Files
Odin/core/crypto/sha2/sha2.odin
Yawning Angel 92aad90c6b core/crypto/sha2: API cleanup
- sha2.Sha256_Context -> sha2.Context_256
- sha2.Sha512_Context -> sha2.Context_512
2023-11-17 19:31:51 +09:00

807 lines
21 KiB
Odin

package sha2
/*
Copyright 2021 zhibog
Made available under the BSD-3 license.
List of contributors:
zhibog, dotbmp: Initial implementation.
Implementation of the SHA2 hashing algorithm, as defined in <https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>
and in RFC 3874 <https://datatracker.ietf.org/doc/html/rfc3874>
*/
import "core:encoding/endian"
import "core:io"
import "core:math/bits"
import "core:os"
/*
High level API
*/
DIGEST_SIZE_224 :: 28
DIGEST_SIZE_256 :: 32
DIGEST_SIZE_384 :: 48
DIGEST_SIZE_512 :: 64
DIGEST_SIZE_512_256 :: 32
// hash_string_224 will hash the given input and return the
// computed hash
hash_string_224 :: proc(data: string) -> [DIGEST_SIZE_224]byte {
return hash_bytes_224(transmute([]byte)(data))
}
// hash_bytes_224 will hash the given input and return the
// computed hash
hash_bytes_224 :: proc(data: []byte) -> [DIGEST_SIZE_224]byte {
hash: [DIGEST_SIZE_224]byte
ctx: Context_256
ctx.md_bits = 224
init(&ctx)
update(&ctx, data)
final(&ctx, hash[:])
return hash
}
// hash_string_to_buffer_224 will hash the given input and assign the
// computed hash to the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_string_to_buffer_224 :: proc(data: string, hash: []byte) {
hash_bytes_to_buffer_224(transmute([]byte)(data), hash)
}
// hash_bytes_to_buffer_224 will hash the given input and write the
// computed hash into the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_bytes_to_buffer_224 :: proc(data, hash: []byte) {
ctx: Context_256
ctx.md_bits = 224
init(&ctx)
update(&ctx, data)
final(&ctx, hash)
}
// hash_stream_224 will read the stream in chunks and compute a
// hash from its contents
hash_stream_224 :: proc(s: io.Stream) -> ([DIGEST_SIZE_224]byte, bool) {
hash: [DIGEST_SIZE_224]byte
ctx: Context_256
ctx.md_bits = 224
init(&ctx)
buf := make([]byte, 512)
defer delete(buf)
read := 1
for read > 0 {
read, _ = io.read(s, buf)
if read > 0 {
update(&ctx, buf[:read])
}
}
final(&ctx, hash[:])
return hash, true
}
// hash_file_224 will read the file provided by the given handle
// and compute a hash
hash_file_224 :: proc(hd: os.Handle, load_at_once := false) -> ([DIGEST_SIZE_224]byte, bool) {
if !load_at_once {
return hash_stream_224(os.stream_from_handle(hd))
} else {
if buf, ok := os.read_entire_file(hd); ok {
return hash_bytes_224(buf[:]), ok
}
}
return [DIGEST_SIZE_224]byte{}, false
}
hash_224 :: proc {
hash_stream_224,
hash_file_224,
hash_bytes_224,
hash_string_224,
hash_bytes_to_buffer_224,
hash_string_to_buffer_224,
}
// hash_string_256 will hash the given input and return the
// computed hash
hash_string_256 :: proc(data: string) -> [DIGEST_SIZE_256]byte {
return hash_bytes_256(transmute([]byte)(data))
}
// hash_bytes_256 will hash the given input and return the
// computed hash
hash_bytes_256 :: proc(data: []byte) -> [DIGEST_SIZE_256]byte {
hash: [DIGEST_SIZE_256]byte
ctx: Context_256
ctx.md_bits = 256
init(&ctx)
update(&ctx, data)
final(&ctx, hash[:])
return hash
}
// hash_string_to_buffer_256 will hash the given input and assign the
// computed hash to the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_string_to_buffer_256 :: proc(data: string, hash: []byte) {
hash_bytes_to_buffer_256(transmute([]byte)(data), hash)
}
// hash_bytes_to_buffer_256 will hash the given input and write the
// computed hash into the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_bytes_to_buffer_256 :: proc(data, hash: []byte) {
ctx: Context_256
ctx.md_bits = 256
init(&ctx)
update(&ctx, data)
final(&ctx, hash)
}
// hash_stream_256 will read the stream in chunks and compute a
// hash from its contents
hash_stream_256 :: proc(s: io.Stream) -> ([DIGEST_SIZE_256]byte, bool) {
