Files
Odin/core/bufio/reader.odin
2025-11-14 11:17:38 +00:00

435 lines
9.9 KiB
Odin

package bufio
import "core:io"
import "core:mem"
import "core:unicode/utf8"
import "core:bytes"
// Reader is a buffered wrapper for an io.Reader
Reader :: struct {
buf: []byte,
buf_allocator: mem.Allocator,
rd: io.Reader, // reader
r, w: int, // read and write positions for buf
err: io.Error,
last_byte: int, // last byte read, invalid is -1
last_rune_size: int, // size of last rune read, invalid is -1
max_consecutive_empty_reads: int,
}
DEFAULT_BUF_SIZE :: 4096
@(private)
MIN_READ_BUFFER_SIZE :: 16
@(private)
DEFAULT_MAX_CONSECUTIVE_EMPTY_READS :: 128
// reader_init initializes using an `allocator`
reader_init :: proc(b: ^Reader, rd: io.Reader, size: int = DEFAULT_BUF_SIZE, allocator := context.allocator, loc := #caller_location) {
size := size
size = max(size, MIN_READ_BUFFER_SIZE)
reader_reset(b, rd)
b.buf_allocator = allocator
b.buf = make([]byte, size, allocator, loc)
}
// reader_init initializes using a user provided bytes buffer `buf`
reader_init_with_buf :: proc(b: ^Reader, rd: io.Reader, buf: []byte) {
reader_reset(b, rd)
b.buf_allocator = {}
b.buf = buf
}
// reader_destroy destroys the underlying buffer with its associated allocator IFF that allocator has been set
reader_destroy :: proc(b: ^Reader) {
delete(b.buf, b.buf_allocator)
b^ = {}
}
// reader_size returns the number of bytes in the backing buffer
reader_size :: proc(b: ^Reader) -> int {
return len(b.buf)
}
// reader_reset resets the read and write positions, and the error values
reader_reset :: proc(b: ^Reader, r: io.Reader) {
b.rd = r
b.r, b.w = 0, 0
b.err = nil
b.last_byte = -1
b.last_rune_size = -1
}
@(private)
_reader_read_new_chunk :: proc(b: ^Reader) -> io.Error {
if b.r > 0 {
copy(b.buf, b.buf[b.r:b.w])
b.w -= b.r
b.r = 0
}
if b.w >= len(b.buf) {
return .Buffer_Full
}
if b.max_consecutive_empty_reads <= 0 {
b.max_consecutive_empty_reads = DEFAULT_MAX_CONSECUTIVE_EMPTY_READS
}
// read new data, and try a limited number of times
for i := b.max_consecutive_empty_reads; i > 0; i -= 1 {
n, err := io.read(b.rd, b.buf[b.w:])
if n < 0 {
return err if err != nil else .Negative_Read
}
b.w += n
if err != nil {
b.err = err
return nil
}
if n > 0 {
return nil
}
}
b.err = .No_Progress
return nil
}
@(private)
_reader_consume_err :: proc(b: ^Reader) -> io.Error {
err := b.err
b.err = nil
return err
}
// reader_peek returns the next n bytes without advancing the reader
// The bytes stop being valid on the next read call
// If reader_peek returns fewer than n bytes, it also return an error
// explaining why the read is short
// The error will be .Buffer_Full if n is larger than the internal buffer size
reader_peek :: proc(b: ^Reader, n: int) -> (data: []byte, err: io.Error) {
n := n
if n < 0 {
return nil, .Negative_Count
}
b.last_byte = -1
b.last_rune_size = -1
for b.w-b.r < n && b.w-b.r < len(b.buf) && b.err == nil {
_reader_read_new_chunk(b) or_return
}
if n > len(b.buf) {
return b.buf[b.r : b.w], .Buffer_Full
}
if available := b.w - b.r; available < n {
n = available
err = _reader_consume_err(b)
if err == nil {
err = .Buffer_Full
}
}
return b.buf[b.r : b.r+n], err
}
