped_expr_type(c, operand->expr, entity_to_use->type, true);
|
|
add_type_and_value(c, operand->expr, operand->mode, entity_to_use->type, operand->value);
|
|
}
|
|
|
|
if (data->gen_entity != nullptr) {
|
|
Entity *e = data->gen_entity;
|
|
DeclInfo *decl = data->gen_entity->decl_info;
|
|
CheckerContext ctx = *c;
|
|
ctx.scope = decl->scope;
|
|
ctx.decl = decl;
|
|
ctx.proc_name = e->token.string;
|
|
ctx.curr_proc_decl = decl;
|
|
ctx.curr_proc_sig = e->type;
|
|
|
|
GB_ASSERT(decl->proc_lit->kind == Ast_ProcLit);
|
|
bool ok = evaluate_where_clauses(&ctx, call, decl->scope, &decl->proc_lit->ProcLit.where_clauses, !return_on_failure);
|
|
if (return_on_failure) {
|
|
if (!ok) {
|
|
return false;
|
|
}
|
|
|
|
} else {
|
|
decl->where_clauses_evaluated = true;
|
|
if (ok && (data->gen_entity->flags & EntityFlag_ProcBodyChecked) == 0) {
|
|
check_procedure_later(c->checker, e->file, e->token, decl, e->type, decl->proc_lit->ProcLit.body, decl->proc_lit->ProcLit.tags);
|
|
}
|
|
if (is_type_proc(data->gen_entity->type)) {
|
|
Type *t = base_type(entity_to_use->type);
|
|
data->result_type = t->Proc.results;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
gb_internal CallArgumentData check_call_arguments_proc_group(CheckerContext *c, Operand *operand, Ast *call) {
|
|
ast_node(ce, CallExpr, call);
|
|
GB_ASSERT(ce->split_args != nullptr);
|
|
|
|
Slice<Ast *> const &positional_args = ce->split_args->positional;
|
|
Slice<Ast *> const &named_args = ce->split_args->named;
|
|
|
|
CallArgumentData data = {};
|
|
data.result_type = t_invalid;
|
|
|
|
GB_ASSERT(operand->mode == Addressing_ProcGroup);
|
|
auto procs = proc_group_entities_cloned(c, *operand);
|
|
|
|
if (procs.count > 1) {
|
|
isize max_arg_count = positional_args.count + named_args.count;
|
|
for (Ast *arg : positional_args) {
|
|
// NOTE(bill): The only thing that may have multiple values
|
|
// will be a call expression (assuming `or_return` and `()` will be stripped)
|
|
arg = strip_or_return_expr(arg);
|
|
if (arg && arg->kind == Ast_CallExpr) {
|
|
max_arg_count = ISIZE_MAX;
|
|
break;
|
|
}
|
|
}
|
|
if (max_arg_count != ISIZE_MAX) for (Ast *arg : named_args) {
|
|
// NOTE(bill): The only thing that may have multiple values
|
|
// will be a call expression (assuming `or_return` and `()` will be stripped)
|
|
if (arg->kind == Ast_FieldValue) {
|
|
arg = strip_or_return_expr(arg->FieldValue.value);
|
|
if (arg && arg->kind == Ast_CallExpr) {
|
|
max_arg_count = ISIZE_MAX;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ignore named arguments first
|
|
for (Ast *arg : named_args) {
|
|
if (arg->kind != Ast_FieldValue) {
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, arg);
|
|
if (fv->field->kind != Ast_Ident) {
|
|
continue;
|
|
}
|
|
String key = fv->field->Ident.token.string;
|
|
for (isize proc_index = procs.count-1; proc_index >= 0; proc_index--) {
|
|
Type *t = procs[proc_index]->type;
|
|
if (is_type_proc(t)) {
|
|
isize param_index = lookup_procedure_parameter(t, key);
|
|
if (param_index < 0) {
|
|
array_unordered_remove(&procs, proc_index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (procs.count == 0) {
|
|
// if any of the named arguments are wrong, the `procs` will be empty
|
|
// just start from scratch
|
|
array_free(&procs);
|
|
procs = proc_group_entities_cloned(c, *operand);
|
|
}
|
|
|
|
// filter by positional argument length
|
|
for (isize proc_index = 0; proc_index < procs.count; /**/) {
|
|
Entity *proc = procs[proc_index];
|
|
Type *pt = base_type(proc->type);
|
|
if (!(pt != nullptr && is_type_proc(pt))) {
|
|
proc_index++;
|
|
continue;
|
|
}
|
|
|
|
isize param_count = 0;
|
|
isize param_count_excluding_defaults = get_procedure_param_count_excluding_defaults(pt, ¶m_count);
|
|
|
|
if (param_count_excluding_defaults > max_arg_count) {
|
|
array_unordered_remove(&procs, proc_index);
|
|
continue;
|
|
}
|
|
proc_index++;
|
|
}
|
|
}
|
|
|
|
Entity **lhs = nullptr;
|
|
isize lhs_count = -1;
|
|
i32 variadic_index = -1;
|
|
|
|
auto positional_operands = array_make<Operand>(heap_allocator(), 0, 0);
|
|
auto named_operands = array_make<Operand>(heap_allocator(), 0, 0);
|
|
defer (array_free(&positional_operands));
|
|
defer (array_free(&named_operands));
|
|
|
|
if (procs.count == 1) {
|
|
Entity *e = procs[0];
|
|
Type *pt = base_type(e->type);
|
|
if (pt != nullptr && is_type_proc(pt)) {
|
|
lhs = populate_proc_parameter_list(c, pt, &lhs_count);
|
|
if (pt->Proc.variadic) {
|
|
variadic_index = pt->Proc.variadic_index;
|
|
}
|
|
}
|
|
check_unpack_arguments(c, lhs, lhs_count, &positional_operands, positional_args, UnpackFlag_None, variadic_index);
|
|
|
|
if (check_named_arguments(c, e->type, named_args, &named_operands, true)) {
|
|
check_call_arguments_single(c, call, operand,
|
|
e, e->type,
|
|
positional_operands, named_operands,
|
|
CallArgumentErrorMode::ShowErrors,
|
|
&data);
|
|
}
|
|
return data;
|
|
}
|
|
|
|
{
|
|
// NOTE(bill, 2019-07-13): This code is used to improve the type inference for procedure groups
|
|
// where the same positional parameter has the same type value (and ellipsis)
|
|
isize proc_arg_count = -1;
|
|
for (Entity *p : procs) {
|
|
Type *pt = base_type(p->type);
|
|
if (pt != nullptr && is_type_proc(pt)) {
|
|
if (proc_arg_count < 0) {
|
|
proc_arg_count = pt->Proc.param_count;
|
|
} else {
|
|
proc_arg_count = gb_min(proc_arg_count, pt->Proc.param_count);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (proc_arg_count >= 0) {
|
|
lhs_count = proc_arg_count;
|
|
if (lhs_count > 0) {
|
|
lhs = gb_alloc_array(heap_allocator(), Entity *, lhs_count);
|
|
for (isize param_index = 0; param_index < lhs_count; param_index++) {
|
|
Entity *e = nullptr;
|
|
for (Entity *p : procs) {
|
|
Type *pt = base_type(p->type);
|
|
if (!(pt != nullptr && is_type_proc(pt))) {
|
|
continue;
|
|
}
|
|
|
|
if (e == nullptr) {
|
|
e = pt->Proc.params->Tuple.variables[param_index];
|
|
} else {
|
|
Entity *f = pt->Proc.params->Tuple.variables[param_index];
|
|
if (e == f) {
|
|
continue;
|
|
}
|
|
if (are_types_identical(e->type, f->type)) {
|
|
bool ee = (e->flags & EntityFlag_Ellipsis) != 0;
|
|
bool fe = (f->flags & EntityFlag_Ellipsis) != 0;
|
|
if (ee == fe) {
|
|
continue;
|
|
}
|
|
}
|
|
// NOTE(bill): Entities are not close enough to be used
|
|
e = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
lhs[param_index] = e;
|
|
}
|
|
|
|
for (Entity *p : procs) {
|
|
Type *pt = base_type(p->type);
|
|
if (!(pt != nullptr && is_type_proc(pt))) {
|
|
continue;
|
|
}
|
|
|
|
if (pt->Proc.is_polymorphic) {
|
|
if (variadic_index == -1) {
|
|
variadic_index = pt->Proc.variadic_index;
|
|
} else if (variadic_index != pt->Proc.variadic_index) {
|
|
variadic_index = -1;
|
|
break;
|
|
}
|
|
} else {
|
|
variadic_index = -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
check_unpack_arguments(c, lhs, lhs_count, &positional_operands, positional_args, UnpackFlag_None, variadic_index);
|
|
|
|
for_array(i, named_args) {
|
|
Ast *arg = named_args[i];
|
|
if (arg->kind != Ast_FieldValue) {
|
|
error(arg, "Expected a 'field = value'");
|
|
return data;
|
|
}
|
|
ast_node(fv, FieldValue, arg);
|
|
if (fv->field->kind != Ast_Ident) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(arg, "Invalid parameter name '%s' in procedure call", expr_str);
|
|
gb_string_free(expr_str);
|
|
return data;
|
|
}
|
|
String key = fv->field->Ident.token.string;
|
|
Ast *value = fv->value;
|
|
|
|
Type *type_hint = nullptr;
|
|
|
|
for (isize lhs_idx = 0; lhs_idx < lhs_count; lhs_idx++) {
|
|
Entity *e = lhs[lhs_idx];
|
|
if (e != nullptr && e->token.string == key &&
|
|
!is_type_polymorphic(e->type)) {
|
|
type_hint = e->type;
|
|
break;
|
|
}
|
|
}
|
|
Operand o = {};
|
|
check_expr_with_type_hint(c, &o, value, type_hint);
|
|
array_add(&named_operands, o);
|
|
}
|
|
|
|
gb_free(heap_allocator(), lhs);
|
|
|
|
auto valids = array_make<ValidIndexAndScore>(heap_allocator(), 0, procs.count);
|
|
defer (array_free(&valids));
|
|
|
|
auto proc_entities = array_make<Entity *>(heap_allocator(), 0, procs.count*2 + 1);
|
|
defer (array_free(&proc_entities));
|
|
for (Entity *proc : procs) {
|
|
array_add(&proc_entities, proc);
|
|
}
|
|
|
|
int max_matched_features = 0;
|
|
|
|
gbString expr_name = expr_to_string(operand->expr);
|
|
defer (gb_string_free(expr_name));
|
|
|
|
for_array(i, procs) {
|
|
Entity *p = procs[i];
|
|
if (p->flags & EntityFlag_Disabled) {
|
|
continue;
|
|
}
|
|
|
|
Type *pt = base_type(p->type);
|
|
if (pt != nullptr && is_type_proc(pt)) {
|
|
CallArgumentData data = {};
|
|
CheckerContext ctx = *c;
|
|
|
|
ctx.no_polymorphic_errors = true;
|
|
ctx.allow_polymorphic_types = is_type_polymorphic(pt);
|
|
ctx.hide_polymorphic_errors = true;
|
|
|
|
bool is_a_candidate = check_call_arguments_single(&ctx, call, operand,
|
|
p, pt,
|
|
positional_operands, named_operands,
|
|
CallArgumentErrorMode::NoErrors,
|
|
&data);
|
|
if (!is_a_candidate) {
|
|
continue;
|
|
}
|
|
isize index = i;
|
|
|
|
ValidIndexAndScore item = {};
|
|
item.score = data.score;
|
|
|
|
if (data.gen_entity != nullptr) {
|
|
array_add(&proc_entities, data.gen_entity);
|
|
index = proc_entities.count-1;
|
|
|
|
// prefer non-polymorphic procedures over polymorphic
|
|
item.score += assign_score_function(1);
|
|
}
|
|
|
|
max_matched_features = gb_max(max_matched_features, matched_target_features(&pt->Proc));
|
|
|
|
item.index = index;
|
|
array_add(&valids, item);
|
|
}
|
|
}
|
|
|
|
if (max_matched_features > 0) {
|
|
for_array(i, valids) {
|
|
Entity *p = procs[valids[i].index];
|
|
Type *t = base_type(p->type);
|
|
GB_ASSERT(t->kind == Type_Proc);
|
|
|
|
int matched = matched_target_features(&t->Proc);
|
|
valids[i].score += assign_score_function(max_matched_features-matched);
|
|
}
|
|
}
|
|
|
|
if (valids.count > 1) {
|
|
array_sort(valids, valid_index_and_score_cmp);
|
|
i64 best_score = valids[0].score;
|
|
Entity *best_entity = proc_entities[valids[0].index];
|
|
GB_ASSERT(best_entity != nullptr);
|
|
for (isize i = 1; i < valids.count; i++) {
|
|
if (best_score > valids[i].score) {
|
|
valids.count = i;
|
|
break;
|
|
}
|
|
if (best_entity == proc_entities[valids[i].index]) {
|
|
valids.count = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto print_argument_types = [&]() {
|
|
error_line("\tGiven argument types: (");
|
|
isize i = 0;
|
|
for (Operand const &o : positional_operands) {
|
|
if (i++ > 0) error_line(", ");
|
|
gbString type = type_to_string(o.type);
|
|
defer (gb_string_free(type));
|
|
error_line("%s", type);
|
|
}
|
|
for (Operand const &o : named_operands) {
|
|
if (i++ > 0) error_line(", ");
|
|
|
|
gbString type = type_to_string(o.type);
|
|
defer (gb_string_free(type));
|
|
|
|
if (i < ce->split_args->named.count) {
|
|
Ast *named_field = ce->split_args->named[i];
|
|
ast_node(fv, FieldValue, named_field);
|
|
|
|
gbString field = expr_to_string(fv->field);
|
|
defer (gb_string_free(field));
|
|
|
|
error_line("%s = %s", field, type);
|
|
} else {
|
|
error_line("%s", type);
|
|
}
|
|
}
|
|
error_line(")\n");
|
|
};
|
|
|
|
if (valids.count == 0) {
|
|
ERROR_BLOCK();
|
|
|
|
error(operand->expr, "No procedures or ambiguous call for procedure group '%s' that match with the given arguments", expr_name);
|
|
if (positional_operands.count == 0 && named_operands.count == 0) {
|
|
error_line("\tNo given arguments\n");
|
|
} else {
|
|
print_argument_types();
|
|
}
|
|
|
|
if (procs.count == 0) {
|
|
procs = proc_group_entities_cloned(c, *operand);
|
|
}
|
|
if (procs.count > 0) {
|
|
error_line("Did you mean to use one of the following:\n");
|
|
}
|
|
|
|
// Try to reduce the list further for `$T: typeid` like parameters
|
|
bool *possibly_ignore = gb_alloc_array(temporary_allocator(), bool, procs.count);
|
|
isize possibly_ignore_set = 0;
|
|
|
|
if (true) {
|
|
// NOTE(bill): This currently only checks for #soa types
|
|
for_array(i, procs) {
|
|
Entity *proc = procs[i];
|
|
Type *t = base_type(proc->type);
|
|
if (t == nullptr || t->kind != Type_Proc) {
|
|
continue;
|
|
}
|
|
|
|
TypeProc *pt = &t->Proc;
|
|
if (pt->param_count == 0) {
|
|
continue;
|
|
}
|
|
|
|
for_array(j, pt->params->Tuple.variables) {
|
|
Entity *v = pt->params->Tuple.variables[j];
|
|
if (v->kind != Entity_TypeName) {
|
|
continue;
|
|
}
|
|
|
|
Type *dst_t = base_type(v->type);
|
|
while (dst_t->kind == Type_Generic && dst_t->Generic.specialized) {
|
|
dst_t = dst_t->Generic.specialized;
|
|
}
|
|
|
|
if (j >= positional_operands.count) {
|
|
continue;
|
|
}
|
|
Operand const &o = positional_operands[j];
|
|
if (o.mode != Addressing_Type) {
|
|
continue;
|
|
}
|
|
Type *t = base_type(o.type);
|
|
if (t->kind == dst_t->kind) {
|
|
continue;
|
|
}
|
|
Type *st = base_type(type_deref(o.type));
|
|
Type *dt = base_type(type_deref(dst_t));
|
|
if (st->kind == dt->kind) {
|
|
continue;
|
|
}
|
|
if (is_type_soa_struct(st)) {
|
|
possibly_ignore[i] = true;
|
|
possibly_ignore_set += 1;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (possibly_ignore_set == procs.count) {
|
|
possibly_ignore_set = 0;
|
|
}
|
|
|
|
|
|
isize max_name_length = 0;
|
|
isize max_type_length = 0;
|
|
for_array(i, procs) {
|
|
if (possibly_ignore_set != 0 && possibly_ignore[i]) {
|
|
continue;
|
|
}
|
|
Entity *proc = procs[i];
|
|
Type *t = base_type(proc->type);
|
|
if (t == t_invalid) continue;
|
|
String prefix = {};
|
|
String prefix_sep = {};
|
|
if (proc->pkg) {
|
|
prefix = proc->pkg->name;
|
|
prefix_sep = str_lit(".");
|
|
}
|
|
String name = proc->token.string;
|
|
max_name_length = gb_max(max_name_length, prefix.len + prefix_sep.len + name.len);
|
|
|
|
gbString pt;
|
|
if (t->Proc.node != nullptr) {
|
|
pt = expr_to_string(t->Proc.node);
|
|
} else {
|
|
pt = type_to_string(t);
|
|
}
|
|
|
|
max_type_length = gb_max(max_type_length, gb_string_length(pt));
|
|
gb_string_free(pt);
|
|
}
|
|
|
|
isize max_spaces = gb_max(max_name_length, max_type_length);
|
|
char *spaces = gb_alloc_array(temporary_allocator(), char, max_spaces+1);
|
|
for (isize i = 0; i < max_spaces; i++) {
|
|
spaces[i] = ' ';
|
|
}
|
|
spaces[max_spaces] = 0;
|
|
|
|
for_array(i, procs) {
|
|
if (possibly_ignore_set != 0 && possibly_ignore[i]) {
|
|
continue;
|
|
}
|
|
Entity *proc = procs[i];
|
|
TokenPos pos = proc->token.pos;
|
|
Type *t = base_type(proc->type);
|
|
if (t == t_invalid) continue;
|
|
GB_ASSERT(t->kind == Type_Proc);
|
|
gbString pt;
|
|
defer (gb_string_free(pt));
|
|
if (t->Proc.node != nullptr) {
|
|
pt = expr_to_string(t->Proc.node);
|
|
} else {
|
|
pt = type_to_string(t);
|
|
}
|
|
String prefix = {};
|
|
String prefix_sep = {};
|
|
if (proc->pkg) {
|
|
prefix = proc->pkg->name;
|
|
prefix_sep = str_lit(".");
|
|
}
|
|
String name = proc->token.string;
|
|
isize len = prefix.len + prefix_sep.len + name.len;
|
|
|
|
int name_padding = cast(int)gb_max(max_name_length - len, 0);
|
|
int type_padding = cast(int)gb_max(max_type_length - gb_string_length(pt), 0);
|
|
|
|
char const *sep = "::";
|
|
if (proc->kind == Entity_Variable) {
|
|
sep = ":=";
|
|
}
|
|
error_line("\t%.*s%.*s%.*s %.*s%s %s %.*sat %s\n",
|
|
LIT(prefix), LIT(prefix_sep), LIT(name),
|
|
name_padding, spaces,
|
|
sep,
|
|
pt,
|
|
type_padding, spaces,
|
|
token_pos_to_string(pos)
|
|
);
|
|
}
|
|
if (procs.count > 0) {
|
|
error_line("\n");
|
|
}
|
|
|
|
data.result_type = t_invalid;
|
|
} else if (valids.count > 1) {
|
|
ERROR_BLOCK();
|
|
|
|
error(operand->expr, "Ambiguous procedure group call '%s' that match with the given arguments", expr_name);
|
|
if (positional_operands.count == 0 && named_operands.count == 0) {
|
|
error_line("\tNo given arguments\n");
|
|
} else {
|
|
print_argument_types();
|
|
}
|
|
|
|
for (auto const &valid : valids) {
|
|
Entity *proc = proc_entities[valid.index];
|
|
GB_ASSERT(proc != nullptr);
|
|
TokenPos pos = proc->token.pos;
|
|
Type *t = base_type(proc->type); GB_ASSERT(t->kind == Type_Proc);
|
|
gbString pt = nullptr;
|
|
defer (gb_string_free(pt));
|
|
if (t->Proc.node != nullptr) {
|
|
pt = expr_to_string(t->Proc.node);
|
|
} else {
|
|
pt = type_to_string(t);
|
|
}
|
|
String name = proc->token.string;
|
|
char const *sep = "::";
|
|
if (proc->kind == Entity_Variable) {
|
|
sep = ":=";
|
|
}
|
|
error_line("\t%.*s %s %s ", LIT(name), sep, pt);
|
|
if (proc->decl_info->proc_lit != nullptr) {
|
|
GB_ASSERT(proc->decl_info->proc_lit->kind == Ast_ProcLit);
|
|
auto *pl = &proc->decl_info->proc_lit->ProcLit;
|
|
if (pl->where_token.kind != Token_Invalid) {
|
|
error_line("\n\t\twhere ");
|
|
for_array(j, pl->where_clauses) {
|
|
Ast *clause = pl->where_clauses[j];
|
|
if (j != 0) {
|
|
error_line("\t\t ");
|
|
}
|
|
gbString str = expr_to_string(clause);
|
|
error_line("%s", str);
|
|
gb_string_free(str);
|
|
|
|
if (j != pl->where_clauses.count-1) {
|
|
error_line(",");
|
|
}
|
|
}
|
|
error_line("\n\t");
|
|
}
|
|
}
|
|
error_line("at %s\n", token_pos_to_string(pos));
|
|
}
|
|
data.result_type = t_invalid;
|
|
} else {
|
|
GB_ASSERT(valids.count == 1);
|
|
Ast *ident = operand->expr;
|
|
while (ident->kind == Ast_SelectorExpr) {
|
|
Ast *s = ident->SelectorExpr.selector;
|
|
ident = s;
|
|
}
|
|
|
|
Entity *e = proc_entities[valids[0].index];
|
|
GB_ASSERT(e != nullptr);
|
|
|
|
Array<Operand> named_operands = {};
|
|
|
|
check_call_arguments_single(c, call, operand,
|
|
e, e->type,
|
|
positional_operands, named_operands,
|
|
CallArgumentErrorMode::ShowErrors,
|
|
&data);
|
|
return data;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
|
|
gb_internal CallArgumentData check_call_arguments(CheckerContext *c, Operand *operand, Ast *call) {
|
|
Type *proc_type = nullptr;
|
|
|
|
CallArgumentData data = {};
|
|
data.result_type = t_invalid;
|
|
|
|
proc_type = base_type(operand->type);
|
|
|
|
TypeProc *pt = nullptr;
|
|
if (proc_type) {
|
|
pt = &proc_type->Proc;
|
|
}
|
|
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
ast_node(ce, CallExpr, call);
|
|
|
|
bool any_failure = false;
|
|
|
|
// Split positional and named args into separate arrays/slices
|
|
Slice<Ast *> positional_args = {};
|
|
Slice<Ast *> named_args = {};
|
|
|
|
if (ce->split_args == nullptr) {
|
|
positional_args = ce->args;
|
|
for (isize i = 0; i < ce->args.count; i++) {
|
|
Ast *arg = ce->args.data[i];
|
|
if (arg->kind == Ast_FieldValue) {
|
|
positional_args.count = i;
|
|
break;
|
|
}
|
|
}
|
|
named_args = slice(ce->args, positional_args.count, ce->args.count);
|
|
|
|
auto split_args = gb_alloc_item(permanent_allocator(), AstSplitArgs);
|
|
split_args->positional = positional_args;
|
|
split_args->named = named_args;
|
|
ce->split_args = split_args;
|
|
} else {
|
|
positional_args = ce->split_args->positional;
|
|
named_args = ce->split_args->named;
|
|
}
|
|
|
|
if (operand->mode == Addressing_ProcGroup) {
|
|
return check_call_arguments_proc_group(c, operand, call);
|
|
}
|
|
|
|
auto positional_operands = array_make<Operand>(heap_allocator(), 0, positional_args.count);
|
|
auto named_operands = array_make<Operand>(heap_allocator(), 0, 0);
|
|
|
|
defer (array_free(&positional_operands));
|
|
defer (array_free(&named_operands));
|
|
|
|
if (positional_args.count > 0) {
|
|
Entity **lhs = nullptr;
|
|
isize lhs_count = -1;
|
|
i32 variadic_index = -1;
|
|
if (pt != nullptr) {
|
|
lhs = populate_proc_parameter_list(c, proc_type, &lhs_count);
|
|
if (pt->variadic) {
|
|
variadic_index = pt->variadic_index;
|
|
}
|
|
}
|
|
check_unpack_arguments(c, lhs, lhs_count, &positional_operands, positional_args, UnpackFlag_None, variadic_index);
|
|
}
|
|
|
|
if (named_args.count > 0) {
|
|
for_array(i, named_args) {
|
|
Ast *arg = named_args[i];
|
|
if (arg->kind != Ast_FieldValue) {
|
|
error(arg, "Expected a 'field = value'");
|
|
return data;
|
|
}
|
|
ast_node(fv, FieldValue, arg);
|
|
if (fv->field->kind != Ast_Ident) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(arg, "Invalid parameter name '%s' in procedure call", expr_str);
|
|
any_failure = true;
|
|
gb_string_free(expr_str);
|
|
continue;
|
|
}
|
|
String key = fv->field->Ident.token.string;
|
|
Ast *value = fv->value;
|
|
|
|
isize param_index = lookup_procedure_parameter(pt, key);
|
|
Type *type_hint = nullptr;
|
|
if (param_index >= 0) {
|
|
Entity *e = pt->params->Tuple.variables[param_index];
|
|
type_hint = e->type;
|
|
}
|
|
|
|
Operand o = {};
|
|
check_expr_with_type_hint(c, &o, value, type_hint);
|
|
if (o.mode == Addressing_Invalid) {
|
|
any_failure = true;
|
|
}
|
|
array_add(&named_operands, o);
|
|
}
|
|
|
|
}
|
|
|
|
if (!any_failure) {
|
|
check_call_arguments_single(c, call, operand,
|
|
nullptr, proc_type,
|
|
positional_operands, named_operands,
|
|
CallArgumentErrorMode::ShowErrors,
|
|
&data);
|
|
} else if (pt) {
|
|
data.result_type = pt->results;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
gb_internal isize lookup_polymorphic_record_parameter(Type *t, String parameter_name) {
|
|
if (!is_type_polymorphic_record(t)) {
|
|
return -1;
|
|
}
|
|
|
|
TypeTuple *params = get_record_polymorphic_params(t);
|
|
if (params == nullptr) {
|
|
return -1;
|
|
}
|
|
for_array(i, params->variables) {
|
|
Entity *e = params->variables[i];
|
|
String name = e->token.string;
|
|
if (is_blank_ident(name)) {
|
|
continue;
|
|
}
|
|
if (name == parameter_name) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
gb_internal CallArgumentError check_polymorphic_record_type(CheckerContext *c, Operand *operand, Ast *call) {
|
|
ast_node(ce, CallExpr, call);
|
|
|
|
Type *original_type = operand->type;
|
|
GB_ASSERT(is_type_polymorphic_record(original_type));
|
|
|
|
bool show_error = true;
|
|
|
|
Array<Operand> operands = {};
|
|
defer (array_free(&operands));
|
|
|
|
CallArgumentError err = CallArgumentError_None;
|
|
|
|
bool named_fields = false;
|
|
{
|
|
// NOTE(bill, 2019-10-26): Allow a cycle in the parameters but not in the fields themselves
|
|
auto prev_type_path = c->type_path;
|
|
c->type_path = new_checker_type_path();
|
|
defer ({
|
|
destroy_checker_type_path(c->type_path);
|
|
c->type_path = prev_type_path;
|
|
});
|
|
|
|
if (is_call_expr_field_value(ce)) {
|
|
named_fields = true;
|
|
operands = array_make<Operand>(heap_allocator(), ce->args.count);
|
|
for_array(i, ce->args) {
|
|
Ast *arg = ce->args[i];
|
|
ast_node(fv, FieldValue, arg);
|
|
|
|
if (fv->value == nullptr) {
|
|
error(fv->eq, "Expected a value");
|
|
err = CallArgumentError_InvalidFieldValue;
|
|
continue;
|
|
}
|
|
if (fv->field->kind == Ast_Ident) {
|
|
