Files
Odin/base/runtime/dynamic_map_internal.odin
gingerBill 842cfee0f3 Change Odin's LICENSE to zlib from BSD 3-clause
This change was made in order to allow things produced with Odin and using Odin's core library, to not require the LICENSE to also be distributed alongside the binary form.
2025-10-28 14:38:25 +00:00

1061 lines
36 KiB
Odin

package runtime
import "base:intrinsics"
_ :: intrinsics
// High performance, cache-friendly, open-addressed Robin Hood hashing hash map
// data structure with various optimizations for Odin.
//
// The core of the hash map data structure is the Raw_Map struct which is a
// type-erased representation of the map. This type-erased representation is
// used in two ways: static and dynamic. When static type information is known,
// the procedures suffixed with _static should be used instead of _dynamic. The
// static procedures are optimized since they have type information. Hashing of
// keys, comparison of keys, and data lookup are all optimized. When type
// information is not known, the procedures suffixed with _dynamic should be
// used. The representation of the map is the same for both static and dynamic,
// and procedures of each can be mixed and matched. The purpose of the dynamic
// representation is to enable reflection and runtime manipulation of the map.
// The dynamic procedures all take an additional Map_Info structure parameter
// which carries runtime values describing the size, alignment, and offset of
// various traits of a given key and value type pair. The Map_Info value can
// be created by calling map_info(K, V) with the key and value typeids.
//
// This map implementation makes extensive use of uintptr for representing
// sizes, lengths, capacities, masks, pointers, offsets, and addresses to avoid
// expensive sign extension and masking that would be generated if types were
// casted all over. The only place regular ints show up is in the cap() and
// len() implementations.
//
// To make this map cache-friendly it uses a novel strategy to ensure keys and
// values of the map are always cache-line aligned and that no single key or
// value of any type ever straddles a cache-line. This cache efficiency makes
// for quick lookups because the linear-probe always addresses data in a cache
// friendly way. This is enabled through the use of a special meta-type called
// a Map_Cell which packs as many values of a given type into a local array adding
// internal padding to round to MAP_CACHE_LINE_SIZE. One other benefit to storing
// the internal data in this manner is false sharing no longer occurs when using
// a map, enabling efficient concurrent access of the map data structure with
// minimal locking if desired.
// With Robin Hood hashing a maximum load factor of 75% is ideal.
MAP_LOAD_FACTOR :: 75
// Minimum log2 capacity.
MAP_MIN_LOG2_CAPACITY :: 3 // 8 elements
// Has to be less than 100% though.
#assert(MAP_LOAD_FACTOR < 100)
// This is safe to change. The log2 size of a cache-line. At minimum it has to
// be six though. Higher cache line sizes are permitted.
MAP_CACHE_LINE_LOG2 :: 6
// The size of a cache-line.
MAP_CACHE_LINE_SIZE :: 1 << MAP_CACHE_LINE_LOG2
// The minimum cache-line size allowed by this implementation is 64 bytes since
// we need 6 bits in the base pointer to store the integer log2 capacity, which
// at maximum is 63. Odin uses signed integers to represent length and capacity,
// so only 63 bits are needed in the maximum case.
#assert(MAP_CACHE_LINE_SIZE >= 64)
// Map_Cell type that packs multiple T in such a way to ensure that each T stays
// aligned by align_of(T) and such that align_of(Map_Cell(T)) % MAP_CACHE_LINE_SIZE == 0
//
// This means a value of type T will never straddle a cache-line.
//
// When multiple Ts can fit in a single cache-line the data array will have more
// than one element. When it cannot, the data array will have one element and
// an array of Map_Cell(T) will be padded to stay a multiple of MAP_CACHE_LINE_SIZE.
//
// We rely on the type system to do all the arithmetic and padding for us here.
//
// The usual array[index] indexing for []T backed by a []Map_Cell(T) becomes a bit
// more involved as there now may be internal padding. The indexing now becomes
//
// N :: len(Map_Cell(T){}.data)
// i := index / N
// j := index % N
// cell[i].data[j]
//
// However, since len(Map_Cell(T){}.data) is a compile-time constant, there are some
// optimizations we can do to eliminate the need for any divisions as N will
// be bounded by [1, 64).
//
// In the optimal case, len(Map_Cell(T){}.data) = 1 so the cell array can be treated
// as a regular array of T, which is the case for hashes.
Map_Cell :: struct($T: typeid) #align(MAP_CACHE_LINE_SIZE) {
data: [MAP_CACHE_LINE_SIZE / size_of(T) when 0 < size_of(T) && size_of(T) < MAP_CACHE_LINE_SIZE else 1]T,
}
// So we can operate on a cell data structure at runtime without any type
// information, we have a simple table that stores some traits about the cell.
