Files
Odin/core/math/math.odin
2025-11-23 11:03:37 -08:00

2560 lines
83 KiB
Odin

// Typical trignometric and other basic math routines.
package math
import "base:intrinsics"
import "base:builtin"
_ :: intrinsics
Float_Class :: enum {
Normal, // an ordinary nonzero floating point value
Subnormal, // a subnormal floating point value
Zero, // zero
Neg_Zero, // the negative zero
NaN, // Not-A-Number (NaN)
Inf, // positive infinity
Neg_Inf, // negative infinity
}
TAU :: 6.28318530717958647692528676655900576
PI :: 3.14159265358979323846264338327950288
E :: 2.71828182845904523536
τ :: TAU
π :: PI
e :: E
SQRT_TWO :: 1.41421356237309504880168872420969808
SQRT_THREE :: 1.73205080756887729352744634150587236
SQRT_FIVE :: 2.23606797749978969640917366873127623
LN2 :: 0.693147180559945309417232121458176568
LN10 :: 2.30258509299404568401799145468436421
MAX_F64_PRECISION :: 16 // Maximum number of meaningful digits after the decimal point for 'f64'
MAX_F32_PRECISION :: 8 // Maximum number of meaningful digits after the decimal point for 'f32'
MAX_F16_PRECISION :: 4 // Maximum number of meaningful digits after the decimal point for 'f16'
RAD_PER_DEG :: TAU/360.0
DEG_PER_RAD :: 360.0/TAU
abs :: builtin.abs
min :: builtin.min
max :: builtin.max
clamp :: builtin.clamp
@(require_results) sqrt_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(sqrt_f16(f16(x))) }
@(require_results) sqrt_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(sqrt_f16(f16(x))) }
@(require_results) sqrt_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(sqrt_f32(f32(x))) }
@(require_results) sqrt_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(sqrt_f32(f32(x))) }
@(require_results) sqrt_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(sqrt_f64(f64(x))) }
@(require_results) sqrt_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(sqrt_f64(f64(x))) }
sqrt :: proc{
sqrt_f16, sqrt_f16le, sqrt_f16be,
sqrt_f32, sqrt_f32le, sqrt_f32be,
sqrt_f64, sqrt_f64le, sqrt_f64be,
}
@(require_results) sin_f16le :: proc "contextless" (θ: f16le) -> f16le { return #force_inline f16le(sin_f16(f16(θ))) }
@(require_results) sin_f16be :: proc "contextless" (θ: f16be) -> f16be { return #force_inline f16be(sin_f16(f16(θ))) }
@(require_results) sin_f32le :: proc "contextless" (θ: f32le) -> f32le { return #force_inline f32le(sin_f32(f32(θ))) }
@(require_results) sin_f32be :: proc "contextless" (θ: f32be) -> f32be { return #force_inline f32be(sin_f32(f32(θ))) }
@(require_results) sin_f64le :: proc "contextless" (θ: f64le) -> f64le { return #force_inline f64le(sin_f64(f64(θ))) }
@(require_results) sin_f64be :: proc "contextless" (θ: f64be) -> f64be { return #force_inline f64be(sin_f64(f64(θ))) }
// Return the sine of θ in radians.
sin :: proc{
sin_f16, sin_f16le, sin_f16be,
sin_f32, sin_f32le, sin_f32be,
sin_f64, sin_f64le, sin_f64be,
}
@(require_results) cos_f16le :: proc "contextless" (θ: f16le) -> f16le { return #force_inline f16le(cos_f16(f16(θ))) }
@(require_results) cos_f16be :: proc "contextless" (θ: f16be) -> f16be { return #force_inline f16be(cos_f16(f16(θ))) }
@(require_results) cos_f32le :: proc "contextless" (θ: f32le) -> f32le { return #force_inline f32le(cos_f32(f32(θ))) }
@(require_results) cos_f32be :: proc "contextless" (θ: f32be) -> f32be { return #force_inline f32be(cos_f32(f32(θ))) }
@(require_results) cos_f64le :: proc "contextless" (θ: f64le) -> f64le { return #force_inline f64le(cos_f64(f64(θ))) }
@(require_results) cos_f64be :: proc "contextless" (θ: f64be) -> f64be { return #force_inline f64be(cos_f64(f64(θ))) }
// Return the cosine of θ in radians.
cos :: proc{
cos_f16, cos_f16le, cos_f16be,
cos_f32, cos_f32le, cos_f32be,
cos_f64, cos_f64le, cos_f64be,
}
@(require_results) pow_f16le :: proc "contextless" (x, power: f16le) -> f16le { return #force_inline f16le(pow_f16(f16(x), f16(power))) }
@(require_results) pow_f16be :: proc "contextless" (x, power: f16be) -> f16be { return #force_inline f16be(pow_f16(f16(x), f16(power))) }
@(require_results) pow_f32le :: proc "contextless" (x, power: f32le) -> f32le { return #force_inline f32le(pow_f32(f32(x), f32(power))) }
@(require_results) pow_f32be :: proc "contextless" (x, power: f32be) -> f32be { return #force_inline f32be(pow_f32(f32(x), f32(power))) }
@(require_results) pow_f64le :: proc "contextless" (x, power: f64le) -> f64le { return #force_inline f64le(pow_f64(f64(x), f64(power))) }
@(require_results) pow_f64be :: proc "contextless" (x, power: f64be) -> f64be { return #force_inline f64be(pow_f64(f64(x), f64(power))) }
pow :: proc{
pow_f16, pow_f16le, pow_f16be,
pow_f32, pow_f32le, pow_f32be,
pow_f64, pow_f64le, pow_f64be,
}
@(require_results) fmuladd_f16le :: proc "contextless" (a, b, c: f16le) -> f16le { return #force_inline f16le(fmuladd_f16(f16(a), f16(b), f16(c))) }
@(require_results) fmuladd_f16be :: proc "contextless" (a, b, c: f16be) -> f16be { return #force_inline f16be(fmuladd_f16(f16(a), f16(b), f16(c))) }
@(require_results) fmuladd_f32le :: proc "contextless" (a, b, c: f32le) -> f32le { return #force_inline f32le(fmuladd_f32(f32(a), f32(b), f32(c))) }
@(require_results) fmuladd_f32be :: proc "contextless" (a, b, c: f32be) -> f32be { return #force_inline f32be(fmuladd_f32(f32(a), f32(b), f32(c))) }
@(require_results) fmuladd_f64le :: proc "contextless" (a, b, c: f64le) -> f64le { return #force_inline f64le(fmuladd_f64(f64(a), f64(b), f64(c))) }
@(require_results) fmuladd_f64be :: proc "contextless" (a, b, c: f64be) -> f64be { return #force_inline f64be(fmuladd_f64(f64(a), f64(b), f64(c))) }
fmuladd :: proc{
fmuladd_f16, fmuladd_f16le, fmuladd_f16be,
fmuladd_f32, fmuladd_f32le, fmuladd_f32be,
fmuladd_f64, fmuladd_f64le, fmuladd_f64be,
}
@(require_results) exp_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(exp_f16(f16(x))) }
@(require_results) exp_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(exp_f16(f16(x))) }
@(require_results) exp_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(exp_f32(f32(x))) }
@(require_results) exp_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(exp_f32(f32(x))) }
@(require_results) exp_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(exp_f64(f64(x))) }
@(require_results) exp_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(exp_f64(f64(x))) }
exp :: proc{
exp_f16, exp_f16le, exp_f16be,
exp_f32, exp_f32le, exp_f32be,
exp_f64, exp_f64le, exp_f64be,
}
@(require_results) pow10_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(pow10_f16(f16(x))) }
@(require_results) pow10_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(pow10_f16(f16(x))) }
@(require_results) pow10_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(pow10_f32(f32(x))) }
@(require_results) pow10_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(pow10_f32(f32(x))) }
@(require_results) pow10_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(pow10_f64(f64(x))) }
@(require_results) pow10_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(pow10_f64(f64(x))) }
pow10 :: proc{
pow10_f16, pow10_f16le, pow10_f16be,
pow10_f32, pow10_f32le, pow10_f32be,
pow10_f64, pow10_f64le, pow10_f64be,
}
@(require_results)
pow10_f16 :: proc "contextless" (n: f16) -> f16 {
@(static, rodata) pow10_pos_tab := [?]f16{
1e00, 1e01, 1e02, 1e03, 1e04,
}
@(static, rodata) pow10_neg_tab := [?]f16{
1e-00, 1e-01, 1e-02, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07,
}
if 0 <= n && n <= 4 {
return pow10_pos_tab[uint(n)]
}
if -7 <= n && n <= 0 {
return pow10_neg_tab[uint(-n)]
}
if n > 0 {
return inf_f16(1)
}
return 0
}
@(require_results)
pow10_f32 :: proc "contextless" (n: f32) -> f32 {
@(static, rodata) pow10_pos_tab := [?]f32{
1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29,
1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38,
}
@(static, rodata) pow10_neg_tab := [?]f32{
1e-00, 1e-01, 1e-02, 1e-03, 1e-04, 1e-05, 1e-06, 1e-07, 1e-08, 1e-09,
1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15, 1e-16, 1e-17, 1e-18, 1e-19,
1e-20, 1e-21, 1e-22, 1e-23, 1e-24, 1e-25, 1e-26, 1e-27, 1e-28, 1e-29,
1e-30, 1e-31, 1e-32, 1e-33, 1e-34, 1e-35, 1e-36, 1e-37, 1e-38, 1e-39,
1e-40, 1e-41, 1e-42, 1e-43, 1e-44, 1e-45,
}
if 0 <= n && n <= 38 {
return pow10_pos_tab[uint(n)]
}
if -45 <= n && n <= 0 {
return pow10_neg_tab[uint(-n)]
}
if n > 0 {
return inf_f32(1)
}
return 0
}
@(require_results)
pow10_f64 :: proc "contextless" (n: f64) -> f64 {
@(static, rodata) pow10_tab := [?]f64{
1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29,
1e30, 1e31,
}
@(static, rodata) pow10_pos_tab32 := [?]f64{
1e00, 1e32, 1e64, 1e96, 1e128, 1e160, 1e192, 1e224, 1e256, 1e288,
}
@(static, rodata) pow10_neg_tab32 := [?]f64{
1e-00, 1e-32, 1e-64, 1e-96, 1e-128, 1e-160, 1e-192, 1e-224, 1e-256, 1e-288, 1e-320,
}
if 0 <= n && n <= 308 {
return pow10_pos_tab32[uint(n)/32] * pow10_tab[uint(n)%32]
}
if -323 <= n && n <= 0 {
return pow10_neg_tab32[uint(-n)/32] / pow10_tab[uint(-n)%32]
}
if n > 0 {
return inf_f64(1)
}
return 0
}
@(require_results)
pow2_f64 :: proc "contextless" (#any_int exp: int) -> (res: f64) {
switch {
case exp >= -1022 && exp <= 1023: // Normal
return transmute(f64)(u64(exp + F64_BIAS) << F64_SHIFT)
case exp < -1075: // Underflow
return f64(0)
case exp == -1075: // Underflow.