String name = fv->field->Ident.token.string;
|
|
isize index = lookup_polymorphic_record_parameter(original_type, name);
|
|
if (index >= 0) {
|
|
TypeTuple *params = get_record_polymorphic_params(original_type);
|
|
Entity *e = params->variables[index];
|
|
if (e->kind == Entity_Constant) {
|
|
check_expr_with_type_hint(c, &operands[i], fv->value, e->type);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
}
|
|
check_expr_or_type(c, &operands[i], fv->value);
|
|
}
|
|
|
|
bool vari_expand = (ce->ellipsis.pos.line != 0);
|
|
if (vari_expand) {
|
|
error(ce->ellipsis, "Invalid use of '..' in a polymorphic type call'");
|
|
}
|
|
|
|
} else {
|
|
operands = array_make<Operand>(heap_allocator(), 0, 2*ce->args.count);
|
|
|
|
Entity **lhs = nullptr;
|
|
isize lhs_count = -1;
|
|
|
|
TypeTuple *params = get_record_polymorphic_params(original_type);
|
|
if (params != nullptr) {
|
|
lhs = params->variables.data;
|
|
lhs_count = params->variables.count;
|
|
}
|
|
|
|
check_unpack_arguments(c, lhs, lhs_count, &operands, ce->args, UnpackFlag_None);
|
|
}
|
|
|
|
}
|
|
|
|
if (err != 0) {
|
|
operand->mode = Addressing_Invalid;
|
|
return err;
|
|
}
|
|
|
|
TypeTuple *tuple = get_record_polymorphic_params(original_type);
|
|
isize param_count = tuple->variables.count;
|
|
isize minimum_param_count = param_count;
|
|
for (; minimum_param_count > 0; minimum_param_count--) {
|
|
Entity *e = tuple->variables[minimum_param_count-1];
|
|
if (e->kind != Entity_Constant) {
|
|
break;
|
|
}
|
|
if (e->Constant.param_value.kind == ParameterValue_Invalid) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
Array<Operand> ordered_operands = operands;
|
|
if (!named_fields) {
|
|
ordered_operands = array_make<Operand>(permanent_allocator(), operands.count);
|
|
array_copy(&ordered_operands, operands, 0);
|
|
} else {
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
|
|
bool *visited = gb_alloc_array(temporary_allocator(), bool, param_count);
|
|
|
|
// LEAK(bill)
|
|
ordered_operands = array_make<Operand>(permanent_allocator(), param_count);
|
|
|
|
for_array(i, ce->args) {
|
|
Ast *arg = ce->args[i];
|
|
ast_node(fv, FieldValue, arg);
|
|
if (fv->field->kind != Ast_Ident) {
|
|
if (show_error) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(arg, "Invalid parameter name '%s' in polymorphic type call", expr_str);
|
|
gb_string_free(expr_str);
|
|
}
|
|
err = CallArgumentError_InvalidFieldValue;
|
|
continue;
|
|
}
|
|
String name = fv->field->Ident.token.string;
|
|
isize index = lookup_polymorphic_record_parameter(original_type, name);
|
|
if (index < 0) {
|
|
if (show_error) {
|
|
error(arg, "No parameter named '%.*s' for this polymorphic type", LIT(name));
|
|
}
|
|
err = CallArgumentError_ParameterNotFound;
|
|
continue;
|
|
}
|
|
if (visited[index]) {
|
|
if (show_error) {
|
|
error(arg, "Duplicate parameter '%.*s' in polymorphic type", LIT(name));
|
|
}
|
|
err = CallArgumentError_DuplicateParameter;
|
|
continue;
|
|
}
|
|
|
|
visited[index] = true;
|
|
ordered_operands[index] = operands[i];
|
|
}
|
|
|
|
for (isize i = 0; i < param_count; i++) {
|
|
if (!visited[i]) {
|
|
Entity *e = tuple->variables[i];
|
|
if (is_blank_ident(e->token)) {
|
|
continue;
|
|
}
|
|
|
|
if (show_error) {
|
|
if (e->kind == Entity_TypeName) {
|
|
error(call, "Type parameter '%.*s' is missing in polymorphic type call",
|
|
LIT(e->token.string));
|
|
} else {
|
|
gbString str = type_to_string(e->type);
|
|
error(call, "Parameter '%.*s' of type '%s' is missing in polymorphic type call",
|
|
LIT(e->token.string), str);
|
|
gb_string_free(str);
|
|
}
|
|
}
|
|
err = CallArgumentError_ParameterMissing;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (err != 0) {
|
|
operand->mode = Addressing_Invalid;
|
|
return err;
|
|
}
|
|
|
|
while (ordered_operands.count > 0) {
|
|
if (ordered_operands[ordered_operands.count-1].expr != nullptr) {
|
|
break;
|
|
}
|
|
array_pop(&ordered_operands);
|
|
}
|
|
|
|
if (minimum_param_count != param_count) {
|
|
if (param_count < ordered_operands.count) {
|
|
error(call, "Too many polymorphic type arguments, expected a maximum of %td, got %td", param_count, ordered_operands.count);
|
|
err = CallArgumentError_TooManyArguments;
|
|
} else if (minimum_param_count > ordered_operands.count) {
|
|
error(call, "Too few polymorphic type arguments, expected a minimum of %td, got %td", minimum_param_count, ordered_operands.count);
|
|
err = CallArgumentError_TooFewArguments;
|
|
}
|
|
} else {
|
|
if (param_count < ordered_operands.count) {
|
|
error(call, "Too many polymorphic type arguments, expected %td, got %td", param_count, ordered_operands.count);
|
|
err = CallArgumentError_TooManyArguments;
|
|
} else if (param_count > ordered_operands.count) {
|
|
error(call, "Too few polymorphic type arguments, expected %td, got %td", param_count, ordered_operands.count);
|
|
err = CallArgumentError_TooFewArguments;
|
|
}
|
|
}
|
|
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
|
|
if (minimum_param_count != param_count) {
|
|
array_resize(&ordered_operands, param_count);
|
|
|
|
isize missing_count = 0;
|
|
// NOTE(bill): Replace missing operands with the default values (if possible)
|
|
for_array(i, ordered_operands) {
|
|
Operand *o = &ordered_operands[i];
|
|
if (o->expr == nullptr) {
|
|
Entity *e = tuple->variables[i];
|
|
if (e->kind == Entity_Constant) {
|
|
missing_count += 1;
|
|
o->mode = Addressing_Constant;
|
|
o->type = default_type(e->type);
|
|
o->expr = unparen_expr(e->Constant.param_value.original_ast_expr);
|
|
if (e->Constant.param_value.kind == ParameterValue_Constant) {
|
|
o->value = e->Constant.param_value.value;
|
|
}
|
|
} else if (e->kind == Entity_TypeName) {
|
|
missing_count += 1;
|
|
o->mode = Addressing_Type;
|
|
o->type = e->type;
|
|
o->expr = e->identifier;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
isize oo_count = gb_min(param_count, ordered_operands.count);
|
|
i64 score = 0;
|
|
for (isize i = 0; i < oo_count; i++) {
|
|
Entity *e = tuple->variables[i];
|
|
Operand *o = &ordered_operands[i];
|
|
if (o->mode == Addressing_Invalid) {
|
|
continue;
|
|
}
|
|
if (e->kind == Entity_TypeName) {
|
|
if (o->mode != Addressing_Type) {
|
|
if (show_error) {
|
|
gbString expr = expr_to_string(o->expr);
|
|
error(o->expr, "Expected a type for the argument '%.*s', got %s", LIT(e->token.string), expr);
|
|
gb_string_free(expr);
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
if (are_types_identical(e->type, o->type)) {
|
|
score += assign_score_function(1);
|
|
} else {
|
|
score += assign_score_function(MAXIMUM_TYPE_DISTANCE);
|
|
}
|
|
} else {
|
|
i64 s = 0;
|
|
if (o->type->kind == Type_Generic) {
|
|
// Polymorphic name!
|
|
score += assign_score_function(1);
|
|
continue;
|
|
} else if (!check_is_assignable_to_with_score(c, o, e->type, &s)) {
|
|
if (show_error) {
|
|
check_assignment(c, o, e->type, str_lit("polymorphic type argument"));
|
|
}
|
|
err = CallArgumentError_WrongTypes;
|
|
}
|
|
o->type = e->type;
|
|
if (o->mode != Addressing_Constant) {
|
|
bool valid = false;
|
|
if (is_type_proc(o->type)) {
|
|
Entity *proc_entity = entity_from_expr(o->expr);
|
|
valid = proc_entity != nullptr;
|
|
}
|
|
if (!valid) {
|
|
if (show_error) {
|
|
error(o->expr, "Expected a constant value for this polymorphic type argument");
|
|
}
|
|
err = CallArgumentError_NoneConstantParameter;
|
|
}
|
|
}
|
|
score += s;
|
|
}
|
|
|
|
// NOTE(bill): Add type info the parameters
|
|
// TODO(bill, 2022-01-23): why was this line added in the first place? I'm commenting it out for the time being
|
|
// add_type_info_type(c, o->type);
|
|
}
|
|
|
|
if (show_error && err) {
|
|
return err;
|
|
}
|
|
|
|
{
|
|
GenTypesData *found_gen_types = ensure_polymorphic_record_entity_has_gen_types(c, original_type);
|
|
|
|
mutex_lock(&found_gen_types->mutex);
|
|
defer (mutex_unlock(&found_gen_types->mutex));
|
|
Entity *found_entity = find_polymorphic_record_entity(found_gen_types, param_count, ordered_operands);
|
|
|
|
if (found_entity) {
|
|
operand->mode = Addressing_Type;
|
|
operand->type = found_entity->type;
|
|
return err;
|
|
}
|
|
|
|
CheckerContext ctx = *c;
|
|
// NOTE(bill): We need to make sure the lookup scope for the record is the same as where it was created
|
|
ctx.scope = polymorphic_record_parent_scope(original_type);
|
|
GB_ASSERT(ctx.scope != nullptr);
|
|
|
|
Type *bt = base_type(original_type);
|
|
String generated_name = make_string_c(expr_to_string(call));
|
|
|
|
Type *named_type = alloc_type_named(generated_name, nullptr, nullptr);
|
|
if (bt->kind == Type_Struct) {
|
|
Ast *node = clone_ast(bt->Struct.node);
|
|
Type *struct_type = alloc_type_struct();
|
|
struct_type->Struct.node = node;
|
|
struct_type->Struct.polymorphic_parent = original_type;
|
|
set_base_type(named_type, struct_type);
|
|
|
|
check_open_scope(&ctx, node);
|
|
check_struct_type(&ctx, struct_type, node, &ordered_operands, named_type, original_type);
|
|
check_close_scope(&ctx);
|
|
} else if (bt->kind == Type_Union) {
|
|
Ast *node = clone_ast(bt->Union.node);
|
|
Type *union_type = alloc_type_union();
|
|
union_type->Union.node = node;
|
|
union_type->Union.polymorphic_parent = original_type;
|
|
set_base_type(named_type, union_type);
|
|
|
|
check_open_scope(&ctx, node);
|
|
check_union_type(&ctx, union_type, node, &ordered_operands, named_type, original_type);
|
|
check_close_scope(&ctx);
|
|
} else {
|
|
GB_PANIC("Unsupported parametric polymorphic record type");
|
|
}
|
|
|
|
|
|
bt = base_type(named_type);
|
|
if (bt->kind == Type_Struct || bt->kind == Type_Union) {
|
|
GB_ASSERT(original_type->kind == Type_Named);
|
|
Entity *e = original_type->Named.type_name;
|
|
GB_ASSERT(e->kind == Entity_TypeName);
|
|
|
|
gbString s = gb_string_make_reserve(heap_allocator(), e->token.string.len+3);
|
|
s = gb_string_append_fmt(s, "%.*s(", LIT(e->token.string));
|
|
|
|
TypeTuple *tuple = get_record_polymorphic_params(bt);
|
|
if (tuple != nullptr) for_array(i, tuple->variables) {
|
|
Entity *v = tuple->variables[i];
|
|
String name = v->token.string;
|
|
if (i > 0) {
|
|
s = gb_string_append_fmt(s, ", ");
|
|
}
|
|
s = gb_string_append_fmt(s, "$%.*s", LIT(name));
|
|
|
|
if (v->kind == Entity_TypeName) {
|
|
if (v->type->kind != Type_Generic) {
|
|
s = gb_string_append_fmt(s, "=");
|
|
s = write_type_to_string(s, v->type, false);
|
|
}
|
|
} else if (v->kind == Entity_Constant) {
|
|
if (v->Constant.value.kind != ExactValue_Invalid) {
|
|
s = gb_string_append_fmt(s, "=");
|
|
s = write_exact_value_to_string(s, v->Constant.value);
|
|
}
|
|
}
|
|
}
|
|
s = gb_string_append_fmt(s, ")");
|
|
|
|
String new_name = make_string_c(s);
|
|
named_type->Named.name = new_name;
|
|
if (named_type->Named.type_name) {
|
|
named_type->Named.type_name->token.string = new_name;
|
|
}
|
|
}
|
|
|
|
operand->mode = Addressing_Type;
|
|
operand->type = named_type;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
|
|
|
|
// returns true on success
|
|
gb_internal bool check_call_parameter_mixture(Slice<Ast *> const &args, char const *context, bool allow_mixed=false) {
|
|
bool success = true;
|
|
if (args.count > 0) {
|
|
if (allow_mixed) {
|
|
bool was_named = false;
|
|
for (Ast *arg : args) {
|
|
if (was_named && arg->kind != Ast_FieldValue) {
|
|
error(arg, "Non-named parameter is not allowed to follow named parameter i.e. 'field = value' in a %s", context);
|
|
success = false;
|
|
break;
|
|
}
|
|
was_named = was_named || arg->kind == Ast_FieldValue;
|
|
}
|
|
} else {
|
|
bool first_is_field_value = (args[0]->kind == Ast_FieldValue);
|
|
for (Ast *arg : args) {
|
|
bool mix = false;
|
|
if (first_is_field_value) {
|
|
mix = arg->kind != Ast_FieldValue;
|
|
} else {
|
|
mix = arg->kind == Ast_FieldValue;
|
|
}
|
|
if (mix) {
|
|
error(arg, "Mixture of 'field = value' and value elements in a %s is not allowed", context);
|
|
success = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
return success;
|
|
}
|
|
|
|
#define CHECK_CALL_PARAMETER_MIXTURE_OR_RETURN(context_, ...) if (!check_call_parameter_mixture(args, context_, ##__VA_ARGS__)) { \
|
|
operand->mode = Addressing_Invalid; \
|
|
operand->expr = call; \
|
|
return Expr_Stmt; \
|
|
}
|
|
|
|
|
|
gb_internal ExprKind check_call_expr(CheckerContext *c, Operand *operand, Ast *call, Ast *proc, Slice<Ast *> const &args, ProcInlining inlining, Type *type_hint) {
|
|
if (proc != nullptr &&
|
|
proc->kind == Ast_BasicDirective) {
|
|
ast_node(bd, BasicDirective, proc);
|
|
String name = bd->name.string;
|
|
if (
|
|
name == "location" ||
|
|
name == "exists" ||
|
|
name == "assert" ||
|
|
name == "panic" ||
|
|
name == "defined" ||
|
|
name == "config" ||
|
|
name == "load" ||
|
|
name == "load_directory" ||
|
|
name == "load_hash" ||
|
|
name == "hash" ||
|
|
name == "caller_expression"
|
|
) {
|
|
operand->mode = Addressing_Builtin;
|
|
operand->builtin_id = BuiltinProc_DIRECTIVE;
|
|
operand->expr = proc;
|
|
operand->type = t_invalid;
|
|
add_type_and_value(c, proc, operand->mode, operand->type, operand->value);
|
|
} else {
|
|
error(proc, "Unknown directive: #%.*s", LIT(name));
|
|
operand->expr = proc;
|
|
operand->type = t_invalid;
|
|
operand->mode = Addressing_Invalid;
|
|
return Expr_Expr;
|
|
}
|
|
if (inlining != ProcInlining_none) {
|
|
error(call, "Inlining operators are not allowed on built-in procedures");
|
|
}
|
|
} else {
|
|
if (proc != nullptr) {
|
|
check_expr_or_type(c, operand, proc);
|
|
} else {
|
|
GB_ASSERT(operand->expr != nullptr);
|
|
}
|
|
}
|
|
|
|
if (operand->mode == Addressing_Invalid) {
|
|
CHECK_CALL_PARAMETER_MIXTURE_OR_RETURN("procedure call");
|
|
for (Ast *arg : args) {
|
|
if (arg->kind == Ast_FieldValue) {
|
|
arg = arg->FieldValue.value;
|
|
}
|
|
check_expr_base(c, operand, arg, nullptr);
|
|
}
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = call;
|
|
return Expr_Stmt;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Type) {
|
|
Type *t = operand->type;
|
|
if (is_type_polymorphic_record(t)) {
|
|
CHECK_CALL_PARAMETER_MIXTURE_OR_RETURN("polymorphic type construction");
|
|
|
|
if (!is_type_named(t)) {
|
|
gbString s = expr_to_string(operand->expr);
|
|
error(call, "Illegal use of an unnamed polymorphic record, %s", s);
|
|
gb_string_free(s);
|
|
operand->mode = Addressing_Invalid;
|
|
operand->type = t_invalid;;
|
|
return Expr_Expr;
|
|
}
|
|
auto err = check_polymorphic_record_type(c, operand, call);
|
|
if (err == 0) {
|
|
Ast *ident = operand->expr;
|
|
while (ident->kind == Ast_SelectorExpr) {
|
|
Ast *s = ident->SelectorExpr.selector;
|
|
ident = s;
|
|
}
|
|
Type *ot = operand->type;
|
|
GB_ASSERT(ot->kind == Type_Named);
|
|
Entity *e = ot->Named.type_name;
|
|
add_entity_use(c, ident, e);
|
|
add_type_and_value(c, call, Addressing_Type, ot, empty_exact_value);
|
|
} else {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->type = t_invalid;
|
|
}
|
|
} else {
|
|
CHECK_CALL_PARAMETER_MIXTURE_OR_RETURN("type conversion");
|
|
|
|
operand->mode = Addressing_Invalid;
|
|
isize arg_count = args.count;
|
|
switch (arg_count) {
|
|
case 0:
|
|
{
|
|
gbString str = type_to_string(t);
|
|
error(call, "Missing argument in conversion to '%s'", str);
|
|
gb_string_free(str);
|
|
} break;
|
|
default:
|
|
{
|
|
gbString str = type_to_string(t);
|
|
if (t->kind == Type_Basic) {
|
|
ERROR_BLOCK();
|
|
switch (t->Basic.kind) {
|
|
case Basic_complex32:
|
|
case Basic_complex64:
|
|
case Basic_complex128:
|
|
error(call, "Too many arguments in conversion to '%s'", str);
|
|
error_line("\tSuggestion: %s(1+2i) or construct with 'complex'\n", str);
|
|
break;
|
|
case Basic_quaternion64:
|
|
case Basic_quaternion128:
|
|
case Basic_quaternion256:
|
|
error(call, "Too many arguments in conversion to '%s'", str);
|
|
error_line("\tSuggestion: %s(1+2i+3j+4k) or construct with 'quaternion'\n", str);
|
|
break;
|
|
default:
|
|
error(call, "Too many arguments in conversion to '%s'", str);
|
|
}
|
|
} else {
|
|
error(call, "Too many arguments in conversion to '%s'", str);
|
|
}
|
|
gb_string_free(str);
|
|
} break;
|
|
case 1: {
|
|
Ast *arg = args[0];
|
|
if (arg->kind == Ast_FieldValue) {
|
|
error(call, "'field = value' cannot be used in a type conversion");
|
|
arg = arg->FieldValue.value;
|
|
// NOTE(bill): Carry on the cast regardless
|
|
}
|
|
check_expr_with_type_hint(c, operand, arg, t);
|
|
if (operand->mode != Addressing_Invalid) {
|
|
if (is_type_polymorphic(t)) {
|
|
error(call, "A polymorphic type cannot be used in a type conversion");
|
|
} else {
|
|
// NOTE(bill): Otherwise the compiler can override the polymorphic type
|
|
// as it assumes it is determining the type
|
|
check_cast(c, operand, t);
|
|
}
|
|
}
|
|
operand->type = t;
|
|
operand->expr = call;
|
|
if (operand->mode != Addressing_Invalid) {
|
|
update_untyped_expr_type(c, arg, t, false);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Expr_Expr;
|
|
}
|
|
|
|
if (operand->mode == Addressing_Builtin) {
|
|
CHECK_CALL_PARAMETER_MIXTURE_OR_RETURN("builtin call");
|
|
|
|
i32 id = operand->builtin_id;
|
|
Entity *e = entity_of_node(operand->expr);
|
|
if (e != nullptr && e->token.string == "expand_to_tuple") {
|
|
error(operand->expr, "'expand_to_tuple' has been replaced with 'expand_values'");
|
|
}
|
|
if (!check_builtin_procedure(c, operand, call, id, type_hint)) {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->type = t_invalid;
|
|
}
|
|
operand->expr = call;
|
|
return builtin_procs[id].kind;
|
|
}
|
|
|
|
CHECK_CALL_PARAMETER_MIXTURE_OR_RETURN(operand->mode == Addressing_ProcGroup ? "procedure group call": "procedure call", true);
|
|
|
|
Entity *initial_entity = entity_of_node(operand->expr);
|
|
|
|
if (initial_entity != nullptr && initial_entity->kind == Entity_Procedure) {
|
|
if (initial_entity->Procedure.deferred_procedure.entity != nullptr) {
|
|
call->viral_state_flags |= ViralStateFlag_ContainsDeferredProcedure;
|
|
if (c->decl) {
|
|
c->decl->defer_used += 1;
|
|
}
|
|
}
|
|
add_entity_use(c, operand->expr, initial_entity);
|
|
|
|
if (initial_entity->Procedure.entry_point_only) {
|
|
if (c->curr_proc_decl && c->curr_proc_decl->entity == c->info->entry_point) {
|
|
// Okay
|
|
} else {
|
|
error(operand->expr, "Procedures with the attribute '@(entry_point_only)' can only be called directly from the user-level entry point procedure");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (operand->mode != Addressing_ProcGroup) {
|
|
Type *proc_type = base_type(operand->type);
|
|
bool valid_type = (proc_type != nullptr) && is_type_proc(proc_type);
|
|
bool valid_mode = is_operand_value(*operand);
|
|
if (!valid_type || !valid_mode) {
|
|
Ast *e = operand->expr;
|
|
gbString str = expr_to_string(e);
|
|
gbString type_str = type_to_string(operand->type);
|
|
error(e, "Cannot call a non-procedure: '%s' of type '%s'", str, type_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(str);
|
|
|
|
operand->mode = Addressing_Invalid;
|
|
operand->expr = call;
|
|
|
|
return Expr_Stmt;
|
|
}
|
|
}
|
|
|
|
CallArgumentData data = check_call_arguments(c, operand, call);
|
|
Type *result_type = data.result_type;
|
|
gb_zero_item(operand);
|
|
operand->expr = call;
|
|
|
|
if (result_type == t_invalid) {
|
|
operand->mode = Addressing_Invalid;
|
|
operand->type = t_invalid;
|
|
return Expr_Stmt;
|
|
}
|
|
|
|
Type *pt = base_type(operand->type);
|
|
if (pt == nullptr) {
|
|
pt = t_invalid;
|
|
}
|
|
if (pt == t_invalid) {
|
|
if (operand->expr != nullptr && operand->expr->kind == Ast_CallExpr) {
|
|
pt = type_of_expr(operand->expr->CallExpr.proc);
|
|
}
|
|
if (pt == t_invalid && data.gen_entity) {
|
|
pt = data.gen_entity->type;
|
|
}
|
|
}
|
|
pt = base_type(pt);
|
|
|
|
if (pt->kind == Type_Proc && pt->Proc.calling_convention == ProcCC_Odin) {
|
|
if ((c->scope->flags & ScopeFlag_ContextDefined) == 0) {
|
|
ERROR_BLOCK();
|
|
error(call, "'context' has not been defined within this scope, but is required for this procedure call");
|
|
error_line("\tSuggestion: 'context = runtime.default_context()'");
|
|
}
|
|
}
|
|
|
|
if (result_type == nullptr) {
|
|
operand->mode = Addressing_NoValue;
|
|
} else {
|
|
GB_ASSERT(is_type_tuple(result_type));
|
|
isize count = result_type->Tuple.variables.count;
|
|
switch (count) {
|
|
case 0:
|
|
operand->mode = Addressing_NoValue;
|
|
break;
|
|
case 1:
|
|
operand->mode = Addressing_Value;
|
|
operand->type = result_type->Tuple.variables[0]->type;
|
|
break;
|
|
default:
|
|
operand->mode = Addressing_Value;
|
|
operand->type = result_type;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool is_call_inlined = false;
|
|
|
|
switch (inlining) {
|
|
case ProcInlining_inline:
|
|
is_call_inlined = true;
|
|
if (proc != nullptr) {
|
|
Entity *e = entity_from_expr(proc);
|
|
if (e != nullptr && e->kind == Entity_Procedure) {
|
|
DeclInfo *decl = e->decl_info;
|
|
if (decl->proc_lit) {
|
|
ast_node(pl, ProcLit, decl->proc_lit);
|
|
if (pl->inlining == ProcInlining_no_inline) {
|
|
error(call, "'#force_inline' cannot be applied to a procedure that has been marked as '#force_no_inline'");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case ProcInlining_no_inline:
|
|
break;
|
|
case ProcInlining_none:
|
|
if (proc != nullptr) {
|
|
Entity *e = entity_from_expr(proc);
|
|
if (e != nullptr && e->kind == Entity_Procedure) {
|
|
DeclInfo *decl = e->decl_info;
|
|
if (decl->proc_lit) {
|
|
ast_node(pl, ProcLit, decl->proc_lit);
|
|
if (pl->inlining == ProcInlining_inline) {
|
|
is_call_inlined = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
String invalid;
|
|
if (pt->kind == Type_Proc && pt->Proc.require_target_feature.len != 0) {
|
|
if (!check_target_feature_is_valid_for_target_arch(pt->Proc.require_target_feature, &invalid)) {
|
|
error(call, "Called procedure requires target feature '%.*s' which is invalid for the build target", LIT(invalid));
|
|
} else if (!check_target_feature_is_enabled(pt->Proc.require_target_feature, &invalid)) {
|
|
error(call, "Calling this procedure requires target feature '%.*s' to be enabled", LIT(invalid));
|
|
}
|
|
}
|
|
|
|
if (pt->kind == Type_Proc && pt->Proc.enable_target_feature.len != 0) {
|
|
if (!check_target_feature_is_valid_for_target_arch(pt->Proc.enable_target_feature, &invalid)) {
|
|
error(call, "Called procedure enables target feature '%.*s' which is invalid for the build target", LIT(invalid));
|
|
}
|
|
|
|
// NOTE: Due to restrictions in LLVM you can not inline calls with a superset of features.
