mirror of
https://github.com/odin-lang/Odin.git
synced 2026-01-01 02:42:09 +00:00
383 lines
10 KiB
Odin
383 lines
10 KiB
Odin
const (
|
|
TAU = 6.28318530717958647692528676655900576;
|
|
PI = 3.14159265358979323846264338327950288;
|
|
ONE_OVER_TAU = 0.636619772367581343075535053490057448;
|
|
ONE_OVER_PI = 0.159154943091895335768883763372514362;
|
|
|
|
E = 2.71828182845904523536;
|
|
SQRT_TWO = 1.41421356237309504880168872420969808;
|
|
SQRT_THREE = 1.73205080756887729352744634150587236;
|
|
SQRT_FIVE = 2.23606797749978969640917366873127623;
|
|
|
|
LOG_TWO = 0.693147180559945309417232121458176568;
|
|
LOG_TEN = 2.30258509299404568401799145468436421;
|
|
|
|
EPSILON = 1.19209290e-7;
|
|
|
|
τ = TAU;
|
|
π = PI;
|
|
)
|
|
type (
|
|
Vec2 [vector 2]f32;
|
|
Vec3 [vector 3]f32;
|
|
Vec4 [vector 4]f32;
|
|
|
|
// Column major
|
|
Mat2 [2][2]f32;
|
|
Mat3 [3][3]f32;
|
|
Mat4 [4][4]f32;
|
|
|
|
Complex complex64;
|
|
)
|
|
|
|
proc sqrt(x: f32) -> f32 #foreign __llvm_core "llvm.sqrt.f32";
|
|
proc sqrt(x: f64) -> f64 #foreign __llvm_core "llvm.sqrt.f64";
|
|
|
|
proc sin (θ: f32) -> f32 #foreign __llvm_core "llvm.sin.f32";
|
|
proc sin (θ: f64) -> f64 #foreign __llvm_core "llvm.sin.f64";
|
|
|
|
proc cos (θ: f32) -> f32 #foreign __llvm_core "llvm.cos.f32";
|
|
proc cos (θ: f64) -> f64 #foreign __llvm_core "llvm.cos.f64";
|
|
|
|
proc tan (θ: f32) -> f32 #inline { return sin(θ)/cos(θ); }
|
|
proc tan (θ: f64) -> f64 #inline { return sin(θ)/cos(θ); }
|
|
|
|
proc pow (x, power: f32) -> f32 #foreign __llvm_core "llvm.pow.f32";
|
|
proc pow (x, power: f64) -> f64 #foreign __llvm_core "llvm.pow.f64";
|
|
|
|
|
|
proc lerp (a, b, t: f32) -> (x: f32) { return a*(1-t) + b*t; }
|
|
proc lerp (a, b, t: f64) -> (x: f64) { return a*(1-t) + b*t; }
|
|
proc unlerp(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); }
|
|
proc unlerp(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); }
|
|
|
|
|
|
proc sign(x: f32) -> f32 { return x >= 0 ? +1 : -1; }
|
|
proc sign(x: f64) -> f64 { return x >= 0 ? +1 : -1; }
|
|
|
|
proc fmuladd(a, b, c: f32) -> f32 #foreign __llvm_core "llvm.fmuladd.f32";
|
|
proc fmuladd(a, b, c: f64) -> f64 #foreign __llvm_core "llvm.fmuladd.f64";
|
|
|
|
|
|
proc copy_sign(x, y: f32) -> f32 {
|
|
var ix = transmute(u32, x);
|
|
var iy = transmute(u32, y);
|
|
ix &= 0x7fff_ffff;
|
|
ix |= iy & 0x8000_0000;
|
|
return transmute(f32, ix);
|
|
}
|
|
|
|
proc copy_sign(x, y: f64) -> f64 {
|
|
var ix = transmute(u64, x);
|
|
var iy = transmute(u64, y);
|
|
ix &= 0x7fff_ffff_ffff_ff;
|
|
ix |= iy & 0x8000_0000_0000_0000;
|
|
return transmute(f64, ix);
|
|
}
|
|
|
|
proc round (x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
|
|
proc round (x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); }
|
|
|
|
proc floor (x: f32) -> f32 { return x >= 0 ? f32(i64(x)) : f32(i64(x-0.5)); } // TODO: Get accurate versions
|
|
proc floor (x: f64) -> f64 { return x >= 0 ? f64(i64(x)) : f64(i64(x-0.5)); } // TODO: Get accurate versions