// Note that pow(2, -1075) returns 0h1 on Windows and 0h0 on macOS & Linux.
return 0h00000000_00000000
case exp < -1022: // Denormal
x := u64(exp + (F64_SHIFT + 1) + F64_BIAS) << F64_SHIFT
return f64(1) / (1 << (F64_SHIFT + 1)) * transmute(f64)x
case exp > 1023: // Overflow, +Inf
return 0h7ff00000_00000000
}
unreachable()
}
@(require_results)
pow2_f32 :: proc "contextless" (#any_int exp: int) -> (res: f32) {
switch {
case exp >= -126 && exp <= 127: // Normal
return transmute(f32)(u32(exp + F32_BIAS) << F32_SHIFT)
case exp < -151: // Underflow
return f32(0)
case exp < -126: // Denormal
x := u32(exp + (F32_SHIFT + 1) + F32_BIAS) << F32_SHIFT
return f32(1) / (1 << (F32_SHIFT + 1)) * transmute(f32)x
case exp > 127: // Overflow, +Inf
return 0h7f80_0000
}
unreachable()
}
@(require_results)
pow2_f16 :: proc "contextless" (#any_int exp: int) -> (res: f16) {
switch {
case exp >= -14 && exp <= 15: // Normal
return transmute(f16)(u16(exp + F16_BIAS) << F16_SHIFT)
case exp < -25: // Underflow
return 0h0000
case exp == -25: // Underflow
return 0h0001
case exp < -14: // Denormal
x := u16(exp + (F16_SHIFT + 1) + F16_BIAS) << F16_SHIFT
return f16(1) / (1 << (F16_SHIFT + 1)) * transmute(f16)x
case exp > 15: // Overflow, +Inf
return 0h7c00
}
unreachable()
}
@(require_results)
ldexp_f64 :: proc "contextless" (val: f64, exp: int) -> f64 {
mask :: F64_MASK
shift :: F64_SHIFT
bias :: F64_BIAS
switch {
case val == 0:
return val
case is_inf(val) || is_nan(val):
return val
}
exp := exp
frac, e := normalize_f64(val)
exp += e
x := transmute(u64)frac
exp += int(x>>shift)&mask - bias
if exp < -1075 { // underflow
return copy_sign(0, frac)
} else if exp > 1023 { // overflow
if frac < 0 {
return inf_f64(-1)
}
return inf_f64(+1)
}
m: f64 = 1
if exp < -1022 { // denormal
exp += 53
m = 1.0 / (1<<53)
}
x &~= mask << shift
x |= u64(exp+bias) << shift
return m * transmute(f64)x
}
@(require_results) ldexp_f16 :: proc "contextless" (val: f16, exp: int) -> f16 { return f16(ldexp_f64(f64(val), exp)) }
@(require_results) ldexp_f32 :: proc "contextless" (val: f32, exp: int) -> f32 { return f32(ldexp_f64(f64(val), exp)) }
@(require_results) ldexp_f16le :: proc "contextless" (val: f16le, exp: int) -> f16le { return #force_inline f16le(ldexp_f16(f16(val), exp)) }
@(require_results) ldexp_f16be :: proc "contextless" (val: f16be, exp: int) -> f16be { return #force_inline f16be(ldexp_f16(f16(val), exp)) }
@(require_results) ldexp_f32le :: proc "contextless" (val: f32le, exp: int) -> f32le { return #force_inline f32le(ldexp_f32(f32(val), exp)) }
@(require_results) ldexp_f32be :: proc "contextless" (val: f32be, exp: int) -> f32be { return #force_inline f32be(ldexp_f32(f32(val), exp)) }
@(require_results) ldexp_f64le :: proc "contextless" (val: f64le, exp: int) -> f64le { return #force_inline f64le(ldexp_f64(f64(val), exp)) }
@(require_results) ldexp_f64be :: proc "contextless" (val: f64be, exp: int) -> f64be { return #force_inline f64be(ldexp_f64(f64(val), exp)) }
// ldexp is the inverse of frexp
// it returns val * 2**exp.
//
// Special cases:
// ldexp(+0, exp) = +0
// ldexp(-0, exp) = -0
// ldexp(+inf, exp) = +inf
// ldexp(-inf, exp) = -inf
// ldexp(NaN, exp) = NaN
ldexp :: proc{
ldexp_f16, ldexp_f16le, ldexp_f16be,
ldexp_f32, ldexp_f32le, ldexp_f32be,
ldexp_f64, ldexp_f64le, ldexp_f64be,
}
@(require_results) log_f16 :: proc "contextless" (x, base: f16) -> f16 { return ln(x) / ln(base) }
@(require_results) log_f16le :: proc "contextless" (x, base: f16le) -> f16le { return f16le(log_f16(f16(x), f16(base))) }
@(require_results) log_f16be :: proc "contextless" (x, base: f16be) -> f16be { return f16be(log_f16(f16(x), f16(base))) }
@(require_results) log_f32 :: proc "contextless" (x, base: f32) -> f32 { return ln(x) / ln(base) }
@(require_results) log_f32le :: proc "contextless" (x, base: f32le) -> f32le { return f32le(log_f32(f32(x), f32(base))) }
@(require_results) log_f32be :: proc "contextless" (x, base: f32be) -> f32be { return f32be(log_f32(f32(x), f32(base))) }
@(require_results) log_f64 :: proc "contextless" (x, base: f64) -> f64 { return ln(x) / ln(base) }
@(require_results) log_f64le :: proc "contextless" (x, base: f64le) -> f64le { return f64le(log_f64(f64(x), f64(base))) }
@(require_results) log_f64be :: proc "contextless" (x, base: f64be) -> f64be { return f64be(log_f64(f64(x), f64(base))) }
log :: proc{
log_f16, log_f16le, log_f16be,
log_f32, log_f32le, log_f32be,
log_f64, log_f64le, log_f64be,
}
@(require_results) log2_f16 :: proc "contextless" (x: f16) -> f16 { return log(f16(x), f16(2.0)) }
@(require_results) log2_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(log_f16(f16(x), f16(2.0))) }
@(require_results) log2_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(log_f16(f16(x), f16(2.0))) }
@(require_results) log2_f32 :: proc "contextless" (x: f32) -> f32 { return log(f32(x), f32(2.0)) }
@(require_results) log2_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(log_f32(f32(x), f32(2.0))) }
@(require_results) log2_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(log_f32(f32(x), f32(2.0))) }
@(require_results) log2_f64 :: proc "contextless" (x: f64) -> f64 { return log(f64(x), f64(2.0)) }
@(require_results) log2_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(log_f64(f64(x), f64(2.0))) }
@(require_results) log2_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(log_f64(f64(x), f64(2.0))) }
log2 :: proc{
log2_f16, log2_f16le, log2_f16be,
log2_f32, log2_f32le, log2_f32be,
log2_f64, log2_f64le, log2_f64be,
}
@(require_results) log10_f16 :: proc "contextless" (x: f16) -> f16 { return ln(x)/LN10 }
@(require_results) log10_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(log10_f16(f16(x))) }
@(require_results) log10_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(log10_f16(f16(x))) }
@(require_results) log10_f32 :: proc "contextless" (x: f32) -> f32 { return ln(x)/LN10 }
@(require_results) log10_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(log10_f32(f32(x))) }
@(require_results) log10_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(log10_f32(f32(x))) }
@(require_results) log10_f64 :: proc "contextless" (x: f64) -> f64 { return ln(x)/LN10 }
@(require_results) log10_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(log10_f64(f64(x))) }
@(require_results) log10_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(log10_f64(f64(x))) }
log10 :: proc{
log10_f16, log10_f16le, log10_f16be,
log10_f32, log10_f32le, log10_f32be,
log10_f64, log10_f64le, log10_f64be,
}
@(require_results) tan_f16 :: proc "contextless" (θ: f16) -> f16 { return sin(θ)/cos(θ) }
@(require_results) tan_f16le :: proc "contextless" (θ: f16le) -> f16le { return f16le(tan_f16(f16(θ))) }
@(require_results) tan_f16be :: proc "contextless" (θ: f16be) -> f16be { return f16be(tan_f16(f16(θ))) }
@(require_results) tan_f32 :: proc "contextless" (θ: f32) -> f32 { return sin(θ)/cos(θ) }
@(require_results) tan_f32le :: proc "contextless" (θ: f32le) -> f32le { return f32le(tan_f32(f32(θ))) }
@(require_results) tan_f32be :: proc "contextless" (θ: f32be) -> f32be { return f32be(tan_f32(f32(θ))) }
@(require_results) tan_f64 :: proc "contextless" (θ: f64) -> f64 { return sin(θ)/cos(θ) }
@(require_results) tan_f64le :: proc "contextless" (θ: f64le) -> f64le { return f64le(tan_f64(f64(θ))) }
@(require_results) tan_f64be :: proc "contextless" (θ: f64be) -> f64be { return f64be(tan_f64(f64(θ))) }
// Return the tangent of θ in radians.