hash: [DIGEST_SIZE_256]byte
ctx: Context_256
ctx.md_bits = 256
init(&ctx)
buf := make([]byte, 512)
defer delete(buf)
read := 1
for read > 0 {
read, _ = io.read(s, buf)
if read > 0 {
update(&ctx, buf[:read])
}
}
final(&ctx, hash[:])
return hash, true
}
// hash_file_256 will read the file provided by the given handle
// and compute a hash
hash_file_256 :: proc(hd: os.Handle, load_at_once := false) -> ([DIGEST_SIZE_256]byte, bool) {
if !load_at_once {
return hash_stream_256(os.stream_from_handle(hd))
} else {
if buf, ok := os.read_entire_file(hd); ok {
return hash_bytes_256(buf[:]), ok
}
}
return [DIGEST_SIZE_256]byte{}, false
}
hash_256 :: proc {
hash_stream_256,
hash_file_256,
hash_bytes_256,
hash_string_256,
hash_bytes_to_buffer_256,
hash_string_to_buffer_256,
}
// hash_string_384 will hash the given input and return the
// computed hash
hash_string_384 :: proc(data: string) -> [DIGEST_SIZE_384]byte {
return hash_bytes_384(transmute([]byte)(data))
}
// hash_bytes_384 will hash the given input and return the
// computed hash
hash_bytes_384 :: proc(data: []byte) -> [DIGEST_SIZE_384]byte {
hash: [DIGEST_SIZE_384]byte
ctx: Context_512
ctx.md_bits = 384
init(&ctx)
update(&ctx, data)
final(&ctx, hash[:])
return hash
}
// hash_string_to_buffer_384 will hash the given input and assign the
// computed hash to the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_string_to_buffer_384 :: proc(data: string, hash: []byte) {
hash_bytes_to_buffer_384(transmute([]byte)(data), hash)
}
// hash_bytes_to_buffer_384 will hash the given input and write the
// computed hash into the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_bytes_to_buffer_384 :: proc(data, hash: []byte) {
ctx: Context_512
ctx.md_bits = 384
init(&ctx)
update(&ctx, data)
final(&ctx, hash)
}
// hash_stream_384 will read the stream in chunks and compute a
// hash from its contents
hash_stream_384 :: proc(s: io.Stream) -> ([DIGEST_SIZE_384]byte, bool) {
hash: [DIGEST_SIZE_384]byte
ctx: Context_512
ctx.md_bits = 384
init(&ctx)
buf := make([]byte, 512)
defer delete(buf)
read := 1
for read > 0 {
read, _ = io.read(s, buf)
if read > 0 {
update(&ctx, buf[:read])
}
}
final(&ctx, hash[:])
return hash, true
}
// hash_file_384 will read the file provided by the given handle
// and compute a hash
hash_file_384 :: proc(hd: os.Handle, load_at_once := false) -> ([DIGEST_SIZE_384]byte, bool) {
if !load_at_once {
return hash_stream_384(os.stream_from_handle(hd))
} else {
if buf, ok := os.read_entire_file(hd); ok {
return hash_bytes_384(buf[:]), ok
}
}
return [DIGEST_SIZE_384]byte{}, false
}
hash_384 :: proc {
hash_stream_384,
hash_file_384,
hash_bytes_384,
hash_string_384,
hash_bytes_to_buffer_384,
hash_string_to_buffer_384,
}
// hash_string_512 will hash the given input and return the
// computed hash
hash_string_512 :: proc(data: string) -> [DIGEST_SIZE_512]byte {
return hash_bytes_512(transmute([]byte)(data))
}
// hash_bytes_512 will hash the given input and return the
// computed hash
hash_bytes_512 :: proc(data: []byte) -> [DIGEST_SIZE_512]byte {
hash: [DIGEST_SIZE_512]byte
ctx: Context_512
ctx.md_bits = 512
init(&ctx)
update(&ctx, data)
final(&ctx, hash[:])
return hash
}
// hash_string_to_buffer_512 will hash the given input and assign the
// computed hash to the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_string_to_buffer_512 :: proc(data: string, hash: []byte) {
hash_bytes_to_buffer_512(transmute([]byte)(data), hash)
}
// hash_bytes_to_buffer_512 will hash the given input and write the
// computed hash into the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_bytes_to_buffer_512 :: proc(data, hash: []byte) {
ctx: Context_512
ctx.md_bits = 512
init(&ctx)
update(&ctx, data)
final(&ctx, hash)
}
// hash_stream_512 will read the stream in chunks and compute a
// hash from its contents
hash_stream_512 :: proc(s: io.Stream) -> ([DIGEST_SIZE_512]byte, bool) {
