mirror of
https://github.com/odin-lang/Odin.git
synced 2026-01-03 19:52:30 +00:00
133 lines
2.8 KiB
Odin
133 lines
2.8 KiB
Odin
package big
|
|
|
|
/*
|
|
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
|
|
Made available under Odin's BSD-2 license.
|
|
|
|
An arbitrary precision mathematics implementation in Odin.
|
|
For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
|
|
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
|
|
*/
|
|
|
|
log_n_int :: proc(a: ^Int, base: DIGIT) -> (log: int, err: Error) {
|
|
if base < 2 || DIGIT(base) > _DIGIT_MAX {
|
|
return -1, .Invalid_Argument;
|
|
}
|
|
|
|
if err = clear_if_uninitialized(a); err != .None {
|
|
return -1, err;
|
|
}
|
|
if n, _ := is_neg(a); n {
|
|
return -1, .Invalid_Argument;
|
|
}
|
|
if z, _ := is_zero(a); z {
|
|
return -1, .Invalid_Argument;
|
|
}
|
|
|
|
/*
|
|
Fast path for bases that are a power of two.
|
|
*/
|
|
if is_power_of_two(int(base)) {
|
|
return _log_power_of_two(a, base);
|
|
}
|
|
|
|
/*
|
|
Fast path for `Int`s that fit within a single `DIGIT`.
|
|
*/
|
|
if a.used == 1 {
|
|
return log_n_digit(a.digit[0], DIGIT(base));
|
|
}
|
|
|
|
// if (MP_HAS(S_MP_LOG)) {
|
|
// return s_mp_log(a, (mp_digit)base, c);
|
|
// }
|
|
|
|
return -1, .Unimplemented;
|
|
}
|
|
|
|
log_n :: proc{log_n_int, log_n_digit};
|
|
|
|
/*
|
|
Returns the log2 of an `Int`, provided `base` is a power of two.
|
|
Don't call it if it isn't.
|
|
*/
|
|
_log_power_of_two :: proc(a: ^Int, base: DIGIT) -> (log: int, err: Error) {
|
|
base := base;
|
|
y: int;
|
|
for y = 0; base & 1 == 0; {
|
|
y += 1;
|
|
base >>= 1;
|
|
}
|
|
log, err = count_bits(a);
|
|
return (log - 1) / y, err;
|
|
}
|
|
|
|
/*
|
|
|
|
*/
|
|
small_pow :: proc(base: _WORD, exponent: _WORD) -> (result: _WORD) {
|
|
exponent := exponent; base := base;
|
|
result = _WORD(1);
|
|
|
|
for exponent != 0 {
|
|
if exponent & 1 == 1 {
|
|
result *= base;
|
|
}
|
|
exponent >>= 1;
|
|
base *= base;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
log_n_digit :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {
|
|
/*
|
|
If the number is smaller than the base, it fits within a fraction.
|
|
Therefore, we return 0.
|
|
*/
|
|
if a < base {
|
|
return 0, .None;
|
|
}
|
|
|
|
/*
|
|
If a number equals the base, the log is 1.
|
|
*/
|
|
if a == base {
|
|
return 1, .None;
|
|
}
|
|
|
|
N := _WORD(a);
|
|
bracket_low := _WORD(1);
|
|
bracket_high := _WORD(base);
|
|
high := 1;
|
|
low := 0;
|
|
|
|
for bracket_high < N {
|
|
low = high;
|
|
bracket_low = bracket_high;
|
|
high <<= 1;
|
|
bracket_high *= bracket_high;
|
|
}
|
|
|
|
for high - low > 1 {
|
|
mid := (low + high) >> 1;
|
|
bracket_mid := bracket_low * small_pow(_WORD(base), _WORD(mid - low));
|
|
|
|
if N < bracket_mid {
|
|
high = mid;
|
|
bracket_high = bracket_mid;
|
|
}
|
|
if N > bracket_mid {
|
|
low = mid;
|
|
bracket_low = bracket_mid;
|
|
}
|
|
if N == bracket_mid {
|
|
return mid, .None;
|
|
}
|
|
}
|
|
|
|
if bracket_high == N {
|
|
return high, .None;
|
|
} else {
|
|
return low, .None;
|
|
}
|
|
} |