|
|
|
|
proc ceil (x: f32) -> f32 { return x < 0 ? f32(i64(x)) : f32(i64(x+1)); } // TODO: Get accurate versions
|
|
proc ceil (x: f64) -> f64 { return x < 0 ? f64(i64(x)) : f64(i64(x+1)); } // TODO: Get accurate versions
|
|
|
|
proc remainder(x, y: f32) -> f32 { return x - round(x/y) * y; }
|
|
proc remainder(x, y: f64) -> f64 { return x - round(x/y) * y; }
|
|
|
|
proc mod(x, y: f32) -> f32 {
|
|
y = abs(y);
|
|
var result = remainder(abs(x), y);
|
|
if sign(result) < 0 {
|
|
result += y;
|
|
}
|
|
return copy_sign(result, x);
|
|
}
|
|
proc mod(x, y: f64) -> f64 {
|
|
y = abs(y);
|
|
var result = remainder(abs(x), y);
|
|
if sign(result) < 0 {
|
|
result += y;
|
|
}
|
|
return copy_sign(result, x);
|
|
}
|
|
|
|
|
|
proc to_radians(degrees: f32) -> f32 { return degrees * TAU / 360; }
|
|
proc to_degrees(radians: f32) -> f32 { return radians * 360 / TAU; }
|
|
|
|
|
|
|
|
proc dot(a, b: Vec2) -> f32 { var c = a*b; return c.x + c.y; }
|
|
proc dot(a, b: Vec3) -> f32 { var c = a*b; return c.x + c.y + c.z; }
|
|
proc dot(a, b: Vec4) -> f32 { var c = a*b; return c.x + c.y + c.z + c.w; }
|
|
|
|
proc cross(x, y: Vec3) -> Vec3 {
|
|
var a = swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1);
|
|
var b = swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0);
|
|
return a - b;
|
|
}
|
|
|
|
|
|
proc mag(v: Vec2) -> f32 { return sqrt(dot(v, v)); }
|
|
proc mag(v: Vec3) -> f32 { return sqrt(dot(v, v)); }
|
|
proc mag(v: Vec4) -> f32 { return sqrt(dot(v, v)); }
|
|
|
|
proc norm(v: Vec2) -> Vec2 { return v / mag(v); }
|
|
proc norm(v: Vec3) -> Vec3 { return v / mag(v); }
|
|
proc norm(v: Vec4) -> Vec4 { return v / mag(v); }
|
|
|
|
proc norm0(v: Vec2) -> Vec2 {
|
|
var m = mag(v);
|
|
if m == 0 {
|
|
return 0;
|
|
}
|
|
return v / m;
|
|
}
|
|
|
|
proc norm0(v: Vec3) -> Vec3 {
|
|
var m = mag(v);
|
|
if m == 0 {
|
|
return 0;
|
|
}
|
|
return v / m;
|
|
}
|
|
|
|
proc norm0(v: Vec4) -> Vec4 {
|
|
var m = mag(v);
|
|
if m == 0 {
|
|
return 0;
|
|
}
|
|
return v / m;
|
|
}
|
|
|
|
|
|
|
|
proc mat4_identity() -> Mat4 {
|
|
return Mat4{
|
|
{1, 0, 0, 0},
|
|
{0, 1, 0, 0},
|
|
{0, 0, 1, 0},
|
|
{0, 0, 0, 1},
|
|
};
|
|
}
|
|
|
|
proc mat4_transpose(m: Mat4) -> Mat4 {
|
|
for j in 0..<4 {
|
|
for i in 0..<4 {
|
|
m[i][j], m[j][i] = m[j][i], m[i][j];
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
proc mul(a, b: Mat4) -> Mat4 {
|
|
var c: Mat4;
|
|
for j in 0..<4 {
|
|
for i in 0..<4 {
|
|
c[j][i] = a[0][i]*b[j][0] +
|
|
a[1][i]*b[j][1] +
|
|
a[2][i]*b[j][2] +
|
|
a[3][i]*b[j][3];
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
proc mul(m: Mat4, v: Vec4) -> Vec4 {
|
|
return Vec4{
|
|
m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w,
|
|
m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w,
|
|
m[0][2]*v.x + m[1][2]*v.y + m[2][2]*v.z + m[3][2]*v.w,
|
|
m[0][3]*v.x + m[1][3]*v.y + m[2][3]*v.z + m[3][3]*v.w,
|
|
};
|
|
}
|
|
|
|
proc inverse(m: Mat4) -> Mat4 {