// reader_buffered returns the number of bytes that can be read from the current buffer
reader_buffered :: proc(b: ^Reader) -> int {
return b.w - b.r
}
// reader_discard skips the next n bytes, and returns the number of bytes that were discarded
reader_discard :: proc(b: ^Reader, n: int) -> (discarded: int, err: io.Error) {
if n < 0 {
return 0, .Negative_Count
}
if n == 0 {
return
}
remaining := n
for {
skip := reader_buffered(b)
if skip == 0 {
_reader_read_new_chunk(b) or_return
skip = reader_buffered(b)
}
skip = min(skip, remaining)
b.r += skip
remaining -= skip
if remaining == 0 {
return n, nil
}
if b.err != nil {
return n - remaining, _reader_consume_err(b)
}
}
return
}
// reader_read reads data into p
// The bytes are taken from at most one read on the underlying Reader, which means n may be less than len(p)
reader_read :: proc(b: ^Reader, p: []byte) -> (n: int, err: io.Error) {
n = len(p)
if n == 0 {
if reader_buffered(b) > 0 {
return 0, nil
}
return 0, _reader_consume_err(b)
}
if b.r == b.w {
if b.err != nil {
return 0, _reader_consume_err(b)
}
if len(p) >= len(b.buf) {
n, b.err = io.read(b.rd, p)
if n < 0 {
return 0, b.err if b.err != nil else .Negative_Read
}
if n > 0 {
b.last_byte = int(p[n-1])
b.last_rune_size = -1
}
return n, _reader_consume_err(b)
}
b.r, b.w = 0, 0
n, b.err = io.read(b.rd, b.buf)
if n < 0 {
return 0, b.err if b.err != nil else .Negative_Read
}
if n == 0 {
return 0, _reader_consume_err(b)
}
b.w += n
}
n = copy(p, b.buf[b.r:b.w])
b.r += n
b.last_byte = int(b.buf[b.r-1])
b.last_rune_size = -1
return n, nil
}
// reader_read_byte reads and returns a single byte
// If no byte is available, it return an error
reader_read_byte :: proc(b: ^Reader) -> (c: byte, err: io.Error) {
b.last_rune_size = -1
for b.r == b.w {
if b.err != nil {
return 0, _reader_consume_err(b)
}
_reader_read_new_chunk(b) or_return
}
c = b.buf[b.r]
b.r += 1
b.last_byte = int(c)
return
}
// reader_unread_byte unreads the last byte. Only the most recently read byte can be unread
reader_unread_byte :: proc(b: ^Reader) -> io.Error {
if b.last_byte < 0 || b.r == 0 && b.w > 0 {
return .Invalid_Unread
}
if b.r > 0 {
b.r -= 1
} else {
// b.r == 0 && b.w == 0
b.w = 1
}
b.buf[b.r] = byte(b.last_byte)
b.last_byte = -1
b.last_rune_size = -1
return nil
}
// reader_read_rune reads a single UTF-8 encoded unicode character
// and returns the rune and its size in bytes
// If the encoded rune is invalid, it consumes one byte and returns utf8.RUNE_ERROR (U+FFFD) with a size of 1
reader_read_rune :: proc(b: ^Reader) -> (r: rune, size: int, err: io.Error) {
for b.r+utf8.UTF_MAX > b.w &&
!utf8.full_rune(b.buf[b.r:b.w]) &&
b.err == nil &&
b.w-b.r < len(b.buf) {
_reader_read_new_chunk(b) or_return
}
b.last_rune_size = -1
if b.r == b.w {
return 0, 0, _reader_consume_err(b)
}
r, size = rune(b.buf[b.r]), 1
if r >= utf8.RUNE_SELF {
r, size = utf8.decode_rune(b.buf[b.r : b.w])
}
b.r += size
b.last_byte = int(b.buf[b.r-1])
b.last_rune_size = size
return
}
// reader_unread_rune unreads the last rune. Only the most recently read rune can be unread
reader_unread_rune :: proc(b: ^Reader) -> io.Error {
if b.last_rune_size < 0 || b.r < b.last_rune_size {
return .Invalid_Unread
}
b.r -= b.last_rune_size
b.last_byte = -1