//
// 32-bytes on 64-bit
// 16-bytes on 32-bit
Map_Cell_Info :: struct {
size_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
align_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
size_of_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
elements_per_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
}
// map_cell_info :: proc "contextless" ($T: typeid) -> ^Map_Cell_Info {...}
map_cell_info :: intrinsics.type_map_cell_info
// Same as the above procedure but at runtime with the cell Map_Cell_Info value.
@(require_results)
map_cell_index_dynamic :: #force_inline proc "contextless" (base: uintptr, #no_alias info: ^Map_Cell_Info, index: uintptr) -> uintptr {
// Micro-optimize the common cases to save on integer division.
elements_per_cell := uintptr(info.elements_per_cell)
size_of_cell := uintptr(info.size_of_cell)
switch elements_per_cell {
case 1:
return base + (index * size_of_cell)
case 2:
cell_index := index >> 1
data_index := index & 1
size_of_type := uintptr(info.size_of_type)
return base + (cell_index * size_of_cell) + (data_index * size_of_type)
case:
cell_index := index / elements_per_cell
data_index := index % elements_per_cell
size_of_type := uintptr(info.size_of_type)
return base + (cell_index * size_of_cell) + (data_index * size_of_type)
}
}
// Same as above procedure but with compile-time constant index.
@(require_results)
map_cell_index_dynamic_const :: proc "contextless" (base: uintptr, #no_alias info: ^Map_Cell_Info, $INDEX: uintptr) -> uintptr {
elements_per_cell := uintptr(info.elements_per_cell)
size_of_cell := uintptr(info.size_of_cell)
size_of_type := uintptr(info.size_of_type)
cell_index := INDEX / elements_per_cell
data_index := INDEX % elements_per_cell
return base + (cell_index * size_of_cell) + (data_index * size_of_type)
}
// We always round the capacity to a power of two so this becomes [16]Foo, which
// works out to [4]Cell(Foo).
//
// The following compile-time procedure indexes such a [N]Cell(T) structure as
// if it were a flat array accounting for the internal padding introduced by the
// Cell structure.
@(require_results)
map_cell_index_static :: #force_inline proc "contextless" (cells: [^]Map_Cell($T), index: uintptr) -> ^T #no_bounds_check {
N :: size_of(Map_Cell(T){}.data) / size_of(T) when size_of(T) > 0 else 1
#assert(N <= MAP_CACHE_LINE_SIZE)
when size_of(Map_Cell(T)) == size_of([N]T) {
// No padding case, can treat as a regular array of []T.
return &([^]T)(cells)[index]
} else when (N & (N - 1)) == 0 && N <= 8*size_of(uintptr) {
// Likely case, N is a power of two because T is a power of two.
// Unique case, no need to index data here since only one element.
when N == 1 {
return &cells[index].data[0]
}
// Compute the integer log 2 of N, this is the shift amount to index the
// correct cell. Odin's intrinsics.count_leading_zeros does not produce a
// constant, hence this approach. We only need to check up to N = 64.
SHIFT :: 1 when N == 2 else
2 when N == 4 else
3 when N == 8 else
4 when N == 16 else
5 when N == 32 else 6
#assert(SHIFT <= MAP_CACHE_LINE_LOG2)
return &cells[index >> SHIFT].data[index & (N - 1)]
} else {
// Least likely (and worst case), we pay for a division operation but we
// assume the compiler does not actually generate a division. N will be in the
// range [1, CACHE_LINE_SIZE) and not a power of two.
return &cells[index / N].data[index % N]
}
}
// len() for map
@(require_results)
map_len :: #force_inline proc "contextless" (m: Raw_Map) -> int {
return int(m.len)
}
// cap() for map
@(require_results)
map_cap :: #force_inline proc "contextless" (m: Raw_Map) -> int {
// The data uintptr stores the capacity in the lower six bits which gives the
// a maximum value of 2^6-1, or 63. We store the integer log2 of capacity
// since our capacity is always a power of two. We only need 63 bits as Odin
// represents length and capacity as a signed integer.
return 0 if m.data == 0 else 1 << map_log2_cap(m)
}
// Query the load factor of the map. This is not actually configurable, but
// some math is needed to compute it. Compute it as a fixed point percentage to
// avoid floating point operations. This division can be optimized out by
// multiplying by the multiplicative inverse of 100.