tan :: proc{
tan_f16, tan_f16le, tan_f16be,
tan_f32, tan_f32le, tan_f32be,
tan_f64, tan_f64le, tan_f64be,
}
@(require_results) lerp :: proc "contextless" (a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t }
@(require_results) saturate :: proc "contextless" (a: $T) -> (x: T) { return clamp(a, 0, 1) }
@(require_results)
unlerp :: proc "contextless" (a, b, x: $T) -> (t: T) where intrinsics.type_is_float(T), !intrinsics.type_is_array(T) {
return (x-a)/(b-a)
}
@(require_results)
remap :: proc "contextless" (old_value, old_min, old_max, new_min, new_max: $T) -> (x: T) where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
old_range := old_max - old_min
new_range := new_max - new_min
if old_range == 0 {
return new_range / 2
}
when intrinsics.type_is_integer(T) {
return (((old_value - old_min)) * new_range) / old_range + new_min
} else {
return ((old_value - old_min) / old_range) * new_range + new_min
}
}
@(require_results)
remap_clamped :: proc "contextless" (old_value, old_min, old_max, new_min, new_max: $T) -> (x: T) where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
remapped := #force_inline remap(old_value, old_min, old_max, new_min, new_max)
return clamp(remapped, new_min, new_max)
}
@(require_results)
wrap :: proc "contextless" (x, y: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
tmp := mod(x, y)
return y + tmp if tmp < 0 else tmp
}
@(require_results)
angle_diff :: proc "contextless" (a, b: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
dist := wrap(b - a, TAU)
return wrap(dist*2, TAU) - dist
}
@(require_results)
angle_lerp :: proc "contextless" (a, b, t: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
return a + angle_diff(a, b) * t
}
@(require_results)
step :: proc "contextless" (edge, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
return 0 if x < edge else 1
}
@(require_results)
smoothstep :: proc "contextless" (edge0, edge1, x: $T) -> T where intrinsics.type_is_numeric(T), !intrinsics.type_is_array(T) {
t := clamp((x - edge0) / (edge1 - edge0), 0, 1)
return t * t * (3 - 2*t)
}
@(require_results)
bias :: proc "contextless" (t, b: $T) -> T where intrinsics.type_is_numeric(T) {
return t / (((1/b) - 2) * (1 - t) + 1)
}
@(require_results)
gain :: proc "contextless" (t, g: $T) -> T where intrinsics.type_is_float(T) {
if t < 0.5 {
return bias(t*2, g) * 0.5
}
return bias(t*2 - 1, 1 - g) * 0.5 + 0.5
}
@(require_results) sign_f16 :: proc "contextless" (x: f16) -> f16 { return f16(int(0 < x) - int(x < 0)) }
@(require_results) sign_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(int(0 < x) - int(x < 0)) }
@(require_results) sign_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(int(0 < x) - int(x < 0)) }
@(require_results) sign_f32 :: proc "contextless" (x: f32) -> f32 { return f32(int(0 < x) - int(x < 0)) }
@(require_results) sign_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(int(0 < x) - int(x < 0)) }
@(require_results) sign_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(int(0 < x) - int(x < 0)) }
@(require_results) sign_f64 :: proc "contextless" (x: f64) -> f64 { return f64(int(0 < x) - int(x < 0)) }
@(require_results) sign_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(int(0 < x) - int(x < 0)) }
@(require_results) sign_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(int(0 < x) - int(x < 0)) }
@(require_results) sign_int :: proc "contextless" (x: int) -> int { return int(0 < x) - int(x < 0) }
@(require_results) sign_i16 :: proc "contextless" (x: i16) -> i16 { return i16(int(0 < x) - int(x < 0)) }
@(require_results) sign_i16le :: proc "contextless" (x: i16le) -> i16le { return i16le(int(0 < x) - int(x < 0)) }
@(require_results) sign_i16be :: proc "contextless" (x: i16be) -> i16be { return i16be(int(0 < x) - int(x < 0)) }
@(require_results) sign_i32 :: proc "contextless" (x: i32) -> i32 { return i32(int(0 < x) - int(x < 0)) }
@(require_results) sign_i32le :: proc "contextless" (x: i32le) -> i32le { return i32le(int(0 < x) - int(x < 0)) }
@(require_results) sign_i32be :: proc "contextless" (x: i32be) -> i32be { return i32be(int(0 < x) - int(x < 0)) }
@(require_results) sign_i64 :: proc "contextless" (x: i64) -> i64 { return i64(int(0 < x) - int(x < 0)) }
@(require_results) sign_i64le :: proc "contextless" (x: i64le) -> i64le { return i64le(int(0 < x) - int(x < 0)) }
@(require_results) sign_i64be :: proc "contextless" (x: i64be) -> i64be { return i64be(int(0 < x) - int(x < 0)) }
sign :: proc{
sign_f16, sign_f16le, sign_f16be,
sign_f32, sign_f32le, sign_f32be,
sign_f64, sign_f64le, sign_f64be,
sign_int,
sign_i16, sign_i16le, sign_i16be,
sign_i32, sign_i32le, sign_i32be,
sign_i64, sign_i64le, sign_i64be,
}
@(require_results) sign_bit_f16 :: proc "contextless" (x: f16) -> bool { return (transmute(u16)x) & (1<<15) != 0 }
@(require_results) sign_bit_f16le :: proc "contextless" (x: f16le) -> bool { return #force_inline sign_bit_f16(f16(x)) }
@(require_results) sign_bit_f16be :: proc "contextless" (x: f16be) -> bool { return #force_inline sign_bit_f16(f16(x)) }
@(require_results) sign_bit_f32 :: proc "contextless" (x: f32) -> bool { return (transmute(u32)x) & (1<<31) != 0 }
@(require_results) sign_bit_f32le :: proc "contextless" (x: f32le) -> bool { return #force_inline sign_bit_f32(f32(x)) }
@(require_results) sign_bit_f32be :: proc "contextless" (x: f32be) -> bool { return #force_inline sign_bit_f32(f32(x)) }
@(require_results) sign_bit_f64 :: proc "contextless" (x: f64) -> bool { return (transmute(u64)x) & (1<<63) != 0 }
@(require_results) sign_bit_f64le :: proc "contextless" (x: f64le) -> bool { return #force_inline sign_bit_f64(f64(x)) }
@(require_results) sign_bit_f64be :: proc "contextless" (x: f64be) -> bool { return #force_inline sign_bit_f64(f64(x)) }
@(require_results) sign_bit_int :: proc "contextless" (x: int) -> bool { return uint(x) & (1<<(size_of(int)*8 - 1)) != 0 }
@(require_results) sign_bit_i16 :: proc "contextless" (x: i16) -> bool { return u16(x) & (1<<15) != 0 }
@(require_results) sign_bit_i16le :: proc "contextless" (x: i16le) -> bool { return #force_inline sign_bit_i16(i16(x)) }
@(require_results) sign_bit_i16be :: proc "contextless" (x: i16be) -> bool { return #force_inline sign_bit_i16(i16(x)) }
@(require_results) sign_bit_i32 :: proc "contextless" (x: i32) -> bool { return u32(x) & (1<<31) != 0 }
@(require_results) sign_bit_i32le :: proc "contextless" (x: i32le) -> bool { return #force_inline sign_bit_i32(i32(x)) }
@(require_results) sign_bit_i32be :: proc "contextless" (x: i32be) -> bool { return #force_inline sign_bit_i32(i32(x)) }
@(require_results) sign_bit_i64 :: proc "contextless" (x: i64) -> bool { return u64(x) & (1<<63) != 0 }
@(require_results) sign_bit_i64le :: proc "contextless" (x: i64le) -> bool { return #force_inline sign_bit_i64(i64(x)) }
@(require_results) sign_bit_i64be :: proc "contextless" (x: i64be) -> bool { return #force_inline sign_bit_i64(i64(x)) }
sign_bit :: proc{
sign_bit_f16, sign_bit_f16le, sign_bit_f16be,
sign_bit_f32, sign_bit_f32le, sign_bit_f32be,
sign_bit_f64, sign_bit_f64le, sign_bit_f64be,
sign_bit_int,
sign_bit_i16, sign_bit_i16le, sign_bit_i16be,
sign_bit_i32, sign_bit_i32le, sign_bit_i32be,
sign_bit_i64, sign_bit_i64le, sign_bit_i64be,
}
@(require_results)
copy_sign_f16 :: proc "contextless" (x, y: f16) -> f16 {
ix := transmute(u16)x
iy := transmute(u16)y
ix &= 0x7fff
ix |= iy & 0x8000
return transmute(f16)ix
}
@(require_results) copy_sign_f16le :: proc "contextless" (x, y: f16le) -> f16le { return #force_inline f16le(copy_sign_f16(f16(x), f16(y))) }
@(require_results) copy_sign_f16be :: proc "contextless" (x, y: f16be) -> f16be { return #force_inline f16be(copy_sign_f16(f16(x), f16(y))) }
@(require_results)
copy_sign_f32 :: proc "contextless" (x, y: f32) -> f32 {
ix := transmute(u32)x
iy := transmute(u32)y
ix &= 0x7fff_ffff
ix |= iy & 0x8000_0000
return transmute(f32)ix
}
@(require_results) copy_sign_f32le :: proc "contextless" (x, y: f32le) -> f32le { return #force_inline f32le(copy_sign_f32(f32(x), f32(y))) }
@(require_results) copy_sign_f32be :: proc "contextless" (x, y: f32be) -> f32be { return #force_inline f32be(copy_sign_f32(f32(x), f32(y))) }
@(require_results)
copy_sign_f64 :: proc "contextless" (x, y: f64) -> f64 {
ix := transmute(u64)x
iy := transmute(u64)y
ix &= 0x7fff_ffff_ffff_ffff
ix |= iy & 0x8000_0000_0000_0000
return transmute(f64)ix
}
@(require_results) copy_sign_f64le :: proc "contextless" (x, y: f64le) -> f64le { return #force_inline f64le(copy_sign_f64(f64(x), f64(y))) }
@(require_results) copy_sign_f64be :: proc "contextless" (x, y: f64be) -> f64be { return #force_inline f64be(copy_sign_f64(f64(x), f64(y))) }
copy_sign :: proc{
copy_sign_f16, copy_sign_f16le, copy_sign_f16be,
copy_sign_f32, copy_sign_f32le, copy_sign_f32be,
copy_sign_f64, copy_sign_f64le, copy_sign_f64be,
}
@(require_results) to_radians_f16 :: proc "contextless" (degrees: f16) -> f16 { return degrees * RAD_PER_DEG }
@(require_results) to_radians_f16le :: proc "contextless" (degrees: f16le) -> f16le { return degrees * RAD_PER_DEG }
@(require_results) to_radians_f16be :: proc "contextless" (degrees: f16be) -> f16be { return degrees * RAD_PER_DEG }
@(require_results) to_radians_f32 :: proc "contextless" (degrees: f32) -> f32 { return degrees * RAD_PER_DEG }
@(require_results) to_radians_f32le :: proc "contextless" (degrees: f32le) -> f32le { return degrees * RAD_PER_DEG }
@(require_results) to_radians_f32be :: proc "contextless" (degrees: f32be) -> f32be { return degrees * RAD_PER_DEG }
@(require_results) to_radians_f64 :: proc "contextless" (degrees: f64) -> f64 { return degrees * RAD_PER_DEG }
@(require_results) to_radians_f64le :: proc "contextless" (degrees: f64le) -> f64le { return degrees * RAD_PER_DEG }
@(require_results) to_radians_f64be :: proc "contextless" (degrees: f64be) -> f64be { return degrees * RAD_PER_DEG }
@(require_results) to_degrees_f16 :: proc "contextless" (radians: f16) -> f16 { return radians * DEG_PER_RAD }
@(require_results) to_degrees_f16le :: proc "contextless" (radians: f16le) -> f16le { return radians * DEG_PER_RAD }
@(require_results) to_degrees_f16be :: proc "contextless" (radians: f16be) -> f16be { return radians * DEG_PER_RAD }
@(require_results) to_degrees_f32 :: proc "contextless" (radians: f32) -> f32 { return radians * DEG_PER_RAD }
@(require_results) to_degrees_f32le :: proc "contextless" (radians: f32le) -> f32le { return radians * DEG_PER_RAD }
@(require_results) to_degrees_f32be :: proc "contextless" (radians: f32be) -> f32be { return radians * DEG_PER_RAD }
@(require_results) to_degrees_f64 :: proc "contextless" (radians: f64) -> f64 { return radians * DEG_PER_RAD }
@(require_results) to_degrees_f64le :: proc "contextless" (radians: f64le) -> f64le { return radians * DEG_PER_RAD }
@(require_results) to_degrees_f64be :: proc "contextless" (radians: f64be) -> f64be { return radians * DEG_PER_RAD }
to_radians :: proc{
to_radians_f16, to_radians_f16le, to_radians_f16be,
to_radians_f32, to_radians_f32le, to_radians_f32be,
to_radians_f64, to_radians_f64le, to_radians_f64be,
}
to_degrees :: proc{
to_degrees_f16, to_degrees_f16le, to_degrees_f16be,
to_degrees_f32, to_degrees_f32le, to_degrees_f32be,
to_degrees_f64, to_degrees_f64le, to_degrees_f64be,
}
@(require_results)
trunc_f16 :: proc "contextless" (x: f16) -> f16 {
trunc_internal :: proc "contextless" (f: f16) -> f16 {
mask :: F16_MASK
shift :: F16_SHIFT
bias :: F16_BIAS
if f < 1 {
switch {
case f < 0: return -trunc_internal(-f)
case f == 0: return f
case: return 0
}
}
x := transmute(u16)f
e := (x >> shift) & mask - bias
if e < shift {
x &~= 1 << (shift-e) - 1
}
return transmute(f16)x
}
switch classify(x) {
case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
return x
case .Normal, .Subnormal: // carry on
}
return trunc_internal(x)
}
@(require_results) trunc_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(trunc_f16(f16(x))) }
@(require_results) trunc_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(trunc_f16(f16(x))) }
@(require_results)
trunc_f32 :: proc "contextless" (x: f32) -> f32 {
trunc_internal :: proc "contextless" (f: f32) -> f32 {
mask :: F32_MASK
shift :: F32_SHIFT
bias :: F32_BIAS
if f < 1 {
switch {
case f < 0: return -trunc_internal(-f)
case f == 0: return f
case: return 0
}
}
x := transmute(u32)f
e := (x >> shift) & mask - bias
if e < shift {
x &~= 1 << (shift-e) - 1
}
return transmute(f32)x
}
switch classify(x) {
case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
return x
case .Normal, .Subnormal: // carry on
}
return trunc_internal(x)
}
@(require_results) trunc_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(trunc_f32(f32(x))) }
@(require_results) trunc_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(trunc_f32(f32(x))) }
@(require_results)
trunc_f64 :: proc "contextless" (x: f64) -> f64 {
trunc_internal :: proc "contextless" (f: f64) -> f64 {
mask :: F64_MASK
shift :: F64_SHIFT
bias :: F64_BIAS
if f < 1 {
switch {
case f < 0: return -trunc_internal(-f)
case f == 0: return f
case: return 0
}
}
x := transmute(u64)f
e := (x >> shift) & mask - bias
if e < shift {
x &~= 1 << (shift-e) - 1
}
return transmute(f64)x
}
switch classify(x) {
case .Zero, .Neg_Zero, .NaN, .Inf, .Neg_Inf:
return x
case .Normal, .Subnormal: // carry on
}
return trunc_internal(x)
}
@(require_results) trunc_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(trunc_f64(f64(x))) }
@(require_results) trunc_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(trunc_f64(f64(x))) }
// Removes the fractional part of the value, i.e. rounds towards zero.