|
|
if (is_call_inlined) {
|
|
if (c->curr_proc_decl == nullptr) {
|
|
error(call, "Calling a '#force_inline' procedure that enables target features is not allowed at file scope");
|
|
} else {
|
|
GB_ASSERT(c->curr_proc_decl->entity);
|
|
GB_ASSERT(c->curr_proc_decl->entity->type->kind == Type_Proc);
|
|
String scope_features = c->curr_proc_decl->entity->type->Proc.enable_target_feature;
|
|
if (!check_target_feature_is_superset_of(scope_features, pt->Proc.enable_target_feature, &invalid)) {
|
|
ERROR_BLOCK();
|
|
error(call, "Inlined procedure enables target feature '%.*s', this requires the calling procedure to at least enable the same feature", LIT(invalid));
|
|
|
|
error_line("\tSuggested Example: @(enable_target_feature=\"%.*s\")\n", LIT(invalid));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
operand->expr = call;
|
|
|
|
{
|
|
Type *type = nullptr;
|
|
if (operand->expr != nullptr && operand->expr->kind == Ast_CallExpr) {
|
|
type = type_of_expr(operand->expr->CallExpr.proc);
|
|
}
|
|
if (type == nullptr) {
|
|
type = pt;
|
|
}
|
|
type = base_type(type);
|
|
if (type->kind == Type_Proc && type->Proc.optional_ok && type->Proc.result_count > 0) {
|
|
operand->mode = Addressing_OptionalOk;
|
|
operand->type = type->Proc.results->Tuple.variables[0]->type;
|
|
if (operand->expr != nullptr && operand->expr->kind == Ast_CallExpr) {
|
|
operand->expr->CallExpr.optional_ok_one = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Expr_Expr;
|
|
}
|
|
|
|
|
|
gb_internal void check_expr_with_type_hint(CheckerContext *c, Operand *o, Ast *e, Type *t) {
|
|
check_expr_base(c, o, e, t);
|
|
check_not_tuple(c, o);
|
|
char const *err_str = nullptr;
|
|
switch (o->mode) {
|
|
case Addressing_NoValue:
|
|
err_str = "used as a value";
|
|
break;
|
|
case Addressing_Type:
|
|
if (t == nullptr || !is_type_typeid(t)) {
|
|
err_str = "is not an expression but a type, in this context it is ambiguous";
|
|
}
|
|
break;
|
|
case Addressing_Builtin:
|
|
err_str = "must be called";
|
|
break;
|
|
}
|
|
if (err_str != nullptr) {
|
|
gbString str = expr_to_string(e);
|
|
error(e, "'%s' %s", str, err_str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
}
|
|
|
|
gb_internal bool check_set_index_data(Operand *o, Type *t, bool indirection, i64 *max_count, Type *original_type) {
|
|
switch (t->kind) {
|
|
case Type_Basic:
|
|
if (t->Basic.kind == Basic_string) {
|
|
if (o->mode == Addressing_Constant) {
|
|
GB_ASSERT(o->value.kind == ExactValue_String);
|
|
*max_count = o->value.value_string.len;
|
|
}
|
|
if (o->mode != Addressing_Constant) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
o->type = t_u8;
|
|
return true;
|
|
} else if (t->Basic.kind == Basic_string16) {
|
|
if (o->mode == Addressing_Constant) {
|
|
GB_ASSERT(o->value.kind == ExactValue_String16);
|
|
*max_count = o->value.value_string16.len;
|
|
}
|
|
if (o->mode != Addressing_Constant) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
o->type = t_u16;
|
|
return true;
|
|
} else if (t->Basic.kind == Basic_UntypedString) {
|
|
if (o->mode == Addressing_Constant) {
|
|
*max_count = o->value.value_string.len;
|
|
o->type = t_u8;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case Type_MultiPointer:
|
|
o->type = t->MultiPointer.elem;
|
|
if (o->mode != Addressing_Constant) {
|
|
o->mode = Addressing_Variable;
|
|
}
|
|
return true;
|
|
|
|
case Type_Array:
|
|
*max_count = t->Array.count;
|
|
if (indirection) {
|
|
o->mode = Addressing_Variable;
|
|
} else if (o->mode != Addressing_Variable &&
|
|
o->mode != Addressing_Constant) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
o->type = t->Array.elem;
|
|
return true;
|
|
|
|
case Type_EnumeratedArray:
|
|
*max_count = t->EnumeratedArray.count;
|
|
if (indirection) {
|
|
o->mode = Addressing_Variable;
|
|
} else if (o->mode != Addressing_Variable &&
|
|
o->mode != Addressing_Constant) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
o->type = t->EnumeratedArray.elem;
|
|
return true;
|
|
|
|
case Type_Matrix:
|
|
if (indirection) {
|
|
o->mode = Addressing_Variable;
|
|
} else if (o->mode != Addressing_Variable) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
if (t->Matrix.is_row_major) {
|
|
*max_count = t->Matrix.row_count;
|
|
o->type = alloc_type_array(t->Matrix.elem, t->Matrix.column_count);
|
|
} else {
|
|
*max_count = t->Matrix.column_count;
|
|
o->type = alloc_type_array(t->Matrix.elem, t->Matrix.row_count);
|
|
}
|
|
return true;
|
|
|
|
case Type_Slice:
|
|
o->type = t->Slice.elem;
|
|
if (o->mode != Addressing_Constant) {
|
|
o->mode = Addressing_Variable;
|
|
}
|
|
return true;
|
|
|
|
case Type_DynamicArray:
|
|
o->type = t->DynamicArray.elem;
|
|
if (o->mode != Addressing_Constant) {
|
|
o->mode = Addressing_Variable;
|
|
}
|
|
return true;
|
|
case Type_Struct:
|
|
if (t->Struct.soa_kind != StructSoa_None) {
|
|
if (t->Struct.soa_kind == StructSoa_Fixed) {
|
|
*max_count = t->Struct.soa_count;
|
|
}
|
|
o->type = t->Struct.soa_elem;
|
|
if (o->mode == Addressing_SoaVariable || o->mode == Addressing_Variable || indirection) {
|
|
o->mode = Addressing_SoaVariable;
|
|
} else {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (is_type_pointer(original_type) && indirection) {
|
|
Type *ptr = base_type(original_type);
|
|
if (ptr->kind == Type_MultiPointer && o->mode == Addressing_SoaVariable) {
|
|
o->type = ptr->MultiPointer.elem;
|
|
o->mode = Addressing_Value;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
gb_internal bool ternary_compare_types(Type *x, Type *y) {
|
|
if (is_type_untyped_uninit(x)) {
|
|
return true;
|
|
} else if (is_type_untyped_nil(x) && type_has_nil(y)) {
|
|
return true;
|
|
} else if (is_type_untyped_uninit(y)) {
|
|
return true;
|
|
} else if (is_type_untyped_nil(y) && type_has_nil(x)) {
|
|
return true;
|
|
}
|
|
return are_types_identical(x, y);
|
|
}
|
|
|
|
|
|
gb_internal bool check_range(CheckerContext *c, Ast *node, bool is_for_loop, Operand *x, Operand *y, ExactValue *inline_for_depth_, Type *type_hint=nullptr) {
|
|
if (!is_ast_range(node)) {
|
|
return false;
|
|
}
|
|
|
|
ast_node(ie, BinaryExpr, node);
|
|
|
|
check_expr_with_type_hint(c, x, ie->left, type_hint);
|
|
if (x->mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
check_expr_with_type_hint(c, y, ie->right, type_hint);
|
|
if (y->mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
|
|
convert_to_typed(c, x, y->type);
|
|
if (x->mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
convert_to_typed(c, y, x->type);
|
|
if (y->mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
|
|
convert_to_typed(c, x, default_type(y->type));
|
|
if (x->mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
convert_to_typed(c, y, default_type(x->type));
|
|
if (y->mode == Addressing_Invalid) {
|
|
return false;
|
|
}
|
|
|
|
if (!are_types_identical(x->type, y->type)) {
|
|
if (x->type != t_invalid &&
|
|
y->type != t_invalid) {
|
|
gbString xt = type_to_string(x->type);
|
|
gbString yt = type_to_string(y->type);
|
|
gbString expr_str = expr_to_string(x->expr);
|
|
error(ie->op, "Mismatched types in interval expression '%s' : '%s' vs '%s'", expr_str, xt, yt);
|
|
gb_string_free(expr_str);
|
|
gb_string_free(yt);
|
|
gb_string_free(xt);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Type *type = x->type;
|
|
|
|
if (is_for_loop) {
|
|
if (!is_type_integer(type) && !is_type_float(type) && !is_type_enum(type)) {
|
|
error(ie->op, "Only numerical types are allowed within interval expressions");
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!is_type_integer(type) && !is_type_float(type) && !is_type_pointer(type) && !is_type_enum(type)) {
|
|
error(ie->op, "Only numerical and pointer types are allowed within interval expressions");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (x->mode == Addressing_Constant &&
|
|
y->mode == Addressing_Constant) {
|
|
ExactValue a = x->value;
|
|
ExactValue b = y->value;
|
|
|
|
GB_ASSERT(are_types_identical(x->type, y->type));
|
|
|
|
TokenKind op = Token_Lt;
|
|
switch (ie->op.kind) {
|
|
case Token_Ellipsis: op = Token_LtEq; break; // ..
|
|
case Token_RangeFull: op = Token_LtEq; break; // ..=
|
|
case Token_RangeHalf: op = Token_Lt; break; // ..<
|
|
default: error(ie->op, "Invalid range operator"); break;
|
|
}
|
|
bool ok = compare_exact_values(op, a, b);
|
|
if (!ok) {
|
|
// TODO(bill): Better error message
|
|
error(ie->op, "Invalid interval range");
|
|
return false;
|
|
}
|
|
|
|
ExactValue inline_for_depth = exact_value_sub(b, a);
|
|
if (ie->op.kind != Token_RangeHalf) {
|
|
inline_for_depth = exact_value_increment_one(inline_for_depth);
|
|
}
|
|
|
|
if (inline_for_depth_) *inline_for_depth_ = inline_for_depth;
|
|
} else if (inline_for_depth_ != nullptr) {
|
|
error(ie->op, "Interval expressions must be constant");
|
|
return false;
|
|
}
|
|
|
|
add_type_and_value(c, ie->left, x->mode, x->type, x->value);
|
|
add_type_and_value(c, ie->right, y->mode, y->type, y->value);
|
|
|
|
return true;
|
|
}
|
|
|
|
gb_internal bool check_is_operand_compound_lit_constant(CheckerContext *c, Operand *o) {
|
|
if (is_operand_nil(*o)) {
|
|
return true;
|
|
}
|
|
Ast *expr = unparen_expr(o->expr);
|
|
if (expr != nullptr) {
|
|
Entity *e = strip_entity_wrapping(entity_from_expr(expr));
|
|
if (e != nullptr && e->kind == Entity_Procedure) {
|
|
return true;
|
|
}
|
|
if (expr->kind == Ast_ProcLit) {
|
|
add_type_and_value(c, expr, Addressing_Constant, type_of_expr(expr), exact_value_procedure(expr));
|
|
return true;
|
|
}
|
|
}
|
|
return o->mode == Addressing_Constant;
|
|
}
|
|
|
|
|
|
gb_internal bool attempt_implicit_selector_expr(CheckerContext *c, Operand *o, AstImplicitSelectorExpr *ise, Type *th) {
|
|
if (is_type_enum(th)) {
|
|
Type *enum_type = base_type(th);
|
|
GB_ASSERT(enum_type->kind == Type_Enum);
|
|
|
|
String name = ise->selector->Ident.token.string;
|
|
|
|
Entity *e = scope_lookup_current(enum_type->Enum.scope, name);
|
|
if (e == nullptr) {
|
|
return false;
|
|
}
|
|
GB_ASSERT(are_types_identical(base_type(e->type), enum_type));
|
|
GB_ASSERT(e->kind == Entity_Constant);
|
|
o->value = e->Constant.value;
|
|
o->mode = Addressing_Constant;
|
|
o->type = e->type;
|
|
return true;
|
|
}
|
|
if (is_type_union(th)) {
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
|
|
Type *union_type = base_type(th);
|
|
auto operands = array_make<Operand>(temporary_allocator(), 0, union_type->Union.variants.count);
|
|
|
|
for (Type *vt : union_type->Union.variants) {
|
|
Operand x = {};
|
|
if (attempt_implicit_selector_expr(c, &x, ise, vt)) {
|
|
array_add(&operands, x);
|
|
}
|
|
}
|
|
|
|
if (operands.count == 1) {
|
|
*o = operands[0];
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
gb_internal ExprKind check_implicit_selector_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ast_node(ise, ImplicitSelectorExpr, node);
|
|
|
|
o->type = t_invalid;
|
|
o->expr = node;
|
|
o->mode = Addressing_Invalid;
|
|
|
|
Type *th = type_hint;
|
|
|
|
if (th == nullptr) {
|
|
gbString str = expr_to_string(node);
|
|
error(node, "Cannot determine type for implicit selector expression '%s'", str);
|
|
gb_string_free(str);
|
|
return Expr_Expr;
|
|
}
|
|
o->type = th;
|
|
|
|
bool ok = attempt_implicit_selector_expr(c, o, ise, th);
|
|
if (!ok) {
|
|
String name = ise->selector->Ident.token.string;
|
|
|
|
if (is_type_enum(th)) {
|
|
ERROR_BLOCK();
|
|
|
|
Type *bt = base_type(th);
|
|
GB_ASSERT(bt->kind == Type_Enum);
|
|
|
|
gbString typ = type_to_string(th);
|
|
defer (gb_string_free(typ));
|
|
error(node, "Undeclared name '%.*s' for type '%s'", LIT(name), typ);
|
|
|
|
check_did_you_mean_type(name, bt->Enum.fields);
|
|
} else if (is_type_bit_set(th) && is_type_enum(th->BitSet.elem)) {
|
|
ERROR_BLOCK();
|
|
|
|
gbString typ = type_to_string(th);
|
|
gbString str = expr_to_string(node);
|
|
error(node, "Cannot convert enum value to '%s'", typ);
|
|
error_line("\tSuggestion: Did you mean '{ %s }'?\n", str);
|
|
gb_string_free(typ);
|
|
gb_string_free(str);
|
|
} else {
|
|
gbString typ = type_to_string(th);
|
|
gbString str = expr_to_string(node);
|
|
error(node, "Invalid type '%s' for implicit selector expression '%s'", typ, str);
|
|
gb_string_free(str);
|
|
gb_string_free(typ);
|
|
}
|
|
}
|
|
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
|
|
gb_internal void check_promote_optional_ok(CheckerContext *c, Operand *x, Type **val_type_, Type **ok_type_, bool change_operand) {
|
|
switch (x->mode) {
|
|
case Addressing_MapIndex:
|
|
case Addressing_OptionalOk:
|
|
case Addressing_OptionalOkPtr:
|
|
if (val_type_) *val_type_ = x->type;
|
|
break;
|
|
default:
|
|
if (ok_type_) *ok_type_ = x->type;
|
|
return;
|
|
}
|
|
|
|
Ast *expr = unparen_expr(x->expr);
|
|
|
|
if (expr->kind == Ast_CallExpr) {
|
|
Type *pt = base_type(type_of_expr(expr->CallExpr.proc));
|
|
if (is_type_proc(pt)) {
|
|
Type *tuple = pt->Proc.results;
|
|
|
|
if (pt->Proc.result_count >= 2) {
|
|
if (ok_type_) *ok_type_ = tuple->Tuple.variables[1]->type;
|
|
}
|
|
if (change_operand) {
|
|
expr->CallExpr.optional_ok_one = false;
|
|
x->type = tuple;
|
|
add_type_and_value(c, x->expr, x->mode, tuple, x->value);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
Type *tuple = make_optional_ok_type(x->type);
|
|
|
|
if (ok_type_) *ok_type_ = tuple->Tuple.variables[1]->type;
|
|
|
|
if (change_operand) {
|
|
add_type_and_value(c, x->expr, x->mode, tuple, x->value);
|
|
x->type = tuple;
|
|
GB_ASSERT(is_type_tuple(type_of_expr(x->expr)));
|
|
}
|
|
}
|
|
|
|
|
|
gb_internal void check_matrix_index_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ast_node(ie, MatrixIndexExpr, node);
|
|
|
|
check_expr(c, o, ie->expr);
|
|
node->viral_state_flags |= ie->expr->viral_state_flags;
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return;
|
|
}
|
|
|
|
Type *t = base_type(type_deref(o->type));
|
|
bool is_ptr = is_type_pointer(o->type);
|
|
bool is_const = o->mode == Addressing_Constant;
|
|
|
|
if (t->kind != Type_Matrix) {
|
|
gbString str = expr_to_string(o->expr);
|
|
gbString type_str = type_to_string(o->type);
|
|
defer (gb_string_free(str));
|
|
defer (gb_string_free(type_str));
|
|
if (is_const) {
|
|
error(o->expr, "Cannot use matrix indexing on constant '%s' of type '%s'", str, type_str);
|
|
} else {
|
|
error(o->expr, "Cannot use matrix indexing on '%s' of type '%s'", str, type_str);
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return;
|
|
}
|
|
o->type = t->Matrix.elem;
|
|
if (is_ptr) {
|
|
o->mode = Addressing_Variable;
|
|
} else if (o->mode != Addressing_Variable) {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
|
|
if (ie->row_index == nullptr) {
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Missing row index for '%s'", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return;
|
|
}
|
|
if (ie->column_index == nullptr) {
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Missing column index for '%s'", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return;
|
|
}
|
|
|
|
i64 row_count = t->Matrix.row_count;
|
|
i64 column_count = t->Matrix.column_count;
|
|
|
|
i64 row_index = 0;
|
|
i64 column_index = 0;
|
|
bool row_ok = check_index_value(c, t, false, ie->row_index, row_count, &row_index, nullptr);
|
|
bool column_ok = check_index_value(c, t, false, ie->column_index, column_count, &column_index, nullptr);
|
|
if (is_const && (ie->row_index->tav.mode != Addressing_Constant || ie->column_index->tav.mode != Addressing_Constant)) {
|
|
error(o->expr, "Cannot index constant matrix with non-constant indices '%s'", expr_to_string(node));
|
|
}
|
|
|
|
gb_unused(row_ok);
|
|
gb_unused(column_ok);
|
|
}
|
|
|
|
|
|
struct TypeAndToken {
|
|
Type *type;
|
|
Token token;
|
|
};
|
|
|
|
typedef PtrMap<uintptr, TypeAndToken> SeenMap;
|
|
|
|
gb_internal void add_constant_switch_case(CheckerContext *ctx, SeenMap *seen, Operand operand, bool use_expr = true) {
|
|
if (operand.mode != Addressing_Constant) {
|
|
return;
|
|
}
|
|
if (operand.value.kind == ExactValue_Invalid) {
|
|
return;
|
|
}
|
|
|
|
uintptr key = hash_exact_value(operand.value);
|
|
GB_ASSERT(key != 0);
|
|
isize count = multi_map_count(seen, key);
|
|
if (count) {
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
TypeAndToken *taps = gb_alloc_array(temporary_allocator(), TypeAndToken, count);
|
|
|
|
multi_map_get_all(seen, key, taps);
|
|
for (isize i = 0; i < count; i++) {
|
|
TypeAndToken tap = taps[i];
|
|
Operand to = {};
|
|
to.mode = Addressing_Value;
|
|
to.type = tap.type;
|
|
if (!check_is_assignable_to_with_score(ctx, &to, operand.type, nullptr)) {
|
|
continue;
|
|
}
|
|
|
|
TokenPos pos = tap.token.pos;
|
|
if (use_expr) {
|
|
gbString expr_str = expr_to_string(operand.expr);
|
|
error(operand.expr,
|
|
"Duplicate case '%s'\n"
|
|
"\tprevious case at %s",
|
|
expr_str,
|
|
token_pos_to_string(pos));
|
|
gb_string_free(expr_str);
|
|
} else {
|
|
error(operand.expr, "Duplicate case found with previous case at %s", token_pos_to_string(pos));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
TypeAndToken tap = {operand.type, ast_token(operand.expr)};
|
|
multi_map_insert(seen, key, tap);
|
|
}
|
|
|
|
|
|
gb_internal void add_to_seen_map(CheckerContext *ctx, SeenMap *seen, TokenKind upper_op, Operand const &x, Operand const &lhs, Operand const &rhs) {
|
|
if (is_type_enum(x.type)) {
|
|
// TODO(bill): Fix this logic so it's fast!!!