@(require_results)
map_load_factor :: #force_inline proc "contextless" (log2_capacity: uintptr) -> uintptr {
return ((uintptr(1) << log2_capacity) * MAP_LOAD_FACTOR) / 100
}
@(require_results)
map_resize_threshold :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
return map_load_factor(map_log2_cap(m))
}
// The data stores the log2 capacity in the lower six bits. This is primarily
// used in the implementation rather than map_cap since the check for data = 0
// isn't necessary in the implementation. cap() on the otherhand needs to work
// when called on an empty map.
@(require_results)
map_log2_cap :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
return m.data & (64 - 1)
}
// Canonicalize the data by removing the tagged capacity stored in the lower six
// bits of the data uintptr.
@(require_results)
map_data :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
return m.data &~ uintptr(64 - 1)
}
Map_Hash :: uintptr
TOMBSTONE_MASK :: 1<<(size_of(Map_Hash)*8 - 1)
// Procedure to check if a slot is empty for a given hash. This is represented
// by the zero value to make the zero value useful. This is a procedure just
// for prose reasons.
@(require_results)
map_hash_is_empty :: #force_inline proc "contextless" (hash: Map_Hash) -> bool {
return hash == 0
}
@(require_results)
map_hash_is_deleted :: #force_no_inline proc "contextless" (hash: Map_Hash) -> bool {
// The MSB indicates a tombstone
return hash & TOMBSTONE_MASK != 0
}
@(require_results)
map_hash_is_valid :: #force_inline proc "contextless" (hash: Map_Hash) -> bool {
// The MSB indicates a tombstone
return (hash != 0) & (hash & TOMBSTONE_MASK == 0)
}
@(require_results)
map_seed :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
return map_seed_from_map_data(map_data(m))
}
// splitmix for uintptr
@(require_results)
map_seed_from_map_data :: #force_inline proc "contextless" (data: uintptr) -> uintptr {
when size_of(uintptr) == size_of(u64) {
mix := data + 0x9e3779b97f4a7c15
mix = (mix ~ (mix >> 30)) * 0xbf58476d1ce4e5b9
mix = (mix ~ (mix >> 27)) * 0x94d049bb133111eb
return mix ~ (mix >> 31)
} else {
mix := data + 0x9e3779b9
mix = (mix ~ (mix >> 16)) * 0x21f0aaad
mix = (mix ~ (mix >> 15)) * 0x735a2d97
return mix ~ (mix >> 15)
}
}
// Computes the desired position in the array. This is just index % capacity,
// but a procedure as there's some math involved here to recover the capacity.
@(require_results)
map_desired_position :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash) -> uintptr {
// We do not use map_cap since we know the capacity will not be zero here.
capacity := uintptr(1) << map_log2_cap(m)
return uintptr(hash & Map_Hash(capacity - 1))
}
@(require_results)
map_probe_distance :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash, slot: uintptr) -> uintptr {
// We do not use map_cap since we know the capacity will not be zero here.
capacity := uintptr(1) << map_log2_cap(m)
return (slot + capacity - map_desired_position(m, hash)) & (capacity - 1)
}
// When working with the type-erased structure at runtime we need information
// about the map to make working with it possible. This info structure stores
// that.
//
// `Map_Info` and `Map_Cell_Info` are read only data structures and cannot be
// modified after creation
//
// 32-bytes on 64-bit
// 16-bytes on 32-bit
Map_Info :: struct {
ks: ^Map_Cell_Info, // 8-bytes on 64-bit, 4-bytes on 32-bit
vs: ^Map_Cell_Info, // 8-bytes on 64-bit, 4-bytes on 32-bit
key_hasher: proc "contextless" (key: rawptr, seed: Map_Hash) -> Map_Hash, // 8-bytes on 64-bit, 4-bytes on 32-bit
key_equal: proc "contextless" (lhs, rhs: rawptr) -> bool, // 8-bytes on 64-bit, 4-bytes on 32-bit
}
// The Map_Info structure is basically a pseudo-table of information for a given K and V pair.
// map_info :: proc "contextless" ($T: typeid/map[$K]$V) -> ^Map_Info {...}
map_info :: intrinsics.type_map_info
@(require_results)
map_kvh_data_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (ks: uintptr, vs: uintptr, hs: [^]Map_Hash, sk: uintptr, sv: uintptr) {
INFO_HS := intrinsics.type_map_cell_info(Map_Hash)
capacity := uintptr(1) << map_log2_cap(m)
ks = map_data(m)
vs = map_cell_index_dynamic(ks, info.ks, capacity) // Skip past ks to get start of vs
hs_ := map_cell_index_dynamic(vs, info.vs, capacity) // Skip past vs to get start of hs
sk = map_cell_index_dynamic(hs_, INFO_HS, capacity) // Skip past hs to get start of sk
// Need to skip past two elements in the scratch key space to get to the start
// of the scratch value space, of which there's only two elements as well.