b.last_rune_size = -1
return nil
}
reader_write_to :: proc(b: ^Reader, w: io.Writer) -> (n: i64, err: io.Error) {
write_buf :: proc(b: ^Reader, w: io.Writer) -> (i64, io.Error) {
n, err := io.write(w, b.buf[b.r:b.w])
if n < 0 {
return 0, err if err != nil else .Negative_Write
}
b.r += n
return i64(n), err
}
n = write_buf(b, w) or_return
m: i64
if b.w-b.r < len(b.buf) {
_reader_read_new_chunk(b) or_return
}
for b.r < b.w {
m, err = write_buf(b, w)
n += m // this needs to be done before returning
if err != nil {
return
}
_reader_read_new_chunk(b) or_return
}
if b.err == .EOF {
b.err = nil
}
err = _reader_consume_err(b)
return
}
// reader_to_stream converts a Reader into an io.Stream
reader_to_stream :: proc(b: ^Reader) -> (s: io.Stream) {
s.data = b
s.procedure = _reader_proc
return
}
@(private)
_reader_proc :: proc(stream_data: rawptr, mode: io.Stream_Mode, p: []byte, offset: i64, whence: io.Seek_From) -> (n: i64, err: io.Error) {
b := (^Reader)(stream_data)
#partial switch mode {
case .Read:
return io._i64_err(reader_read(b, p))
case .Destroy:
reader_destroy(b)
return
case .Query:
return io.query_utility({.Read, .Destroy, .Query})
}
return 0, .Unsupported
}
//
// Utility procedures
//
// reader_read_slice reads until the first occurrence of delim from the reader
// It returns a slice pointing at the bytes in the buffer
// The bytes stop being valid at the next read
// If reader_read_slice encounters an error before finding a delimiter
// reader_read_slice fails with error .Buffer_Full if the buffer fills without a delim
// Because the data returned from reader_read_slice will be overwritten on the
// next IO operation, reader_read_bytes or reader_read_string is usually preferred
//
// reader_read_slice returns err != nil if and only if line does not end in delim
//
reader_read_slice :: proc(b: ^Reader, delim: byte) -> (line: []byte, err: io.Error) {
s := 0
for {
if i := bytes.index_byte(b.buf[b.r+s : b.w], delim); i >= 0 {
i += s
line = b.buf[b.r:][:i+1]
b.r += i + 1
break
}
if b.err != nil {
line = b.buf[b.r : b.w]
b.r = b.w
err = _reader_consume_err(b)
break
}
if reader_buffered(b) >= len(b.buf) {
b.r = b.w
line = b.buf
err = .Buffer_Full
break
}
s = b.w - b.r
_reader_read_new_chunk(b) or_break
}
if i := len(line)-1; i >= 0 {
b.last_byte = int(line[i])
b.last_rune_size = -1
}
return
}
// reader_read_bytes reads until the first occurrence of delim from the Reader
// It returns an allocated slice containing the data up to and including the delimiter
reader_read_bytes :: proc(b: ^Reader, delim: byte, allocator := context.allocator) -> (buf: []byte, err: io.Error) {
full: [dynamic]byte
full.allocator = allocator
frag: []byte
for {
e: io.Error
frag, e = reader_read_slice(b, delim)
if e == nil {
break
}
if e != .Buffer_Full {
err = e
break
}
append(&full, ..frag)
}
append(&full, ..frag)
return full[:], err
}
// reader_read_string reads until the first occurrence of delim from the Reader
// It returns an allocated string containing the data up to and including the delimiter
reader_read_string :: proc(b: ^Reader, delim: byte, allocator := context.allocator) -> (string, io.Error) {
buf, err := reader_read_bytes(b, delim, allocator)
return string(buf), err
}