|
|
|
|
i64 v0 = exact_value_to_i64(lhs.value);
|
|
i64 v1 = exact_value_to_i64(rhs.value);
|
|
Operand v = {};
|
|
v.mode = Addressing_Constant;
|
|
v.type = x.type;
|
|
v.expr = x.expr;
|
|
|
|
Type *bt = base_type(x.type);
|
|
GB_ASSERT(bt->kind == Type_Enum);
|
|
for (i64 vi = v0; vi <= v1; vi++) {
|
|
if (upper_op != Token_LtEq && vi == v1) {
|
|
break;
|
|
}
|
|
|
|
v.value = exact_value_i64(vi);
|
|
add_constant_switch_case(ctx, seen, v);
|
|
}
|
|
} else {
|
|
add_constant_switch_case(ctx, seen, lhs);
|
|
if (upper_op == Token_LtEq) {
|
|
add_constant_switch_case(ctx, seen, rhs);
|
|
}
|
|
}
|
|
}
|
|
gb_internal void add_to_seen_map(CheckerContext *ctx, SeenMap *seen, Operand const &x) {
|
|
add_constant_switch_case(ctx, seen, x);
|
|
}
|
|
|
|
gb_internal ExprKind check_basic_directive_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ast_node(bd, BasicDirective, node);
|
|
|
|
ExprKind kind = Expr_Expr;
|
|
|
|
o->mode = Addressing_Constant;
|
|
String name = bd->name.string;
|
|
if (name == "file") {
|
|
String file = get_file_path_string(bd->token.pos.file_id);
|
|
switch (build_context.source_code_location_info) {
|
|
case SourceCodeLocationInfo_Normal:
|
|
break;
|
|
case SourceCodeLocationInfo_Obfuscated:
|
|
file = obfuscate_string(file, "F");
|
|
break;
|
|
case SourceCodeLocationInfo_Filename:
|
|
file = last_path_element(file);
|
|
break;
|
|
case SourceCodeLocationInfo_None:
|
|
file = str_lit("");
|
|
break;
|
|
}
|
|
o->type = t_untyped_string;
|
|
o->value = exact_value_string(file);
|
|
} else if (name == "directory") {
|
|
String file = get_file_path_string(bd->token.pos.file_id);
|
|
String path = dir_from_path(file);
|
|
switch (build_context.source_code_location_info) {
|
|
case SourceCodeLocationInfo_Normal:
|
|
break;
|
|
case SourceCodeLocationInfo_Obfuscated:
|
|
path = obfuscate_string(path, "D");
|
|
break;
|
|
case SourceCodeLocationInfo_Filename:
|
|
path = last_path_element(path);
|
|
break;
|
|
case SourceCodeLocationInfo_None:
|
|
path = str_lit("");
|
|
break;
|
|
}
|
|
o->type = t_untyped_string;
|
|
o->value = exact_value_string(path);
|
|
} else if (name == "line") {
|
|
i32 line = bd->token.pos.line;
|
|
switch (build_context.source_code_location_info) {
|
|
case SourceCodeLocationInfo_Normal:
|
|
break;
|
|
case SourceCodeLocationInfo_Obfuscated:
|
|
line = obfuscate_i32(line);
|
|
break;
|
|
case SourceCodeLocationInfo_Filename:
|
|
break;
|
|
case SourceCodeLocationInfo_None:
|
|
line = 0;
|
|
break;
|
|
}
|
|
o->type = t_untyped_integer;
|
|
o->value = exact_value_i64(line);
|
|
} else if (name == "procedure") {
|
|
if (c->curr_proc_decl == nullptr) {
|
|
error(node, "#procedure may only be used within procedures");
|
|
o->type = t_untyped_string;
|
|
o->value = exact_value_string(str_lit(""));
|
|
} else {
|
|
String p = c->proc_name;
|
|
switch (build_context.source_code_location_info) {
|
|
case SourceCodeLocationInfo_Normal:
|
|
break;
|
|
case SourceCodeLocationInfo_Obfuscated:
|
|
p = obfuscate_string(p, "P");
|
|
break;
|
|
case SourceCodeLocationInfo_Filename:
|
|
break;
|
|
case SourceCodeLocationInfo_None:
|
|
p = str_lit("");
|
|
break;
|
|
}
|
|
o->type = t_untyped_string;
|
|
o->value = exact_value_string(p);
|
|
}
|
|
} else if (name == "caller_location") {
|
|
init_core_source_code_location(c->checker);
|
|
error(node, "#caller_location may only be used as a default argument parameter");
|
|
o->type = t_source_code_location;
|
|
o->mode = Addressing_Value;
|
|
} else if (name == "caller_expression") {
|
|
error(node, "#caller_expression may only be used as a default argument parameter");
|
|
o->type = t_string;
|
|
o->mode = Addressing_Value;
|
|
} else if (name == "branch_location") {
|
|
if (!c->in_defer) {
|
|
error(node, "#branch_location may only be used within a 'defer' statement");
|
|
} else if (c->curr_proc_decl) {
|
|
Entity *e = c->curr_proc_decl->entity;
|
|
if (e != nullptr) {
|
|
GB_ASSERT(e->kind == Entity_Procedure);
|
|
e->Procedure.uses_branch_location = true;
|
|
}
|
|
}
|
|
o->type = t_source_code_location;
|
|
o->mode = Addressing_Value;
|
|
} else {
|
|
if (name == "location") {
|
|
init_core_source_code_location(c->checker);
|
|
error(node, "'#location' must be used as a call, i.e. #location(proc), where #location() defaults to the procedure in which it was used.");
|
|
o->type = t_source_code_location;
|
|
o->mode = Addressing_Value;
|
|
} else if (
|
|
name == "assert" ||
|
|
name == "defined" ||
|
|
name == "config" ||
|
|
name == "exists" ||
|
|
name == "load" ||
|
|
name == "load_hash" ||
|
|
name == "load_directory" ||
|
|
name == "load_or"
|
|
) {
|
|
error(node, "'#%.*s' must be used as a call", LIT(name));
|
|
o->type = t_invalid;
|
|
o->mode = Addressing_Invalid;
|
|
} else {
|
|
error(node, "Unknown directive: #%.*s", LIT(name));
|
|
o->type = t_invalid;
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
|
|
}
|
|
return kind;
|
|
}
|
|
|
|
gb_internal ExprKind check_ternary_if_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ExprKind kind = Expr_Expr;
|
|
Operand cond = {Addressing_Invalid};
|
|
ast_node(te, TernaryIfExpr, node);
|
|
check_expr(c, &cond, te->cond);
|
|
node->viral_state_flags |= te->cond->viral_state_flags;
|
|
|
|
if (cond.mode != Addressing_Invalid && !is_type_boolean(cond.type)) {
|
|
error(te->cond, "Non-boolean condition in ternary if expression");
|
|
}
|
|
|
|
Operand x = {Addressing_Invalid};
|
|
Operand y = {Addressing_Invalid};
|
|
check_expr_or_type(c, &x, te->x, type_hint);
|
|
node->viral_state_flags |= te->x->viral_state_flags;
|
|
|
|
if (te->y != nullptr) {
|
|
Type *th = type_hint;
|
|
if (type_hint == nullptr && is_type_typed(x.type)) {
|
|
th = x.type;
|
|
}
|
|
check_expr_or_type(c, &y, te->y, th);
|
|
node->viral_state_flags |= te->y->viral_state_flags;
|
|
} else {
|
|
error(node, "A ternary expression must have an else clause");
|
|
return kind;
|
|
}
|
|
|
|
if (x.mode == Addressing_Type || y.mode == Addressing_Type) {
|
|
Ast *type_expr = (x.mode == Addressing_Type) ? x.expr : y.expr;
|
|
gbString type_string = expr_to_string(type_expr);
|
|
error(node, "Type %s is invalid operand for ternary if expression", type_string);
|
|
gb_string_free(type_string);
|
|
return kind;
|
|
}
|
|
|
|
bool use_type_hint = type_hint != nullptr && (is_operand_nil(x) || is_operand_nil(y));
|
|
|
|
convert_to_typed(c, &x, use_type_hint ? type_hint : y.type);
|
|
if (x.mode == Addressing_Invalid) {
|
|
return kind;
|
|
}
|
|
convert_to_typed(c, &y, use_type_hint ? type_hint : x.type);
|
|
if (y.mode == Addressing_Invalid) {
|
|
x.mode = Addressing_Invalid;
|
|
return kind;
|
|
}
|
|
|
|
// NOTE(bill, 2023-01-30): Allow for expression like this:
|
|
// x: union{f32} = f32(123) if cond else nil
|
|
if (type_hint && !is_type_any(type_hint)) {
|
|
if (check_is_assignable_to(c, &x, type_hint) && check_is_assignable_to(c, &y, type_hint)) {
|
|
check_cast(c, &x, type_hint);
|
|
check_cast(c, &y, type_hint);
|
|
}
|
|
}
|
|
|
|
if (!ternary_compare_types(x.type, y.type)) {
|
|
gbString its = type_to_string(x.type);
|
|
gbString ets = type_to_string(y.type);
|
|
error(node, "Mismatched types in ternary if expression, %s vs %s", its, ets);
|
|
gb_string_free(ets);
|
|
gb_string_free(its);
|
|
return kind;
|
|
}
|
|
|
|
o->type = x.type;
|
|
if (is_type_untyped_nil(o->type) || is_type_untyped_uninit(o->type)) {
|
|
o->type = y.type;
|
|
}
|
|
|
|
o->mode = Addressing_Value;
|
|
o->expr = node;
|
|
if (type_hint != nullptr && is_type_untyped(o->type) && !is_type_any(type_hint)) {
|
|
if (check_cast_internal(c, &x, type_hint) &&
|
|
check_cast_internal(c, &y, type_hint)) {
|
|
convert_to_typed(c, o, type_hint);
|
|
update_untyped_expr_type(c, node, type_hint, !is_type_untyped(type_hint));
|
|
o->type = type_hint;
|
|
}
|
|
}
|
|
return kind;
|
|
}
|
|
|
|
gb_internal ExprKind check_ternary_when_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ExprKind kind = Expr_Expr;
|
|
Operand cond = {};
|
|
ast_node(te, TernaryWhenExpr, node);
|
|
check_expr(c, &cond, te->cond);
|
|
node->viral_state_flags |= te->cond->viral_state_flags;
|
|
|
|
if (cond.mode != Addressing_Constant || !is_type_boolean(cond.type)) {
|
|
error(te->cond, "Expected a constant boolean condition in ternary when expression");
|
|
return kind;
|
|
}
|
|
|
|
if (cond.value.value_bool) {
|
|
check_expr_or_type(c, o, te->x, type_hint);
|
|
node->viral_state_flags |= te->x->viral_state_flags;
|
|
} else {
|
|
if (te->y != nullptr) {
|
|
check_expr_or_type(c, o, te->y, type_hint);
|
|
node->viral_state_flags |= te->y->viral_state_flags;
|
|
} else {
|
|
error(node, "A ternary when expression must have an else clause");
|
|
return kind;
|
|
}
|
|
}
|
|
return kind;
|
|
}
|
|
|
|
gb_internal ExprKind check_or_else_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ast_node(oe, OrElseExpr, node);
|
|
|
|
String name = oe->token.string;
|
|
Ast *arg = oe->x;
|
|
Ast *default_value = oe->y;
|
|
Operand x = {};
|
|
Operand y = {};
|
|
|
|
// NOTE(bill, 2022-08-11): edge case to handle #load(path) or_else default
|
|
if (is_load_directive_call(arg)) {
|
|
LoadDirectiveResult res = check_load_directive(c, &x, arg, type_hint, false);
|
|
|
|
// Allow for chaining of '#load(path) or_else #load(path)'
|
|
if (!(is_load_directive_call(default_value) && res == LoadDirective_Success)) {
|
|
bool y_is_diverging = false;
|
|
check_expr_base(c, &y, default_value, x.type);
|
|
switch (y.mode) {
|
|
case Addressing_NoValue:
|
|
if (is_diverging_expr(y.expr)) {
|
|
// Allow
|
|
y.mode = Addressing_Value;
|
|
y_is_diverging = true;
|
|
} else {
|
|
error_operand_no_value(&y);
|
|
y.mode = Addressing_Invalid;
|
|
}
|
|
break;
|
|
case Addressing_Type:
|
|
error_operand_not_expression(&y);
|
|
y.mode = Addressing_Invalid;
|
|
break;
|
|
}
|
|
|
|
if (y.mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Value;
|
|
o->type = t_invalid;
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
if (!y_is_diverging) {
|
|
check_assignment(c, &y, x.type, name);
|
|
if (y.mode != Addressing_Constant) {
|
|
error(y.expr, "expected a constant expression on the right-hand side of 'or_else' in conjuction with '#load'");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (res == LoadDirective_Success) {
|
|
*o = x;
|
|
} else {
|
|
*o = y;
|
|
}
|
|
o->expr = node;
|
|
|
|
return Expr_Expr;
|
|
}
|
|
|
|
check_multi_expr_with_type_hint(c, &x, arg, type_hint);
|
|
if (x.mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Value;
|
|
o->type = t_invalid;
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
Type *left_type = nullptr;
|
|
Type *right_type = nullptr;
|
|
check_or_else_split_types(c, &x, name, &left_type, &right_type);
|
|
add_type_and_value(c, arg, x.mode, x.type, x.value);
|
|
|
|
bool y_is_diverging = false;
|
|
check_expr_base(c, &y, default_value, left_type);
|
|
switch (y.mode) {
|
|
case Addressing_NoValue:
|
|
if (is_diverging_expr(y.expr)) {
|
|
// Allow
|
|
y.mode = Addressing_Value;
|
|
y_is_diverging = true;
|
|
} else {
|
|
error_operand_no_value(&y);
|
|
y.mode = Addressing_Invalid;
|
|
}
|
|
break;
|
|
case Addressing_Type:
|
|
error_operand_not_expression(&y);
|
|
y.mode = Addressing_Invalid;
|
|
break;
|
|
}
|
|
|
|
if (y.mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Value;
|
|
o->type = t_invalid;
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
if (left_type != nullptr) {
|
|
if (!y_is_diverging) {
|
|
if (is_type_tuple(left_type)) {
|
|
if (!is_type_tuple(y.type)) {
|
|
error(y.expr, "Found a single value where a %td-valued expression was expected", left_type->Tuple.variables.count);
|
|
} else if (!are_types_identical(left_type, y.type)) {
|
|
gbString xt = type_to_string(left_type);
|
|
gbString yt = type_to_string(y.type);
|
|
error(y.expr, "Mismatched types, expected (%s), got (%s)", xt, yt);
|
|
gb_string_free(yt);
|
|
gb_string_free(xt);
|
|
}
|
|
} else {
|
|
check_assignment(c, &y, left_type, name);
|
|
}
|
|
}
|
|
} else {
|
|
check_or_else_expr_no_value_error(c, name, x, type_hint);
|
|
}
|
|
|
|
if (left_type == nullptr) {
|
|
left_type = t_invalid;
|
|
}
|
|
o->mode = Addressing_Value;
|
|
o->type = left_type;
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
gb_internal ExprKind check_or_return_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ast_node(re, OrReturnExpr, node);
|
|
|
|
String name = re->token.string;
|
|
Operand x = {};
|
|
check_multi_expr_with_type_hint(c, &x, re->expr, type_hint);
|
|
if (x.mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Value;
|
|
o->type = t_invalid;
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
Type *left_type = nullptr;
|
|
Type *right_type = nullptr;
|
|
check_or_return_split_types(c, &x, name, &left_type, &right_type);
|
|
add_type_and_value(c, re->expr, x.mode, x.type, x.value);
|
|
|
|
if (right_type == nullptr) {
|
|
check_or_else_expr_no_value_error(c, name, x, type_hint);
|
|
} else {
|
|
Type *proc_type = base_type(c->curr_proc_sig);
|
|
GB_ASSERT(proc_type->kind == Type_Proc);
|
|
Type *result_type = proc_type->Proc.results;
|
|
if (result_type == nullptr) {
|
|
error(node, "'%.*s' requires the current procedure to have at least one return value", LIT(name));
|
|
} else {
|
|
GB_ASSERT(result_type->kind == Type_Tuple);
|
|
|
|
auto const &vars = result_type->Tuple.variables;
|
|
Type *end_type = vars[vars.count-1]->type;
|
|
|
|
if (vars.count > 1) {
|
|
if (!proc_type->Proc.has_named_results) {
|
|
error(node, "'%.*s' within a procedure with more than 1 return value requires that the return values are named, allowing for early return", LIT(name));
|
|
}
|
|
}
|
|
|
|
Operand rhs = {};
|
|
rhs.type = right_type;
|
|
rhs.mode = Addressing_Value;
|
|
|
|
if (is_type_boolean(right_type) && is_type_boolean(end_type)) {
|
|
// NOTE(bill): allow implicit conversion between boolean types
|
|
// within 'or_return' to improve the experience using third-party code
|
|
} else if (!check_is_assignable_to(c, &rhs, end_type)) {
|
|
ERROR_BLOCK();
|
|
// TODO(bill): better error message
|
|
gbString a = type_to_string(right_type);
|
|
gbString b = type_to_string(end_type);
|
|
gbString ret_type = type_to_string(result_type);
|
|
error(node, "Cannot assign end value of type '%s' to '%s' in '%.*s'", a, b, LIT(name));
|
|
if (vars.count == 1) {
|
|
error_line("\tProcedure return value type: %s\n", ret_type);
|
|
} else {
|
|
error_line("\tProcedure return value types: (%s)\n", ret_type);
|
|
}
|
|
gb_string_free(ret_type);
|
|
gb_string_free(b);
|
|
gb_string_free(a);
|
|
}
|
|
}
|
|
}
|
|
|
|
o->expr = node;
|
|
o->type = left_type;
|
|
if (left_type != nullptr) {
|
|
o->mode = Addressing_Value;
|
|
} else {
|
|
o->mode = Addressing_NoValue;
|
|
}
|
|
|
|
if (c->curr_proc_sig == nullptr) {
|
|
error(node, "'%.*s' can only be used within a procedure", LIT(name));
|
|
}
|
|
|
|
if (c->in_defer) {
|
|
error(node, "'or_return' cannot be used within a defer statement");
|
|
}
|
|
|
|
return Expr_Expr;
|
|
}
|
|
|
|
gb_internal ExprKind check_or_branch_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ast_node(be, OrBranchExpr, node);
|
|
|
|
String name = be->token.string;
|
|
Operand x = {};
|
|
check_multi_expr_with_type_hint(c, &x, be->expr, type_hint);
|
|
if (x.mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Value;
|
|
o->type = t_invalid;
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
Type *left_type = nullptr;
|
|
Type *right_type = nullptr;
|
|
check_or_return_split_types(c, &x, name, &left_type, &right_type);
|
|
add_type_and_value(c, be->expr, x.mode, x.type, x.value);
|
|
|
|
if (right_type == nullptr) {
|
|
check_or_else_expr_no_value_error(c, name, x, type_hint);
|
|
} else {
|
|
if (is_type_boolean(right_type) || type_has_nil(right_type)) {
|
|
// okay
|
|
} else {
|
|
gbString s = type_to_string(right_type);
|
|
error(node, "'%.*s' requires a boolean or nil-able type, got %s", LIT(name), s);
|
|
gb_string_free(s);
|
|
}
|
|
}
|
|
|
|
o->expr = node;
|
|
o->type = left_type;
|
|
if (left_type != nullptr) {
|
|
o->mode = Addressing_Value;
|
|
} else {
|
|
o->mode = Addressing_NoValue;
|
|
}
|
|
|
|
if (c->curr_proc_sig == nullptr) {
|
|
error(node, "'%.*s' can only be used within a procedure", LIT(name));
|
|
}
|
|
|
|
Ast *label = be->label;
|
|
|
|
switch (be->token.kind) {
|
|
case Token_or_break:
|
|
node->viral_state_flags |= ViralStateFlag_ContainsOrBreak;
|
|
if ((c->stmt_flags & Stmt_BreakAllowed) == 0 && label == nullptr) {
|
|
error(be->token, "'%.*s' only allowed in non-inline loops or 'switch' statements", LIT(name));
|
|
}
|
|
break;
|
|
case Token_or_continue:
|
|
if ((c->stmt_flags & Stmt_ContinueAllowed) == 0 && label == nullptr) {
|
|
error(be->token, "'%.*s' only allowed in non-inline loops", LIT(name));
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (label != nullptr) {
|
|
if (c->in_defer) {
|
|
error(label, "A labelled '%.*s' cannot be used within a 'defer'", LIT(name));
|
|
return Expr_Expr;
|
|
}
|
|
if (label->kind != Ast_Ident) {
|
|
error(label, "A branch statement's label name must be an identifier");
|
|
return Expr_Expr;
|
|
}
|
|
Ast *ident = label;
|
|
String name = ident->Ident.token.string;
|
|
Operand o = {};
|
|
Entity *e = check_ident(c, &o, ident, nullptr, nullptr, false);
|
|
if (e == nullptr) {
|
|
error(ident, "Undeclared label name: %.*s", LIT(name));
|
|
return Expr_Expr;
|
|
}
|
|
add_entity_use(c, ident, e);
|
|
if (e->kind != Entity_Label) {
|
|
error(ident, "'%.*s' is not a label", LIT(name));
|
|
return Expr_Expr;
|
|
}
|
|
Ast *parent = e->Label.parent;
|
|
GB_ASSERT(parent != nullptr);
|
|
switch (parent->kind) {
|
|
case Ast_BlockStmt:
|
|
case Ast_IfStmt:
|
|
case Ast_SwitchStmt:
|
|
if (be->token.kind != Token_or_break) {
|
|
error(label, "Label '%.*s' can only be used with 'or_break'", LIT(e->token.string));
|
|
}
|
|
break;
|
|
case Ast_RangeStmt:
|
|
case Ast_ForStmt:
|
|
if ((be->token.kind != Token_or_break) && (be->token.kind != Token_or_continue)) {
|
|
error(label, "Label '%.*s' can only be used with 'or_break' and 'or_continue'", LIT(e->token.string));
|
|
}
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
return Expr_Expr;
|
|
}
|
|
|
|
|
|
gb_internal void check_compound_literal_field_values(CheckerContext *c, Slice<Ast *> const &elems, Operand *o, Type *type, bool &is_constant) {
|
|
Type *bt = base_type(type);
|
|
|
|
StringSet fields_visited = {};
|
|
defer (string_set_destroy(&fields_visited));
|
|
|
|
StringMap<String> fields_visited_through_raw_union = {};
|
|
defer (string_map_destroy(&fields_visited_through_raw_union));
|
|
|
|
String assignment_str = str_lit("structure literal");
|
|
if (bt->kind == Type_BitField) {
|
|
assignment_str = str_lit("bit_field literal");
|
|
}
|
|
|
|
for (Ast *elem : elems) {
|
|
if (elem->kind != Ast_FieldValue) {
|
|
error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
Ast *ident = fv->field;
|
|
if (ident->kind == Ast_ImplicitSelectorExpr) {
|
|
gbString expr_str = expr_to_string(ident);
|
|
error(ident, "Field names do not start with a '.', remove the '.' in structure literal", expr_str);
|
|
gb_string_free(expr_str);
|
|
|
|
ident = ident->ImplicitSelectorExpr.selector;
|
|
}
|
|
if (ident->kind != Ast_Ident) {
|
|
gbString expr_str = expr_to_string(ident);
|
|
error(elem, "Invalid field name '%s' in structure literal", expr_str);
|
|
gb_string_free(expr_str);
|
|
continue;
|
|
}
|
|
String name = ident->Ident.token.string;
|
|
|
|
Selection sel = lookup_field(type, name, o->mode == Addressing_Type);
|
|
bool is_unknown = sel.entity == nullptr;
|
|
if (is_unknown) {
|
|
error(ident, "Unknown field '%.*s' in structure literal", LIT(name));
|
|
continue;
|
|
}
|
|
|
|
Entity *field = nullptr;
|
|
if (bt->kind == Type_Struct) {
|
|
field = bt->Struct.fields[sel.index[0]];
|
|
} else if (bt->kind == Type_BitField) {
|
|
field = bt->BitField.fields[sel.index[0]];
|
|
} else {
|
|
GB_PANIC("Unknown type");
|
|
}
|
|
|
|
|
|
add_entity_use(c, ident, field);
|
|
if (string_set_update(&fields_visited, name)) {
|
|
if (sel.index.count > 1) {
|
|
if (String *found = string_map_get(&fields_visited_through_raw_union, sel.entity->token.string)) {
|
|
error(ident, "Field '%.*s' is already initialized due to a previously assigned struct #raw_union field '%.*s'", LIT(sel.entity->token.string), LIT(*found));
|
|
} else {
|
|
error(ident, "Duplicate or reused field '%.*s' in %.*s", LIT(sel.entity->token.string), LIT(assignment_str));
|
|
}
|
|
} else {
|
|
error(ident, "Duplicate field '%.*s' in %.*s", LIT(field->token.string), LIT(assignment_str));
|
|
}
|
|
continue;
|
|
} else if (String *found = string_map_get(&fields_visited_through_raw_union, sel.entity->token.string)) {
|
|