sv = map_cell_index_dynamic_const(sk, info.ks, 2)
hs = ([^]Map_Hash)(hs_)
return
}
@(require_results)
map_kvh_data_values_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (vs: uintptr) {
capacity := uintptr(1) << map_log2_cap(m)
return map_cell_index_dynamic(map_data(m), info.ks, capacity) // Skip past ks to get start of vs
}
@(require_results)
map_total_allocation_size :: #force_inline proc "contextless" (capacity: uintptr, info: ^Map_Info) -> uintptr {
round :: #force_inline proc "contextless" (value: uintptr) -> uintptr {
CACHE_MASK :: MAP_CACHE_LINE_SIZE - 1
return (value + CACHE_MASK) &~ CACHE_MASK
}
INFO_HS := intrinsics.type_map_cell_info(Map_Hash)
size := uintptr(0)
size = round(map_cell_index_dynamic(size, info.ks, capacity))
size = round(map_cell_index_dynamic(size, info.vs, capacity))
size = round(map_cell_index_dynamic(size, INFO_HS, capacity))
size = round(map_cell_index_dynamic(size, info.ks, 2)) // Two additional ks for scratch storage
size = round(map_cell_index_dynamic(size, info.vs, 2)) // Two additional vs for scratch storage
return size
}
@(require_results)
map_total_allocation_size_from_value :: #force_inline proc "contextless" (m: $M/map[$K]$V) -> uintptr {
return map_total_allocation_size(uintptr(cap(m)), map_info(M))
}
// The only procedure which needs access to the context is the one which allocates the map.
@(require_results)
map_alloc_dynamic :: proc "odin" (info: ^Map_Info, log2_capacity: uintptr, allocator := context.allocator, loc := #caller_location) -> (result: Raw_Map, err: Allocator_Error) {
result.allocator = allocator // set the allocator always
if log2_capacity == 0 {
return
}
if log2_capacity >= 64 {
// Overflowed, would be caused by log2_capacity > 64
return {}, .Out_Of_Memory
}
capacity := uintptr(1) << max(log2_capacity, MAP_MIN_LOG2_CAPACITY)
CACHE_MASK :: MAP_CACHE_LINE_SIZE - 1
size := map_total_allocation_size(capacity, info)
data := mem_alloc_non_zeroed(int(size), MAP_CACHE_LINE_SIZE, allocator, loc) or_return
data_ptr := uintptr(raw_data(data))
if data_ptr == 0 {
err = .Out_Of_Memory
return
}
if intrinsics.expect(data_ptr & CACHE_MASK != 0, false) {
panic("allocation not aligned to a cache line", loc)
} else {
result.data = data_ptr | log2_capacity // Tagged pointer representation for capacity.
result.len = 0
map_clear_dynamic(&result, info)
}
return
}
// This procedure has to stack allocate storage to store local keys during the
// Robin Hood hashing technique where elements are swapped in the backing
// arrays to reduce variance. This swapping can only be done with memcpy since
// there is no type information.
//
// This procedure returns the address of the just inserted value, and will
// return 'nil' if there was no room to insert the entry
@(require_results)
map_insert_hash_dynamic_with_key :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, ik: uintptr, iv: uintptr) -> (key: uintptr, result: uintptr) {
h := h
pos := map_desired_position(m^, h)
distance := uintptr(0)
mask := (uintptr(1) << map_log2_cap(m^)) - 1
ks, vs, hs, sk, sv := map_kvh_data_dynamic(m^, info)
// Avoid redundant loads of these values
size_of_k := info.ks.size_of_type
size_of_v := info.vs.size_of_type
k := map_cell_index_dynamic(sk, info.ks, 0)
v := map_cell_index_dynamic(sv, info.vs, 0)
intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(ik), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(iv), size_of_v)
// Temporary k and v dynamic storage for swap below
tk := map_cell_index_dynamic(sk, info.ks, 1)
tv := map_cell_index_dynamic(sv, info.vs, 1)
swap_loop: for {
if distance > mask {
// Failed to find an empty slot and prevent infinite loop
panic("unable to insert into a map")
}
element_hash := hs[pos]
if map_hash_is_empty(element_hash) {
k_dst := map_cell_index_dynamic(ks, info.ks, pos)
v_dst := map_cell_index_dynamic(vs, info.vs, pos)
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
hs[pos] = h
if result == 0 {
key = k_dst
result = v_dst
}
return
}
if map_hash_is_deleted(element_hash) {
break swap_loop
}
if probe_distance := map_probe_distance(m^, element_hash, pos); distance > probe_distance {
kp := map_cell_index_dynamic(ks, info.ks, pos)
vp := map_cell_index_dynamic(vs, info.vs, pos)
if result == 0 {
key = kp
result = vp
}