|
|
var o: Mat4;
|
|
|
|
var sf00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
|
|
var sf01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
|
|
var sf02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
|
|
var sf03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
|
|
var sf04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
|
|
var sf05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
|
|
var sf06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
|
|
var sf07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
|
var sf08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
|
|
var sf09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
|
|
var sf10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
|
|
var sf11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
|
|
var sf12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
|
|
var sf13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
|
|
var sf14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
|
|
var sf15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
|
|
var sf16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
|
|
var sf17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
|
|
var sf18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
|
|
|
|
o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02);
|
|
o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04);
|
|
o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05);
|
|
o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05);
|
|
|
|
o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02);
|
|
o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04);
|
|
o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05);
|
|
o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05);
|
|
|
|
o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08);
|
|
o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10);
|
|
o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12);
|
|
o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12);
|
|
|
|
o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15);
|
|
o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17);
|
|
o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18);
|
|
o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18);
|
|
|
|
var ood = 1.0 / (m[0][0] * o[0][0] +
|
|
m[0][1] * o[0][1] +
|
|
m[0][2] * o[0][2] +
|
|
m[0][3] * o[0][3]);
|
|
|
|
o[0][0] *= ood;
|
|
o[0][1] *= ood;
|
|
o[0][2] *= ood;
|
|
o[0][3] *= ood;
|
|
o[1][0] *= ood;
|
|
o[1][1] *= ood;
|
|
o[1][2] *= ood;
|
|
o[1][3] *= ood;
|
|
o[2][0] *= ood;
|
|
o[2][1] *= ood;
|
|
o[2][2] *= ood;
|
|
o[2][3] *= ood;
|
|
o[3][0] *= ood;
|
|
o[3][1] *= ood;
|
|
o[3][2] *= ood;
|
|
o[3][3] *= ood;
|
|
|
|
return o;
|
|
}
|
|
|
|
|
|
proc mat4_translate(v: Vec3) -> Mat4 {
|
|
var m = mat4_identity();
|
|
m[3][0] = v.x;
|
|
m[3][1] = v.y;
|
|
m[3][2] = v.z;
|
|
m[3][3] = 1;
|
|
return m;
|
|
}
|
|