error(ident, "Field '%.*s' is already initialized due to a previously assigned struct #raw_union field '%.*s'", LIT(sel.entity->token.string), LIT(*found));
|
|
continue;
|
|
}
|
|
if (sel.indirect) {
|
|
error(ident, "Cannot assign to the %d-nested anonymous indirect field '%.*s' in a %.*s", cast(int)sel.index.count-1, LIT(name), LIT(assignment_str));
|
|
continue;
|
|
}
|
|
|
|
if (sel.index.count > 1) {
|
|
GB_ASSERT(bt->kind == Type_Struct);
|
|
|
|
if (is_constant) {
|
|
Type *ft = type;
|
|
for (i32 index : sel.index) {
|
|
Type *bt = base_type(ft);
|
|
switch (bt->kind) {
|
|
case Type_Struct:
|
|
if (bt->Struct.is_raw_union) {
|
|
is_constant = false;
|
|
break;
|
|
}
|
|
ft = bt->Struct.fields[index]->type;
|
|
break;
|
|
case Type_Array:
|
|
ft = bt->Array.elem;
|
|
break;
|
|
case Type_BitField:
|
|
is_constant = false;
|
|
ft = bt->BitField.fields[index]->type;
|
|
break;
|
|
default:
|
|
GB_PANIC("invalid type: %s", type_to_string(ft));
|
|
break;
|
|
}
|
|
}
|
|
if (is_constant &&
|
|
(is_type_any(ft) || is_type_union(ft) || is_type_raw_union(ft) || is_type_typeid(ft))) {
|
|
is_constant = false;
|
|
}
|
|
}
|
|
|
|
Type *nested_ft = bt;
|
|
for (i32 index : sel.index) {
|
|
Type *bt = base_type(nested_ft);
|
|
switch (bt->kind) {
|
|
case Type_Struct:
|
|
if (bt->Struct.is_raw_union) {
|
|
for (Entity *re : bt->Struct.fields) {
|
|
string_map_set(&fields_visited_through_raw_union, re->token.string, sel.entity->token.string);
|
|
}
|
|
}
|
|
nested_ft = bt->Struct.fields[index]->type;
|
|
break;
|
|
case Type_Array:
|
|
nested_ft = bt->Array.elem;
|
|
break;
|
|
case Type_BitField:
|
|
nested_ft = bt->BitField.fields[index]->type;
|
|
break;
|
|
default:
|
|
GB_PANIC("invalid type %s", type_to_string(nested_ft));
|
|
break;
|
|
}
|
|
}
|
|
field = sel.entity;
|
|
}
|
|
|
|
|
|
Operand o = {};
|
|
check_expr_or_type(c, &o, fv->value, field->type);
|
|
|
|
if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type) || is_type_typeid(field->type)) {
|
|
is_constant = false;
|
|
}
|
|
if (is_constant) {
|
|
is_constant = check_is_operand_compound_lit_constant(c, &o);
|
|
}
|
|
|
|
u8 prev_bit_field_bit_size = c->bit_field_bit_size;
|
|
if (field->kind == Entity_Variable && field->Variable.bit_field_bit_size) {
|
|
// HACK NOTE(bill): This is a bit of a hack, but it will work fine for this use case
|
|
c->bit_field_bit_size = field->Variable.bit_field_bit_size;
|
|
}
|
|
|
|
check_assignment(c, &o, field->type, assignment_str);
|
|
|
|
c->bit_field_bit_size = prev_bit_field_bit_size;
|
|
}
|
|
}
|
|
|
|
gb_internal bool is_expr_inferred_fixed_array(Ast *type_expr) {
|
|
type_expr = unparen_expr(type_expr);
|
|
if (type_expr == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// [?]Type
|
|
if (type_expr->kind == Ast_ArrayType && type_expr->ArrayType.count != nullptr) {
|
|
Ast *count = type_expr->ArrayType.count;
|
|
if (count->kind == Ast_UnaryExpr &&
|
|
count->UnaryExpr.op.kind == Token_Question) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
gb_internal bool check_for_dynamic_literals(CheckerContext *c, Ast *node, AstCompoundLit *cl) {
|
|
if (cl->elems.count > 0 && (check_feature_flags(c, node) & OptInFeatureFlag_DynamicLiterals) == 0 && !build_context.dynamic_literals) {
|
|
ERROR_BLOCK();
|
|
error(node, "Compound literals of dynamic types are disabled by default");
|
|
error_line("\tSuggestion: If you want to enable them for this specific file, add '#+feature dynamic-literals' at the top of the file\n");
|
|
error_line("\tWarning: Please understand that dynamic literals will implicitly allocate using the current 'context.allocator' in that scope\n");
|
|
if (build_context.ODIN_DEFAULT_TO_NIL_ALLOCATOR) {
|
|
error_line("\tWarning: As '-default-to-panic-allocator' has been set, the dynamic compound literal may not be initialized as expected\n");
|
|
} else if (build_context.ODIN_DEFAULT_TO_PANIC_ALLOCATOR) {
|
|
error_line("\tWarning: As '-default-to-panic-allocator' has been set, the dynamic compound literal may not be initialized as expected\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return cl->elems.count > 0;
|
|
}
|
|
|
|
gb_internal IntegerDivisionByZeroKind check_for_integer_division_by_zero(CheckerContext *c, Ast *node) {
|
|
// TODO(bill): per file `#+feature` flags
|
|
u64 flags = check_feature_flags(c, node);
|
|
if ((flags & OptInFeatureFlag_IntegerDivisionByZero_Trap) != 0) {
|
|
return IntegerDivisionByZero_Trap;
|
|
}
|
|
if ((flags & OptInFeatureFlag_IntegerDivisionByZero_Zero) != 0) {
|
|
return IntegerDivisionByZero_Zero;
|
|
}
|
|
if ((flags & OptInFeatureFlag_IntegerDivisionByZero_Self) != 0) {
|
|
return IntegerDivisionByZero_Self;
|
|
}
|
|
return build_context.integer_division_by_zero_behaviour;
|
|
}
|
|
|
|
gb_internal ExprKind check_compound_literal(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ExprKind kind = Expr_Expr;
|
|
ast_node(cl, CompoundLit, node);
|
|
|
|
Type *type = type_hint;
|
|
if (type != nullptr && is_type_untyped(type)) {
|
|
type = nullptr;
|
|
}
|
|
bool is_to_be_determined_array_count = false;
|
|
bool is_constant = true;
|
|
bool is_soa = false;
|
|
|
|
Ast *type_expr = cl->type;
|
|
|
|
bool used_type_hint_expr = false;
|
|
if (type_expr == nullptr && c->type_hint_expr != nullptr) {
|
|
if (is_expr_inferred_fixed_array(c->type_hint_expr)) {
|
|
type_expr = clone_ast(c->type_hint_expr);
|
|
used_type_hint_expr = true;
|
|
}
|
|
}
|
|
|
|
if (type_expr != nullptr) {
|
|
type = nullptr;
|
|
|
|
// [?]Type
|
|
if (type_expr->kind == Ast_ArrayType) {
|
|
Ast *count = type_expr->ArrayType.count;
|
|
if (count != nullptr) {
|
|
if (count->kind == Ast_UnaryExpr &&
|
|
count->UnaryExpr.op.kind == Token_Question) {
|
|
type = alloc_type_array(check_type(c, type_expr->ArrayType.elem), -1);
|
|
is_to_be_determined_array_count = true;
|
|
}
|
|
} else {
|
|
type = alloc_type_slice(check_type(c, type_expr->ArrayType.elem));
|
|
}
|
|
if (cl->elems.count > 0) {
|
|
if (type_expr->ArrayType.tag != nullptr) {
|
|
Ast *tag = type_expr->ArrayType.tag;
|
|
GB_ASSERT(tag->kind == Ast_BasicDirective);
|
|
String name = tag->BasicDirective.name.string;
|
|
if (name == "soa") {
|
|
is_soa = true;
|
|
if (count == nullptr) {
|
|
error(node, "#soa slices are not supported for compound literals");
|
|
return kind;
|
|
} else if (count->kind == Ast_UnaryExpr &&
|
|
count->UnaryExpr.op.kind == Token_Question) {
|
|
error(node, "#soa fixed length arrays must specify their length and cannot use ?");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (type_expr->kind == Ast_DynamicArrayType && type_expr->DynamicArrayType.tag != nullptr) {
|
|
if (cl->elems.count > 0) {
|
|
Ast *tag = type_expr->DynamicArrayType.tag;
|
|
GB_ASSERT(tag->kind == Ast_BasicDirective);
|
|
String name = tag->BasicDirective.name.string;
|
|
if (name == "soa") {
|
|
is_soa = true;
|
|
error(node, "#soa dynamic arrays are not supported for compound literals");
|
|
return kind;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (type == nullptr) {
|
|
type = check_type(c, type_expr);
|
|
}
|
|
}
|
|
|
|
if (type == nullptr) {
|
|
error(node, "Missing type in compound literal");
|
|
return kind;
|
|
}
|
|
|
|
|
|
Type *t = base_type(type);
|
|
if (is_type_polymorphic(t)) {
|
|
gbString str = type_to_string(type);
|
|
error(node, "Cannot use a polymorphic type for a compound literal, got '%s'", str);
|
|
o->expr = node;
|
|
o->type = type;
|
|
gb_string_free(str);
|
|
return kind;
|
|
}
|
|
|
|
|
|
switch (t->kind) {
|
|
case Type_Struct:
|
|
if (cl->elems.count == 0) {
|
|
break; // NOTE(bill): No need to init
|
|
}
|
|
|
|
if (t->Struct.soa_kind == StructSoa_None) {
|
|
if (t->Struct.is_raw_union) {
|
|
if (cl->elems.count > 0) {
|
|
// NOTE: unions cannot be constant
|
|
is_constant = false;
|
|
|
|
if (cl->elems[0]->kind != Ast_FieldValue) {
|
|
gbString type_str = type_to_string(type);
|
|
error(node, "%s ('struct #raw_union') compound literals are only allowed to contain 'field = value' elements", type_str);
|
|
gb_string_free(type_str);
|
|
} else {
|
|
if (cl->elems.count != 1) {
|
|
gbString type_str = type_to_string(type);
|
|
error(node, "%s ('struct #raw_union') compound literals are only allowed to contain up to 1 'field = value' element, got %td", type_str, cl->elems.count);
|
|
gb_string_free(type_str);
|
|
} else {
|
|
check_compound_literal_field_values(c, cl->elems, o, type, is_constant);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
wait_signal_until_available(&t->Struct.fields_wait_signal);
|
|
isize field_count = t->Struct.fields.count;
|
|
isize min_field_count = t->Struct.fields.count;
|
|
for (isize i = min_field_count-1; i >= 0; i--) {
|
|
Entity *e = t->Struct.fields[i];
|
|
GB_ASSERT(e->kind == Entity_Variable);
|
|
if (e->Variable.param_value.kind != ParameterValue_Invalid) {
|
|
min_field_count--;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cl->elems[0]->kind == Ast_FieldValue) {
|
|
check_compound_literal_field_values(c, cl->elems, o, type, is_constant);
|
|
} else {
|
|
bool seen_field_value = false;
|
|
|
|
for_array(index, cl->elems) {
|
|
Entity *field = nullptr;
|
|
Ast *elem = cl->elems[index];
|
|
if (elem->kind == Ast_FieldValue) {
|
|
seen_field_value = true;
|
|
error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
|
|
continue;
|
|
} else if (seen_field_value) {
|
|
error(elem, "Value elements cannot be used after a 'field = value'");
|
|
continue;
|
|
}
|
|
if (index >= field_count) {
|
|
error(elem, "Too many values in structure literal, expected %td, got %td", field_count, cl->elems.count);
|
|
break;
|
|
}
|
|
|
|
if (field == nullptr) {
|
|
field = t->Struct.fields[index];
|
|
}
|
|
|
|
Operand o = {};
|
|
check_expr_or_type(c, &o, elem, field->type);
|
|
|
|
if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type) || is_type_typeid(field->type)) {
|
|
is_constant = false;
|
|
}
|
|
if (is_constant) {
|
|
is_constant = check_is_operand_compound_lit_constant(c, &o);
|
|
}
|
|
|
|
check_assignment(c, &o, field->type, str_lit("structure literal"));
|
|
}
|
|
if (cl->elems.count < field_count) {
|
|
if (min_field_count < field_count) {
|
|
if (cl->elems.count < min_field_count) {
|
|
error(cl->close, "Too few values in structure literal, expected at least %td, got %td", min_field_count, cl->elems.count);
|
|
}
|
|
} else {
|
|
error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count);
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
} else if (t->Struct.soa_kind != StructSoa_Fixed) {
|
|
error(node, "#soa slices and dynamic arrays are not supported for compound literals");
|
|
break;
|
|
}
|
|
/*fallthrough*/
|
|
|
|
case Type_Slice:
|
|
case Type_Array:
|
|
case Type_DynamicArray:
|
|
case Type_SimdVector:
|
|
case Type_Matrix:
|
|
{
|
|
Type *elem_type = nullptr;
|
|
String context_name = {};
|
|
i64 max_type_count = -1;
|
|
if (t->kind == Type_Struct) {
|
|
GB_ASSERT(t->Struct.soa_kind == StructSoa_Fixed);
|
|
elem_type = t->Struct.soa_elem;
|
|
context_name = str_lit("#soa array literal");
|
|
if (!is_to_be_determined_array_count) {
|
|
max_type_count = t->Struct.soa_count;
|
|
}
|
|
} else if (t->kind == Type_Slice) {
|
|
elem_type = t->Slice.elem;
|
|
context_name = str_lit("slice literal");
|
|
} else if (t->kind == Type_Array) {
|
|
elem_type = t->Array.elem;
|
|
context_name = str_lit("array literal");
|
|
if (!is_to_be_determined_array_count) {
|
|
max_type_count = t->Array.count;
|
|
}
|
|
} else if (t->kind == Type_Array) {
|
|
elem_type = t->Array.elem;
|
|
context_name = str_lit("array literal");
|
|
if (!is_to_be_determined_array_count) {
|
|
max_type_count = t->Array.count;
|
|
}
|
|
} else if (t->kind == Type_DynamicArray) {
|
|
elem_type = t->DynamicArray.elem;
|
|
context_name = str_lit("dynamic array literal");
|
|
is_constant = false;
|
|
} else if (t->kind == Type_SimdVector) {
|
|
elem_type = t->SimdVector.elem;
|
|
context_name = str_lit("simd vector literal");
|
|
max_type_count = t->SimdVector.count;
|
|
} else if (t->kind == Type_Matrix) {
|
|
elem_type = t->Matrix.elem;
|
|
context_name = str_lit("matrix literal");
|
|
max_type_count = t->Matrix.row_count*t->Matrix.column_count;
|
|
} else {
|
|
GB_PANIC("unreachable");
|
|
}
|
|
|
|
|
|
i64 max = 0;
|
|
|
|
Type *bet = base_type(elem_type);
|
|
if (!elem_type_can_be_constant(bet)) {
|
|
is_constant = false;
|
|
}
|
|
|
|
if (bet == t_invalid) {
|
|
break;
|
|
}
|
|
|
|
if (cl->elems.count > 0 && cl->elems[0]->kind == Ast_FieldValue) {
|
|
RangeCache rc = range_cache_make(heap_allocator());
|
|
defer (range_cache_destroy(&rc));
|
|
|
|
for (Ast *elem : cl->elems) {
|
|
if (elem->kind != Ast_FieldValue) {
|
|
error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
|
|
if (is_ast_range(fv->field)) {
|
|
Token op = fv->field->BinaryExpr.op;
|
|
|
|
Operand x = {};
|
|
Operand y = {};
|
|
bool ok = check_range(c, fv->field, false, &x, &y, nullptr);
|
|
if (!ok) {
|
|
continue;
|
|
}
|
|
if (x.mode != Addressing_Constant || !is_type_integer(core_type(x.type))) {
|
|
error(x.expr, "Expected a constant integer as an array field");
|
|
continue;
|
|
}
|
|
|
|
if (y.mode != Addressing_Constant || !is_type_integer(core_type(y.type))) {
|
|
error(y.expr, "Expected a constant integer as an array field");
|
|
continue;
|
|
}
|
|
|
|
i64 lo = exact_value_to_i64(x.value);
|
|
i64 hi = exact_value_to_i64(y.value);
|
|
i64 max_index = hi;
|
|
if (op.kind == Token_RangeHalf) { // ..< (exclusive)
|
|
hi -= 1;
|
|
} else { // .. (inclusive)
|
|
max_index += 1;
|
|
}
|
|
|
|
bool new_range = range_cache_add_range(&rc, lo, hi);
|
|
if (!new_range) {
|
|
error(elem, "Overlapping field range index %lld %.*s %lld for %.*s", lo, LIT(op.string), hi, LIT(context_name));
|
|
continue;
|
|
}
|
|
|
|
|
|
if (max_type_count >= 0 && (lo < 0 || lo >= max_type_count)) {
|
|
error(elem, "Index %lld is out of bounds (0..<%lld) for %.*s", lo, max_type_count, LIT(context_name));
|
|
continue;
|
|
}
|
|
if (max_type_count >= 0 && (hi < 0 || hi >= max_type_count)) {
|
|
error(elem, "Index %lld is out of bounds (0..<%lld) for %.*s", hi, max_type_count, LIT(context_name));
|
|
continue;
|
|
}
|
|
|
|
if (max < hi) {
|
|
max = max_index;
|
|
}
|
|
|
|
Operand operand = {};
|
|
check_expr_with_type_hint(c, &operand, fv->value, elem_type);
|
|
check_assignment(c, &operand, elem_type, context_name);
|
|
|
|
is_constant = is_constant && operand.mode == Addressing_Constant;
|
|
} else {
|
|
Operand op_index = {};
|
|
check_expr(c, &op_index, fv->field);
|
|
|
|
if (op_index.mode != Addressing_Constant || !is_type_integer(core_type(op_index.type))) {
|
|
error(elem, "Expected a constant integer as an array field");
|
|
continue;
|
|
}
|
|
// add_type_and_value(c, op_index.expr, op_index.mode, op_index.type, op_index.value);
|
|
|
|
i64 index = exact_value_to_i64(op_index.value);
|
|
|
|
if (max_type_count >= 0 && (index < 0 || index >= max_type_count)) {
|
|
error(elem, "Index %lld is out of bounds (0..<%lld) for %.*s", index, max_type_count, LIT(context_name));
|
|
continue;
|
|
}
|
|
|
|
bool new_index = range_cache_add_index(&rc, index);
|
|
if (!new_index) {
|
|
error(elem, "Duplicate field index %lld for %.*s", index, LIT(context_name));
|
|
continue;
|
|
}
|
|
|
|
if (max < index+1) {
|
|
max = index+1;
|
|
}
|
|
|
|
Operand operand = {};
|
|
check_expr_with_type_hint(c, &operand, fv->value, elem_type);
|
|
check_assignment(c, &operand, elem_type, context_name);
|
|
|
|
is_constant = is_constant && operand.mode == Addressing_Constant;
|
|
}
|
|
}
|
|
|
|
cl->max_count = max;
|
|
} else {
|
|
isize index = 0;
|
|
for (; index < cl->elems.count; index++) {
|
|
Ast *e = cl->elems[index];
|
|
if (e == nullptr) {
|
|
error(node, "Invalid literal element");
|
|
continue;
|
|
}
|
|
|
|
if (e->kind == Ast_FieldValue) {
|
|
error(e, "Mixture of 'field = value' and value elements in a literal is not allowed");
|
|
continue;
|
|
}
|
|
|
|
if (0 <= max_type_count && max_type_count <= index) {
|
|
error(e, "Index %lld is out of bounds (>= %lld) for %.*s", index, max_type_count, LIT(context_name));
|
|
}
|
|
|
|
Operand operand = {};
|
|
check_expr_with_type_hint(c, &operand, e, elem_type);
|
|
check_assignment(c, &operand, elem_type, context_name);
|
|
|
|
is_constant = is_constant && operand.mode == Addressing_Constant;
|
|
}
|
|
|
|
if (max < index) {
|
|
max = index;
|
|
}
|
|
}
|
|
|
|
|
|
if (t->kind == Type_Array) {
|
|
if (is_to_be_determined_array_count) {
|
|
t->Array.count = max;
|
|
} else if (cl->elems.count > 0 && cl->elems[0]->kind != Ast_FieldValue) {
|
|
if (0 < max && max < t->Array.count) {
|
|
error(node, "Expected %lld values for this array literal, got %lld", cast(long long)t->Array.count, cast(long long)max);
|
|
}
|
|
}
|
|
} else if (t->kind == Type_Struct) {
|
|
GB_ASSERT(t->Struct.soa_kind == StructSoa_Fixed);
|
|
if (is_to_be_determined_array_count) {
|
|
t->Struct.soa_count = cast(i32)max;
|
|
} else if (cl->elems.count > 0 && cl->elems[0]->kind != Ast_FieldValue) {
|
|
if (0 < max && max < t->Struct.soa_count) {
|
|
error(node, "Expected %lld values for this #soa array literal, got %lld", cast(long long)t->Struct.soa_count, cast(long long)max);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (t->kind == Type_SimdVector) {
|
|
if (!is_constant) {
|
|
// error(node, "Expected all constant elements for a simd vector");
|
|
}
|
|
}
|
|
|
|
|
|
if (t->kind == Type_DynamicArray) {
|
|
if (check_for_dynamic_literals(c, node, cl)) {
|
|
add_package_dependency(c, "runtime", "__dynamic_array_reserve");
|
|
add_package_dependency(c, "runtime", "__dynamic_array_append");
|
|
}
|
|
}
|
|
|
|
if (t->kind == Type_Matrix) {
|
|
if (cl->elems.count > 0 && cl->elems[0]->kind != Ast_FieldValue) {
|
|
if (0 < max && max < max_type_count) {
|
|
error(node, "Expected %lld values for this matrix literal, got %lld", cast(long long)max_type_count, cast(long long)max);
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Type_EnumeratedArray:
|
|
{
|
|
Type *elem_type = t->EnumeratedArray.elem;
|
|
Type *index_type = t->EnumeratedArray.index;
|
|
String context_name = str_lit("enumerated array literal");
|
|
i64 max_type_count = t->EnumeratedArray.count;
|
|
|
|
gbString index_type_str = type_to_string(index_type);
|
|
defer (gb_string_free(index_type_str));
|
|
|
|
i64 total_lo = exact_value_to_i64(*t->EnumeratedArray.min_value);
|
|
i64 total_hi = exact_value_to_i64(*t->EnumeratedArray.max_value);
|
|
|
|
String total_lo_string = {};
|
|
String total_hi_string = {};
|
|
GB_ASSERT(is_type_enum(index_type));
|
|
{
|
|
Type *bt = base_type(index_type);
|
|
GB_ASSERT(bt->kind == Type_Enum);
|
|
for (Entity *f : bt->Enum.fields) {
|
|
if (f->kind != Entity_Constant) {
|
|
continue;
|
|
}
|
|
if (total_lo_string.len == 0 && compare_exact_values(Token_CmpEq, f->Constant.value, *t->EnumeratedArray.min_value)) {
|
|
total_lo_string = f->token.string;
|
|
}
|
|
if (total_hi_string.len == 0 && compare_exact_values(Token_CmpEq, f->Constant.value, *t->EnumeratedArray.max_value)) {
|
|
total_hi_string = f->token.string;
|
|
}
|
|
if (total_lo_string.len != 0 && total_hi_string.len != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
i64 max = 0;
|
|
|
|
Type *bet = base_type(elem_type);
|
|
if (!elem_type_can_be_constant(bet)) {
|
|
is_constant = false;
|
|
}
|
|
|
|
if (bet == t_invalid) {
|
|
break;
|
|
}
|
|
bool is_partial = cl->tag && (cl->tag->BasicDirective.name.string == "partial");
|
|
|
|
SeenMap seen = {}; // NOTE(bill): Multimap, Key: ExactValue
|
|
defer (map_destroy(&seen));
|
|
|
|
if (cl->elems.count > 0 && cl->elems[0]->kind == Ast_FieldValue) {
|
|
RangeCache rc = range_cache_make(heap_allocator());
|
|
defer (range_cache_destroy(&rc));
|
|
|
|
for (Ast *elem : cl->elems) {
|
|
if (elem->kind != Ast_FieldValue) {
|
|
error(elem, "Mixture of 'field = value' and value elements in a literal is not allowed");
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
|
|
if (is_ast_range(fv->field)) {
|
|
Token op = fv->field->BinaryExpr.op;
|
|
|
|
Operand x = {};
|
|
Operand y = {};
|
|
bool ok = check_range(c, fv->field, false, &x, &y, nullptr, index_type);
|
|
if (!ok) {
|
|
continue;
|
|
}
|
|
if (x.mode != Addressing_Constant || !are_types_identical(x.type, index_type)) {
|
|
error(x.expr, "Expected a constant enum of type '%s' as an array field", index_type_str);
|
|
continue;
|
|
}
|
|
|
|
if (y.mode != Addressing_Constant || !are_types_identical(x.type, index_type)) {
|
|
error(y.expr, "Expected a constant enum of type '%s' as an array field", index_type_str);
|
|
continue;
|
|
}
|
|
|
|
i64 lo = exact_value_to_i64(x.value);
|
|
i64 hi = exact_value_to_i64(y.value);
|
|
i64 max_index = hi;
|
|
if (op.kind == Token_RangeHalf) {