intrinsics.mem_copy_non_overlapping(rawptr(tk), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(kp), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(kp), rawptr(tk), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(tv), rawptr(v), size_of_v)
intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(vp), size_of_v)
intrinsics.mem_copy_non_overlapping(rawptr(vp), rawptr(tv), size_of_v)
th := h
h = hs[pos]
hs[pos] = th
distance = probe_distance
}
pos = (pos + 1) & mask
distance += 1
}
// backward shift loop
hs[pos] = 0
look_ahead: uintptr = 1
for {
la_pos := (pos + look_ahead) & mask
element_hash := hs[la_pos]
if map_hash_is_deleted(element_hash) {
look_ahead += 1
hs[la_pos] = 0
continue
}
k_dst := map_cell_index_dynamic(ks, info.ks, pos)
v_dst := map_cell_index_dynamic(vs, info.vs, pos)
if map_hash_is_empty(element_hash) {
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
hs[pos] = h
if result == 0 {
key = k_dst
result = v_dst
}
return
}
k_src := map_cell_index_dynamic(ks, info.ks, la_pos)
v_src := map_cell_index_dynamic(vs, info.vs, la_pos)
probe_distance := map_probe_distance(m^, element_hash, la_pos)
if probe_distance < look_ahead {
// probed can be made ideal while placing saved (ending condition)
if result == 0 {
key = k_dst
result = v_dst
}
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
hs[pos] = h
// This will be an ideal move
pos = (la_pos - probe_distance) & mask
look_ahead -= probe_distance
// shift until we hit ideal/empty
for probe_distance != 0 {
k_dst = map_cell_index_dynamic(ks, info.ks, pos)
v_dst = map_cell_index_dynamic(vs, info.vs, pos)
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k_src), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v_src), size_of_v)
hs[pos] = element_hash
hs[la_pos] = 0
pos = (pos + 1) & mask
la_pos = (la_pos + 1) & mask
look_ahead = (la_pos - pos) & mask
element_hash = hs[la_pos]
if map_hash_is_empty(element_hash) {
return
}
probe_distance = map_probe_distance(m^, element_hash, la_pos)
if probe_distance == 0 {
return
}
// can be ideal?
if probe_distance < look_ahead {
pos = (la_pos - probe_distance) & mask
}
k_src = map_cell_index_dynamic(ks, info.ks, la_pos)
v_src = map_cell_index_dynamic(vs, info.vs, la_pos)
}
return
} else if distance < probe_distance - look_ahead {
// shift back probed
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k_src), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v_src), size_of_v)
hs[pos] = element_hash
hs[la_pos] = 0
} else {
// place saved, save probed
if result == 0 {
key = k_dst
result = v_dst
}
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
hs[pos] = h
intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(k_src), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(v_src), size_of_v)
h = hs[la_pos]
hs[la_pos] = 0
distance = probe_distance - look_ahead
}
pos = (pos + 1) & mask
distance += 1
}
}
@(require_results)
map_insert_hash_dynamic :: #force_inline proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, ik: uintptr, iv: uintptr) -> (result: uintptr) {
_, result = map_insert_hash_dynamic_with_key(m, info, h, ik, iv)
return
}
@(require_results)
map_grow_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> Allocator_Error {
log2_capacity := map_log2_cap(m^)
new_capacity := uintptr(1) << max(log2_capacity + 1, MAP_MIN_LOG2_CAPACITY)
return map_reserve_dynamic(m, info, new_capacity, loc)
}
@(require_results)
map_reserve_dynamic :: #force_no_inline proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uintptr, loc := #caller_location) -> Allocator_Error {
@(require_results)
ceil_log2 :: #force_inline proc "contextless" (x: uintptr) -> uintptr {
z := intrinsics.count_leading_zeros(x)
if z > 0 && x & (x-1) != 0 {
z -= 1
}
return size_of(uintptr)*8 - 1 - z
}
if m.allocator.procedure == nil {
m.allocator = context.allocator
}
new_capacity := new_capacity
old_capacity := uintptr(map_cap(m^))
if old_capacity >= new_capacity {
return nil
}
// ceiling nearest power of two
log2_new_capacity := ceil_log2(new_capacity)
log2_min_cap := max(MAP_MIN_LOG2_CAPACITY, log2_new_capacity)
if m.data == 0 {
m^ = map_alloc_dynamic(info, log2_min_cap, m.allocator, loc) or_return
return nil
}
resized := map_alloc_dynamic(info, log2_min_cap, m.allocator, loc) or_return
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
// Cache these loads to avoid hitting them in the for loop.
