Files
Odin/base/runtime/internal.odin
2025-09-27 10:10:25 +01:00

1412 lines
42 KiB
Odin

#+vet !cast
package runtime
import "base:intrinsics"
@(private="file")
IS_WASM :: ODIN_ARCH == .wasm32 || ODIN_ARCH == .wasm64p32
@(private)
RUNTIME_LINKAGE :: "strong" when (
ODIN_USE_SEPARATE_MODULES ||
ODIN_BUILD_MODE == .Dynamic ||
!ODIN_NO_CRT) else "internal"
RUNTIME_REQUIRE :: false // !ODIN_TILDE
@(private)
__float16 :: f16 when __ODIN_LLVM_F16_SUPPORTED else u16
HAS_HARDWARE_SIMD :: false when (ODIN_ARCH == .amd64 || ODIN_ARCH == .i386) && !intrinsics.has_target_feature("sse2") else
false when (ODIN_ARCH == .arm64 || ODIN_ARCH == .arm32) && !intrinsics.has_target_feature("neon") else
false when (ODIN_ARCH == .wasm64p32 || ODIN_ARCH == .wasm32) && !intrinsics.has_target_feature("simd128") else
false when (ODIN_ARCH == .riscv64) && !intrinsics.has_target_feature("v") else
true
@(private)
byte_slice :: #force_inline proc "contextless" (data: rawptr, len: int) -> []byte #no_bounds_check {
return ([^]byte)(data)[:max(len, 0)]
}
is_power_of_two_int :: #force_inline proc "contextless" (x: int) -> bool {
if x <= 0 {
return false
}
return (x & (x-1)) == 0
}
align_forward_int :: #force_inline proc "odin" (ptr, align: int) -> int {
assert(is_power_of_two_int(align))
p := ptr
modulo := p & (align-1)
if modulo != 0 {
p += align - modulo
}
return p
}
is_power_of_two_uint :: #force_inline proc "contextless" (x: uint) -> bool {
if x <= 0 {
return false
}
return (x & (x-1)) == 0
}
align_forward_uint :: #force_inline proc "odin" (ptr, align: uint) -> uint {
assert(is_power_of_two_uint(align))
p := ptr
modulo := p & (align-1)
if modulo != 0 {
p += align - modulo
}
return p
}
is_power_of_two_uintptr :: #force_inline proc "contextless" (x: uintptr) -> bool {
if x <= 0 {
return false
}
return (x & (x-1)) == 0
}
align_forward_uintptr :: #force_inline proc "odin" (ptr, align: uintptr) -> uintptr {
assert(is_power_of_two_uintptr(align))
p := ptr
modulo := p & (align-1)
if modulo != 0 {
p += align - modulo
}
return p
}
is_power_of_two :: proc {
is_power_of_two_int,
is_power_of_two_uint,
is_power_of_two_uintptr,
}
align_forward :: proc {
align_forward_int,
align_forward_uint,
align_forward_uintptr,
}
mem_zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
if data == nil {
return nil
}
if len <= 0 {
return data
}
intrinsics.mem_zero(data, len)
return data
}
mem_copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
if src != nil && dst != src && len > 0 {
// NOTE(bill): This _must_ be implemented like C's memmove
intrinsics.mem_copy(dst, src, len)
}
return dst
}
mem_copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
if src != nil && dst != src && len > 0 {
// NOTE(bill): This _must_ be implemented like C's memcpy
intrinsics.mem_copy_non_overlapping(dst, src, len)
}
return dst
}
DEFAULT_ALIGNMENT :: 2*align_of(rawptr)
mem_alloc_bytes :: #force_no_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
assert(is_power_of_two_int(alignment), "Alignment must be a power of two", loc)
if size == 0 || allocator.procedure == nil{
return nil, nil
}
return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc)
}
mem_alloc :: #force_no_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
assert(is_power_of_two_int(alignment), "Alignment must be a power of two", loc)
if size == 0 || allocator.procedure == nil {
return nil, nil
}
return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc)
}
mem_alloc_non_zeroed :: #force_no_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
assert(is_power_of_two_int(alignment), "Alignment must be a power of two", loc)
if size == 0 || allocator.procedure == nil {
return nil, nil
}
return allocator.procedure(allocator.data, .Alloc_Non_Zeroed, size, alignment, nil, 0, loc)
}
mem_free :: #force_no_inline proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
if ptr == nil || allocator.procedure == nil {
return nil
}
_, err := allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, loc)
return err
}
mem_free_with_size :: #force_no_inline proc(ptr: rawptr, byte_count: int, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
if ptr == nil || allocator.procedure == nil {
return nil
}
_, err := allocator.procedure(allocator.data, .Free, 0, 0, ptr, byte_count, loc)
return err
}
mem_free_bytes :: #force_no_inline proc(bytes: []byte, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
if bytes == nil || allocator.procedure == nil {
return nil
}
_, err := allocator.procedure(allocator.data, .Free, 0, 0, raw_data(bytes), len(bytes), loc)