trunc :: proc{
trunc_f16, trunc_f16le, trunc_f16be,
trunc_f32, trunc_f32le, trunc_f32be,
trunc_f64, trunc_f64le, trunc_f64be,
}
@(require_results)
round_f16 :: proc "contextless" (x: f16) -> f16 {
// origin: Go /src/math/floor.go
//
// Copyright (c) 2009 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
mask :: F16_MASK
shift :: F16_SHIFT
bias :: F16_BIAS
bits := transmute(u16)x
e := (bits >> shift) & mask
if e < bias {
bits &= 0x8000
if e == bias - 1 {
bits |= transmute(u16)f16(1)
}
} else if e < bias + shift {
half :: 1 << (shift - 1)
mantissa :: (1 << shift) - 1
e -= bias
bits += half >> e
bits &~= mantissa >> e
}
return transmute(f16)bits
}
@(require_results) round_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(round_f16(f16(x))) }
@(require_results) round_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(round_f16(f16(x))) }
@(require_results)
round_f32 :: proc "contextless" (x: f32) -> f32 {
// origin: Go /src/math/floor.go
//
// Copyright (c) 2009 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
mask :: F32_MASK
shift :: F32_SHIFT
bias :: F32_BIAS
bits := transmute(u32)x
e := (bits >> shift) & mask
if e < bias {
bits &= 0x8000_0000
if e == bias - 1 {
bits |= transmute(u32)f32(1)
}
} else if e < bias + shift {
half :: 1 << (shift - 1)
mantissa :: (1 << shift) - 1
e -= bias
bits += half >> e
bits &~= mantissa >> e
}
return transmute(f32)bits
}
@(require_results) round_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(round_f32(f32(x))) }
@(require_results) round_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(round_f32(f32(x))) }
@(require_results)
round_f64 :: proc "contextless" (x: f64) -> f64 {
// origin: Go /src/math/floor.go
//
// Copyright (c) 2009 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
mask :: F64_MASK
shift :: F64_SHIFT
bias :: F64_BIAS
bits := transmute(u64)x
e := (bits >> shift) & mask
if e < bias {
bits &= 0x8000_0000_0000_0000
if e == bias - 1 {
bits |= transmute(u64)f64(1)
}
} else if e < bias + shift {
half :: 1 << (shift - 1)
mantissa :: (1 << shift) - 1
e -= bias
bits += half >> e
bits &~= mantissa >> e
}
return transmute(f64)bits
}
@(require_results) round_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(round_f64(f64(x))) }
@(require_results) round_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(round_f64(f64(x))) }
round :: proc{
round_f16, round_f16le, round_f16be,
round_f32, round_f32le, round_f32be,
round_f64, round_f64le, round_f64be,
}
@(require_results) ceil_f16 :: proc "contextless" (x: f16) -> f16 { return -floor(-x) }
@(require_results) ceil_f16le :: proc "contextless" (x: f16le) -> f16le { return -floor(-x) }
@(require_results) ceil_f16be :: proc "contextless" (x: f16be) -> f16be { return -floor(-x) }
@(require_results) ceil_f32 :: proc "contextless" (x: f32) -> f32 { return -floor(-x) }
@(require_results) ceil_f32le :: proc "contextless" (x: f32le) -> f32le { return -floor(-x) }
@(require_results) ceil_f32be :: proc "contextless" (x: f32be) -> f32be { return -floor(-x) }
@(require_results) ceil_f64 :: proc "contextless" (x: f64) -> f64 { return -floor(-x) }
@(require_results) ceil_f64le :: proc "contextless" (x: f64le) -> f64le { return -floor(-x) }
@(require_results) ceil_f64be :: proc "contextless" (x: f64be) -> f64be { return -floor(-x) }
ceil :: proc{
ceil_f16, ceil_f16le, ceil_f16be,
ceil_f32, ceil_f32le, ceil_f32be,
ceil_f64, ceil_f64le, ceil_f64be,
}
@(require_results)
floor_f16 :: proc "contextless" (x: f16) -> f16 {
if x == 0 || is_nan(x) || is_inf(x) {
return x
}
if x < 0 {
d, fract := modf(-x)
if fract != 0.0 {
d = d + 1
}
return -d
}
d, _ := modf(x)
return d
}
@(require_results) floor_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(floor_f16(f16(x))) }
@(require_results) floor_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(floor_f16(f16(x))) }
@(require_results)
floor_f32 :: proc "contextless" (x: f32) -> f32 {
if x == 0 || is_nan(x) || is_inf(x) {
return x
}
if x < 0 {
d, fract := modf(-x)
if fract != 0.0 {
d = d + 1
}
return -d
}
d, _ := modf(x)
return d
}
@(require_results) floor_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(floor_f32(f32(x))) }
@(require_results) floor_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(floor_f32(f32(x))) }
@(require_results)
floor_f64 :: proc "contextless" (x: f64) -> f64 {
if x == 0 || is_nan(x) || is_inf(x) {
return x
}
if x < 0 {
d, fract := modf(-x)
if fract != 0.0 {
d = d + 1
}
return -d
}
d, _ := modf(x)
return d
}
@(require_results) floor_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(floor_f64(f64(x))) }
@(require_results) floor_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(floor_f64(f64(x))) }
floor :: proc{
floor_f16, floor_f16le, floor_f16be,
floor_f32, floor_f32le, floor_f32be,
floor_f64, floor_f64le, floor_f64be,
}
@(require_results)
floor_div :: proc "contextless" (x, y: $T) -> T
where intrinsics.type_is_integer(T) {
a := x / y
r := x % y
if (r > 0 && y < 0) || (r < 0 && y > 0) {
a -= 1
}
return a
}
@(require_results)
floor_mod :: proc "contextless" (x, y: $T) -> T
where intrinsics.type_is_integer(T) {
r := x % y
if (r > 0 && y < 0) || (r < 0 && y > 0) {
r += y
}
return r
}
@(require_results)
divmod :: #force_inline proc "contextless" (x, y: $T) -> (div, mod: T)
where intrinsics.type_is_integer(T) {
div = x / y
mod = x % y
return
}
@(require_results)
floor_divmod :: #force_inline proc "contextless" (x, y: $T) -> (div, mod: T)
where intrinsics.type_is_integer(T) {
div = x / y
mod = x % y
if (div > 0 && y < 0) || (mod < 0 && y > 0) {
div -= 1
mod += y
}
return
}
@(require_results)
modf_f16 :: proc "contextless" (x: f16) -> (int: f16, frac: f16) {
shift :: F16_SHIFT
mask :: F16_MASK
bias :: F16_BIAS
if x < 1 {
switch {
case x < 0:
int, frac = modf(-x)
return -int, -frac
case x == 0:
return x, x
}
return 0, x
}
i := transmute(u16)x
e := uint(i>>shift)&mask - bias
if e < shift {
i &~= 1<<(shift-e) - 1
}
int = transmute(f16)i
frac = x - int
return
}
@(require_results)
modf_f16le :: proc "contextless" (x: f16le) -> (int: f16le, frac: f16le) {
i, f := #force_inline modf_f16(f16(x))
return f16le(i), f16le(f)
}
@(require_results)
modf_f16be :: proc "contextless" (x: f16be) -> (int: f16be, frac: f16be) {
i, f := #force_inline modf_f16(f16(x))
return f16be(i), f16be(f)
}
@(require_results)
modf_f32 :: proc "contextless" (x: f32) -> (int: f32, frac: f32) {
shift :: F32_SHIFT
mask :: F32_MASK
bias :: F32_BIAS
if x < 1 {
switch {
case x < 0:
int, frac = modf(-x)
return -int, -frac
case x == 0:
return x, x
}
return 0, x
}
i := transmute(u32)x
e := uint(i>>shift)&mask - bias
if e < shift {
i &~= 1<<(shift-e) - 1
}
int = transmute(f32)i
frac = x - int
return
}
@(require_results)
modf_f32le :: proc "contextless" (x: f32le) -> (int: f32le, frac: f32le) {
i, f := #force_inline modf_f32(f32(x))
return f32le(i), f32le(f)
}
@(require_results)
modf_f32be :: proc "contextless" (x: f32be) -> (int: f32be, frac: f32be) {
i, f := #force_inline modf_f32(f32(x))
return f32be(i), f32be(f)
}
@(require_results)
modf_f64 :: proc "contextless" (x: f64) -> (int: f64, frac: f64) {
shift :: F64_SHIFT
mask :: F64_MASK
bias :: F64_BIAS
if x < 1 {
switch {
case x < 0:
int, frac = modf(-x)
return -int, -frac
case x == 0:
return x, x
}
return 0, x
}
i := transmute(u64)x
e := uint(i>>shift)&mask - bias
if e < shift {
i &~= 1<<(shift-e) - 1
}
int = transmute(f64)i
frac = x - int
return
}
@(require_results)
modf_f64le :: proc "contextless" (x: f64le) -> (int: f64le, frac: f64le) {
i, f := #force_inline modf_f64(f64(x))
return f64le(i), f64le(f)
}
@(require_results)
modf_f64be :: proc "contextless" (x: f64be) -> (int: f64be, frac: f64be) {
i, f := #force_inline modf_f64(f64(x))
return f64be(i), f64be(f)
}
modf :: proc{
modf_f16, modf_f16le, modf_f16be,
modf_f32, modf_f32le, modf_f32be,
modf_f64, modf_f64le, modf_f64be,
}
split_decimal :: modf
@(require_results)
mod_f16 :: proc "contextless" (x, y: f16) -> (n: f16) {
z := abs(y)
n = remainder(abs(x), z)
if sign(n) < 0 {
n += z
}
return copy_sign(n, x)
}
@(require_results) mod_f16le :: proc "contextless" (x, y: f16le) -> (n: f16le) { return #force_inline f16le(mod_f16(f16(x), f16(y))) }
@(require_results) mod_f16be :: proc "contextless" (x, y: f16be) -> (n: f16be) { return #force_inline f16be(mod_f16(f16(x), f16(y))) }
@(require_results)
mod_f32 :: proc "contextless" (x, y: f32) -> (n: f32) {
z := abs(y)
n = remainder(abs(x), z)
if sign(n) < 0 {
n += z
}
return copy_sign(n, x)
}
@(require_results)
mod_f32le :: proc "contextless" (x, y: f32le) -> (n: f32le) { return #force_inline f32le(mod_f32(f32(x), f32(y))) }
@(require_results)
mod_f32be :: proc "contextless" (x, y: f32be) -> (n: f32be) { return #force_inline f32be(mod_f32(f32(x), f32(y))) }
@(require_results)
mod_f64 :: proc "contextless" (x, y: f64) -> (n: f64) {
z := abs(y)
n = remainder(abs(x), z)
if sign(n) < 0 {
n += z
}
return copy_sign(n, x)
}
@(require_results)
mod_f64le :: proc "contextless" (x, y: f64le) -> (n: f64le) { return #force_inline f64le(mod_f64(f64(x), f64(y))) }
@(require_results)
mod_f64be :: proc "contextless" (x, y: f64be) -> (n: f64be) { return #force_inline f64be(mod_f64(f64(x), f64(y))) }
mod :: proc{
mod_f16, mod_f16le, mod_f16be,
mod_f32, mod_f32le, mod_f32be,