|
|
hi -= 1;
|
|
}
|
|
|
|
bool new_range = range_cache_add_range(&rc, lo, hi);
|
|
if (!new_range) {
|
|
gbString lo_str = expr_to_string(x.expr);
|
|
gbString hi_str = expr_to_string(y.expr);
|
|
error(elem, "Overlapping field range index %s %.*s %s for %.*s", lo_str, LIT(op.string), hi_str, LIT(context_name));
|
|
gb_string_free(hi_str);
|
|
gb_string_free(lo_str);
|
|
continue;
|
|
}
|
|
|
|
|
|
// NOTE(bill): These are sanity checks for invalid enum values
|
|
if (max_type_count >= 0 && (lo < total_lo || lo > total_hi)) {
|
|
gbString lo_str = expr_to_string(x.expr);
|
|
error(elem, "Index %s is out of bounds (%.*s .. %.*s) for %.*s", lo_str, LIT(total_lo_string), LIT(total_hi_string), LIT(context_name));
|
|
gb_string_free(lo_str);
|
|
continue;
|
|
}
|
|
if (max_type_count >= 0 && (hi < 0 || hi > total_hi)) {
|
|
gbString hi_str = expr_to_string(y.expr);
|
|
error(elem, "Index %s is out of bounds (%.*s .. %.*s) for %.*s", hi_str, LIT(total_lo_string), LIT(total_hi_string), LIT(context_name));
|
|
gb_string_free(hi_str);
|
|
continue;
|
|
}
|
|
|
|
if (max < hi) {
|
|
max = max_index;
|
|
}
|
|
|
|
Operand operand = {};
|
|
check_expr_with_type_hint(c, &operand, fv->value, elem_type);
|
|
check_assignment(c, &operand, elem_type, context_name);
|
|
|
|
is_constant = is_constant && operand.mode == Addressing_Constant;
|
|
|
|
TokenKind upper_op = Token_LtEq;
|
|
if (op.kind == Token_RangeHalf) {
|
|
upper_op = Token_Lt;
|
|
}
|
|
add_to_seen_map(c, &seen, upper_op, x, x, y);
|
|
} else {
|
|
Operand op_index = {};
|
|
check_expr_with_type_hint(c, &op_index, fv->field, index_type);
|
|
|
|
if (op_index.mode != Addressing_Constant || !are_types_identical(op_index.type, index_type)) {
|
|
error(op_index.expr, "Expected a constant enum of type '%s' as an array field", index_type_str);
|
|
continue;
|
|
}
|
|
|
|
i64 index = exact_value_to_i64(op_index.value);
|
|
|
|
if (max_type_count >= 0 && (index < total_lo || index > total_hi)) {
|
|
gbString idx_str = expr_to_string(op_index.expr);
|
|
error(elem, "Index %s is out of bounds (%.*s .. %.*s) for %.*s", idx_str, LIT(total_lo_string), LIT(total_hi_string), LIT(context_name));
|
|
gb_string_free(idx_str);
|
|
continue;
|
|
}
|
|
|
|
bool new_index = range_cache_add_index(&rc, index);
|
|
if (!new_index) {
|
|
gbString idx_str = expr_to_string(op_index.expr);
|
|
error(elem, "Duplicate field index %s for %.*s", idx_str, LIT(context_name));
|
|
gb_string_free(idx_str);
|
|
continue;
|
|
}
|
|
|
|
if (max < index+1) {
|
|
max = index+1;
|
|
}
|
|
|
|
Operand operand = {};
|
|
check_expr_with_type_hint(c, &operand, fv->value, elem_type);
|
|
check_assignment(c, &operand, elem_type, context_name);
|
|
|
|
is_constant = is_constant && operand.mode == Addressing_Constant;
|
|
|
|
add_to_seen_map(c, &seen, op_index);
|
|
}
|
|
}
|
|
|
|
cl->max_count = max;
|
|
|
|
} else {
|
|
isize index = 0;
|
|
for (; index < cl->elems.count; index++) {
|
|
Ast *e = cl->elems[index];
|
|
if (e == nullptr) {
|
|
error(node, "Invalid literal element");
|
|
continue;
|
|
}
|
|
|
|
if (e->kind == Ast_FieldValue) {
|
|
error(e, "Mixture of 'field = value' and value elements in a literal is not allowed");
|
|
continue;
|
|
}
|
|
|
|
if (0 <= max_type_count && max_type_count <= index) {
|
|
error(e, "Index %lld is out of bounds (>= %lld) for %.*s", index, max_type_count, LIT(context_name));
|
|
}
|
|
|
|
Operand operand = {};
|
|
check_expr_with_type_hint(c, &operand, e, elem_type);
|
|
check_assignment(c, &operand, elem_type, context_name);
|
|
|
|
is_constant = is_constant && operand.mode == Addressing_Constant;
|
|
}
|
|
|
|
if (max < index) {
|
|
max = index;
|
|
}
|
|
}
|
|
|
|
bool was_error = false;
|
|
if (cl->elems.count > 0 && cl->elems[0]->kind != Ast_FieldValue) {
|
|
if (0 < max && max < t->EnumeratedArray.count) {
|
|
error(node, "Expected %lld values for this enumerated array literal, got %lld", cast(long long)t->EnumeratedArray.count, cast(long long)max);
|
|
was_error = true;
|
|
} else {
|
|
error(node, "Enumerated array literals must only have 'field = value' elements, bare elements are not allowed");
|
|
was_error = true;
|
|
}
|
|
}
|
|
|
|
// NOTE(bill): Check for missing cases when `#partial literal` is not present
|
|
if (cl->elems.count > 0 && !was_error && !is_partial) {
|
|
TEMPORARY_ALLOCATOR_GUARD();
|
|
|
|
Type *et = base_type(index_type);
|
|
GB_ASSERT(et->kind == Type_Enum);
|
|
auto fields = et->Enum.fields;
|
|
|
|
auto unhandled = array_make<Entity *>(temporary_allocator(), 0, fields.count);
|
|
|
|
for (Entity *f : fields) {
|
|
if (f->kind != Entity_Constant) {
|
|
continue;
|
|
}
|
|
ExactValue v = f->Constant.value;
|
|
uintptr hash = hash_exact_value(v);
|
|
auto found = map_get(&seen, hash);
|
|
if (!found) {
|
|
array_add(&unhandled, f);
|
|
}
|
|
}
|
|
|
|
if (unhandled.count > 0) {
|
|
ERROR_BLOCK();
|
|
|
|
if (unhandled.count == 1) {
|
|
error_no_newline(node, "Unhandled enumerated array case: %.*s", LIT(unhandled[0]->token.string));
|
|
} else {
|
|
error(node, "Unhandled enumerated array cases:");
|
|
for_array(i, unhandled) {
|
|
Entity *f = unhandled[i];
|
|
error_line("\t%.*s\n", LIT(f->token.string));
|
|
}
|
|
}
|
|
|
|
if (!build_context.terse_errors) {
|
|
error_line("\n");
|
|
error_line("\tSuggestion: Was '#partial %s{...}' wanted?\n", type_to_string(type));
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Type_Basic: {
|
|
if (!is_type_any(t)) {
|
|
if (cl->elems.count != 0) {
|
|
gbString s = type_to_string(t);
|
|
error(node, "Illegal compound literal, %s cannot be used as a compound literal with fields", s);
|
|
gb_string_free(s);
|
|
is_constant = false;
|
|
}
|
|
break;
|
|
}
|
|
if (cl->elems.count == 0) {
|
|
break; // NOTE(bill): No need to init
|
|
}
|
|
{ // Checker values
|
|
Type *field_types[2] = {t_rawptr, t_typeid};
|
|
isize field_count = 2;
|
|
if (cl->elems[0]->kind == Ast_FieldValue) {
|
|
bool fields_visited[2] = {};
|
|
|
|
for_array(i, cl->elems) {
|
|
Ast *elem = cl->elems[i];
|
|
if (elem->kind != Ast_FieldValue) {
|
|
error(elem, "Mixture of 'field = value' and value elements in a 'any' literal is not allowed");
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
if (fv->field->kind != Ast_Ident) {
|
|
gbString expr_str = expr_to_string(fv->field);
|
|
error(elem, "Invalid field name '%s' in 'any' literal", expr_str);
|
|
gb_string_free(expr_str);
|
|
continue;
|
|
}
|
|
String name = fv->field->Ident.token.string;
|
|
|
|
Selection sel = lookup_field(type, name, o->mode == Addressing_Type);
|
|
if (sel.entity == nullptr) {
|
|
error(elem, "Unknown field '%.*s' in 'any' literal", LIT(name));
|
|
continue;
|
|
}
|
|
|
|
isize index = sel.index[0];
|
|
|
|
if (fields_visited[index]) {
|
|
error(elem, "Duplicate field '%.*s' in 'any' literal", LIT(name));
|
|
continue;
|
|
}
|
|
|
|
fields_visited[index] = true;
|
|
check_expr(c, o, fv->value);
|
|
|
|
// NOTE(bill): 'any' literals can never be constant
|
|
is_constant = false;
|
|
|
|
check_assignment(c, o, field_types[index], str_lit("'any' literal"));
|
|
}
|
|
} else {
|
|
for_array(index, cl->elems) {
|
|
Ast *elem = cl->elems[index];
|
|
if (elem->kind == Ast_FieldValue) {
|
|
error(elem, "Mixture of 'field = value' and value elements in a 'any' literal is not allowed");
|
|
continue;
|
|
}
|
|
|
|
|
|
check_expr(c, o, elem);
|
|
if (index >= field_count) {
|
|
error(o->expr, "Too many values in 'any' literal, expected %td", field_count);
|
|
break;
|
|
}
|
|
|
|
// NOTE(bill): 'any' literals can never be constant
|
|
is_constant = false;
|
|
|
|
check_assignment(c, o, field_types[index], str_lit("'any' literal"));
|
|
}
|
|
if (cl->elems.count < field_count) {
|
|
error(cl->close, "Too few values in 'any' literal, expected %td, got %td", field_count, cl->elems.count);
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Type_Map: {
|
|
if (cl->elems.count == 0) {
|
|
break;
|
|
}
|
|
is_constant = false;
|
|
{ // Checker values
|
|
bool key_is_typeid = is_type_typeid(t->Map.key);
|
|
bool value_is_typeid = is_type_typeid(t->Map.value);
|
|
|
|
for (Ast *elem : cl->elems) {
|
|
if (elem->kind != Ast_FieldValue) {
|
|
error(elem, "Only 'field = value' elements are allowed in a map literal");
|
|
continue;
|
|
}
|
|
ast_node(fv, FieldValue, elem);
|
|
|
|
if (key_is_typeid) {
|
|
check_expr_or_type(c, o, fv->field, t->Map.key);
|
|
} else {
|
|
check_expr_with_type_hint(c, o, fv->field, t->Map.key);
|
|
}
|
|
check_assignment(c, o, t->Map.key, str_lit("map literal"));
|
|
if (o->mode == Addressing_Invalid) {
|
|
continue;
|
|
}
|
|
|
|
if (value_is_typeid) {
|
|
check_expr_or_type(c, o, fv->value, t->Map.value);
|
|
} else {
|
|
check_expr_with_type_hint(c, o, fv->value, t->Map.value);
|
|
}
|
|
check_assignment(c, o, t->Map.value, str_lit("map literal"));
|
|
}
|
|
}
|
|
|
|
if (check_for_dynamic_literals(c, node, cl)) {
|
|
add_map_reserve_dependencies(c);
|
|
add_map_set_dependencies(c);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Type_BitSet: {
|
|
if (cl->elems.count == 0) {
|
|
break; // NOTE(bill): No need to init
|
|
}
|
|
Type *et = base_type(t->BitSet.elem);
|
|
isize field_count = 0;
|
|
if (et != nullptr && et->kind == Type_Enum) {
|
|
field_count = et->Enum.fields.count;
|
|
}
|
|
|
|
if (is_type_array(bit_set_to_int(t))) {
|
|
is_constant = false;
|
|
}
|
|
|
|
for (Ast *elem : cl->elems) {
|
|
if (elem->kind == Ast_FieldValue) {
|
|
error(elem, "'field = value' in a bit_set literal is not allowed");
|
|
is_constant = false;
|
|
continue;
|
|
}
|
|
|
|
check_expr_with_type_hint(c, o, elem, et);
|
|
|
|
if (is_constant) {
|
|
is_constant = o->mode == Addressing_Constant;
|
|
}
|
|
|
|
if (elem->kind == Ast_BinaryExpr) {
|
|
switch (elem->BinaryExpr.op.kind) {
|
|
case Token_Or:
|
|
{
|
|
gbString x = expr_to_string(elem->BinaryExpr.left);
|
|
gbString y = expr_to_string(elem->BinaryExpr.right);
|
|
gbString e = expr_to_string(elem);
|
|
error(elem, "Was the following intended? '%s, %s'; if not, surround the expression with parentheses '(%s)'", x, y, e);
|
|
gb_string_free(e);
|
|
gb_string_free(y);
|
|
gb_string_free(x);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
check_assignment(c, o, t->BitSet.elem, str_lit("bit_set literal"));
|
|
if (o->mode == Addressing_Constant) {
|
|
i64 lower = t->BitSet.lower;
|
|
i64 upper = t->BitSet.upper;
|
|
i64 v = exact_value_to_i64(o->value);
|
|
if (lower <= v && v <= upper) {
|
|
// okay
|
|
} else {
|
|
gbString s = expr_to_string(o->expr);
|
|
error(elem, "Bit field value out of bounds, %s (%lld) not in the range %lld .. %lld", s, v, lower, upper);
|
|
gb_string_free(s);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Type_BitField: {
|
|
if (cl->elems.count == 0) {
|
|
break; // NOTE(bill): No need to init
|
|
}
|
|
is_constant = false;
|
|
if (cl->elems[0]->kind != Ast_FieldValue) {
|
|
gbString type_str = type_to_string(type);
|
|
error(node, "%s ('bit_field') compound literals are only allowed to contain 'field = value' elements", type_str);
|
|
gb_string_free(type_str);
|
|
} else {
|
|
check_compound_literal_field_values(c, cl->elems, o, type, is_constant);
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
default: {
|
|
if (cl->elems.count == 0) {
|
|
break; // NOTE(bill): No need to init
|
|
}
|
|
|
|
gbString str = type_to_string(type);
|
|
error(node, "Invalid compound literal type '%s'", str);
|
|
gb_string_free(str);
|
|
return kind;
|
|
}
|
|
}
|
|
|
|
if (is_constant) {
|
|
o->mode = Addressing_Constant;
|
|
|
|
if (is_type_bit_set(type)) {
|
|
// NOTE(bill): Encode as an integer
|
|
|
|
Type *bt = base_type(type);
|
|
BigInt bits = {};
|
|
BigInt one = {};
|
|
big_int_from_u64(&one, 1);
|
|
|
|
for (Ast *e : cl->elems) {
|
|
GB_ASSERT(e->kind != Ast_FieldValue);
|
|
|
|
TypeAndValue tav = e->tav;
|
|
if (tav.mode != Addressing_Constant) {
|
|
continue;
|
|
}
|
|
if (tav.value.kind != ExactValue_Integer) {
|
|
continue;
|
|
}
|
|
i64 v = big_int_to_i64(&tav.value.value_integer);
|
|
i64 lower = bt->BitSet.lower;
|
|
u64 index = cast(u64)(v-lower);
|
|
BigInt bit = {};
|
|
big_int_from_u64(&bit, index);
|
|
big_int_shl(&bit, &one, &bit);
|
|
big_int_or(&bits, &bits, &bit);
|
|
}
|
|
o->value.kind = ExactValue_Integer;
|
|
o->value.value_integer = bits;
|
|
} else if (is_type_constant_type(type) && cl->elems.count == 0) {
|
|
ExactValue value = exact_value_compound(node);
|
|
Type *bt = core_type(type);
|
|
if (bt->kind == Type_Basic) {
|
|
if (bt->Basic.flags & BasicFlag_Boolean) {
|
|
value = exact_value_bool(false);
|
|
} else if (bt->Basic.flags & BasicFlag_Integer) {
|
|
value = exact_value_i64(0);
|
|
} else if (bt->Basic.flags & BasicFlag_Unsigned) {
|
|
value = exact_value_i64(0);
|
|
} else if (bt->Basic.flags & BasicFlag_Float) {
|
|
value = exact_value_float(0);
|
|
} else if (bt->Basic.flags & BasicFlag_Complex) {
|
|
value = exact_value_complex(0, 0);
|
|
} else if (bt->Basic.flags & BasicFlag_Quaternion) {
|
|
value = exact_value_quaternion(0, 0, 0, 0);
|
|
} else if (bt->Basic.flags & BasicFlag_Pointer) {
|
|
value = exact_value_pointer(0);
|
|
} else if (bt->Basic.flags & BasicFlag_String) {
|
|
String empty_string = {};
|
|
value = exact_value_string(empty_string);
|
|
} else if (bt->Basic.flags & BasicFlag_Rune) {
|
|
value = exact_value_i64(0);
|
|
}
|
|
}
|
|
|
|
o->value = value;
|
|
} else {
|
|
o->value = exact_value_compound(node);
|
|
}
|
|
} else {
|
|
o->mode = Addressing_Value;
|
|
}
|
|
o->type = type;
|
|
return kind;
|
|
}
|
|
|
|
gb_internal ExprKind check_type_assertion(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ExprKind kind = Expr_Expr;
|
|
ast_node(ta, TypeAssertion, node);
|
|
check_expr(c, o, ta->expr);
|
|
node->viral_state_flags |= ta->expr->viral_state_flags;
|
|
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
if (o->mode == Addressing_Constant) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
error(o->expr, "A type assertion cannot be applied to a constant expression: '%s'", expr_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
if (is_type_untyped(o->type)) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
error(o->expr, "A type assertion cannot be applied to an untyped expression: '%s'", expr_str);
|
|
gb_string_free(expr_str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
Type *src = type_deref(o->type);
|
|
Type *bsrc = base_type(src);
|
|
|
|
|
|
if (ta->type != nullptr && ta->type->kind == Ast_UnaryExpr && ta->type->UnaryExpr.op.kind == Token_Question) {
|
|
if (!is_type_union(src)) {
|
|
gbString str = type_to_string(o->type);
|
|
error(o->expr, "Type assertions with .? can only operate on unions, got %s", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
if (bsrc->Union.variants.count != 1 && type_hint != nullptr) {
|
|
bool allowed = false;
|
|
for (Type *vt : bsrc->Union.variants) {
|
|
if (are_types_identical(vt, type_hint)) {
|
|
allowed = true;
|
|
add_type_info_type(c, vt);
|
|
break;
|
|
}
|
|
}
|
|
if (allowed) {
|
|
add_type_info_type(c, o->type);
|
|
o->type = type_hint;
|
|
o->mode = Addressing_OptionalOk;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
if (bsrc->Union.variants.count != 1) {
|
|
error(o->expr, "Type assertions with .? can only operate on unions with 1 variant, got %lld", cast(long long)bsrc->Union.variants.count);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
add_type_info_type(c, o->type);
|
|
add_type_info_type(c, bsrc->Union.variants[0]);
|
|
|
|
o->type = bsrc->Union.variants[0];
|
|
o->mode = Addressing_OptionalOk;
|
|
} else {
|
|
Type *t = check_type(c, ta->type);
|
|
Type *dst = t;
|
|
|
|
if (is_type_union(src)) {
|
|
bool ok = false;
|
|
for (Type *vt : bsrc->Union.variants) {
|
|
if (are_types_identical(vt, dst)) {
|
|
ok = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ok) {
|
|
gbString expr_str = expr_to_string(o->expr);
|
|
gbString dst_type_str = type_to_string(t);
|
|
defer (gb_string_free(expr_str));
|
|
defer (gb_string_free(dst_type_str));
|
|
if (bsrc->Union.variants.count == 0) {
|
|
error(o->expr, "Cannot type assert '%s' to '%s' as this is an empty union", expr_str, dst_type_str);
|
|
} else {
|
|
error(o->expr, "Cannot type assert '%s' to '%s' as it is not a variant of that union", expr_str, dst_type_str);
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
add_type_info_type(c, o->type);
|
|
add_type_info_type(c, t);
|
|
|
|
o->type = t;
|
|
o->mode = Addressing_OptionalOk;
|
|
} else if (is_type_any(src)) {
|
|
o->type = t;
|
|
o->mode = Addressing_OptionalOk;
|
|
|
|
add_type_info_type(c, o->type);
|
|
add_type_info_type(c, t);
|
|
} else {
|
|
gbString str = type_to_string(o->type);
|
|
error(o->expr, "Type assertions can only operate on unions and 'any', got %s", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
}
|
|
|
|
end:;
|
|
|
|
if ((c->state_flags & StateFlag_no_type_assert) == 0) {
|
|
add_package_dependency(c, "runtime", "type_assertion_check");
|
|
add_package_dependency(c, "runtime", "type_assertion_check2");
|
|
}
|
|
return kind;
|
|
}
|
|
|
|
gb_internal ExprKind check_selector_call_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ast_node(se, SelectorCallExpr, node);
|
|
// IMPORTANT NOTE(bill, 2020-05-22): This is a complete hack to get a shorthand which is extremely useful for vtables
|
|
// COM APIs is a great example of where this kind of thing is extremely useful
|
|
// General idea:
|
|
//
|
|
// x->y(123) == x.y(x, 123)
|
|
//
|
|
// How this has been implemented at the moment is quite hacky but it's done so to reduce need for huge backend changes
|
|
// Just regenerating a new AST aids things
|
|
//
|
|
// TODO(bill): Is this a good hack or not?
|
|
//
|
|
// NOTE(bill, 2020-05-22): I'm going to regret this decision, ain't I?
|
|
|
|
|
|
if (se->modified_call) {
|
|
// Prevent double evaluation
|
|
o->expr = node;
|
|
o->type = node->tav.type;
|
|
o->value = node->tav.value;
|
|
o->mode = node->tav.mode;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
bool allow_arrow_right_selector_expr;
|
|
allow_arrow_right_selector_expr = c->allow_arrow_right_selector_expr;
|
|
c->allow_arrow_right_selector_expr = true;
|
|
Operand x = {};
|
|
ExprKind kind = check_expr_base(c, &x, se->expr, nullptr);
|
|
c->allow_arrow_right_selector_expr = allow_arrow_right_selector_expr;
|
|
|
|
if (x.mode == Addressing_Invalid || (x.type == t_invalid && x.mode != Addressing_ProcGroup)) {
|
|
o->mode = Addressing_Invalid;
|
|
o->type = t_invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
if (!is_type_proc(x.type) && x.mode != Addressing_ProcGroup) {
|
|
gbString type_str = type_to_string(x.type);
|
|
error(se->call, "Selector call expressions expect a procedure type for the call, got '%s'", type_str);
|
|
gb_string_free(type_str);
|
|
|
|
o->mode = Addressing_Invalid;
|
|
o->type = t_invalid;
|
|
o->expr = node;
|
|
return Expr_Stmt;
|
|
}
|
|
|
|
ast_node(ce, CallExpr, se->call);
|
|
|
|
GB_ASSERT(x.expr->kind == Ast_SelectorExpr);
|
|
|
|
Ast *first_arg = x.expr->SelectorExpr.expr;
|
|
GB_ASSERT(first_arg != nullptr);
|
|
|
|
Entity *e = entity_of_node(se->expr);
|
|
if (!(e != nullptr && (e->kind == Entity_Procedure || e->kind == Entity_ProcGroup))) {
|
|
first_arg->state_flags |= StateFlag_SelectorCallExpr;
|
|
}
|
|
|
|
if (e->kind != Entity_ProcGroup) {
|
|
Type *pt = base_type(x.type);
|
|
GB_ASSERT_MSG(pt->kind == Type_Proc, "%.*s %.*s %s", LIT(e->token.string), LIT(entity_strings[e->kind]), type_to_string(x.type));
|
|
Type *first_type = nullptr;
|
|
String first_arg_name = {};
|
|
if (pt->Proc.param_count > 0) {
|
|
Entity *f = pt->Proc.params->Tuple.variables[0];
|
|
first_type = f->type;
|
|
first_arg_name = f->token.string;
|
|
}
|
|
if (first_arg_name.len == 0) {
|
|
first_arg_name = str_lit("_");
|
|
}
|
|
|
|
if (first_type == nullptr) {
|
|
error(se->call, "Selector call expressions expect a procedure type for the call with at least 1 parameter");
|
|
o->mode = Addressing_Invalid;
|
|
o->type = t_invalid;
|
|
o->expr = node;
|
|
return Expr_Stmt;
|
|
}
|
|
|
|
Operand y = {};
|
|
y.mode = first_arg->tav.mode;
|
|
y.type = first_arg->tav.type;
|
|
y.value = first_arg->tav.value;
|
|
|
|
if (check_is_assignable_to(c, &y, first_type)) {
|
|
// Do nothing, it's valid
|
|
} else {
|
|
Operand z = y;
|
|
z.type = type_deref(y.type);
|
|
if (check_is_assignable_to(c, &z, first_type)) {
|
|
// NOTE(bill): AST GENERATION HACK!
|
|
Token op = {Token_Pointer};
|
|
first_arg = ast_deref_expr(first_arg->file(), first_arg, op);
|
|
} else if (y.mode == Addressing_Variable) {
|
|
Operand w = y;
|
|
w.type = alloc_type_pointer(y.type);
|
|
if (check_is_assignable_to(c, &w, first_type)) {
|
|
// NOTE(bill): AST GENERATION HACK!