return err
}
mem_free_all :: #force_no_inline proc(allocator := context.allocator, loc := #caller_location) -> (err: Allocator_Error) {
if allocator.procedure != nil {
_, err = allocator.procedure(allocator.data, .Free_All, 0, 0, nil, 0, loc)
}
return
}
_mem_resize :: #force_no_inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, should_zero: bool, loc := #caller_location) -> (data: []byte, err: Allocator_Error) {
assert(is_power_of_two_int(alignment), "Alignment must be a power of two", loc)
if allocator.procedure == nil {
return nil, nil
}
if new_size == 0 {
if ptr != nil {
_, err = allocator.procedure(allocator.data, .Free, 0, 0, ptr, old_size, loc)
return
}
return
} else if ptr == nil {
if should_zero {
return allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, loc)
} else {
return allocator.procedure(allocator.data, .Alloc_Non_Zeroed, new_size, alignment, nil, 0, loc)
}
} else if old_size == new_size && uintptr(ptr) % uintptr(alignment) == 0 {
data = ([^]byte)(ptr)[:old_size]
return
}
if should_zero {
data, err = allocator.procedure(allocator.data, .Resize, new_size, alignment, ptr, old_size, loc)
} else {
data, err = allocator.procedure(allocator.data, .Resize_Non_Zeroed, new_size, alignment, ptr, old_size, loc)
}
if err == .Mode_Not_Implemented {
if should_zero {
data, err = allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, loc)
} else {
data, err = allocator.procedure(allocator.data, .Alloc_Non_Zeroed, new_size, alignment, nil, 0, loc)
}
if err != nil {
return
}
copy(data, ([^]byte)(ptr)[:old_size])
_, err = allocator.procedure(allocator.data, .Free, 0, 0, ptr, old_size, loc)
}
return
}
mem_resize :: proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (data: []byte, err: Allocator_Error) {
assert(is_power_of_two_int(alignment), "Alignment must be a power of two", loc)
return _mem_resize(ptr, old_size, new_size, alignment, allocator, true, loc)
}
non_zero_mem_resize :: proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (data: []byte, err: Allocator_Error) {
assert(is_power_of_two_int(alignment), "Alignment must be a power of two", loc)
return _mem_resize(ptr, old_size, new_size, alignment, allocator, false, loc)
}
conditional_mem_zero :: proc "contextless" (data: rawptr, n_: int) #no_bounds_check {
// When acquiring memory from the OS for the first time it's likely that the
// OS already gives the zero page mapped multiple times for the request. The
// actual allocation does not have physical pages allocated to it until those
// pages are written to which causes a page-fault. This is often called COW
// (Copy on Write)
//
// You do not want to actually zero out memory in this case because it would
// cause a bunch of page faults decreasing the speed of allocations and
// increase the amount of actual resident physical memory used.
//
// Instead a better technique is to check if memory is zerored before zeroing
// it. This turns out to be an important optimization in practice, saving
// nearly half (or more) the amount of physical memory used by an application.
// This is why every implementation of calloc in libc does this optimization.
//
// It may seem counter-intuitive but most allocations in an application are
// wasted and never used. When you consider something like a [dynamic]T which
// always doubles in capacity on resize but you rarely ever actually use the
// full capacity of a dynamic array it means you have a lot of resident waste
// if you actually zeroed the remainder of the memory.
//
// Keep in mind the OS is already guaranteed to give you zeroed memory by
// mapping in this zero page multiple times so in the best case there is no
// need to actually zero anything. As for testing all this memory for a zero
// value, it costs nothing because the the same zero page is used for the
// whole allocation and will exist in L1 cache for the entire zero checking
// process.
if n_ <= 0 {
return
}
n := uint(n_)
n_words := n / size_of(uintptr)
p_words := ([^]uintptr)(data)[:n_words]
p_bytes := ([^]byte)(data)[size_of(uintptr) * n_words:n]
for &p_word in p_words {
if p_word != 0 {
p_word = 0
}
}
for &p_byte in p_bytes {
if p_byte != 0 {
p_byte = 0
}
}
}
memory_equal :: proc "contextless" (x, y: rawptr, n: int) -> bool {
switch {
case n == 0: return true
case x == y: return true
}
a, b := cast([^]byte)x, cast([^]byte)y
n := uint(n)
i := uint(0)
m := uint(0)
if n >= 8 {
when HAS_HARDWARE_SIMD {
// Avoid using 256-bit SIMD on platforms where its emulation is
// likely to be less than ideal.