mod_f64, mod_f64le, mod_f64be,
}
@(require_results) remainder_f16 :: proc "contextless" (x, y: f16 ) -> f16 { return x - round(x/y) * y }
@(require_results) remainder_f16le :: proc "contextless" (x, y: f16le) -> f16le { return x - round(x/y) * y }
@(require_results) remainder_f16be :: proc "contextless" (x, y: f16be) -> f16be { return x - round(x/y) * y }
@(require_results) remainder_f32 :: proc "contextless" (x, y: f32 ) -> f32 { return x - round(x/y) * y }
@(require_results) remainder_f32le :: proc "contextless" (x, y: f32le) -> f32le { return x - round(x/y) * y }
@(require_results) remainder_f32be :: proc "contextless" (x, y: f32be) -> f32be { return x - round(x/y) * y }
@(require_results) remainder_f64 :: proc "contextless" (x, y: f64 ) -> f64 { return x - round(x/y) * y }
@(require_results) remainder_f64le :: proc "contextless" (x, y: f64le) -> f64le { return x - round(x/y) * y }
@(require_results) remainder_f64be :: proc "contextless" (x, y: f64be) -> f64be { return x - round(x/y) * y }
remainder :: proc{
remainder_f16, remainder_f16le, remainder_f16be,
remainder_f32, remainder_f32le, remainder_f32be,
remainder_f64, remainder_f64le, remainder_f64be,
}
@(require_results)
gcd :: proc "contextless" (x, y: $T) -> T
where intrinsics.type_is_ordered_numeric(T) {
x, y := x, y
for y != 0 {
x %= y
x, y = y, x
}
return abs(x)
}
@(require_results)
lcm :: proc "contextless" (x, y: $T) -> T
where intrinsics.type_is_ordered_numeric(T) {
return x / gcd(x, y) * y
}
@(require_results)
normalize_f16 :: proc "contextless" (x: f16) -> (y: f16, exponent: int) {
if abs(x) < F16_MIN {
return x * (1<<F16_SHIFT), -F16_SHIFT
}
return x, 0
}
@(require_results)
normalize_f32 :: proc "contextless" (x: f32) -> (y: f32, exponent: int) {
if abs(x) < F32_MIN {
return x * (1<<F32_SHIFT), -F32_SHIFT
}
return x, 0
}
@(require_results)
normalize_f64 :: proc "contextless" (x: f64) -> (y: f64, exponent: int) {
if abs(x) < F64_MIN {
return x * (1<<F64_SHIFT), -F64_SHIFT
}
return x, 0
}
@(require_results) normalize_f16le :: proc "contextless" (x: f16le) -> (y: f16le, exponent: int) { y0, e := normalize_f16(f16(x)); return f16le(y0), e }
@(require_results) normalize_f16be :: proc "contextless" (x: f16be) -> (y: f16be, exponent: int) { y0, e := normalize_f16(f16(x)); return f16be(y0), e }
@(require_results) normalize_f32le :: proc "contextless" (x: f32le) -> (y: f32le, exponent: int) { y0, e := normalize_f32(f32(x)); return f32le(y0), e }
@(require_results) normalize_f32be :: proc "contextless" (x: f32be) -> (y: f32be, exponent: int) { y0, e := normalize_f32(f32(x)); return f32be(y0), e }
@(require_results) normalize_f64le :: proc "contextless" (x: f64le) -> (y: f64le, exponent: int) { y0, e := normalize_f64(f64(x)); return f64le(y0), e }
@(require_results) normalize_f64be :: proc "contextless" (x: f64be) -> (y: f64be, exponent: int) { y0, e := normalize_f64(f64(x)); return f64be(y0), e }
normalize :: proc{
normalize_f16,
normalize_f32,
normalize_f64,
normalize_f16le,
normalize_f16be,
normalize_f32le,
normalize_f32be,
normalize_f64le,
normalize_f64be,
}
@(require_results)
frexp_f16 :: proc "contextless" (x: f16) -> (significand: f16, exponent: int) {
f, e := frexp_f64(f64(x))
return f16(f), e
}
@(require_results)
frexp_f16le :: proc "contextless" (x: f16le) -> (significand: f16le, exponent: int) {
f, e := frexp_f64(f64(x))
return f16le(f), e
}
@(require_results)
frexp_f16be :: proc "contextless" (x: f16be) -> (significand: f16be, exponent: int) {
f, e := frexp_f64(f64(x))
return f16be(f), e
}
@(require_results)
frexp_f32 :: proc "contextless" (x: f32) -> (significand: f32, exponent: int) {
f, e := frexp_f64(f64(x))
return f32(f), e
}
@(require_results)
frexp_f32le :: proc "contextless" (x: f32le) -> (significand: f32le, exponent: int) {
f, e := frexp_f64(f64(x))
return f32le(f), e
}
@(require_results)
frexp_f32be :: proc "contextless" (x: f32be) -> (significand: f32be, exponent: int) {
f, e := frexp_f64(f64(x))
return f32be(f), e
}
@(require_results)
frexp_f64 :: proc "contextless" (f: f64) -> (significand: f64, exponent: int) {
mask :: F64_MASK
shift :: F64_SHIFT
bias :: F64_BIAS
switch {
case f == 0:
return 0, 0
case is_inf(f) || is_nan(f):
return f, 0
}
f := f
f, exponent = normalize_f64(f)
x := transmute(u64)f
exponent += int((x>>shift)&mask) - bias + 1
x &~= mask << shift
x |= (-1 + bias) << shift
significand = transmute(f64)x
return
}
@(require_results)
frexp_f64le :: proc "contextless" (x: f64le) -> (significand: f64le, exponent: int) {
f, e := frexp_f64(f64(x))
return f64le(f), e
}
@(require_results)
frexp_f64be :: proc "contextless" (x: f64be) -> (significand: f64be, exponent: int) {
f, e := frexp_f64(f64(x))
return f64be(f), e
}
// frexp breaks the value into a normalized fraction, and an integral power of two
// It returns a significand and exponent satisfying x == significand * 2**exponent
// with the absolute value of significand in the intervalue of [0.5, 1).
//
// Special cases:
// frexp(+0) = +0, 0
// frexp(-0) = -0, 0
// frexp(+inf) = +inf, 0
// frexp(-inf) = -inf, 0
// frexp(NaN) = NaN, 0
frexp :: proc{
frexp_f16, frexp_f16le, frexp_f16be,
frexp_f32, frexp_f32le, frexp_f32be,
frexp_f64, frexp_f64le, frexp_f64be,
}
@(require_results)
binomial :: proc "contextless" (n, k: int) -> int {
switch {
case k <= 0: return 1
case 2*k > n: return binomial(n, n-k)
}
b := n
for i in 2..=k {
b = (b * (n+1-i))/i
}
return b
}
@(require_results)
factorial :: proc "contextless" (n: int) -> int {
when size_of(int) == size_of(i64) {
@(static, rodata) table := [21]int{
1,
1,
2,
6,
24,
120,
720,
5_040,
40_320,
362_880,
3_628_800,
39_916_800,
479_001_600,
6_227_020_800,
87_178_291_200,
1_307_674_368_000,
20_922_789_888_000,
355_687_428_096_000,
6_402_373_705_728_000,
121_645_100_408_832_000,
2_432_902_008_176_640_000,
}
} else {
@(static, rodata) table := [13]int{
1,
1,
2,
6,
24,
120,
720,
5_040,
40_320,
362_880,
3_628_800,
39_916_800,
479_001_600,
}
}
return table[n]
}
@(require_results)
classify_f16 :: proc "contextless" (x: f16) -> Float_Class {
switch {
case x == 0:
i := transmute(i16)x
if i < 0 {
return .Neg_Zero
}
return .Zero
case x*0.25 == x:
if x < 0 {
return .Neg_Inf
}
return .Inf
case !(x == x):
return .NaN
}
u := transmute(u16)x
exp := int(u>>10) & (1<<5 - 1)
if exp == 0 {
return .Subnormal
}
return .Normal
}
@(require_results) classify_f16le :: proc "contextless" (x: f16le) -> Float_Class { return #force_inline classify_f16(f16(x)) }
@(require_results) classify_f16be :: proc "contextless" (x: f16be) -> Float_Class { return #force_inline classify_f16(f16(x)) }
@(require_results)
classify_f32 :: proc "contextless" (x: f32) -> Float_Class {
switch {
case x == 0:
i := transmute(i32)x
if i < 0 {
return .Neg_Zero
}
return .Zero
case x*0.5 == x:
if x < 0 {
return .Neg_Inf
}
return .Inf
case !(x == x):
return .NaN
}
u := transmute(u32)x
exp := int(u>>23) & (1<<8 - 1)
if exp == 0 {
return .Subnormal
}
return .Normal
}
@(require_results) classify_f32le :: proc "contextless" (x: f32le) -> Float_Class { return #force_inline classify_f32(f32(x)) }
@(require_results) classify_f32be :: proc "contextless" (x: f32be) -> Float_Class { return #force_inline classify_f32(f32(x)) }
@(require_results)
classify_f64 :: proc "contextless" (x: f64) -> Float_Class {
switch {
case x == 0:
i := transmute(i64)x
if i < 0 {
return .Neg_Zero
}
return .Zero
case x*0.5 == x:
if x < 0 {
return .Neg_Inf
}
return .Inf
case !(x == x):
return .NaN
}
u := transmute(u64)x
exp := int(u>>52) & (1<<11 - 1)
if exp == 0 {
return .Subnormal
}
return .Normal
}
@(require_results) classify_f64le :: proc "contextless" (x: f64le) -> Float_Class { return #force_inline classify_f64(f64(x)) }
@(require_results) classify_f64be :: proc "contextless" (x: f64be) -> Float_Class { return #force_inline classify_f64(f64(x)) }
// Returns the `Float_Class` of the value, i.e. whether normal, subnormal, zero, negative zero, NaN, infinity or
// negative infinity.
classify :: proc{
classify_f16, classify_f16le, classify_f16be,
classify_f32, classify_f32le, classify_f32be,
classify_f64, classify_f64le, classify_f64be,
}
@(require_results) is_nan_f16 :: proc "contextless" (x: f16) -> bool { return classify(x) == .NaN }
@(require_results) is_nan_f16le :: proc "contextless" (x: f16le) -> bool { return classify(x) == .NaN }
@(require_results) is_nan_f16be :: proc "contextless" (x: f16be) -> bool { return classify(x) == .NaN }
@(require_results) is_nan_f32 :: proc "contextless" (x: f32) -> bool { return classify(x) == .NaN }
@(require_results) is_nan_f32le :: proc "contextless" (x: f32le) -> bool { return classify(x) == .NaN }
@(require_results) is_nan_f32be :: proc "contextless" (x: f32be) -> bool { return classify(x) == .NaN }
@(require_results) is_nan_f64 :: proc "contextless" (x: f64) -> bool { return classify(x) == .NaN }
@(require_results) is_nan_f64le :: proc "contextless" (x: f64le) -> bool { return classify(x) == .NaN }
@(require_results) is_nan_f64be :: proc "contextless" (x: f64be) -> bool { return classify(x) == .NaN }
is_nan :: proc{
is_nan_f16, is_nan_f16le, is_nan_f16be,
is_nan_f32, is_nan_f32le, is_nan_f32be,
is_nan_f64, is_nan_f64le, is_nan_f64be,
}
// is_inf reports whether f is an infinity, according to sign.