|
|
proc mat4_rotate(v: Vec3, angle_radians: f32) -> Mat4 {
|
|
var c = cos(angle_radians);
|
|
var s = sin(angle_radians);
|
|
|
|
var a = norm(v);
|
|
var t = a * (1-c);
|
|
|
|
var rot = mat4_identity();
|
|
|
|
rot[0][0] = c + t.x*a.x;
|
|
rot[0][1] = 0 + t.x*a.y + s*a.z;
|
|
rot[0][2] = 0 + t.x*a.z - s*a.y;
|
|
rot[0][3] = 0;
|
|
|
|
rot[1][0] = 0 + t.y*a.x - s*a.z;
|
|
rot[1][1] = c + t.y*a.y;
|
|
rot[1][2] = 0 + t.y*a.z + s*a.x;
|
|
rot[1][3] = 0;
|
|
|
|
rot[2][0] = 0 + t.z*a.x + s*a.y;
|
|
rot[2][1] = 0 + t.z*a.y - s*a.x;
|
|
rot[2][2] = c + t.z*a.z;
|
|
rot[2][3] = 0;
|
|
|
|
return rot;
|
|
}
|
|
|
|
proc scale(m: Mat4, v: Vec3) -> Mat4 {
|
|
m[0][0] *= v.x;
|
|
m[1][1] *= v.y;
|
|
m[2][2] *= v.z;
|
|
return m;
|
|
}
|
|
|
|
proc scale(m: Mat4, s: f32) -> Mat4 {
|
|
m[0][0] *= s;
|
|
m[1][1] *= s;
|
|
m[2][2] *= s;
|
|
return m;
|
|
}
|
|
|
|
|
|
proc look_at(eye, centre, up: Vec3) -> Mat4 {
|
|
var f = norm(centre - eye);
|
|
var s = norm(cross(f, up));
|
|
var u = cross(s, f);
|
|
|
|
return Mat4{
|
|
{+s.x, +u.x, -f.x, 0},
|
|
{+s.y, +u.y, -f.y, 0},
|
|
{+s.z, +u.z, -f.z, 0},
|
|
{-dot(s, eye), -dot(u, eye), dot(f, eye), 1},
|
|
};
|
|
}
|
|
|
|
proc perspective(fovy, aspect, near, far: f32) -> Mat4 {
|
|
var m: Mat4;
|
|
var tan_half_fovy = tan(0.5 * fovy);
|
|
m[0][0] = 1.0 / (aspect*tan_half_fovy);
|
|
m[1][1] = 1.0 / (tan_half_fovy);
|
|
m[2][2] = -(far + near) / (far - near);
|
|
m[2][3] = -1.0;
|
|
m[3][2] = -2.0*far*near / (far - near);
|
|
return m;
|
|
}
|
|
|
|
|
|
proc ortho3d(left, right, bottom, top, near, far: f32) -> Mat4 {
|
|
var m = mat4_identity();
|
|
m[0][0] = +2.0 / (right - left);
|
|
m[1][1] = +2.0 / (top - bottom);
|
|
m[2][2] = -2.0 / (far - near);
|
|
m[3][0] = -(right + left) / (right - left);
|
|
m[3][1] = -(top + bottom) / (top - bottom);
|
|
m[3][2] = -(far + near) / (far - near);
|
|
return m;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const F32_DIG = 6;
|
|
const F32_EPSILON = 1.192092896e-07;
|
|
const F32_GUARD = 0;
|
|
const F32_MANT_DIG = 24;
|
|
const F32_MAX = 3.402823466e+38;
|
|
const F32_MAX_10_EXP = 38;
|
|
const F32_MAX_EXP = 128;
|
|
const F32_MIN = 1.175494351e-38;
|
|
const F32_MIN_10_EXP = -37;
|
|
const F32_MIN_EXP = -125;
|
|
const F32_NORMALIZE = 0;
|
|
const F32_RADIX = 2;
|
|
const F32_ROUNDS = 1;
|
|
|
|
const F64_DIG = 15; // # of decimal digits of precision
|
|
const F64_EPSILON = 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
|
|
const F64_MANT_DIG = 53; // # of bits in mantissa
|
|
const F64_MAX = 1.7976931348623158e+308; // max value
|
|
const F64_MAX_10_EXP = 308; // max decimal exponent
|
|
const F64_MAX_EXP = 1024; // max binary exponent
|
|
const F64_MIN = 2.2250738585072014e-308; // min positive value
|
|
const F64_MIN_10_EXP = -307; // min decimal exponent
|
|
const F64_MIN_EXP = -1021; // min binary exponent
|
|
const F64_RADIX = 2; // exponent radix
|
|
const F64_ROUNDS = 1; // addition rounding: near
|