when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") {
m = n / 32 * 32
for /**/; i < m; i += 32 {
load_a := intrinsics.unaligned_load(cast(^#simd[32]u8)&a[i])
load_b := intrinsics.unaligned_load(cast(^#simd[32]u8)&b[i])
ne := intrinsics.simd_lanes_ne(load_a, load_b)
if intrinsics.simd_reduce_or(ne) != 0 {
return false
}
}
}
}
m = (n-i) / 16 * 16
for /**/; i < m; i += 16 {
load_a := intrinsics.unaligned_load(cast(^#simd[16]u8)&a[i])
load_b := intrinsics.unaligned_load(cast(^#simd[16]u8)&b[i])
ne := intrinsics.simd_lanes_ne(load_a, load_b)
if intrinsics.simd_reduce_or(ne) != 0 {
return false
}
}
m = (n-i) / size_of(uintptr) * size_of(uintptr)
for /**/; i < m; i += size_of(uintptr) {
if intrinsics.unaligned_load(cast(^uintptr)&a[i]) != intrinsics.unaligned_load(cast(^uintptr)&b[i]) {
return false
}
}
}
for /**/; i < n; i += 1 {
if a[i] != b[i] {
return false
}
}
return true
}
memory_compare :: proc "contextless" (x, y: rawptr, n: int) -> int #no_bounds_check {
switch {
case x == y: return 0
case x == nil: return -1
case y == nil: return +1
}
a, b := cast([^]byte)x, cast([^]byte)y
n := uint(n)
i := uint(0)
m := uint(0)
when HAS_HARDWARE_SIMD {
when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") {
m = n / 32 * 32
for /**/; i < m; i += 32 {
load_a := intrinsics.unaligned_load(cast(^#simd[32]u8)&a[i])
load_b := intrinsics.unaligned_load(cast(^#simd[32]u8)&b[i])
comparison := intrinsics.simd_lanes_ne(load_a, load_b)
if intrinsics.simd_reduce_or(comparison) != 0 {
sentinel: #simd[32]u8 = u8(0xFF)
indices := intrinsics.simd_indices(#simd[32]u8)
index_select := intrinsics.simd_select(comparison, indices, sentinel)
index_reduce := cast(uint)intrinsics.simd_reduce_min(index_select)
return -1 if a[i+index_reduce] < b[i+index_reduce] else +1
}
}
}
}
m = (n-i) / 16 * 16
for /**/; i < m; i += 16 {
load_a := intrinsics.unaligned_load(cast(^#simd[16]u8)&a[i])
load_b := intrinsics.unaligned_load(cast(^#simd[16]u8)&b[i])
comparison := intrinsics.simd_lanes_ne(load_a, load_b)
if intrinsics.simd_reduce_or(comparison) != 0 {
sentinel: #simd[16]u8 = u8(0xFF)
indices := intrinsics.simd_indices(#simd[16]u8)
index_select := intrinsics.simd_select(comparison, indices, sentinel)
index_reduce := cast(uint)intrinsics.simd_reduce_min(index_select)
return -1 if a[i+index_reduce] < b[i+index_reduce] else +1
}
}
// 64-bit SIMD is faster than using a `uintptr` to detect a difference then
// re-iterating with the byte-by-byte loop, at least on AMD64.
m = (n-i) / 8 * 8
for /**/; i < m; i += 8 {
load_a := intrinsics.unaligned_load(cast(^#simd[8]u8)&a[i])
load_b := intrinsics.unaligned_load(cast(^#simd[8]u8)&b[i])
comparison := intrinsics.simd_lanes_ne(load_a, load_b)
if intrinsics.simd_reduce_or(comparison) != 0 {
sentinel: #simd[8]u8 = u8(0xFF)
indices := intrinsics.simd_indices(#simd[8]u8)
index_select := intrinsics.simd_select(comparison, indices, sentinel)
index_reduce := cast(uint)intrinsics.simd_reduce_min(index_select)
return -1 if a[i+index_reduce] < b[i+index_reduce] else +1
}
}
for /**/; i < n; i += 1 {
if a[i] ~ b[i] != 0 {
return -1 if int(a[i]) - int(b[i]) < 0 else +1
}
}
return 0
}
memory_compare_zero :: proc "contextless" (a: rawptr, n: int) -> int #no_bounds_check {
n := uint(n)
i := uint(0)
m := uint(0)
// Because we're comparing against zero, we never return -1, as that would
// indicate the compared value is less than zero.
//
// Note that a zero return value here means equality.
bytes := ([^]u8)(a)
if n >= 8 {
when HAS_HARDWARE_SIMD {
when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") {
scanner32: #simd[32]u8
m = n / 32 * 32
for /**/; i < m; i += 32 {
load := intrinsics.unaligned_load(cast(^#simd[32]u8)&bytes[i])
ne := intrinsics.simd_lanes_ne(scanner32, load)
if intrinsics.simd_reduce_or(ne) > 0 {
return 1
}
}
}
}
scanner16: #simd[16]u8
m = (n-i) / 16 * 16
for /**/; i < m; i += 16 {
load := intrinsics.unaligned_load(cast(^#simd[16]u8)&bytes[i])
ne := intrinsics.simd_lanes_ne(scanner16, load)
if intrinsics.simd_reduce_or(ne) != 0 {
return 1
}
}
m = (n-i) / size_of(uintptr) * size_of(uintptr)
for /**/; i < m; i += size_of(uintptr) {
if intrinsics.unaligned_load(cast(^uintptr)&bytes[i]) != 0 {
return 1
}
}
}
for /**/; i < n; i += 1 {
if bytes[i] != 0 {
return 1
}
}
return 0
}
memory_prefix_length :: proc "contextless" (x, y: rawptr, n: int) -> (idx: int) #no_bounds_check {
switch {
case x == y: return n
case x == nil: return 0
case y == nil: return 0
}
a, b := cast([^]byte)x, cast([^]byte)y
n := uint(n)
i := uint(0)
m := uint(0)
when HAS_HARDWARE_SIMD {
when ODIN_ARCH == .amd64 && intrinsics.has_target_feature("avx2") {
m = n / 32 * 32
for /**/; i < m; i += 32 {
load_a := intrinsics.unaligned_load(cast(^#simd[32]u8)&a[i])
load_b := intrinsics.unaligned_load(cast(^#simd[32]u8)&b[i])
comparison := intrinsics.simd_lanes_ne(load_a, load_b)
if intrinsics.simd_reduce_or(comparison) != 0 {
sentinel: #simd[32]u8 = u8(0xFF)
indices := intrinsics.simd_indices(#simd[32]u8)
index_select := intrinsics.simd_select(comparison, indices, sentinel)
index_reduce := cast(uint)intrinsics.simd_reduce_min(index_select)
return int(i + index_reduce)
}
}
}
}
m = (n-i) / 16 * 16
for /**/; i < m; i += 16 {
load_a := intrinsics.unaligned_load(cast(^#simd[16]u8)&a[i])
load_b := intrinsics.unaligned_load(cast(^#simd[16]u8)&b[i])
comparison := intrinsics.simd_lanes_ne(load_a, load_b)
if intrinsics.simd_reduce_or(comparison) != 0 {
sentinel: #simd[16]u8 = u8(0xFF)
indices := intrinsics.simd_indices(#simd[16]u8)
index_select := intrinsics.simd_select(comparison, indices, sentinel)
index_reduce := cast(uint)intrinsics.simd_reduce_min(index_select)
return int(i + index_reduce)
}
}
// 64-bit SIMD is faster than using a `uintptr` to detect a difference then
// re-iterating with the byte-by-byte loop, at least on AMD64.