n := m.len
for i in 0..<old_capacity {
hash := hs[i]
if map_hash_is_empty(hash) {
continue
}
if map_hash_is_deleted(hash) {
continue
}
k := map_cell_index_dynamic(ks, info.ks, i)
v := map_cell_index_dynamic(vs, info.vs, i)
hash = info.key_hasher(rawptr(k), map_seed(resized))
_ = map_insert_hash_dynamic(&resized, info, hash, k, v)
// Only need to do this comparison on each actually added pair, so do not
// fold it into the for loop comparator as a micro-optimization.
n -= 1
if n == 0 {
break
}
}
map_free_dynamic(m^, info, loc) or_return
m.data = resized.data
return nil
}
@(require_results)
map_shrink_dynamic :: #force_no_inline proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
if m.allocator.procedure == nil {
m.allocator = context.allocator
}
// Cannot shrink the capacity if the number of items in the map would exceed
// one minus the current log2 capacity's resize threshold. That is the shrunk
// map needs to be within the max load factor.
log2_capacity := map_log2_cap(m^)
if uintptr(m.len) >= map_load_factor(log2_capacity - 1) {
return false, nil
}
shrunk := map_alloc_dynamic(info, log2_capacity - 1, m.allocator) or_return
capacity := uintptr(1) << log2_capacity
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
n := m.len
for i in 0..<capacity {
hash := hs[i]
if map_hash_is_empty(hash) {
continue
}
if map_hash_is_deleted(hash) {
continue
}
k := map_cell_index_dynamic(ks, info.ks, i)
v := map_cell_index_dynamic(vs, info.vs, i)
hash = info.key_hasher(rawptr(k), map_seed(shrunk))
_ = map_insert_hash_dynamic(&shrunk, info, hash, k, v)
// Only need to do this comparison on each actually added pair, so do not
// fold it into the for loop comparator as a micro-optimization.
n -= 1
if n == 0 {
break
}
}
map_free_dynamic(m^, info, loc) or_return
m.data = shrunk.data
return true, nil
}
@(require_results)
map_free_dynamic :: #force_no_inline proc "odin" (m: Raw_Map, info: ^Map_Info, loc := #caller_location) -> Allocator_Error {
ptr := rawptr(map_data(m))
size := int(map_total_allocation_size(uintptr(map_cap(m)), info))
err := mem_free_with_size(ptr, size, m.allocator, loc)
#partial switch err {
case .None, .Mode_Not_Implemented:
return nil
}
return err
}
@(require_results)
map_lookup_dynamic :: #force_no_inline proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (index: uintptr, ok: bool) {
if map_len(m) == 0 {
return 0, false
}
h := info.key_hasher(rawptr(k), map_seed(m))
p := map_desired_position(m, h)
d := uintptr(0)
c := (uintptr(1) << map_log2_cap(m)) - 1
ks, _, hs, _, _ := map_kvh_data_dynamic(m, info)
for {
element_hash := hs[p]
if map_hash_is_empty(element_hash) {
return 0, false
} else if d > map_probe_distance(m, element_hash, p) {
return 0, false
} else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info.ks, p))) {
return p, true
}
p = (p + 1) & c
d += 1
}
}
@(require_results)
map_exists_dynamic :: #force_no_inline proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (ok: bool) {
if map_len(m) == 0 {
return false
}
h := info.key_hasher(rawptr(k), map_seed(m))
p := map_desired_position(m, h)
d := uintptr(0)
c := (uintptr(1) << map_log2_cap(m)) - 1
ks, _, hs, _, _ := map_kvh_data_dynamic(m, info)
for {
element_hash := hs[p]
if map_hash_is_empty(element_hash) {
return false
} else if d > map_probe_distance(m, element_hash, p) {
return false
} else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info.ks, p))) {
return true
}
p = (p + 1) & c
d += 1
}
}
@(require_results)
map_erase_dynamic :: #force_no_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (old_k, old_v: uintptr, ok: bool) {
index := map_lookup_dynamic(m^, info, k) or_return
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
hs[index] |= TOMBSTONE_MASK
old_k = map_cell_index_dynamic(ks, info.ks, index)
old_v = map_cell_index_dynamic(vs, info.vs, index)
m.len -= 1
ok = true
mask := (uintptr(1)<<map_log2_cap(m^)) - 1
curr_index := uintptr(index)
next_index := (curr_index + 1) & mask
// if the next element is empty or has zero probe distance, then any lookup