// If sign > 0, is_inf reports whether f is positive infinity.
// If sign < 0, is_inf reports whether f is negative infinity.
// If sign == 0, is_inf reports whether f is either infinity.
@(require_results)
is_inf_f16 :: proc "contextless" (x: f16, sign: int = 0) -> bool {
class := classify(x)
switch {
case sign > 0:
return class == .Inf
case sign < 0:
return class == .Neg_Inf
}
return class == .Inf || class == .Neg_Inf
}
@(require_results)
is_inf_f16le :: proc "contextless" (x: f16le, sign: int = 0) -> bool {
return #force_inline is_inf_f16(f16(x), sign)
}
@(require_results)
is_inf_f16be :: proc "contextless" (x: f16be, sign: int = 0) -> bool {
return #force_inline is_inf_f16(f16(x), sign)
}
@(require_results)
is_inf_f32 :: proc "contextless" (x: f32, sign: int = 0) -> bool {
class := classify(x)
switch {
case sign > 0:
return class == .Inf
case sign < 0:
return class == .Neg_Inf
}
return class == .Inf || class == .Neg_Inf
}
@(require_results)
is_inf_f32le :: proc "contextless" (x: f32le, sign: int = 0) -> bool {
return #force_inline is_inf_f32(f32(x), sign)
}
@(require_results)
is_inf_f32be :: proc "contextless" (x: f32be, sign: int = 0) -> bool {
return #force_inline is_inf_f32(f32(x), sign)
}
@(require_results)
is_inf_f64 :: proc "contextless" (x: f64, sign: int = 0) -> bool {
class := classify(x)
switch {
case sign > 0:
return class == .Inf
case sign < 0:
return class == .Neg_Inf
}
return class == .Inf || class == .Neg_Inf
}
@(require_results)
is_inf_f64le :: proc "contextless" (x: f64le, sign: int = 0) -> bool {
return #force_inline is_inf_f64(f64(x), sign)
}
@(require_results)
is_inf_f64be :: proc "contextless" (x: f64be, sign: int = 0) -> bool {
return #force_inline is_inf_f64(f64(x), sign)
}
is_inf :: proc{
is_inf_f16, is_inf_f16le, is_inf_f16be,
is_inf_f32, is_inf_f32le, is_inf_f32be,
is_inf_f64, is_inf_f64le, is_inf_f64be,
}
@(require_results)
inf_f16 :: proc "contextless" (sign: int) -> f16 {
return f16(inf_f64(sign))
}
@(require_results)
inf_f16le :: proc "contextless" (sign: int) -> f16le {
return f16le(inf_f64(sign))
}
@(require_results)
inf_f16be :: proc "contextless" (sign: int) -> f16be {
return f16be(inf_f64(sign))
}
@(require_results)
inf_f32 :: proc "contextless" (sign: int) -> f32 {
return f32(inf_f64(sign))
}
@(require_results)
inf_f32le :: proc "contextless" (sign: int) -> f32le {
return f32le(inf_f64(sign))
}
@(require_results)
inf_f32be :: proc "contextless" (sign: int) -> f32be {
return f32be(inf_f64(sign))
}
@(require_results)
inf_f64 :: proc "contextless" (sign: int) -> f64 {
if sign >= 0 {
return 0h7ff00000_00000000
} else {
return 0hfff00000_00000000
}
}
@(require_results)
inf_f64le :: proc "contextless" (sign: int) -> f64le {
return f64le(inf_f64(sign))
}
@(require_results)
inf_f64be :: proc "contextless" (sign: int) -> f64be {
return f64be(inf_f64(sign))
}
@(require_results)
nan_f16 :: proc "contextless" () -> f16 {
return f16(nan_f64())
}
@(require_results)
nan_f16le :: proc "contextless" () -> f16le {
return f16le(nan_f64())
}
@(require_results)
nan_f16be :: proc "contextless" () -> f16be {
return f16be(nan_f64())
}
@(require_results)
nan_f32 :: proc "contextless" () -> f32 {
return f32(nan_f64())
}
@(require_results)
nan_f32le :: proc "contextless" () -> f32le {
return f32le(nan_f64())
}
@(require_results)
nan_f32be :: proc "contextless" () -> f32be {
return f32be(nan_f64())
}
@(require_results)
nan_f64 :: proc "contextless" () -> f64 {
return 0h7ff80000_00000001
}
@(require_results)
nan_f64le :: proc "contextless" () -> f64le {
return f64le(nan_f64())
}
@(require_results)
nan_f64be :: proc "contextless" () -> f64be {
return f64be(nan_f64())
}
@(require_results)
is_power_of_two :: proc "contextless" (x: int) -> bool {
return x > 0 && (x & (x-1)) == 0
}
@(require_results)
next_power_of_two :: proc "contextless" (x: int) -> int {
k := x -1
when size_of(int) == 8 {
k = k | (k >> 32)
}
k = k | (k >> 16)
k = k | (k >> 8)
k = k | (k >> 4)
k = k | (k >> 2)
k = k | (k >> 1)
k += 1 + int(x <= 0)
return k
}
@(require_results)
sum :: proc "contextless" (x: $T/[]$E) -> (res: E)
where intrinsics.type_is_numeric(E) {
for i in x {
res += i
}
return
}
@(require_results)
prod :: proc "contextless" (x: $T/[]$E) -> (res: E)
where intrinsics.type_is_numeric(E) {
res = 1
for i in x {
res *= i
}
return
}
cumsum_inplace :: proc "contextless" (x: $T/[]$E)
where intrinsics.type_is_numeric(E) {
for i in 1..<len(x) {
x[i] = x[i-1] + x[i]
}
}
@(require_results)
cumsum :: proc "contextless" (dst, src: $T/[]$E) -> T
where intrinsics.type_is_numeric(E) {
N := min(len(dst), len(src))
if N > 0 {
dst[0] = src[0]
for i in 1..<N {
dst[i] = dst[i-1] + src[i]
}
}
return dst[:N]
}
@(require_results)
atan2_f16 :: proc "contextless" (y, x: f16) -> f16 {
// TODO(bill): Better atan2_f16
return f16(atan2_f64(f64(y), f64(x)))
}
@(require_results)
atan2_f16le :: proc "contextless" (y, x: f16le) -> f16le {
// TODO(bill): Better atan2_f16
return f16le(atan2_f64(f64(y), f64(x)))
}
@(require_results)
atan2_f16be :: proc "contextless" (y, x: f16be) -> f16be {
// TODO(bill): Better atan2_f16
return f16be(atan2_f64(f64(y), f64(x)))
}
@(require_results)
atan2_f32 :: proc "contextless" (y, x: f32) -> f32 {
// TODO(bill): Better atan2_f32
return f32(atan2_f64(f64(y), f64(x)))
}
@(require_results)
atan2_f32le :: proc "contextless" (y, x: f32le) -> f32le {
// TODO(bill): Better atan2_f32
return f32le(atan2_f64(f64(y), f64(x)))
}
@(require_results)
atan2_f32be :: proc "contextless" (y, x: f32be) -> f32be {
// TODO(bill): Better atan2_f32
return f32be(atan2_f64(f64(y), f64(x)))
}
@(require_results)
atan2_f64 :: proc "contextless" (y, x: f64) -> f64 {
// TODO(bill): Faster atan2_f64 if possible
// The original C code:
// Stephen L. Moshier
// moshier@na-net.ornl.gov
NAN :: 0h7fff_ffff_ffff_ffff
INF :: 0h7FF0_0000_0000_0000
PI :: 0h4009_21fb_5444_2d18
atan :: proc "contextless" (x: f64) -> f64 {
if x == 0 {
return x
}
if x > 0 {
return s_atan(x)
}
return -s_atan(-x)
}
// s_atan reduces its argument (known to be positive) to the range [0, 0.66] and calls x_atan.
s_atan :: proc "contextless" (x: f64) -> f64 {
MORE_BITS :: 6.123233995736765886130e-17 // pi/2 = PIO2 + MORE_BITS
TAN3PI08 :: 2.41421356237309504880 // tan(3*pi/8)
if x <= 0.66 {
return x_atan(x)
}
if x > TAN3PI08 {
return PI/2 - x_atan(1/x) + MORE_BITS
}
return PI/4 + x_atan((x-1)/(x+1)) + 0.5*MORE_BITS
}
// x_atan evaluates a series valid in the range [0, 0.66].