m = (n-i) / 8 * 8
for /**/; i < m; i += 8 {
load_a := intrinsics.unaligned_load(cast(^#simd[8]u8)&a[i])
load_b := intrinsics.unaligned_load(cast(^#simd[8]u8)&b[i])
comparison := intrinsics.simd_lanes_ne(load_a, load_b)
if intrinsics.simd_reduce_or(comparison) != 0 {
sentinel: #simd[8]u8 = u8(0xFF)
indices := intrinsics.simd_indices(#simd[8]u8)
index_select := intrinsics.simd_select(comparison, indices, sentinel)
index_reduce := cast(uint)intrinsics.simd_reduce_min(index_select)
return int(i + index_reduce)
}
}
for /**/; i < n; i += 1 {
if a[i] ~ b[i] != 0 {
return int(i)
}
}
return int(n)
}
string_eq :: proc "contextless" (lhs, rhs: string) -> bool {
x := transmute(Raw_String)lhs
y := transmute(Raw_String)rhs
if x.len != y.len {
return false
}
return #force_inline memory_equal(x.data, y.data, x.len)
}
string_cmp :: proc "contextless" (a, b: string) -> int {
x := transmute(Raw_String)a
y := transmute(Raw_String)b
ret := memory_compare(x.data, y.data, min(x.len, y.len))
if ret == 0 && x.len != y.len {
return -1 if x.len < y.len else +1
}
return ret
}
string16_eq :: proc "contextless" (lhs, rhs: string16) -> bool {
x := transmute(Raw_String16)lhs
y := transmute(Raw_String16)rhs
if x.len != y.len {
return false
}
return #force_inline memory_equal(x.data, y.data, x.len*size_of(u16))
}
string16_cmp :: proc "contextless" (a, b: string16) -> int {
x := transmute(Raw_String16)a
y := transmute(Raw_String16)b
ret := memory_compare(x.data, y.data, min(x.len, y.len)*size_of(u16))
if ret == 0 && x.len != y.len {
return -1 if x.len < y.len else +1
}
return ret
}
string_ne :: #force_inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b) }
string_lt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0 }
string_gt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0 }
string_le :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0 }
string_ge :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0 }
string16_ne :: #force_inline proc "contextless" (a, b: string16) -> bool { return !string16_eq(a, b) }
string16_lt :: #force_inline proc "contextless" (a, b: string16) -> bool { return string16_cmp(a, b) < 0 }
string16_gt :: #force_inline proc "contextless" (a, b: string16) -> bool { return string16_cmp(a, b) > 0 }
string16_le :: #force_inline proc "contextless" (a, b: string16) -> bool { return string16_cmp(a, b) <= 0 }
string16_ge :: #force_inline proc "contextless" (a, b: string16) -> bool { return string16_cmp(a, b) >= 0 }
cstring_len :: proc "contextless" (s: cstring) -> int {
p0 := uintptr((^byte)(s))
p := p0
for p != 0 && (^byte)(p)^ != 0 {
p += 1
}
return int(p - p0)
}
cstring16_len :: proc "contextless" (s: cstring16) -> int {
p := ([^]u16)(s)
n := 0
for p != nil && p[0] != 0 {
p = p[1:]
n += 1
}
return n
}
cstring_to_string :: proc "contextless" (s: cstring) -> string {
if s == nil {
return ""
}
ptr := (^byte)(s)
n := cstring_len(s)
return transmute(string)Raw_String{ptr, n}
}
cstring16_to_string16 :: proc "contextless" (s: cstring16) -> string16 {
if s == nil {
return ""
}
ptr := (^u16)(s)
n := cstring16_len(s)
return transmute(string16)Raw_String16{ptr, n}
}
cstring_eq :: proc "contextless" (lhs, rhs: cstring) -> bool {
x := ([^]byte)(lhs)
y := ([^]byte)(rhs)
if x == y {
return true
}
if (x == nil) ~ (y == nil) {
return false
}
xn := cstring_len(lhs)
yn := cstring_len(rhs)
if xn != yn {
return false
}
return #force_inline memory_equal(x, y, xn)
}
cstring_cmp :: proc "contextless" (lhs, rhs: cstring) -> int {
x := ([^]byte)(lhs)
y := ([^]byte)(rhs)
if x == y {
return 0
}
if (x == nil) ~ (y == nil) {
return -1 if x == nil else +1
}
xn := cstring_len(lhs)
yn := cstring_len(rhs)
ret := memory_compare(x, y, min(xn, yn))
if ret == 0 && xn != yn {
return -1 if xn < yn else +1
}
return ret
}
cstring_ne :: #force_inline proc "contextless" (a, b: cstring) -> bool { return !cstring_eq(a, b) }
cstring_lt :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) < 0 }
cstring_gt :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) > 0 }