// will always fail on the next, so we can clear both of them
hash := hs[next_index]
if map_hash_is_empty(hash) || map_probe_distance(m^, hash, next_index) == 0 {
hs[curr_index] = 0
} else {
hs[curr_index] |= TOMBSTONE_MASK
}
return
}
map_clear_dynamic :: #force_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info) {
if m.data == 0 {
return
}
_, _, hs, _, _ := map_kvh_data_dynamic(m^, info)
intrinsics.mem_zero(rawptr(hs), map_cap(m^) * size_of(Map_Hash))
m.len = 0
}
@(require_results)
map_kvh_data_static :: #force_inline proc "contextless" (m: $T/map[$K]$V) -> (ks: [^]Map_Cell(K), vs: [^]Map_Cell(V), hs: [^]Map_Hash) {
capacity := uintptr(cap(m))
ks = ([^]Map_Cell(K))(map_data(transmute(Raw_Map)m))
vs = ([^]Map_Cell(V))(map_cell_index_static(ks, capacity))
hs = ([^]Map_Hash)(map_cell_index_static(vs, capacity))
return
}
@(require_results)
map_get :: proc "contextless" (m: $T/map[$K]$V, key: K) -> (stored_key: K, stored_value: V, ok: bool) {
rm := transmute(Raw_Map)m
if rm.len == 0 {
return
}
info := intrinsics.type_map_info(T)
key := key
h := info.key_hasher(&key, map_seed(rm))
pos := map_desired_position(rm, h)
distance := uintptr(0)
mask := (uintptr(1) << map_log2_cap(rm)) - 1
ks, vs, hs := map_kvh_data_static(m)
for {
element_hash := hs[pos]
if map_hash_is_empty(element_hash) {
return
} else if distance > map_probe_distance(rm, element_hash, pos) {
return
} else if element_hash == h {
element_key := map_cell_index_static(ks, pos)
if info.key_equal(&key, rawptr(element_key)) {
element_value := map_cell_index_static(vs, pos)
stored_key = (^K)(element_key)^
stored_value = (^V)(element_value)^
ok = true
return
}
}
pos = (pos + 1) & mask
distance += 1
}
}
// IMPORTANT: USED WITHIN THE COMPILER
__dynamic_map_get :: proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, key: rawptr) -> (ptr: rawptr) {
if m.len == 0 {
return nil
}
pos := map_desired_position(m^, h)
distance := uintptr(0)
mask := (uintptr(1) << map_log2_cap(m^)) - 1
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
for {
element_hash := hs[pos]
if map_hash_is_empty(element_hash) {
return nil
} else if distance > map_probe_distance(m^, element_hash, pos) {
return nil
} else if element_hash == h && info.key_equal(key, rawptr(map_cell_index_dynamic(ks, info.ks, pos))) {
return rawptr(map_cell_index_dynamic(vs, info.vs, pos))
}
pos = (pos + 1) & mask
distance += 1
}
}
__dynamic_map_get_key_and_value :: proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, key: rawptr) -> (key_ptr, value_ptr: rawptr) {
if m.len == 0 {
return nil, nil
}
pos := map_desired_position(m^, h)
distance := uintptr(0)
mask := (uintptr(1) << map_log2_cap(m^)) - 1
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
for {
element_hash := hs[pos]
if map_hash_is_empty(element_hash) {
return nil, nil
} else if distance > map_probe_distance(m^, element_hash, pos) {
return nil, nil
} else if element_hash == h {
other_key := rawptr(map_cell_index_dynamic(ks, info.ks, pos))
if info.key_equal(key, other_key) {
key_ptr = other_key
value_ptr = rawptr(map_cell_index_dynamic(vs, info.vs, pos))
return
}
}
pos = (pos + 1) & mask
distance += 1
}
}
// IMPORTANT: USED WITHIN THE COMPILER
__dynamic_map_check_grow :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> (err: Allocator_Error, has_grown: bool) {
if m.len >= map_resize_threshold(m^) {
return map_grow_dynamic(m, info, loc), true
}
return nil, false
}
__dynamic_map_set_without_hash :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, key, value: rawptr, loc := #caller_location) -> rawptr {
return __dynamic_map_set(m, info, info.key_hasher(key, map_seed(m^)), key, value, loc)
}
// IMPORTANT: USED WITHIN THE COMPILER
__dynamic_map_set :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, hash: Map_Hash, key, value: rawptr, loc := #caller_location) -> rawptr {
if found := __dynamic_map_get(m, info, hash, key); found != nil {
intrinsics.mem_copy_non_overlapping(found, value, info.vs.size_of_type)
return found
}
hash := hash
err, has_grown := __dynamic_map_check_grow(m, info, loc)