x_atan :: proc "contextless" (x: f64) -> f64 {
P0 :: -8.750608600031904122785e-01
P1 :: -1.615753718733365076637e+01
P2 :: -7.500855792314704667340e+01
P3 :: -1.228866684490136173410e+02
P4 :: -6.485021904942025371773e+01
Q0 :: +2.485846490142306297962e+01
Q1 :: +1.650270098316988542046e+02
Q2 :: +4.328810604912902668951e+02
Q3 :: +4.853903996359136964868e+02
Q4 :: +1.945506571482613964425e+02
z := x * x
z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4)
z = x*z + x
return z
}
switch {
case is_nan(y) || is_nan(x):
return NAN
case y == 0:
if x >= 0 && !sign_bit(x) {
return copy_sign(0.0, y)
}
return copy_sign(PI, y)
case x == 0:
return copy_sign(PI/2, y)
case is_inf(x, 0):
if is_inf(x, 1) {
if is_inf(y, 0) {
return copy_sign(PI/4, y)
}
return copy_sign(0, y)
}
if is_inf(y, 0) {
return copy_sign(3*PI/4, y)
}
return copy_sign(PI, y)
case is_inf(y, 0):
return copy_sign(PI/2, y)
}
q := atan(y / x)
if x < 0 {
if q <= 0 {
return q + PI
}
return q - PI
}
return q
}
@(require_results)
atan2_f64le :: proc "contextless" (y, x: f64le) -> f64le {
// TODO(bill): Better atan2_f32
return f64le(atan2_f64(f64(y), f64(x)))
}
@(require_results)
atan2_f64be :: proc "contextless" (y, x: f64be) -> f64be {
// TODO(bill): Better atan2_f32
return f64be(atan2_f64(f64(y), f64(x)))
}
/*
Return the arc tangent of y/x in radians. Defined on the domain [-, ] for x and y with a range of [-π, π]
Special cases:
atan2(y, NaN) = NaN
atan2(NaN, x) = NaN
atan2(+0, x>=0) = + 0
atan2(-0, x>=0) = - 0
atan2(+0, x<=-0) = + π
atan2(-0, x<=-0) = - π
atan2(y>0, 0) = + π/2
atan2(y<0, 0) = - π/2
atan2(+, +) = + π/4
atan2(-, +) = - π/4
atan2(+, -) = 3π/4
atan2(-, -) = - 3π/4
atan2(y, +) = 0
atan2(y>0, -) = + π
atan2(y<0, -) = - π
atan2(+, x) = + π/2
atan2(-, x) = - π/2
*/
atan2 :: proc{
atan2_f64, atan2_f32, atan2_f16,
atan2_f64le, atan2_f64be,
atan2_f32le, atan2_f32be,
atan2_f16le, atan2_f16be,
}
// Return the arc tangent of x, in radians. Defined on the domain of [-∞, ∞] with a range of [-π/2, π/2]
@(require_results)
atan :: proc "contextless" (x: $T) -> T where intrinsics.type_is_float(T) {
return atan2(x, 1)
}
@(require_results)
asin_f64 :: proc "contextless" (x: f64) -> f64 {
/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
pio2_hi :: 0h3FF921FB54442D18
pio2_lo :: 0h3C91A62633145C07
pS0 :: 0h3FC5555555555555
pS1 :: 0hBFD4D61203EB6F7D
pS2 :: 0h3FC9C1550E884455
pS3 :: 0hBFA48228B5688F3B
pS4 :: 0h3F49EFE07501B288
pS5 :: 0h3F023DE10DFDF709
qS1 :: 0hC0033A271C8A2D4B
qS2 :: 0h40002AE59C598AC8
qS3 :: 0hBFE6066C1B8D0159
qS4 :: 0h3FB3B8C5B12E9282
R :: #force_inline proc "contextless" (z: f64) -> f64 {
p, q: f64
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))))
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)))
return p/q
}
x := x
z, r, s: f64
dwords := transmute([2]u32)x
hx := dwords[1]
ix := hx & 0x7fffffff
/* |x| >= 1 or nan */
if ix >= 0x3ff00000 {
lx := dwords[0]
if (ix-0x3ff00000 | lx) == 0 {
/* asin(1) = +-pi/2 with inexact */
return x*pio2_hi + 1e-120
}
return 0/(x-x)
}
/* |x| < 0.5 */
if ix < 0x3fe00000 {
/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
if ix < 0x3e500000 && ix >= 0x00100000 {
return x
}
return x + x*R(x*x)
}
/* 1 > |x| >= 0.5 */
z = (1 - abs(x))*0.5
s = sqrt(z)
r = R(z)
if ix >= 0x3fef3333 { /* if |x| > 0.975 */
x = pio2_hi-(2*(s+s*r)-pio2_lo)
} else {
f, c: f64
/* f+c = sqrt(z) */
f = s
(^u64)(&f)^ &= 0xffffffff_00000000
c = (z-f*f)/(s+f)
x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f))
}
return -x if hx >> 31 != 0 else x
}
@(require_results)
asin_f64le :: proc "contextless" (x: f64le) -> f64le {
return f64le(asin_f64(f64(x)))
}
@(require_results)
asin_f64be :: proc "contextless" (x: f64be) -> f64be {
return f64be(asin_f64(f64(x)))
}
@(require_results)
asin_f32 :: proc "contextless" (x: f32) -> f32 {
return f32(asin_f64(f64(x)))
}
@(require_results)
asin_f32le :: proc "contextless" (x: f32le) -> f32le {
return f32le(asin_f64(f64(x)))
}
@(require_results)
asin_f32be :: proc "contextless" (x: f32be) -> f32be {
return f32be(asin_f64(f64(x)))
}
@(require_results)
asin_f16 :: proc "contextless" (x: f16) -> f16 {
return f16(asin_f64(f64(x)))
}
@(require_results)
asin_f16le :: proc "contextless" (x: f16le) -> f16le {
return f16le(asin_f64(f64(x)))
}
@(require_results)
asin_f16be :: proc "contextless" (x: f16be) -> f16be {
return f16be(asin_f64(f64(x)))
}
// Return the arc sine of x, in radians. Defined on the domain of [-1, 1] with a range of [-π/2, π/2]
asin :: proc{
asin_f64, asin_f32, asin_f16,
asin_f64le, asin_f64be,
asin_f32le, asin_f32be,
asin_f16le, asin_f16be,
}
@(require_results)
acos_f64 :: proc "contextless" (x: f64) -> f64 {
/* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
pio2_hi :: 0h3FF921FB54442D18
pio2_lo :: 0h3C91A62633145C07
pS0 :: 0h3FC5555555555555
pS1 :: 0hBFD4D61203EB6F7D
pS2 :: 0h3FC9C1550E884455
pS3 :: 0hBFA48228B5688F3B
pS4 :: 0h3F49EFE07501B288
pS5 :: 0h3F023DE10DFDF709
qS1 :: 0hC0033A271C8A2D4B
qS2 :: 0h40002AE59C598AC8
qS3 :: 0hBFE6066C1B8D0159
qS4 :: 0h3FB3B8C5B12E9282
R :: #force_inline proc "contextless" (z: f64) -> f64 {
p, q: f64
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))))
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)))
return p/q
}
z, w, s, c, df: f64
dwords := transmute([2]u32)x
hx := dwords[1]
ix := hx & 0x7fffffff
/* |x| >= 1 or nan */
if ix >= 0x3ff00000 {
lx := dwords[0]
if (ix-0x3ff00000 | lx) == 0 {
/* acos(1)=0, acos(-1)=pi */
if hx >> 31 != 0 {
return 2*pio2_hi + 1e-120
}
return 0
}
return 0/(x-x)
}
/* |x| < 0.5 */
if ix < 0x3fe00000 {
if ix <= 0x3c600000 { /* |x| < 2**-57 */
return pio2_hi + 1e-120
}
return pio2_hi - (x - (pio2_lo-x*R(x*x)))
}
/* x < -0.5 */
if hx >> 31 != 0 {
z = (1.0+x)*0.5
s = sqrt(z)
w = R(z)*s-pio2_lo
return 2*(pio2_hi - (s+w))
}
/* x > 0.5 */
z = (1.0-x)*0.5
s = sqrt(z)
df = s
(^u64)(&df)^ &= 0xffffffff_00000000
c = (z-df*df)/(s+df)
w = R(z)*s+c
return 2*(df+w)
}
@(require_results)
acos_f64le :: proc "contextless" (x: f64le) -> f64le {
return f64le(acos_f64(f64(x)))
}
@(require_results)
acos_f64be :: proc "contextless" (x: f64be) -> f64be {
return f64be(acos_f64(f64(x)))
}
@(require_results)
acos_f32 :: proc "contextless" (x: f32) -> f32 {
return f32(acos_f64(f64(x)))
}
@(require_results)
acos_f32le :: proc "contextless" (x: f32le) -> f32le {
return f32le(acos_f64(f64(x)))
}
@(require_results)
acos_f32be :: proc "contextless" (x: f32be) -> f32be {
return f32be(acos_f64(f64(x)))
}
@(require_results)
acos_f16 :: proc "contextless" (x: f16) -> f16 {
return f16(acos_f64(f64(x)))
}
@(require_results)
acos_f16le :: proc "contextless" (x: f16le) -> f16le {
return f16le(acos_f64(f64(x)))
}
@(require_results)
acos_f16be :: proc "contextless" (x: f16be) -> f16be {
return f16be(acos_f64(f64(x)))
}
// Return the arc cosine of x, in radians. Defined on the domain of [-1, 1] with a range of [0, π].
acos :: proc{
acos_f64, acos_f32, acos_f16,
acos_f64le, acos_f64be,
acos_f32le, acos_f32be,
acos_f16le, acos_f16be,
}
@(require_results)
sinh :: proc "contextless" (x: $T) -> T where intrinsics.type_is_float(T) {
return copy_sign(((exp(x) - exp(-x))*0.5), x)
}
@(require_results)
cosh :: proc "contextless" (x: $T) -> T where intrinsics.type_is_float(T) {
return ((exp(x) + exp(-x))*0.5)
}
@(require_results)
tanh :: proc "contextless" (y: $T) -> T where intrinsics.type_is_float(T) {
P0 :: -9.64399179425052238628e-1
P1 :: -9.92877231001918586564e1
P2 :: -1.61468768441708447952e3
Q0 :: +1.12811678491632931402e2
Q1 :: +2.23548839060100448583e3
Q2 :: +4.84406305325125486048e3
MAXLOG :: 8.8029691931113054295988e+01 // log(2**127)
x := f64(y)
z := abs(x)
switch {
case z > 0.5*MAXLOG:
if x < 0 {
return -1
}
return 1
case z >= 0.625:
s := exp(2 * z)
z = 1 - 2/(s+1)
if x < 0 {
z = -z
}
case:
if x == 0 {
return T(x)
}
s := x * x
z = x + x*s*((P0*s+P1)*s+P2)/(((s+Q0)*s+Q1)*s+Q2)
}
return T(z)
}
@(require_results)
asinh :: proc "contextless" (y: $T) -> T where intrinsics.type_is_float(T) {
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_asinh.c
// and came with this notice.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
LN2 :: 0h3FE62E42FEFA39EF
NEAR_ZERO :: 1.0 / (1 << 28)
LARGE :: 1 << 28
x := f64(y)
if is_nan(x) || is_inf(x) {
return T(x)
}
sign := false
if x < 0 {
x = -x
sign = true
}
temp: f64
switch {
case x > LARGE:
temp = ln(x) + LN2
case x > 2:
temp = ln(2*x + 1/(sqrt(x*x + 1) + x))
case x < NEAR_ZERO:
temp = x
case:
temp = log1p(x + x*x/(1 + sqrt(1 + x*x)))
}
if sign {
temp = -temp
}
return T(temp)
}
@(require_results)
acosh :: proc "contextless" (y: $T) -> T where intrinsics.type_is_float(T) {
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c
// and came with this notice.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
LARGE :: 1<<28
LN2 :: 0h3FE62E42FEFA39EF
x := f64(y)
switch {
case x < 1 || is_nan(x):
return T(nan_f64())
case x == 1:
return 0
case x >= LARGE:
return T(ln(x) + LN2)
case x > 2:
return T(ln(2*x - 1/(x+sqrt(x*x-1))))
}
t := x-1
return T(log1p(t + sqrt(2*t + t*t)))
}
@(require_results)
atanh :: proc "contextless" (y: $T) -> T where intrinsics.type_is_float(T) {
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_atanh.c
// and came with this notice.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
NEAR_ZERO :: 1.0 / (1 << 28)
x := f64(y)
switch {
case x < -1 || x > 1 || is_nan(x):
return T(nan_f64())
case x == 1:
return T(inf_f64(1))
case x == -1:
return T(inf_f64(-1))
}
sign := false
if x < 0 {
x = -x
sign = true
}
temp: f64
switch {
case x < NEAR_ZERO:
temp = x
case x < 0.5:
temp = x + x
temp = 0.5 * log1p(temp + temp*x/(1-x))
case:
temp = 0.5 * log1p((x+x)/(1-x))
}
if sign {