cstring_le :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) <= 0 }
cstring_ge :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) >= 0 }
cstring16_eq :: proc "contextless" (lhs, rhs: cstring16) -> bool {
x := ([^]u16)(lhs)
y := ([^]u16)(rhs)
if x == y {
return true
}
if (x == nil) ~ (y == nil) {
return false
}
xn := cstring16_len(lhs)
yn := cstring16_len(rhs)
if xn != yn {
return false
}
return #force_inline memory_equal(x, y, xn*size_of(u16))
}
cstring16_cmp :: proc "contextless" (lhs, rhs: cstring16) -> int {
x := ([^]u16)(lhs)
y := ([^]u16)(rhs)
if x == y {
return 0
}
if (x == nil) ~ (y == nil) {
return -1 if x == nil else +1
}
xn := cstring16_len(lhs)
yn := cstring16_len(rhs)
ret := memory_compare(x, y, min(xn, yn)*size_of(u16))
if ret == 0 && xn != yn {
return -1 if xn < yn else +1
}
return ret
}
cstring16_ne :: #force_inline proc "contextless" (a, b: cstring16) -> bool { return !cstring16_eq(a, b) }
cstring16_lt :: #force_inline proc "contextless" (a, b: cstring16) -> bool { return cstring16_cmp(a, b) < 0 }
cstring16_gt :: #force_inline proc "contextless" (a, b: cstring16) -> bool { return cstring16_cmp(a, b) > 0 }
cstring16_le :: #force_inline proc "contextless" (a, b: cstring16) -> bool { return cstring16_cmp(a, b) <= 0 }
cstring16_ge :: #force_inline proc "contextless" (a, b: cstring16) -> bool { return cstring16_cmp(a, b) >= 0 }
complex32_eq :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) == real(b) && imag(a) == imag(b) }
complex32_ne :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) != real(b) || imag(a) != imag(b) }
complex64_eq :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b) }
complex64_ne :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b) }
complex128_eq :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b) }
complex128_ne :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b) }
quaternion64_eq :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b) }
quaternion64_ne :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b) }
quaternion128_eq :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b) }
quaternion128_ne :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b) }
quaternion256_eq :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b) }
quaternion256_ne :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b) }
string_decode_rune :: proc "contextless" (s: string) -> (rune, int) {
// NOTE(bill): Duplicated here to remove dependency on package unicode/utf8
@(static, rodata) accept_sizes := [256]u8{
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x00-0x0f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x10-0x1f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x20-0x2f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x30-0x3f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x40-0x4f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x50-0x5f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x60-0x6f
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x70-0x7f
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x80-0x8f
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x90-0x9f
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xa0-0xaf
0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xb0-0xbf
0xf1, 0xf1, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xc0-0xcf
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xd0-0xdf
0x13, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x23, 0x03, 0x03, // 0xe0-0xef
0x34, 0x04, 0x04, 0x04, 0x44, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xf0-0xff
}
Accept_Range :: struct {lo, hi: u8}
@(static, rodata) accept_ranges := [5]Accept_Range{
{0x80, 0xbf},
{0xa0, 0xbf},
{0x80, 0x9f},
{0x90, 0xbf},
{0x80, 0x8f},
}
MASKX :: 0b0011_1111
MASK2 :: 0b0001_1111
MASK3 :: 0b0000_1111
MASK4 :: 0b0000_0111
LOCB :: 0b1000_0000
HICB :: 0b1011_1111
RUNE_ERROR :: '\ufffd'
n := len(s)
if n < 1 {
return RUNE_ERROR, 0
}
s0 := s[0]
x := accept_sizes[s0]
if x >= 0xF0 {
mask := rune(x) << 31 >> 31 // NOTE(bill): Create 0x0000 or 0xffff.