if err != nil {
return nil
}
if has_grown {
hash = info.key_hasher(key, map_seed(m^))
}
result := map_insert_hash_dynamic(m, info, hash, uintptr(key), uintptr(value))
if result != 0 {
m.len += 1
}
return rawptr(result)
}
__dynamic_map_set_extra_without_hash :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, key, value: rawptr, loc := #caller_location) -> (prev_key_ptr, value_ptr: rawptr) {
return __dynamic_map_set_extra(m, info, info.key_hasher(key, map_seed(m^)), key, value, loc)
}
__dynamic_map_set_extra :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, hash: Map_Hash, key, value: rawptr, loc := #caller_location) -> (prev_key_ptr, value_ptr: rawptr) {
if prev_key_ptr, value_ptr = __dynamic_map_get_key_and_value(m, info, hash, key); value_ptr != nil {
intrinsics.mem_copy_non_overlapping(value_ptr, value, info.vs.size_of_type)
return
}
hash := hash
err, has_grown := __dynamic_map_check_grow(m, info, loc)
if err != nil {
return nil, nil
}
if has_grown {
hash = info.key_hasher(key, map_seed(m^))
}
result := map_insert_hash_dynamic(m, info, hash, uintptr(key), uintptr(value))
if result != 0 {
m.len += 1
}
return nil, rawptr(result)
}
__dynamic_map_entry :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, key: rawptr, zero: rawptr, loc := #caller_location) -> (key_ptr: rawptr, value_ptr: rawptr, just_inserted: bool, err: Allocator_Error) {
hash := info.key_hasher(key, map_seed(m^))
if key_ptr, value_ptr = __dynamic_map_get_key_and_value(m, info, hash, key); value_ptr != nil {
return
}
has_grown: bool
if err, has_grown = __dynamic_map_check_grow(m, info, loc); err != nil {
return
} else if has_grown {
hash = info.key_hasher(key, map_seed(m^))
}
kp, vp := map_insert_hash_dynamic_with_key(m, info, hash, uintptr(key), uintptr(zero))
key_ptr = rawptr(kp)
value_ptr = rawptr(vp)
m.len += 1
just_inserted = true
return
}
// IMPORTANT: USED WITHIN THE COMPILER
@(private)
__dynamic_map_reserve :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uint, loc := #caller_location) -> Allocator_Error {
if m == nil {
return nil
}
return map_reserve_dynamic(m, info, uintptr(new_capacity), loc)
}
// NOTE: the default hashing algorithm derives from fnv64a, with some minor modifications to work for `map` type:
//
// * Convert a `0` result to `1`
// * "empty entry"
// * Prevent the top bit from being set
// * "deleted entry"
//
// Both of these modification are necessary for the implementation of the `map`
INITIAL_HASH_SEED :: 0xcbf29ce484222325
HASH_MASK :: 1 << (8*size_of(uintptr) - 1) -1
default_hasher :: #force_inline proc "contextless" (data: rawptr, seed: uintptr, N: int) -> uintptr {
h := u64(seed) + INITIAL_HASH_SEED
p := ([^]byte)(data)
for _ in 0..<N {
h = (h ~ u64(p[0])) * 0x100000001b3
p = p[1:]
}
h &= HASH_MASK
return uintptr(h) | uintptr(uintptr(h) == 0)
}
default_hasher_string :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr {
str := (^[]byte)(data)
return default_hasher(raw_data(str^), seed, len(str))
}
default_hasher_cstring :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr {
h := u64(seed) + INITIAL_HASH_SEED
if ptr := (^[^]byte)(data)^; ptr != nil {
for ptr[0] != 0 {
h = (h ~ u64(ptr[0])) * 0x100000001b3
ptr = ptr[1:]
}
}
h &= HASH_MASK
return uintptr(h) | uintptr(uintptr(h) == 0)
}
default_hasher_f64 :: proc "contextless" (f: f64, seed: uintptr) -> uintptr {
f := f
buf: [size_of(f)]u8
if f == 0 {
return default_hasher(&buf, seed, size_of(buf))
}
if f != f {
// TODO(bill): What should the logic be for NaNs?
return default_hasher(&f, seed, size_of(f))
}
return default_hasher(&f, seed, size_of(f))
}
default_hasher_complex128 :: proc "contextless" (x, y: f64, seed: uintptr) -> uintptr {
seed := seed
seed = default_hasher_f64(x, seed)
seed = default_hasher_f64(y, seed)
return seed
}
default_hasher_quaternion256 :: proc "contextless" (x, y, z, w: f64, seed: uintptr) -> uintptr {
seed := seed
seed = default_hasher_f64(x, seed)
seed = default_hasher_f64(y, seed)
seed = default_hasher_f64(z, seed)
seed = default_hasher_f64(w, seed)
return seed
}