|
|
Token op = {Token_And};
|
|
first_arg = ast_unary_expr(first_arg->file(), op, first_arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ce->args.count > 0) {
|
|
bool fail = false;
|
|
bool first_is_field_value = (ce->args[0]->kind == Ast_FieldValue);
|
|
for (Ast *arg : ce->args) {
|
|
bool mix = false;
|
|
if (first_is_field_value) {
|
|
mix = arg->kind != Ast_FieldValue;
|
|
} else {
|
|
mix = arg->kind == Ast_FieldValue;
|
|
}
|
|
if (mix) {
|
|
fail = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!fail && first_is_field_value) {
|
|
Token op = {Token_Eq};
|
|
AstFile *f = first_arg->file();
|
|
first_arg = ast_field_value(f, ast_ident(f, make_token_ident(first_arg_name)), first_arg, op);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto modified_args = slice_make<Ast *>(heap_allocator(), ce->args.count+1);
|
|
modified_args[0] = first_arg;
|
|
slice_copy(&modified_args, ce->args, 1);
|
|
ce->args = modified_args;
|
|
se->modified_call = true;
|
|
|
|
allow_arrow_right_selector_expr = c->allow_arrow_right_selector_expr;
|
|
c->allow_arrow_right_selector_expr = true;
|
|
check_expr_base(c, o, se->call, type_hint);
|
|
c->allow_arrow_right_selector_expr = allow_arrow_right_selector_expr;
|
|
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
}
|
|
|
|
|
|
gb_internal ExprKind check_index_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ExprKind kind = Expr_Expr;
|
|
ast_node(ie, IndexExpr, node);
|
|
check_expr(c, o, ie->expr);
|
|
node->viral_state_flags |= ie->expr->viral_state_flags;
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
Type *t = base_type(type_deref(o->type));
|
|
bool is_ptr = is_type_pointer(o->type);
|
|
bool is_const = o->mode == Addressing_Constant;
|
|
|
|
if (is_type_map(t)) {
|
|
Operand key = {};
|
|
if (is_type_typeid(t->Map.key)) {
|
|
check_expr_or_type(c, &key, ie->index, t->Map.key);
|
|
} else {
|
|
check_expr_with_type_hint(c, &key, ie->index, t->Map.key);
|
|
}
|
|
check_assignment(c, &key, t->Map.key, str_lit("map index"));
|
|
if (key.mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
o->mode = Addressing_MapIndex;
|
|
o->type = t->Map.value;
|
|
o->expr = node;
|
|
|
|
add_map_get_dependencies(c);
|
|
add_map_set_dependencies(c);
|
|
return Expr_Expr;
|
|
}
|
|
|
|
i64 max_count = -1;
|
|
bool valid = check_set_index_data(o, t, is_ptr, &max_count, o->type);
|
|
|
|
if (is_const) {
|
|
if (is_type_array(t)) {
|
|
// Okay
|
|
} else if (is_type_slice(t)) {
|
|
// Okay
|
|
} else if (is_type_enumerated_array(t)) {
|
|
// Okay
|
|
} else if (is_type_string(t)) {
|
|
// Okay
|
|
} else if (is_type_matrix(t)) {
|
|
// Okay
|
|
} else {
|
|
valid = false;
|
|
}
|
|
}
|
|
|
|
if (!valid) {
|
|
gbString str = expr_to_string(o->expr);
|
|
gbString type_str = type_to_string(o->type);
|
|
defer (gb_string_free(str));
|
|
defer (gb_string_free(type_str));
|
|
if (is_const) {
|
|
error(o->expr, "Cannot index constant '%s' of type '%s'", str, type_str);
|
|
} else {
|
|
error(o->expr, "Cannot index '%s' of type '%s'", str, type_str);
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
if (ie->index == nullptr) {
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Missing index for '%s'", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
Type *index_type_hint = nullptr;
|
|
if (is_type_enumerated_array(t)) {
|
|
Type *bt = base_type(t);
|
|
GB_ASSERT(bt->kind == Type_EnumeratedArray);
|
|
index_type_hint = bt->EnumeratedArray.index;
|
|
}
|
|
|
|
i64 index = 0;
|
|
bool ok = check_index_value(c, t, false, ie->index, max_count, &index, index_type_hint);
|
|
if (is_const) {
|
|
if (index < 0) {
|
|
ERROR_BLOCK();
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot index a constant '%s'", str);
|
|
if (!build_context.terse_errors) {
|
|
error_line("\tSuggestion: store the constant into a variable in order to index it with a variable index\n");
|
|
}
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
} else if (ok && !is_type_matrix(t)) {
|
|
TypeAndValue tav = type_and_value_of_expr(ie->expr);
|
|
ExactValue value = tav.value;
|
|
o->mode = Addressing_Constant;
|
|
bool success = false;
|
|
bool finish = false;
|
|
o->value = get_constant_field_single(c, value, cast(i32)index, &success, &finish);
|
|
if (!success) {
|
|
ERROR_BLOCK();
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot index a constant '%s' with index %lld", str, cast(long long)index);
|
|
if (!build_context.terse_errors) {
|
|
error_line("\tSuggestion: store the constant into a variable in order to index it with a variable index\n");
|
|
}
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (type_hint != nullptr && is_type_matrix(t)) {
|
|
// TODO(bill): allow matrix columns to be assignable to other types which are the same internally
|
|
// if a type hint exists
|
|
}
|
|
return kind;
|
|
}
|
|
|
|
gb_internal ExprKind check_slice_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ExprKind kind = Expr_Stmt;
|
|
ast_node(se, SliceExpr, node);
|
|
check_expr(c, o, se->expr);
|
|
node->viral_state_flags |= se->expr->viral_state_flags;
|
|
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
bool valid = false;
|
|
i64 max_count = -1;
|
|
Type *t = base_type(type_deref(o->type));
|
|
switch (t->kind) {
|
|
case Type_Basic:
|
|
if (t->Basic.kind == Basic_string || t->Basic.kind == Basic_UntypedString) {
|
|
valid = true;
|
|
if (o->mode == Addressing_Constant) {
|
|
GB_ASSERT(o->value.kind == ExactValue_String);
|
|
max_count = o->value.value_string.len;
|
|
}
|
|
o->type = type_deref(o->type);
|
|
} else if (t->Basic.kind == Basic_string16) {
|
|
valid = true;
|
|
if (o->mode == Addressing_Constant) {
|
|
GB_ASSERT(o->value.kind == ExactValue_String16);
|
|
max_count = o->value.value_string16.len;
|
|
}
|
|
o->type = type_deref(o->type);
|
|
}
|
|
break;
|
|
|
|
case Type_Array:
|
|
valid = true;
|
|
max_count = t->Array.count;
|
|
if (o->mode != Addressing_Variable && !is_type_pointer(o->type)) {
|
|
gbString str = expr_to_string(node);
|
|
error(node, "Cannot slice array '%s', value is not addressable", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
o->type = alloc_type_slice(t->Array.elem);
|
|
break;
|
|
|
|
case Type_MultiPointer:
|
|
valid = true;
|
|
o->type = type_deref(o->type);
|
|
break;
|
|
|
|
case Type_Slice:
|
|
valid = true;
|
|
o->type = type_deref(o->type);
|
|
break;
|
|
|
|
case Type_DynamicArray:
|
|
valid = true;
|
|
o->type = alloc_type_slice(t->DynamicArray.elem);
|
|
break;
|
|
|
|
case Type_Struct:
|
|
if (is_type_soa_struct(t)) {
|
|
valid = true;
|
|
if (t->Struct.soa_kind == StructSoa_Fixed) {
|
|
max_count = t->Struct.soa_count;
|
|
if (o->mode != Addressing_Variable && !is_type_pointer(o->type)) {
|
|
gbString str = expr_to_string(node);
|
|
error(node, "Cannot slice #soa array '%s', value is not addressable", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
}
|
|
o->type = make_soa_struct_slice(c, nullptr, nullptr, t->Struct.soa_elem);
|
|
}
|
|
break;
|
|
|
|
case Type_EnumeratedArray:
|
|
{
|
|
gbString str = expr_to_string(o->expr);
|
|
gbString type_str = type_to_string(o->type);
|
|
error(o->expr, "Cannot slice '%s' of type '%s', as enumerated arrays cannot be sliced", str, type_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!valid) {
|
|
gbString str = expr_to_string(o->expr);
|
|
gbString type_str = type_to_string(o->type);
|
|
error(o->expr, "Cannot slice '%s' of type '%s'", str, type_str);
|
|
gb_string_free(type_str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
if (se->low == nullptr && se->high != nullptr) {
|
|
// It is okay to continue as it will assume the 1st index is zero
|
|
}
|
|
|
|
i64 indices[2] = {};
|
|
Ast *nodes[2] = {se->low, se->high};
|
|
for (isize i = 0; i < gb_count_of(nodes); i++) {
|
|
i64 index = max_count;
|
|
if (nodes[i] != nullptr) {
|
|
i64 capacity = -1;
|
|
if (max_count >= 0) {
|
|
capacity = max_count;
|
|
}
|
|
i64 j = 0;
|
|
if (check_index_value(c, t, true, nodes[i], capacity, &j)) {
|
|
index = j;
|
|
}
|
|
|
|
node->viral_state_flags |= nodes[i]->viral_state_flags;
|
|
} else if (i == 0) {
|
|
index = 0;
|
|
}
|
|
indices[i] = index;
|
|
}
|
|
|
|
for (isize i = 0; i < gb_count_of(indices); i++) {
|
|
i64 a = indices[i];
|
|
for (isize j = i+1; j < gb_count_of(indices); j++) {
|
|
i64 b = indices[j];
|
|
if (a > b && b >= 0) {
|
|
error(se->close, "Invalid slice indices: [%td > %td]", a, b);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (max_count < 0) {
|
|
if (o->mode == Addressing_Constant) {
|
|
gbString s = expr_to_string(se->expr);
|
|
error(se->expr, "Cannot slice constant value '%s'", s);
|
|
gb_string_free(s);
|
|
}
|
|
}
|
|
|
|
if (t->kind == Type_MultiPointer && se->high != nullptr) {
|
|
/*
|
|
x[:] -> [^]T
|
|
x[i:] -> [^]T
|
|
x[:n] -> []T
|
|
x[i:n] -> []T
|
|
*/
|
|
o->type = alloc_type_slice(t->MultiPointer.elem);
|
|
}
|
|
|
|
|
|
o->mode = Addressing_Value;
|
|
|
|
if (is_type_string(t) && max_count >= 0) {
|
|
bool all_constant = true;
|
|
for (isize i = 0; i < gb_count_of(nodes); i++) {
|
|
if (nodes[i] != nullptr) {
|
|
TypeAndValue tav = type_and_value_of_expr(nodes[i]);
|
|
if (tav.mode != Addressing_Constant) {
|
|
all_constant = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!all_constant) {
|
|
ERROR_BLOCK();
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot slice '%s' with non-constant indices", str);
|
|
if (!build_context.terse_errors) {
|
|
error_line("\tSuggestion: store the constant into a variable in order to index it with a variable index\n");
|
|
}
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Value; // NOTE(bill): Keep subsequent values going without erring
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
o->mode = Addressing_Constant;
|
|
o->type = t;
|
|
|
|
if (o->value.kind == ExactValue_String16) {
|
|
String16 s = o->value.value_string16;
|
|
|
|
o->value = exact_value_string16(substring(s, cast(isize)indices[0], cast(isize)indices[1]));
|
|
} else {
|
|
String s = {};
|
|
if (o->value.kind == ExactValue_String) {
|
|
s = o->value.value_string;
|
|
}
|
|
|
|
o->value = exact_value_string(substring(s, cast(isize)indices[0], cast(isize)indices[1]));
|
|
}
|
|
}
|
|
return kind;
|
|
}
|
|
|
|
gb_internal ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
u32 prev_state_flags = c->state_flags;
|
|
defer (c->state_flags = prev_state_flags);
|
|
if (node->state_flags != 0) {
|
|
u32 in = node->state_flags;
|
|
u32 out = c->state_flags;
|
|
|
|
if (in & StateFlag_no_bounds_check) {
|
|
out |= StateFlag_no_bounds_check;
|
|
out &= ~StateFlag_bounds_check;
|
|
} else if (in & StateFlag_bounds_check) {
|
|
out |= StateFlag_bounds_check;
|
|
out &= ~StateFlag_no_bounds_check;
|
|
}
|
|
|
|
if (in & StateFlag_no_type_assert) {
|
|
out |= StateFlag_no_type_assert;
|
|
out &= ~StateFlag_type_assert;
|
|
} else if (in & StateFlag_type_assert) {
|
|
out |= StateFlag_type_assert;
|
|
out &= ~StateFlag_no_type_assert;
|
|
}
|
|
|
|
c->state_flags = out;
|
|
}
|
|
|
|
ExprKind kind = Expr_Stmt;
|
|
|
|
o->mode = Addressing_Invalid;
|
|
o->type = t_invalid;
|
|
o->value = {ExactValue_Invalid};
|
|
|
|
switch (node->kind) {
|
|
default:
|
|
return kind;
|
|
|
|
case_ast_node(be, BadExpr, node)
|
|
return kind;
|
|
case_end;
|
|
|
|
case_ast_node(i, Implicit, node);
|
|
switch (i->kind) {
|
|
case Token_context:
|
|
{
|
|
if (c->proc_name.len == 0 && c->curr_proc_sig == nullptr) {
|
|
error(node, "'context' is only allowed within procedures");
|
|
return kind;
|
|
}
|
|
if (unparen_expr(c->assignment_lhs_hint) == node) {
|
|
c->scope->flags |= ScopeFlag_ContextDefined;
|
|
}
|
|
|
|
if ((c->scope->flags & ScopeFlag_ContextDefined) == 0) {
|
|
error(node, "'context' has not been defined within this scope");
|
|
// Continue with value
|
|
}
|
|
|
|
init_core_context(c->checker);
|
|
o->mode = Addressing_Context;
|
|
o->type = t_context;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error(node, "Illegal implicit name '%.*s'", LIT(i->string));
|
|
return kind;
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(i, Ident, node);
|
|
check_ident(c, o, node, nullptr, type_hint, false);
|
|
case_end;
|
|
|
|
case_ast_node(u, Uninit, node);
|
|
o->mode = Addressing_Value;
|
|
o->type = t_untyped_uninit;
|
|
error(node, "Global variables will always be zeroed if left unassigned, --- is disallowed");
|
|
case_end;
|
|
|
|
|
|
case_ast_node(bl, BasicLit, node);
|
|
Type *t = t_invalid;
|
|
switch (node->tav.value.kind) {
|
|
case ExactValue_String: t = t_untyped_string; break;
|
|
case ExactValue_String16: t = t_string16; break; // TODO(bill): determine this correctly
|
|
case ExactValue_Float: t = t_untyped_float; break;
|
|
case ExactValue_Complex: t = t_untyped_complex; break;
|
|
case ExactValue_Quaternion: t = t_untyped_quaternion; break;
|
|
case ExactValue_Integer:
|
|
t = t_untyped_integer;
|
|
if (bl->token.kind == Token_Rune) {
|
|
t = t_untyped_rune;
|
|
}
|
|
break;
|
|
default:
|
|
GB_PANIC("Unhandled value type for basic literal");
|
|
break;
|
|
}
|
|
|
|
o->mode = Addressing_Constant;
|
|
o->type = t;
|
|
o->value = node->tav.value;
|
|
case_end;
|
|
|
|
case_ast_node(bd, BasicDirective, node);
|
|
kind = check_basic_directive_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(pg, ProcGroup, node);
|
|
error(node, "Illegal use of a procedure group");
|
|
o->mode = Addressing_Invalid;
|
|
case_end;
|
|
|
|
case_ast_node(pl, ProcLit, node);
|
|
CheckerContext ctx = *c;
|
|
|
|
DeclInfo *decl = nullptr;
|
|
Type *type = alloc_type(Type_Proc);
|
|
check_open_scope(&ctx, pl->type);
|
|
{
|
|
decl = make_decl_info(ctx.scope, ctx.decl);
|
|
decl->proc_lit = node;
|
|
ctx.decl = decl;
|
|
defer (ctx.decl = ctx.decl->parent);
|
|
|
|
if (pl->tags != 0) {
|
|
error(node, "A procedure literal cannot have tags");
|
|
pl->tags = 0; // TODO(bill): Should I zero this?!
|
|
}
|
|
|
|
check_procedure_type(&ctx, type, pl->type);
|
|
if (!is_type_proc(type)) {
|
|
gbString str = expr_to_string(node);
|
|
error(node, "Invalid procedure literal '%s'", str);
|
|
gb_string_free(str);
|
|
check_close_scope(&ctx);
|
|
return kind;
|
|
}
|
|
|
|
if (pl->body == nullptr) {
|
|
error(node, "A procedure literal must have a body");
|
|
return kind;
|
|
}
|
|
|
|
pl->decl = decl;
|
|
check_procedure_later(ctx.checker, ctx.file, empty_token, decl, type, pl->body, pl->tags);
|
|
mutex_lock(&ctx.checker->nested_proc_lits_mutex);
|
|
array_add(&ctx.checker->nested_proc_lits, decl);
|
|
mutex_unlock(&ctx.checker->nested_proc_lits_mutex);
|
|
}
|
|
check_close_scope(&ctx);
|
|
|
|
o->mode = Addressing_Value;
|
|
o->type = type;
|
|
case_end;
|
|
|
|
case_ast_node(te, TernaryIfExpr, node);
|
|
kind = check_ternary_if_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(te, TernaryWhenExpr, node);
|
|
kind = check_ternary_when_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(oe, OrElseExpr, node);
|
|
return check_or_else_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(re, OrReturnExpr, node);
|
|
node->viral_state_flags |= ViralStateFlag_ContainsOrReturn;
|
|
return check_or_return_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(re, OrBranchExpr, node);
|
|
return check_or_branch_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(cl, CompoundLit, node);
|
|
kind = check_compound_literal(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(pe, ParenExpr, node);
|
|
kind = check_expr_base(c, o, pe->expr, type_hint);
|
|
node->viral_state_flags |= pe->expr->viral_state_flags;
|
|
o->expr = node;
|
|
case_end;
|
|
|
|
case_ast_node(te, TagExpr, node);
|
|
String name = te->name.string;
|
|
error(node, "Unknown tag expression, #%.*s", LIT(name));
|
|
if (te->expr) {
|
|
kind = check_expr_base(c, o, te->expr, type_hint);
|
|
node->viral_state_flags |= te->expr->viral_state_flags;
|
|
}
|
|
o->expr = node;
|
|
case_end;
|
|
|
|
case_ast_node(ta, TypeAssertion, node);
|
|
kind = check_type_assertion(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(tc, TypeCast, node);
|
|
check_expr_or_type(c, o, tc->type);
|
|
if (o->mode != Addressing_Type) {
|
|
gbString str = expr_to_string(tc->type);
|
|
error(tc->type, "Expected a type, got %s", str);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
Type *type = o->type;
|
|
check_expr_base(c, o, tc->expr, type);
|
|
node->viral_state_flags |= tc->expr->viral_state_flags;
|
|
|
|
if (o->mode != Addressing_Invalid) {
|
|
switch (tc->token.kind) {
|
|
case Token_transmute:
|
|
check_transmute(c, node, o, type, true);
|
|
break;
|
|
case Token_cast:
|
|
check_cast(c, o, type, true);
|
|
break;
|
|
default:
|
|
error(node, "Invalid AST: Invalid casting expression");
|
|
o->mode = Addressing_Invalid;
|
|
break;
|
|
}
|
|
}
|
|
return Expr_Expr;
|
|
case_end;
|
|
|
|
case_ast_node(ac, AutoCast, node);
|
|
check_expr_base(c, o, ac->expr, type_hint);
|
|
node->viral_state_flags |= ac->expr->viral_state_flags;
|
|
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
if (type_hint) {
|
|
check_cast(c, o, type_hint);
|
|
}
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
case_end;
|
|
|
|
case_ast_node(ue, UnaryExpr, node);
|
|
Type *th = type_hint;
|
|
if (ue->op.kind == Token_And) {
|
|
th = type_deref(th);
|
|
}
|
|
check_expr_base(c, o, ue->expr, th);
|
|
node->viral_state_flags |= ue->expr->viral_state_flags;
|
|
|
|
if (o->mode != Addressing_Invalid) {
|
|
check_unary_expr(c, o, ue->op, node);
|
|
}
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
case_end;
|
|
|
|
|
|
case_ast_node(be, BinaryExpr, node);
|
|
check_binary_expr(c, o, node, type_hint, true);
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(se, SelectorExpr, node);
|
|
check_selector(c, o, node, type_hint);
|
|
node->viral_state_flags |= se->expr->viral_state_flags;
|
|
case_end;
|
|
|
|
case_ast_node(se, SelectorCallExpr, node);
|
|
return check_selector_call_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(ise, ImplicitSelectorExpr, node);
|
|
return check_implicit_selector_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(ie, IndexExpr, node);
|
|
kind = check_index_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(se, SliceExpr, node);
|
|
kind = check_slice_expr(c, o, node, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(mie, MatrixIndexExpr, node);
|
|
check_matrix_index_expr(c, o, node, type_hint);
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
case_end;
|
|
|
|
case_ast_node(ce, CallExpr, node);
|
|
return check_call_expr(c, o, node, ce->proc, ce->args, ce->inlining, type_hint);
|
|
case_end;
|
|
|
|
case_ast_node(de, DerefExpr, node);
|
|
check_expr_or_type(c, o, de->expr);
|
|
node->viral_state_flags |= de->expr->viral_state_flags;
|
|
|
|
if (o->mode == Addressing_Invalid) {
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
} else if (o->mode == Addressing_Type) {
|
|
gbString str = expr_to_string(o->expr);
|
|
error(o->expr, "Cannot dereference '%s' because it is a type", str);
|
|
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
} else {
|
|
Type *t = base_type(o->type);
|
|
if (t->kind == Type_Pointer && !is_type_empty_union(t->Pointer.elem)) {
|
|
o->mode = Addressing_Variable;
|
|
o->type = t->Pointer.elem;
|
|
} else if (t->kind == Type_SoaPointer) {
|
|
o->mode = Addressing_SoaVariable;
|
|
o->type = type_deref(t);
|
|
} else {
|
|
gbString str = expr_to_string(o->expr);
|
|
gbString typ = type_to_string(o->type);
|
|
ERROR_BLOCK();
|
|
|
|
error(o->expr, "Cannot dereference '%s' of type '%s'", str, typ);
|
|
if (o->type && is_type_multi_pointer(o->type)) {
|
|
if (!build_context.terse_errors) {
|
|
error_line("\tDid you mean '%s[0]'?\n", str);
|
|
}
|
|
}
|
|
|
|
gb_string_free(typ);
|
|
gb_string_free(str);
|
|
o->mode = Addressing_Invalid;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(ia, InlineAsmExpr, node);
|
|
if (c->curr_proc_decl == nullptr) {
|
|
error(node, "Inline asm expressions are only allowed within a procedure body");
|
|
}
|
|
|
|
auto param_types = array_make<Type *>(heap_allocator(), ia->param_types.count);
|
|
Type *return_type = nullptr;
|
|
for_array(i, ia->param_types) {
|
|
param_types[i] = check_type(c, ia->param_types[i]);
|
|
}
|
|
if (ia->return_type != nullptr) {
|
|
return_type = check_type(c, ia->return_type);
|
|
}
|
|
Operand x = {};
|
|
check_expr(c, &x, ia->asm_string);
|
|
if (x.mode != Addressing_Constant || !is_type_string(x.type)) {
|
|
error(x.expr, "Expected a constant string for the inline asm main parameter");
|
|
}
|
|
check_expr(c, &x, ia->constraints_string);
|
|
if (x.mode != Addressing_Constant || !is_type_string(x.type)) {
|
|
error(x.expr, "Expected a constant string for the inline asm constraints parameter");
|
|
}
|
|
|
|
Scope *scope = create_scope(c->info, c->scope);
|
|
scope->flags |= ScopeFlag_Proc;
|
|
|
|
Type *params = alloc_type_tuple();
|
|
Type *results = alloc_type_tuple();
|
|
if (param_types.count != 0) {
|
|
slice_init(¶ms->Tuple.variables, heap_allocator(), param_types.count);
|
|
for_array(i, param_types) {
|
|
params->Tuple.variables[i] = alloc_entity_param(scope, blank_token, param_types[i], false, true);
|
|
}
|
|
}
|
|
if (return_type != nullptr) {
|
|
slice_init(&results->Tuple.variables, heap_allocator(), 1);
|
|
results->Tuple.variables[0] = alloc_entity_param(scope, blank_token, return_type, false, true);
|
|
}
|
|
|
|
|
|
Type *pt = alloc_type_proc(scope, params, param_types.count, results, return_type != nullptr ? 1 : 0, false, ProcCC_InlineAsm);
|
|
o->type = pt;
|
|
o->mode = Addressing_Value;
|
|
o->expr = node;
|
|
return Expr_Expr;
|
|
case_end;
|
|
|
|
case Ast_DistinctType:
|
|
case Ast_TypeidType:
|
|
case Ast_PolyType:
|
|
case Ast_ProcType:
|
|
case Ast_PointerType:
|
|
case Ast_MultiPointerType:
|
|
case Ast_ArrayType:
|
|
case Ast_DynamicArrayType:
|
|
case Ast_StructType:
|
|
case Ast_UnionType:
|
|
case Ast_EnumType:
|
|
case Ast_MapType:
|
|
case Ast_BitSetType:
|
|
case Ast_MatrixType:
|
|
case Ast_RelativeType:
|
|
o->mode = Addressing_Type;
|
|
o->type = check_type(c, node);
|
|
break;
|
|
}
|
|
|
|
kind = Expr_Expr;
|
|
o->expr = node;
|
|
return kind;
|
|
}
|
|
|
|
|
|
|
|
gb_internal ExprKind check_expr_base(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
|
|
ExprKind kind = check_expr_base_internal(c, o, node, type_hint);
|
|
if (o->type != nullptr && core_type(o->type) == nullptr) {
|
|
o->type = t_invalid;
|
|
gbString xs = expr_to_string(o->expr);
|
|
if (o->mode == Addressing_Type) {
|
|
error(o->expr, "Invalid type usage '%s'", xs);
|
|
} else {
|
|
error(o->expr, "Invalid expression '%s'", xs);
|
|
}
|
|
gb_string_free(xs);
|
|
}
|
|
if (o->type != nullptr && is_type_untyped(o->type)) {
|
|
add_untyped(c, node, o->mode, o->type, o->value);
|
|
}
|
|
check_rtti_type_disallowed(node, o->type, "An expression is using a type, %s, which has been disallowed");
|
|
|
|
add_type_and_value(c, node, o->mode, o->type, o->value);
|
|
return kind;
|
|
}
|
|
|
|
|
|
gb_internal void check_multi_expr_or_type(CheckerContext *c, Operand *o, Ast *e) {
|
|
check_expr_base(c, o, e, nullptr);
|
|
switch (o->mode) {
|
|
default:
|
|
return; // NOTE(bill): Valid
|
|
case Addressing_NoValue:
|
|
error_operand_no_value(o);
|
|
break;
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
|
|
gb_internal void check_multi_expr(CheckerContext *c, Operand *o, Ast *e) {
|
|
check_expr_base(c, o, e, nullptr);
|
|
switch (o->mode) {
|
|
default:
|
|
return; // NOTE(bill): Valid
|
|
case Addressing_NoValue:
|
|
error_operand_no_value(o);
|
|
break;
|
|
case Addressing_Type:
|
|
error_operand_not_expression(o);
|
|
break;
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
|
|
gb_internal void check_multi_expr_with_type_hint(CheckerContext *c, Operand *o, Ast *e, Type *type_hint) {
|
|
check_expr_base(c, o, e, type_hint);