return rune(s[0])&~mask | RUNE_ERROR&mask, 1
}
sz := x & 7
accept := accept_ranges[x>>4]
if n < int(sz) {
return RUNE_ERROR, 1
}
b1 := s[1]
if b1 < accept.lo || accept.hi < b1 {
return RUNE_ERROR, 1
}
if sz == 2 {
return rune(s0&MASK2)<<6 | rune(b1&MASKX), 2
}
b2 := s[2]
if b2 < LOCB || HICB < b2 {
return RUNE_ERROR, 1
}
if sz == 3 {
return rune(s0&MASK3)<<12 | rune(b1&MASKX)<<6 | rune(b2&MASKX), 3
}
b3 := s[3]
if b3 < LOCB || HICB < b3 {
return RUNE_ERROR, 1
}
return rune(s0&MASK4)<<18 | rune(b1&MASKX)<<12 | rune(b2&MASKX)<<6 | rune(b3&MASKX), 4
}
string_decode_last_rune :: proc "contextless" (s: string) -> (rune, int) {
RUNE_ERROR :: '\ufffd'
RUNE_SELF :: 0x80
UTF_MAX :: 4
r: rune
size: int
start, end, limit: int
end = len(s)
if end == 0 {
return RUNE_ERROR, 0
}
start = end-1
r = rune(s[start])
if r < RUNE_SELF {
return r, 1
}
limit = max(end - UTF_MAX, 0)
for start-=1; start >= limit; start-=1 {
if (s[start] & 0xc0) != RUNE_SELF {
break
}
}
start = max(start, 0)
r, size = string_decode_rune(s[start:end])
if start+size != end {
return RUNE_ERROR, 1
}
return r, size
}
string16_decode_rune :: proc "contextless" (s: string16) -> (rune, int) {
REPLACEMENT_CHAR :: '\ufffd'
_surr1 :: 0xd800
_surr2 :: 0xdc00
_surr3 :: 0xe000
_surr_self :: 0x10000
r := rune(REPLACEMENT_CHAR)
if len(s) < 1 {
return r, 0
}
w := 1
switch c := s[0]; {
case c < _surr1, _surr3 <= c:
r = rune(c)
case _surr1 <= c && c < _surr2 && 1 < len(s) &&
_surr2 <= s[1] && s[1] < _surr3:
r1, r2 := rune(c), rune(s[1])
if _surr1 <= r1 && r1 < _surr2 && _surr2 <= r2 && r2 < _surr3 {
r = (r1-_surr1)<<10 | (r2 - _surr2) + _surr_self
}
w += 1
}
return r, w
}
string16_decode_last_rune :: proc "contextless" (s: string16) -> (rune, int) {
REPLACEMENT_CHAR :: '\ufffd'
_surr1 :: 0xd800
_surr2 :: 0xdc00
_surr3 :: 0xe000
_surr_self :: 0x10000
r := rune(REPLACEMENT_CHAR)
if len(s) < 1 {
return r, 0
}
n := len(s)-1
c := s[n]
w := 1
if _surr2 <= c && c < _surr3 {
if n >= 1 {
r1 := rune(s[n-1])
r2 := rune(c)
if _surr1 <= r1 && r1 < _surr2 {
r = (r1-_surr1)<<10 | (r2 - _surr2) + _surr_self
}
w = 2
}
} else if c < _surr1 || _surr3 <= c {
r = rune(c)
}
return r, w
}
abs_complex32 :: #force_inline proc "contextless" (x: complex32) -> f16 {
p, q := abs(real(x)), abs(imag(x))
if p < q {
p, q = q, p
}
if p == 0 {
return 0
}
q = q / p
return p * f16(intrinsics.sqrt(f32(1 + q*q)))
}
abs_complex64 :: #force_inline proc "contextless" (x: complex64) -> f32 {
p, q := abs(real(x)), abs(imag(x))
if p < q {
p, q = q, p
}
if p == 0 {
return 0
}
q = q / p
return p * intrinsics.sqrt(1 + q*q)
}
abs_complex128 :: #force_inline proc "contextless" (x: complex128) -> f64 {
p, q := abs(real(x)), abs(imag(x))
if p < q {
p, q = q, p
}
if p == 0 {
return 0
}
q = q / p
return p * intrinsics.sqrt(1 + q*q)
}
abs_quaternion64 :: #force_inline proc "contextless" (x: quaternion64) -> f16 {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x)
return f16(intrinsics.sqrt(f32(r*r + i*i + j*j + k*k)))
}
abs_quaternion128 :: #force_inline proc "contextless" (x: quaternion128) -> f32 {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x)
return intrinsics.sqrt(r*r + i*i + j*j + k*k)
}
abs_quaternion256 :: #force_inline proc "contextless" (x: quaternion256) -> f64 {
r, i, j, k := real(x), imag(x), jmag(x), kmag(x)
return intrinsics.sqrt(r*r + i*i + j*j + k*k)
}
quo_complex32 :: proc "contextless" (n, m: complex32) -> complex32 {
nr, ni := f32(real(n)), f32(imag(n))
mr, mi := f32(real(m)), f32(imag(m))
e, f: f32
if abs(mr) >= abs(mi) {
ratio := mi / mr
denom := mr + ratio*mi
e = (nr + ni*ratio) / denom
f = (ni - nr*ratio) / denom
} else {
ratio := mr / mi
denom := mi + ratio*mr
e = (nr*ratio + ni) / denom
f = (ni*ratio - nr) / denom
}
return complex(f16(e), f16(f))
}
quo_complex64 :: proc "contextless" (n, m: complex64) -> complex64 {
e, f: f32
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m)
denom := real(m) + ratio*imag(m)
e = (real(n) + imag(n)*ratio) / denom
f = (imag(n) - real(n)*ratio) / denom
} else {
ratio := real(m) / imag(m)
denom := imag(m) + ratio*real(m)
e = (real(n)*ratio + imag(n)) / denom
f = (imag(n)*ratio - real(n)) / denom
}
return complex(e, f)
}
quo_complex128 :: proc "contextless" (n, m: complex128) -> complex128 {
e, f: f64
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m)
denom := real(m) + ratio*imag(m)
e = (real(n) + imag(n)*ratio) / denom
f = (imag(n) - real(n)*ratio) / denom
} else {
ratio := real(m) / imag(m)
denom := imag(m) + ratio*real(m)
e = (real(n)*ratio + imag(n)) / denom
f = (imag(n)*ratio - real(n)) / denom
}
return complex(e, f)
}
mul_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 {
q0, q1, q2, q3 := f32(real(q)), f32(imag(q)), f32(jmag(q)), f32(kmag(q))
r0, r1, r2, r3 := f32(real(r)), f32(imag(r)), f32(jmag(r)), f32(kmag(r))
t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3
t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2