temp = -temp
}
return T(temp)
}
@(require_results)
ilogb_f16 :: proc "contextless" (val: f16) -> int {
switch {
case val == 0: return int(min(i32))
case is_nan(val): return int(max(i32))
case is_inf(val): return int(max(i32))
}
x, exp := normalize_f16(val)
return int(((transmute(u16)x)>>F16_SHIFT)&F16_MASK) - F16_BIAS + exp
}
@(require_results)
ilogb_f32 :: proc "contextless" (val: f32) -> int {
switch {
case val == 0: return int(min(i32))
case is_nan(val): return int(max(i32))
case is_inf(val): return int(max(i32))
}
x, exp := normalize_f32(val)
return int(((transmute(u32)x)>>F32_SHIFT)&F32_MASK) - F32_BIAS + exp
}
@(require_results)
ilogb_f64 :: proc "contextless" (val: f64) -> int {
switch {
case val == 0: return int(min(i32))
case is_nan(val): return int(max(i32))
case is_inf(val): return int(max(i32))
}
x, exp := normalize_f64(val)
return int(((transmute(u64)x)>>F64_SHIFT)&F64_MASK) - F64_BIAS + exp
}
@(require_results) ilogb_f16le :: proc "contextless" (value: f16le) -> int { return ilogb_f16(f16(value)) }
@(require_results) ilogb_f16be :: proc "contextless" (value: f16be) -> int { return ilogb_f16(f16(value)) }
@(require_results) ilogb_f32le :: proc "contextless" (value: f32le) -> int { return ilogb_f32(f32(value)) }
@(require_results) ilogb_f32be :: proc "contextless" (value: f32be) -> int { return ilogb_f32(f32(value)) }
@(require_results) ilogb_f64le :: proc "contextless" (value: f64le) -> int { return ilogb_f64(f64(value)) }
@(require_results) ilogb_f64be :: proc "contextless" (value: f64be) -> int { return ilogb_f64(f64(value)) }
ilogb :: proc {
ilogb_f16,
ilogb_f32,
ilogb_f64,
ilogb_f16le,
ilogb_f16be,
ilogb_f32le,
ilogb_f32be,
ilogb_f64le,
ilogb_f64be,
}
@(require_results)
logb_f16 :: proc "contextless" (val: f16) -> f16 {
switch {
case val == 0: return inf_f16(-1)
case is_inf(val): return inf_f16(+1)
case is_nan(val): return val
}
return f16(ilogb(val))
}
@(require_results)
logb_f32 :: proc "contextless" (val: f32) -> f32 {
switch {
case val == 0: return inf_f32(-1)
case is_inf(val): return inf_f32(+1)
case is_nan(val): return val
}
return f32(ilogb(val))
}
@(require_results)
logb_f64 :: proc "contextless" (val: f64) -> f64 {
switch {
case val == 0: return inf_f64(-1)
case is_inf(val): return inf_f64(+1)
case is_nan(val): return val
}
return f64(ilogb(val))
}
@(require_results) logb_f16le :: proc "contextless" (value: f16le) -> f16le { return f16le(logb_f16(f16(value))) }
@(require_results) logb_f16be :: proc "contextless" (value: f16be) -> f16be { return f16be(logb_f16(f16(value))) }
@(require_results) logb_f32le :: proc "contextless" (value: f32le) -> f32le { return f32le(logb_f32(f32(value))) }
@(require_results) logb_f32be :: proc "contextless" (value: f32be) -> f32be { return f32be(logb_f32(f32(value))) }
@(require_results) logb_f64le :: proc "contextless" (value: f64le) -> f64le { return f64le(logb_f64(f64(value))) }
@(require_results) logb_f64be :: proc "contextless" (value: f64be) -> f64be { return f64be(logb_f64(f64(value))) }
logb :: proc {
logb_f16,
logb_f32,
logb_f64,
logb_f16le,
logb_f16be,
logb_f32le,
logb_f32be,
logb_f64le,
logb_f64be,
}
@(require_results)
nextafter_f16 :: proc "contextless" (x, y: f16) -> (r: f16) {
switch {
case is_nan(x) || is_nan(y):
r = nan_f16()
case x == y:
r = x
case x == 0:
r = copy_sign_f16(transmute(f16)u16(1), y)
case (y > x) == (x > 0):
r = transmute(f16)(transmute(u16)x + 1)
case:
r = transmute(f16)(transmute(u16)x - 1)
}
return
}
@(require_results)
nextafter_f32 :: proc "contextless" (x, y: f32) -> (r: f32) {
switch {
case is_nan(x) || is_nan(y):
r = nan_f32()
case x == y:
r = x
case x == 0:
r = copy_sign_f32(transmute(f32)u32(1), y)
case (y > x) == (x > 0):
r = transmute(f32)(transmute(u32)x + 1)
case:
r = transmute(f32)(transmute(u32)x - 1)
}
return
}
@(require_results)
nextafter_f64 :: proc "contextless" (x, y: f64) -> (r: f64) {
switch {
case is_nan(x) || is_nan(y):
r = nan_f64()
case x == y:
r = x
case x == 0:
r = copy_sign_f64(transmute(f64)u64(1), y)
case (y > x) == (x > 0):
r = transmute(f64)(transmute(u64)x + 1)
case:
r = transmute(f64)(transmute(u64)x - 1)
}
return
}
@(require_results) nextafter_f16le :: proc "contextless" (x, y: f16le) -> (r: f16le) { return f16le(nextafter_f16(f16(x), f16(y))) }
@(require_results) nextafter_f16be :: proc "contextless" (x, y: f16be) -> (r: f16be) { return f16be(nextafter_f16(f16(x), f16(y))) }
@(require_results) nextafter_f32le :: proc "contextless" (x, y: f32le) -> (r: f32le) { return f32le(nextafter_f32(f32(x), f32(y))) }
@(require_results) nextafter_f32be :: proc "contextless" (x, y: f32be) -> (r: f32be) { return f32be(nextafter_f32(f32(x), f32(y))) }
@(require_results) nextafter_f64le :: proc "contextless" (x, y: f64le) -> (r: f64le) { return f64le(nextafter_f64(f64(x), f64(y))) }
@(require_results) nextafter_f64be :: proc "contextless" (x, y: f64be) -> (r: f64be) { return f64be(nextafter_f64(f64(x), f64(y))) }
nextafter :: proc{
nextafter_f16, nextafter_f16le, nextafter_f16be,
nextafter_f32, nextafter_f32le, nextafter_f32be,
nextafter_f64, nextafter_f64le, nextafter_f64be,
}
@(require_results)
hypot_f16 :: proc "contextless" (x, y: f16) -> (r: f16) {
p, q := abs(x), abs(y)
switch {
case is_inf(p, 1) || is_inf(q, 1):
return inf_f16(1)
case is_nan(p) || is_nan(q):
return nan_f16()
}
if p < q {
p, q = q, p
}
if p == 0 {
return 0
}
q = q / p
return p * sqrt(1+q*q)
}
@(require_results)
hypot_f32 :: proc "contextless" (x, y: f32) -> (r: f32) {
p, q := abs(x), abs(y)
switch {
case is_inf(p, 1) || is_inf(q, 1):
return inf_f32(1)
case is_nan(p) || is_nan(q):
return nan_f32()
}
if p < q {
p, q = q, p
}
if p == 0 {
return 0
}
q = q / p
return p * sqrt(1+q*q)
}
@(require_results)
hypot_f64 :: proc "contextless" (x, y: f64) -> (r: f64) {
p, q := abs(x), abs(y)
switch {
case is_inf(p, 1) || is_inf(q, 1):
return inf_f64(1)
case is_nan(p) || is_nan(q):
return nan_f64()
}
if p < q {
p, q = q, p
}
if p == 0 {
return 0
}
q = q / p
return p * sqrt(1+q*q)
}
@(require_results) hypot_f16le :: proc "contextless" (x, y: f16le) -> (r: f16le) { return f16le(hypot_f16(f16(x), f16(y))) }
@(require_results) hypot_f16be :: proc "contextless" (x, y: f16be) -> (r: f16be) { return f16be(hypot_f16(f16(x), f16(y))) }
@(require_results) hypot_f32le :: proc "contextless" (x, y: f32le) -> (r: f32le) { return f32le(hypot_f32(f32(x), f32(y))) }
@(require_results) hypot_f32be :: proc "contextless" (x, y: f32be) -> (r: f32be) { return f32be(hypot_f32(f32(x), f32(y))) }
@(require_results) hypot_f64le :: proc "contextless" (x, y: f64le) -> (r: f64le) { return f64le(hypot_f64(f64(x), f64(y))) }
@(require_results) hypot_f64be :: proc "contextless" (x, y: f64be) -> (r: f64be) { return f64be(hypot_f64(f64(x), f64(y))) }
// hypot returns Sqrt(p*p + q*q), taking care to avoid unnecessary overflow and underflow.
//
// Special cases:
// hypot(±Inf, q) = +Inf
// hypot(p, ±Inf) = +Inf
// hypot(NaN, q) = NaN
// hypot(p, NaN) = NaN
hypot :: proc{
hypot_f16, hypot_f16le, hypot_f16be,
hypot_f32, hypot_f32le, hypot_f32be,
hypot_f64, hypot_f64le, hypot_f64be,
}
@(require_results)
count_digits_of_base :: proc "contextless" (value: $T, $base: int) -> (digits: int) where intrinsics.type_is_integer(T) {
#assert(base >= 2, "base must be 2 or greater.")
value := value
when !intrinsics.type_is_unsigned(T) {
value = abs(value)
}
when base == 2 {
digits = max(1, 8 * size_of(T) - int(intrinsics.count_leading_zeros(value)))
} else when intrinsics.count_ones(base) == 1 {
free_bits := 8 * size_of(T) - int(intrinsics.count_leading_zeros(value))
digits, free_bits = divmod(free_bits, intrinsics.constant_log2(base))
if free_bits > 0 {
digits += 1
}
digits = max(1, digits)
} else {
digits = 1
base := cast(T)base
for value >= base {
value /= base
digits += 1
}
}
return
}
F16_DIG :: 3
F16_EPSILON :: 0.00097656
F16_GUARD :: 0
F16_MANT_DIG :: 11
F16_MAX :: 65504.0
F16_MAX_10_EXP :: 4
F16_MAX_EXP :: 15
F16_MIN :: 6.10351562e-5
F16_MIN_10_EXP :: -4
F16_MIN_EXP :: -14
F16_NORMALIZE :: 0
F16_RADIX :: 2
F16_ROUNDS :: 1
F32_DIG :: 6
F32_EPSILON :: 1.192092896e-07
F32_GUARD :: 0
F32_MANT_DIG :: 24
F32_MAX :: 3.402823466e+38
F32_MAX_10_EXP :: 38
F32_MAX_EXP :: 128
F32_MIN :: 1.175494351e-38
F32_MIN_10_EXP :: -37
F32_MIN_EXP :: -125
F32_NORMALIZE :: 0
F32_RADIX :: 2
F32_ROUNDS :: 1
F64_DIG :: 15 // Number of representable decimal digits.
F64_EPSILON :: 2.2204460492503131e-016 // Smallest number such that `1.0 + F64_EPSILON != 1.0`.
F64_MANT_DIG :: 53 // Number of bits in the mantissa.
F64_MAX :: 1.7976931348623158e+308 // Maximum representable value.
F64_MAX_10_EXP :: 308 // Maximum base-10 exponent yielding normalized value.
F64_MAX_EXP :: 1024 // One greater than the maximum possible base-2 exponent yielding normalized value.
F64_MIN :: 2.2250738585072014e-308 // Minimum positive normalized value.
F64_MIN_10_EXP :: -307 // Minimum base-10 exponent yielding normalized value.
F64_MIN_EXP :: -1021 // One greater than the minimum possible base-2 exponent yielding normalized value.
F64_RADIX :: 2 // Exponent radix.
F64_ROUNDS :: 1 // Addition rounding: near.
F16_MASK :: 0x1f
F16_SHIFT :: 16 - 6
F16_BIAS :: 0xf
F32_MASK :: 0xff
F32_SHIFT :: 32 - 9
F32_BIAS :: 0x7f
F64_MASK :: 0x7ff
F64_SHIFT :: 64 - 12
F64_BIAS :: 0x3ff
INF_F16 :: f16(0h7C00)
NEG_INF_F16 :: f16(0hFC00)
SNAN_F16 :: f16(0h7C01)
QNAN_F16 :: f16(0h7E01)
INF_F32 :: f32(0h7F80_0000)
NEG_INF_F32 :: f32(0hFF80_0000)
SNAN_F32 :: f32(0hFF80_0001)
QNAN_F32 :: f32(0hFFC0_0001)
INF_F64 :: f64(0h7FF0_0000_0000_0000)
NEG_INF_F64 :: f64(0hFFF0_0000_0000_0000)
SNAN_F64 :: f64(0h7FF0_0000_0000_0001)
QNAN_F64 :: f64(0h7FF8_0000_0000_0001)