|
|
switch (o->mode) {
|
|
default:
|
|
return; // NOTE(bill): Valid
|
|
case Addressing_NoValue:
|
|
error_operand_no_value(o);
|
|
break;
|
|
case Addressing_Type:
|
|
error_operand_not_expression(o);
|
|
break;
|
|
}
|
|
o->mode = Addressing_Invalid;
|
|
}
|
|
|
|
gb_internal void check_not_tuple(CheckerContext *c, Operand *o) {
|
|
if (o->mode == Addressing_Value) {
|
|
// NOTE(bill): Tuples are not first class thus never named
|
|
if (o->type->kind == Type_Tuple) {
|
|
isize count = o->type->Tuple.variables.count;
|
|
error(o->expr,
|
|
"%td-valued expression found where single value expected", count);
|
|
o->mode = Addressing_Invalid;
|
|
GB_ASSERT(count != 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
gb_internal void check_expr(CheckerContext *c, Operand *o, Ast *e) {
|
|
check_multi_expr(c, o, e);
|
|
check_not_tuple(c, o);
|
|
}
|
|
|
|
|
|
gb_internal void check_expr_or_type(CheckerContext *c, Operand *o, Ast *e, Type *type_hint) {
|
|
check_expr_base(c, o, e, type_hint);
|
|
check_not_tuple(c, o);
|
|
error_operand_no_value(o);
|
|
}
|
|
|
|
|
|
|
|
gb_internal bool is_exact_value_zero(ExactValue const &v) {
|
|
switch (v.kind) {
|
|
case ExactValue_Invalid:
|
|
return true;
|
|
case ExactValue_Bool:
|
|
return !v.value_bool;
|
|
case ExactValue_String:
|
|
return v.value_string.len == 0;
|
|
case ExactValue_String16:
|
|
return v.value_string16.len == 0;
|
|
case ExactValue_Integer:
|
|
return big_int_is_zero(&v.value_integer);
|
|
case ExactValue_Float:
|
|
return v.value_float == 0.0;
|
|
case ExactValue_Complex:
|
|
if (v.value_complex) {
|
|
return v.value_complex->real == 0.0 && v.value_complex->imag == 0.0;
|
|
}
|
|
return true;
|
|
case ExactValue_Quaternion:
|
|
if (v.value_quaternion) {
|
|
return v.value_quaternion->real == 0.0 &&
|
|
v.value_quaternion->imag == 0.0 &&
|
|
v.value_quaternion->jmag == 0.0 &&
|
|
v.value_quaternion->kmag == 0.0;
|
|
}
|
|
return true;
|
|
case ExactValue_Pointer:
|
|
return v.value_pointer == 0;
|
|
case ExactValue_Compound:
|
|
if (v.value_compound == nullptr) {
|
|
return true;
|
|
} else {
|
|
ast_node(cl, CompoundLit, v.value_compound);
|
|
if (cl->elems.count == 0) {
|
|
return true;
|
|
} else {
|
|
for (Ast *elem : cl->elems) {
|
|
if (elem->tav.mode != Addressing_Constant) {
|
|
return false;
|
|
}
|
|
if (!is_exact_value_zero(elem->tav.value)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
case ExactValue_Procedure:
|
|
return v.value_procedure == nullptr;
|
|
case ExactValue_Typeid:
|
|
return v.value_typeid == nullptr;
|
|
}
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gb_internal gbString write_expr_to_string(gbString str, Ast *node, bool shorthand);
|
|
|
|
gb_internal gbString write_struct_fields_to_string(gbString str, Slice<Ast *> const ¶ms) {
|
|
for_array(i, params) {
|
|
if (i > 0) {
|
|
str = gb_string_appendc(str, ", ");
|
|
}
|
|
str = write_expr_to_string(str, params[i], false);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
gb_internal gbString string_append_string(gbString str, String string) {
|
|
if (string.len > 0) {
|
|
return gb_string_append_length(str, &string[0], string.len);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
|
|
gb_internal gbString string_append_token(gbString str, Token token) {
|
|
str = string_append_string(str, token.string);
|
|
return str;
|
|
}
|
|
|
|
|
|
gb_internal gbString write_expr_to_string(gbString str, Ast *node, bool shorthand) {
|
|
if (node == nullptr)
|
|
return str;
|
|
|
|
if (is_ast_stmt(node)) {
|
|
GB_ASSERT("stmt passed to write_expr_to_string");
|
|
}
|
|
|
|
switch (node->kind) {
|
|
default:
|
|
str = gb_string_appendc(str, "(BadExpr)");
|
|
break;
|
|
|
|
case_ast_node(i, Ident, node);
|
|
str = string_append_token(str, i->token);
|
|
case_end;
|
|
|
|
case_ast_node(i, Implicit, node);
|
|
str = string_append_token(str, *i);
|
|
case_end;
|
|
|
|
case_ast_node(bl, BasicLit, node);
|
|
str = string_append_token(str, bl->token);
|
|
case_end;
|
|
|
|
case_ast_node(bd, BasicDirective, node);
|
|
str = gb_string_append_rune(str, '#');
|
|
str = string_append_string(str, bd->name.string);
|
|
case_end;
|
|
|
|
case_ast_node(ud, Uninit, node);
|
|
str = gb_string_appendc(str, "---");
|
|
case_end;
|
|
|
|
case_ast_node(pg, ProcGroup, node);
|
|
str = gb_string_appendc(str, "proc{");
|
|
for_array(i, pg->args) {
|
|
if (i > 0) str = gb_string_appendc(str, ", ");
|
|
str = write_expr_to_string(str, pg->args[i], shorthand);
|
|
}
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
|
|
case_ast_node(pl, ProcLit, node);
|
|
str = write_expr_to_string(str, pl->type, shorthand);
|
|
if (pl->body) {
|
|
str = gb_string_appendc(str, " {...}");
|
|
} else {
|
|
str = gb_string_appendc(str, " ---");
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(cl, CompoundLit, node);
|
|
str = write_expr_to_string(str, cl->type, shorthand);
|
|
str = gb_string_append_rune(str, '{');
|
|
if (shorthand) {
|
|
str = gb_string_appendc(str, "...");
|
|
} else {
|
|
for_array(i, cl->elems) {
|
|
if (i > 0) str = gb_string_appendc(str, ", ");
|
|
str = write_expr_to_string(str, cl->elems[i], shorthand);
|
|
}
|
|
}
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
|
|
|
|
case_ast_node(te, TagExpr, node);
|
|
str = gb_string_append_rune(str, '#');
|
|
str = string_append_token(str, te->name);
|
|
str = write_expr_to_string(str, te->expr, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(ue, UnaryExpr, node);
|
|
str = string_append_token(str, ue->op);
|
|
str = write_expr_to_string(str, ue->expr, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(de, DerefExpr, node);
|
|
str = write_expr_to_string(str, de->expr, shorthand);
|
|
str = gb_string_append_rune(str, '^');
|
|
case_end;
|
|
|
|
case_ast_node(be, BinaryExpr, node);
|
|
str = write_expr_to_string(str, be->left, shorthand);
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = string_append_token(str, be->op);
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = write_expr_to_string(str, be->right, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(te, TernaryIfExpr, node);
|
|
TokenPos x = ast_token(te->x).pos;
|
|
TokenPos cond = ast_token(te->cond).pos;
|
|
if (x < cond) {
|
|
str = write_expr_to_string(str, te->x, shorthand);
|
|
str = gb_string_appendc(str, " if ");
|
|
str = write_expr_to_string(str, te->cond, shorthand);
|
|
str = gb_string_appendc(str, " else ");
|
|
str = write_expr_to_string(str, te->y, shorthand);
|
|
} else {
|
|
str = write_expr_to_string(str, te->cond, shorthand);
|
|
str = gb_string_appendc(str, " ? ");
|
|
str = write_expr_to_string(str, te->x, shorthand);
|
|
str = gb_string_appendc(str, " : ");
|
|
str = write_expr_to_string(str, te->y, shorthand);
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(te, TernaryWhenExpr, node);
|
|
str = write_expr_to_string(str, te->x, shorthand);
|
|
str = gb_string_appendc(str, " when ");
|
|
str = write_expr_to_string(str, te->cond, shorthand);
|
|
str = gb_string_appendc(str, " else ");
|
|
str = write_expr_to_string(str, te->y, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(oe, OrElseExpr, node);
|
|
str = write_expr_to_string(str, oe->x, shorthand);
|
|
str = gb_string_appendc(str, " or_else ");
|
|
str = write_expr_to_string(str, oe->y, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(oe, OrReturnExpr, node);
|
|
str = write_expr_to_string(str, oe->expr, shorthand);
|
|
str = gb_string_appendc(str, " or_return");
|
|
case_end;
|
|
|
|
case_ast_node(oe, OrBranchExpr, node);
|
|
str = write_expr_to_string(str, oe->expr, shorthand);
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = string_append_token(str, oe->token);
|
|
if (oe->label) {
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = write_expr_to_string(str, oe->label, shorthand);
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(pe, ParenExpr, node);
|
|
str = gb_string_append_rune(str, '(');
|
|
str = write_expr_to_string(str, pe->expr, shorthand);
|
|
str = gb_string_append_rune(str, ')');
|
|
case_end;
|
|
|
|
case_ast_node(se, SelectorExpr, node);
|
|
str = write_expr_to_string(str, se->expr, shorthand);
|
|
str = string_append_token(str, se->token);
|
|
str = write_expr_to_string(str, se->selector, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(se, ImplicitSelectorExpr, node);
|
|
str = gb_string_append_rune(str, '.');
|
|
str = write_expr_to_string(str, se->selector, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(se, SelectorCallExpr, node);
|
|
str = write_expr_to_string(str, se->expr, shorthand);
|
|
str = gb_string_appendc(str, "(");
|
|
ast_node(ce, CallExpr, se->call);
|
|
isize start = se->modified_call ? 1 : 0;
|
|
for (isize i = start; i < ce->args.count; i++) {
|
|
Ast *arg = ce->args[i];
|
|
if (i > start) {
|
|
str = gb_string_appendc(str, ", ");
|
|
}
|
|
str = write_expr_to_string(str, arg, shorthand);
|
|
}
|
|
str = gb_string_appendc(str, ")");
|
|
case_end;
|
|
|
|
case_ast_node(ta, TypeAssertion, node);
|
|
str = write_expr_to_string(str, ta->expr, shorthand);
|
|
if (ta->type != nullptr &&
|
|
ta->type->kind == Ast_UnaryExpr &&
|
|
ta->type->UnaryExpr.op.kind == Token_Question) {
|
|
str = gb_string_appendc(str, ".?");
|
|
} else {
|
|
str = gb_string_appendc(str, ".(");
|
|
str = write_expr_to_string(str, ta->type, shorthand);
|
|
str = gb_string_append_rune(str, ')');
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(tc, TypeCast, node);
|
|
str = string_append_token(str, tc->token);
|
|
str = gb_string_append_rune(str, '(');
|
|
str = write_expr_to_string(str, tc->type, shorthand);
|
|
str = gb_string_append_rune(str, ')');
|
|
str = write_expr_to_string(str, tc->expr, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(ac, AutoCast, node);
|
|
str = string_append_token(str, ac->token);
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = write_expr_to_string(str, ac->expr, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(ie, IndexExpr, node);
|
|
str = write_expr_to_string(str, ie->expr, shorthand);
|
|
str = gb_string_append_rune(str, '[');
|
|
str = write_expr_to_string(str, ie->index, shorthand);
|
|
str = gb_string_append_rune(str, ']');
|
|
case_end;
|
|
|
|
case_ast_node(se, SliceExpr, node);
|
|
str = write_expr_to_string(str, se->expr, shorthand);
|
|
str = gb_string_append_rune(str, '[');
|
|
str = write_expr_to_string(str, se->low, shorthand);
|
|
str = string_append_token(str, se->interval);
|
|
str = write_expr_to_string(str, se->high, shorthand);
|
|
str = gb_string_append_rune(str, ']');
|
|
case_end;
|
|
|
|
case_ast_node(mie, MatrixIndexExpr, node);
|
|
str = write_expr_to_string(str, mie->expr, shorthand);
|
|
str = gb_string_append_rune(str, '[');
|
|
str = write_expr_to_string(str, mie->row_index, shorthand);
|
|
str = gb_string_appendc(str, ", ");
|
|
str = write_expr_to_string(str, mie->column_index, shorthand);
|
|
str = gb_string_append_rune(str, ']');
|
|
case_end;
|
|
|
|
case_ast_node(e, Ellipsis, node);
|
|
str = gb_string_appendc(str, "..");
|
|
str = write_expr_to_string(str, e->expr, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(fv, FieldValue, node);
|
|
str = write_expr_to_string(str, fv->field, shorthand);
|
|
str = gb_string_appendc(str, " = ");
|
|
str = write_expr_to_string(str, fv->value, shorthand);
|
|
case_end;
|
|
case_ast_node(fv, EnumFieldValue, node);
|
|
str = write_expr_to_string(str, fv->name, shorthand);
|
|
if (fv->value) {
|
|
str = gb_string_appendc(str, " = ");
|
|
str = write_expr_to_string(str, fv->value, shorthand);
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(ht, HelperType, node);
|
|
str = gb_string_appendc(str, "#type ");
|
|
str = write_expr_to_string(str, ht->type, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(ht, DistinctType, node);
|
|
str = gb_string_appendc(str, "distinct ");
|
|
str = write_expr_to_string(str, ht->type, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(pt, PolyType, node);
|
|
str = gb_string_append_rune(str, '$');
|
|
str = write_expr_to_string(str, pt->type, shorthand);
|
|
if (pt->specialization != nullptr) {
|
|
str = gb_string_append_rune(str, '/');
|
|
str = write_expr_to_string(str, pt->specialization, shorthand);
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(pt, PointerType, node);
|
|
if (pt->tag) {
|
|
str = write_expr_to_string(str, pt->tag, false);
|
|
}
|
|
str = gb_string_append_rune(str, '^');
|
|
str = write_expr_to_string(str, pt->type, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(pt, MultiPointerType, node);
|
|
str = gb_string_appendc(str, "[^]");
|
|
str = write_expr_to_string(str, pt->type, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(at, ArrayType, node);
|
|
if (at->tag) {
|
|
str = write_expr_to_string(str, at->tag, false);
|
|
}
|
|
str = gb_string_append_rune(str, '[');
|
|
if (at->count != nullptr &&
|
|
at->count->kind == Ast_UnaryExpr &&
|
|
at->count->UnaryExpr.op.kind == Token_Question) {
|
|
str = gb_string_appendc(str, "?");
|
|
} else {
|
|
str = write_expr_to_string(str, at->count, shorthand);
|
|
}
|
|
str = gb_string_append_rune(str, ']');
|
|
str = write_expr_to_string(str, at->elem, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(at, DynamicArrayType, node);
|
|
if (at->tag) {
|
|
str = write_expr_to_string(str, at->tag, false);
|
|
}
|
|
str = gb_string_appendc(str, "[dynamic]");
|
|
str = write_expr_to_string(str, at->elem, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(bs, BitSetType, node);
|
|
str = gb_string_appendc(str, "bit_set[");
|
|
str = write_expr_to_string(str, bs->elem, shorthand);
|
|
str = gb_string_appendc(str, "]");
|
|
case_end;
|
|
|
|
|
|
case_ast_node(mt, MapType, node);
|
|
str = gb_string_appendc(str, "map[");
|
|
str = write_expr_to_string(str, mt->key, shorthand);
|
|
str = gb_string_append_rune(str, ']');
|
|
str = write_expr_to_string(str, mt->value, shorthand);
|
|
case_end;
|
|
|
|
case_ast_node(mt, MatrixType, node);
|
|
str = gb_string_appendc(str, "matrix[");
|
|
str = write_expr_to_string(str, mt->row_count, shorthand);
|
|
str = gb_string_appendc(str, ", ");
|
|
str = write_expr_to_string(str, mt->column_count, shorthand);
|
|
str = gb_string_append_rune(str, ']');
|
|
str = write_expr_to_string(str, mt->elem, shorthand);
|
|
case_end;
|
|
|
|
|
|
case_ast_node(f, Field, node);
|
|
if (f->flags&FieldFlag_using) {
|
|
str = gb_string_appendc(str, "using ");
|
|
}
|
|
if (f->flags&FieldFlag_no_alias) {
|
|
str = gb_string_appendc(str, "#no_alias ");
|
|
}
|
|
if (f->flags&FieldFlag_c_vararg) {
|
|
str = gb_string_appendc(str, "#c_vararg ");
|
|
}
|
|
if (f->flags&FieldFlag_any_int) {
|
|
str = gb_string_appendc(str, "#any_int ");
|
|
}
|
|
if (f->flags&FieldFlag_no_broadcast) {
|
|
str = gb_string_appendc(str, "#no_broadcast ");
|
|
}
|
|
if (f->flags&FieldFlag_const) {
|
|
str = gb_string_appendc(str, "#const ");
|
|
}
|
|
if (f->flags&FieldFlag_subtype) {
|
|
str = gb_string_appendc(str, "#subtype ");
|
|
}
|
|
|
|
for_array(i, f->names) {
|
|
Ast *name = f->names[i];
|
|
if (i > 0) str = gb_string_appendc(str, ", ");
|
|
str = write_expr_to_string(str, name, shorthand);
|
|
}
|
|
if (f->names.count > 0) {
|
|
if (f->type == nullptr && f->default_value != nullptr) {
|
|
str = gb_string_append_rune(str, ' ');
|
|
}
|
|
str = gb_string_appendc(str, ":");
|
|
}
|
|
if (f->type != nullptr) {
|
|
str = gb_string_append_rune(str, ' ');
|
|
str = write_expr_to_string(str, f->type, shorthand);
|
|
}
|
|
if (f->default_value != nullptr) {
|
|
if (f->type != nullptr) {
|
|
str = gb_string_append_rune(str, ' ');
|
|
}
|
|
str = gb_string_appendc(str, "= ");
|
|
str = write_expr_to_string(str, f->default_value, shorthand);
|
|
}
|
|
|
|
case_end;
|
|
|
|
case_ast_node(f, FieldList, node);
|
|
bool has_name = false;
|
|
for_array(i, f->list) {
|
|
ast_node(field, Field, f->list[i]);
|
|
if (field->names.count > 1) {
|
|
has_name = true;
|
|
break;
|
|
}
|
|
|
|
if (field->names.count == 0) {
|
|
continue;
|
|
}
|
|
if (!is_blank_ident(field->names[0])) {
|
|
has_name = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for_array(i, f->list) {
|
|
if (i > 0) str = gb_string_appendc(str, ", ");
|
|
if (has_name) {
|
|
str = write_expr_to_string(str, f->list[i], shorthand);
|
|
} else {
|
|
ast_node(field, Field, f->list[i]);
|
|
|
|
if (field->flags&FieldFlag_using) {
|
|
str = gb_string_appendc(str, "using ");
|
|
}
|
|
if (field->flags&FieldFlag_no_alias) {
|
|
str = gb_string_appendc(str, "#no_alias ");
|
|
}
|
|
if (field->flags&FieldFlag_c_vararg) {
|
|
str = gb_string_appendc(str, "#c_vararg ");
|
|
}
|
|
if (field->flags&FieldFlag_any_int) {
|
|
str = gb_string_appendc(str, "#any_int ");
|
|
}
|
|
if (field->flags&FieldFlag_no_broadcast) {
|
|
str = gb_string_appendc(str, "#no_broadcast ");
|
|
}
|
|
if (field->flags&FieldFlag_const) {
|
|
str = gb_string_appendc(str, "#const ");
|
|
}
|
|
if (field->flags&FieldFlag_subtype) {
|
|
str = gb_string_appendc(str, "#subtype ");
|
|
}
|
|
|
|
str = write_expr_to_string(str, field->type, shorthand);
|
|
}
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(ce, CallExpr, node);
|
|
switch (ce->inlining) {
|
|
case ProcInlining_inline:
|
|
str = gb_string_appendc(str, "#force_inline ");
|
|
break;
|
|
case ProcInlining_no_inline:
|
|
str = gb_string_appendc(str, "#force_no_inline ");
|
|
break;
|
|
}
|
|
|
|
str = write_expr_to_string(str, ce->proc, shorthand);
|
|
str = gb_string_appendc(str, "(");
|
|
|
|
isize idx0 = cast(isize)ce->was_selector;
|
|
for (isize i = idx0; i < ce->args.count; i++) {
|
|
Ast *arg = ce->args[i];
|
|
if (i > idx0) {
|
|
str = gb_string_appendc(str, ", ");
|
|
}
|
|
str = write_expr_to_string(str, arg, shorthand);
|
|
}
|
|
str = gb_string_appendc(str, ")");
|
|
case_end;
|
|
|
|
case_ast_node(tt, TypeidType, node);
|
|
str = gb_string_appendc(str, "typeid");
|
|
if (tt->specialization) {
|
|
str = gb_string_appendc(str, "/");
|
|
str = write_expr_to_string(str, tt->specialization, shorthand);
|
|
}
|
|
case_end;
|
|
|
|
case_ast_node(pt, ProcType, node);
|
|
str = gb_string_appendc(str, "proc(");
|
|
str = write_expr_to_string(str, pt->params, shorthand);
|
|
str = gb_string_appendc(str, ")");
|
|
if (pt->results != nullptr) {
|
|
str = gb_string_appendc(str, " -> ");
|
|
|
|
bool parens_needed = false;
|
|
if (pt->results && pt->results->kind == Ast_FieldList) {
|
|
for (Ast *field : pt->results->FieldList.list) {
|
|
ast_node(f, Field, field);
|
|
if (f->names.count != 0) {
|
|
parens_needed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (parens_needed) {
|
|
str = gb_string_append_rune(str, '(');
|
|
}
|
|
str = write_expr_to_string(str, pt->results, shorthand);
|
|
if (parens_needed) {
|
|
str = gb_string_append_rune(str, ')');
|
|
}
|
|
}
|
|
|
|
case_end;
|
|
|
|
case_ast_node(st, StructType, node);
|
|
str = gb_string_appendc(str, "struct ");
|
|
if (st->polymorphic_params) {
|
|
str = gb_string_append_rune(str, '(');
|
|
str = write_expr_to_string(str, st->polymorphic_params, shorthand);
|
|
str = gb_string_appendc(str, ") ");
|
|
}
|
|
if (st->is_packed) str = gb_string_appendc(str, "#packed ");
|
|
if (st->is_raw_union) str = gb_string_appendc(str, "#raw_union ");
|
|
if (st->align) {
|
|
str = gb_string_appendc(str, "#align ");
|
|
str = write_expr_to_string(str, st->align, shorthand);
|
|
str = gb_string_append_rune(str, ' ');
|
|
}
|
|
str = gb_string_append_rune(str, '{');
|
|
if (shorthand) {
|
|
str = gb_string_appendc(str, "...");
|
|
} else {
|
|
str = write_struct_fields_to_string(str, st->fields);
|
|
}
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
|
|
|
|
case_ast_node(st, UnionType, node);
|
|
str = gb_string_appendc(str, "union ");
|
|
if (st->polymorphic_params) {
|
|
str = gb_string_append_rune(str, '(');
|
|
str = write_expr_to_string(str, st->polymorphic_params, shorthand);
|
|
str = gb_string_appendc(str, ") ");
|
|
}
|
|
switch (st->kind) {
|
|
case UnionType_no_nil: str = gb_string_appendc(str, "#no_nil "); break;
|
|
case UnionType_shared_nil: str = gb_string_appendc(str, "#shared_nil "); break;
|
|
}
|
|
if (st->align) {
|
|
str = gb_string_appendc(str, "#align ");
|
|
str = write_expr_to_string(str, st->align, shorthand);
|
|
str = gb_string_append_rune(str, ' ');
|
|
}
|
|
str = gb_string_append_rune(str, '{');
|
|
if (shorthand) {
|
|
str = gb_string_appendc(str, "...");
|
|
} else {
|
|
str = write_struct_fields_to_string(str, st->variants);
|
|
}
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
|
|
case_ast_node(et, EnumType, node);
|
|
str = gb_string_appendc(str, "enum ");
|
|
if (et->base_type != nullptr) {
|
|
str = write_expr_to_string(str, et->base_type, shorthand);
|
|
str = gb_string_append_rune(str, ' ');
|
|
}
|
|
str = gb_string_append_rune(str, '{');
|
|
if (shorthand) {
|
|
str = gb_string_appendc(str, "...");
|
|
} else {
|
|
for_array(i, et->fields) {
|
|
if (i > 0) {
|
|
str = gb_string_appendc(str, ", ");
|
|
}
|
|
str = write_expr_to_string(str, et->fields[i], shorthand);
|
|
}
|
|
}
|
|
str = gb_string_append_rune(str, '}');
|
|
case_end;
|
|
|
|
case_ast_node(rt, RelativeType, node);
|
|
str = write_expr_to_string(str, rt->tag, shorthand);
|
|
str = gb_string_appendc(str, "" );
|
|
str = write_expr_to_string(str, rt->type, shorthand);
|
|
case_end;
|
|
|
|
|
|
case_ast_node(f, BitFieldField, node);
|
|
str = write_expr_to_string(str, f->name, shorthand);
|
|
str = gb_string_appendc(str, ": ");
|
|
str = write_expr_to_string(str, f->type, shorthand);
|
|
str = gb_string_appendc(str, " | ");
|
|
str = write_expr_to_string(str, f->bit_size, shorthand);
|
|
case_end;
|
|
case_ast_node(bf, BitFieldType, node);
|
|
str = gb_string_appendc(str, "bit_field ");
|
|
if (!shorthand) {
|
|
str = write_expr_to_string(str, bf->backing_type, shorthand);
|
|
}
|
|
str = gb_string_appendc(str, " {");
|
|
if (shorthand) {
|
|
str = gb_string_appendc(str, "...");
|
|
} else {
|
|
for_array(i, bf->fields) {
|
|
if (i > 0) {
|
|
str = gb_string_appendc(str, ", ");
|
|
}
|
|
str = write_expr_to_string(str, bf->fields[i], false);
|
|
}
|
|
}
|
|
str = gb_string_appendc(str, "}");
|
|
case_end;
|
|
|
|
case_ast_node(ia, InlineAsmExpr, node);
|
|
str = gb_string_appendc(str, "asm(");
|
|
for_array(i, ia->param_types) {
|
|
if (i > 0) {
|
|
str = gb_string_appendc(str, ", ");
|
|
}
|
|
str = write_expr_to_string(str, ia->param_types[i], shorthand);
|
|
}
|
|
str = gb_string_appendc(str, ")");
|
|
if (ia->return_type != nullptr) {
|
|
str = gb_string_appendc(str, " -> ");
|
|
str = write_expr_to_string(str, ia->return_type, shorthand);
|
|
}
|
|
if (ia->has_side_effects) {
|
|
str = gb_string_appendc(str, " #side_effects");
|
|
}
|
|
if (ia->is_align_stack) {
|
|
str = gb_string_appendc(str, " #stack_align");
|
|
}
|
|
if (ia->dialect) {
|
|
str = gb_string_appendc(str, " #");
|
|
str = gb_string_appendc(str, inline_asm_dialect_strings[ia->dialect]);
|
|
}
|
|
str = gb_string_appendc(str, " {");
|
|
if (shorthand) {
|
|
str = gb_string_appendc(str, "...");
|
|
} else {
|
|
str = write_expr_to_string(str, ia->asm_string, shorthand);
|
|
str = gb_string_appendc(str, ", ");
|
|
str = write_expr_to_string(str, ia->constraints_string, shorthand);
|
|
}
|
|
str = gb_string_appendc(str, "}");
|
|
case_end;
|
|
}
|
|
|
|
return str;
|
|
}
|
|
|
|
gb_internal gbString expr_to_string(Ast *expression) {
|
|
return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression, false);
|
|
}
|
|
gb_internal gbString expr_to_string(Ast *expression, gbAllocator allocator) {
|
|
return write_expr_to_string(gb_string_make(allocator, ""), expression, false);
|
|
}
|
|
gb_internal gbString expr_to_string_shorthand(Ast *expression) {
|
|
return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression, true);
|
|
}
|