t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1
t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0
return quaternion(w=f16(t0), x=f16(t1), y=f16(t2), z=f16(t3))
}
mul_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3
t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2
t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1
t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0
return quaternion(w=t0, x=t1, y=t2, z=t3)
}
mul_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3
t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2
t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1
t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0
return quaternion(w=t0, x=t1, y=t2, z=t3)
}
quo_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 {
q0, q1, q2, q3 := f32(real(q)), f32(imag(q)), f32(jmag(q)), f32(kmag(q))
r0, r1, r2, r3 := f32(real(r)), f32(imag(r)), f32(jmag(r)), f32(kmag(r))
invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3)
t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2
t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2
t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2
t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2
return quaternion(w=f16(t0), x=f16(t1), y=f16(t2), z=f16(t3))
}
quo_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3)
t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2
t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2
t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2
t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2
return quaternion(w=t0, x=t1, y=t2, z=t3)
}
quo_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3)
t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2
t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2
t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2
t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2
return quaternion(w=t0, x=t1, y=t2, z=t3)
}
@(link_name="__truncsfhf2", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
truncsfhf2 :: proc "c" (value: f32) -> __float16 {
v: struct #raw_union { i: u32, f: f32 }
i, s, e, m: i32
v.f = value
i = i32(v.i)
s = (i >> 16) & 0x00008000
e = ((i >> 23) & 0x000000ff) - (127 - 15)
m = i & 0x007fffff
if e <= 0 {
if e < -10 {
return transmute(__float16)u16(s)
}
m = (m | 0x00800000) >> u32(1 - e)
if m & 0x00001000 != 0 {
m += 0x00002000
}
return transmute(__float16)u16(s | (m >> 13))
} else if e == 0xff - (127 - 15) {
if m == 0 {
return transmute(__float16)u16(s | 0x7c00) /* NOTE(bill): infinity */
} else {
/* NOTE(bill): NAN */
m >>= 13
return transmute(__float16)u16(s | 0x7c00 | m | i32(m == 0))
}
} else {
if m & 0x00001000 != 0 {
m += 0x00002000
if (m & 0x00800000) != 0 {
m = 0
e += 1
}
}
if e > 30 {
f := i64(1e12)
for j := 0; j < 10; j += 1 {
/* NOTE(bill): Cause overflow */
g := intrinsics.volatile_load(&f)
g *= g
intrinsics.volatile_store(&f, g)
}
return transmute(__float16)u16(s | 0x7c00)
}
return transmute(__float16)u16(s | (e << 10) | (m >> 13))
}
}
@(link_name="__aeabi_d2h", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
aeabi_d2h :: proc "c" (value: f64) -> __float16 {
return truncsfhf2(f32(value))
}
@(link_name="__truncdfhf2", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
truncdfhf2 :: proc "c" (value: f64) -> __float16 {
return truncsfhf2(f32(value))
}
@(link_name="__gnu_h2f_ieee", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
gnu_h2f_ieee :: proc "c" (value_: __float16) -> f32 {
fp32 :: struct #raw_union { u: u32, f: f32 }
value := transmute(u16)value_
v: fp32
magic, inf_or_nan: fp32
magic.u = u32((254 - 15) << 23)
inf_or_nan.u = u32((127 + 16) << 23)
v.u = u32(value & 0x7fff) << 13
v.f *= magic.f
if v.f >= inf_or_nan.f {
v.u |= 255 << 23
}
v.u |= u32(value & 0x8000) << 16
return v.f
}
@(link_name="__gnu_f2h_ieee", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
gnu_f2h_ieee :: proc "c" (value: f32) -> __float16 {
return truncsfhf2(value)
}
@(link_name="__extendhfsf2", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
extendhfsf2 :: proc "c" (value: __float16) -> f32 {
return gnu_h2f_ieee(value)
}
@(link_name="__floattidf", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
floattidf :: proc "c" (a: i128) -> f64 {
DBL_MANT_DIG :: 53
if a == 0 {
return 0.0
}
a := a
N :: size_of(i128) * 8
s := a >> (N-1)
a = (a ~ s) - s
sd: = N - intrinsics.count_leading_zeros(a) // number of significant digits
e := i32(sd - 1) // exponent
if sd > DBL_MANT_DIG {
switch sd {
case DBL_MANT_DIG + 1:
a <<= 1
case DBL_MANT_DIG + 2:
// okay
case:
a = i128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) |
i128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0)
}
a |= i128((a & 4) != 0)
a += 1
a >>= 2
if a & (i128(1) << DBL_MANT_DIG) != 0 {
a >>= 1
e += 1
}
} else {
a <<= u128(DBL_MANT_DIG - sd) & 127
}
fb: [2]u32
fb[1] = (u32(s) & 0x80000000) | // sign
(u32(e + 1023) << 20) | // exponent
u32((u64(a) >> 32) & 0x000FFFFF) // mantissa-high
fb[0] = u32(a) // mantissa-low
return transmute(f64)fb
}
@(link_name="__floattidf_unsigned", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
floattidf_unsigned :: proc "c" (a: u128) -> f64 {
DBL_MANT_DIG :: 53
if a == 0 {
return 0.0
}
a := a
N :: size_of(u128) * 8
sd: = N - intrinsics.count_leading_zeros(a) // number of significant digits
e := i32(sd - 1) // exponent
if sd > DBL_MANT_DIG {
switch sd {
case DBL_MANT_DIG + 1:
a <<= 1
case DBL_MANT_DIG + 2:
// okay
case:
a = u128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) |
u128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0)
}
a |= u128((a & 4) != 0)
a += 1
a >>= 2
if a & (1 << DBL_MANT_DIG) != 0 {
a >>= 1
e += 1
}
} else {
a <<= u128(DBL_MANT_DIG - sd)
}
fb: [2]u32
fb[1] = (0) | // sign
u32((e + 1023) << 20) | // exponent
u32((u64(a) >> 32) & 0x000FFFFF) // mantissa-high
fb[0] = u32(a) // mantissa-low
return transmute(f64)fb
}
@(link_name="__fixunsdfti", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
fixunsdfti :: #force_no_inline proc "c" (a: f64) -> u128 {
// TODO(bill): implement `fixunsdfti` correctly
x := u64(a)
return u128(x)
}
@(link_name="__fixunsdfdi", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
fixunsdfdi :: #force_no_inline proc "c" (a: f64) -> i128 {
// TODO(bill): implement `fixunsdfdi` correctly
x := i64(a)
return i128(x)
}
@(link_name="__umodti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
umodti3 :: proc "c" (a, b: u128) -> u128 {
r: u128 = ---
_ = udivmod128(a, b, &r)
return r
}
@(link_name="__udivmodti4", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
udivmodti4 :: proc "c" (a, b: u128, rem: ^u128) -> u128 {
return udivmod128(a, b, rem)
}
when !IS_WASM {
@(link_name="__udivti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
udivti3 :: proc "c" (a, b: u128) -> u128 {
return udivmodti4(a, b, nil)
}
}
@(link_name="__modti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
modti3 :: proc "c" (a, b: i128) -> i128 {
s_a := a >> (128 - 1)
s_b := b >> (128 - 1)
an := (a ~ s_a) - s_a
bn := (b ~ s_b) - s_b
r: u128 = ---
_ = udivmod128(u128(an), u128(bn), &r)
return (i128(r) ~ s_a) - s_a
}
@(link_name="__divmodti4", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
divmodti4 :: proc "c" (a, b: i128, rem: ^i128) -> i128 {
s_a := a >> (128 - 1) // -1 if negative or 0
s_b := b >> (128 - 1)
an := (a ~ s_a) - s_a // absolute
bn := (b ~ s_b) - s_b
s_b ~= s_a // quotient sign
u_s_b := u128(s_b)
u_s_a := u128(s_a)
r: u128 = ---
u := i128((udivmodti4(u128(an), u128(bn), &r) ~ u_s_b) - u_s_b) // negate if negative
rem^ = i128((r ~ u_s_a) - u_s_a)
return u
}
@(link_name="__divti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
divti3 :: proc "c" (a, b: i128) -> i128 {
s_a := a >> (128 - 1) // -1 if negative or 0
s_b := b >> (128 - 1)
an := (a ~ s_a) - s_a // absolute
bn := (b ~ s_b) - s_b
s_a ~= s_b // quotient sign
u_s_a := u128(s_a)
return i128((udivmodti4(u128(an), u128(bn), nil) ~ u_s_a) - u_s_a) // negate if negative
}
@(link_name="__fixdfti", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
fixdfti :: proc "c" (a: u64) -> i128 {
significandBits :: 52
typeWidth :: (size_of(u64)*8)
exponentBits :: (typeWidth - significandBits - 1)
maxExponent :: ((1 << exponentBits) - 1)
exponentBias :: (maxExponent >> 1)
implicitBit :: (u64(1) << significandBits)
significandMask :: (implicitBit - 1)
signBit :: (u64(1) << (significandBits + exponentBits))
absMask :: (signBit - 1)
exponentMask :: (absMask ~ significandMask)
// Break a into sign, exponent, significand
aRep := a
aAbs := aRep & absMask
sign := i128(-1 if aRep & signBit != 0 else 1)
exponent := u64((aAbs >> significandBits) - exponentBias)
significand := u64((aAbs & significandMask) | implicitBit)
// If exponent is negative, the result is zero.
if exponent < 0 {
return 0
}
// If the value is too large for the integer type, saturate.
if exponent >= size_of(i128) * 8 {
return max(i128) if sign == 1 else min(i128)
}
// If 0 <= exponent < significandBits, right shift to get the result.
// Otherwise, shift left.
if exponent < significandBits {
return sign * i128(significand >> (significandBits - exponent))
} else {
return sign * (i128(significand) << (exponent - significandBits))
}
}
__write_bits :: proc "contextless" (dst, src: [^]byte, offset: uintptr, size: uintptr) {
for i in 0..<size {
j := offset+i
the_bit := byte((src[i>>3]) & (1<<(i&7)) != 0)
dst[j>>3] &~= 1<<(j&7)
dst[j>>3] |= the_bit<<(j&7)
}
}
__read_bits :: proc "contextless" (dst, src: [^]byte, offset: uintptr, size: uintptr) {
for j in 0..<size {
i := offset+j
the_bit := byte((src[i>>3]) & (1<<(i&7)) != 0)
dst[j>>3] &~= 1<<(j&7)
dst[j>>3] |= the_bit<<(j&7)
}
}
when .Address in ODIN_SANITIZER_FLAGS {
foreign {
@(require)
__asan_unpoison_memory_region :: proc "system" (address: rawptr, size: uint) ---
}
}