hash: [DIGEST_SIZE_512]byte
ctx: Context_512
ctx.md_bits = 512
init(&ctx)
buf := make([]byte, 512)
defer delete(buf)
read := 1
for read > 0 {
read, _ = io.read(s, buf)
if read > 0 {
update(&ctx, buf[:read])
}
}
final(&ctx, hash[:])
return hash, true
}
// hash_file_512 will read the file provided by the given handle
// and compute a hash
hash_file_512 :: proc(hd: os.Handle, load_at_once := false) -> ([DIGEST_SIZE_512]byte, bool) {
if !load_at_once {
return hash_stream_512(os.stream_from_handle(hd))
} else {
if buf, ok := os.read_entire_file(hd); ok {
return hash_bytes_512(buf[:]), ok
}
}
return [DIGEST_SIZE_512]byte{}, false
}
hash_512 :: proc {
hash_stream_512,
hash_file_512,
hash_bytes_512,
hash_string_512,
hash_bytes_to_buffer_512,
hash_string_to_buffer_512,
}
// hash_string_512_256 will hash the given input and return the
// computed hash
hash_string_512_256 :: proc(data: string) -> [DIGEST_SIZE_512_256]byte {
return hash_bytes_512_256(transmute([]byte)(data))
}
// hash_bytes_512_256 will hash the given input and return the
// computed hash
hash_bytes_512_256 :: proc(data: []byte) -> [DIGEST_SIZE_512_256]byte {
hash: [DIGEST_SIZE_512_256]byte
ctx: Context_512
ctx.md_bits = 256
init(&ctx)
update(&ctx, data)
final(&ctx, hash[:])
return hash
}
// hash_string_to_buffer_512_256 will hash the given input and assign the
// computed hash to the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_string_to_buffer_512_256 :: proc(data: string, hash: []byte) {
hash_bytes_to_buffer_512_256(transmute([]byte)(data), hash)
}
// hash_bytes_to_buffer_512_256 will hash the given input and write the
// computed hash into the second parameter.
// It requires that the destination buffer is at least as big as the digest size
hash_bytes_to_buffer_512_256 :: proc(data, hash: []byte) {
ctx: Context_512
ctx.md_bits = 256
init(&ctx)
update(&ctx, data)
final(&ctx, hash)
}
// hash_stream_512_256 will read the stream in chunks and compute a
// hash from its contents
hash_stream_512_256 :: proc(s: io.Stream) -> ([DIGEST_SIZE_512_256]byte, bool) {
hash: [DIGEST_SIZE_512_256]byte
ctx: Context_512
ctx.md_bits = 256
init(&ctx)
buf := make([]byte, 512)
defer delete(buf)
read := 1
for read > 0 {
read, _ = io.read(s, buf)
if read > 0 {
update(&ctx, buf[:read])
}
}
final(&ctx, hash[:])
return hash, true
}
// hash_file_512_256 will read the file provided by the given handle
// and compute a hash
hash_file_512_256 :: proc(hd: os.Handle, load_at_once := false) -> ([DIGEST_SIZE_512_256]byte, bool) {
if !load_at_once {
return hash_stream_512_256(os.stream_from_handle(hd))
} else {
if buf, ok := os.read_entire_file(hd); ok {
return hash_bytes_512_256(buf[:]), ok
}
}
return [DIGEST_SIZE_512_256]byte{}, false
}
hash_512_256 :: proc {
hash_stream_512_256,
hash_file_512_256,
hash_bytes_512_256,
hash_string_512_256,
hash_bytes_to_buffer_512_256,
hash_string_to_buffer_512_256,
}
/*
Low level API
*/
init :: proc(ctx: ^$T) {
when T == Context_256 {
switch ctx.md_bits {
case 224:
ctx.h[0] = 0xc1059ed8
ctx.h[1] = 0x367cd507
ctx.h[2] = 0x3070dd17
ctx.h[3] = 0xf70e5939
ctx.h[4] = 0xffc00b31
ctx.h[5] = 0x68581511
ctx.h[6] = 0x64f98fa7
ctx.h[7] = 0xbefa4fa4
case 256:
ctx.h[0] = 0x6a09e667
ctx.h[1] = 0xbb67ae85
ctx.h[2] = 0x3c6ef372
ctx.h[3] = 0xa54ff53a
ctx.h[4] = 0x510e527f
ctx.h[5] = 0x9b05688c
ctx.h[6] = 0x1f83d9ab
ctx.h[7] = 0x5be0cd19
case:
panic("crypto/sha2: invalid digest output length")
}
} else when T == Context_512 {
switch ctx.md_bits {
case 256:
// SHA-512/256
ctx.h[0] = 0x22312194fc2bf72c
ctx.h[1] = 0x9f555fa3c84c64c2
ctx.h[2] = 0x2393b86b6f53b151
ctx.h[3] = 0x963877195940eabd
ctx.h[4] = 0x96283ee2a88effe3
ctx.h[5] = 0xbe5e1e2553863992
ctx.h[6] = 0x2b0199fc2c85b8aa
ctx.h[7] = 0x0eb72ddc81c52ca2
case 384:
// SHA-384
ctx.h[0] = 0xcbbb9d5dc1059ed8
ctx.h[1] = 0x629a292a367cd507
ctx.h[2] = 0x9159015a3070dd17
ctx.h[3] = 0x152fecd8f70e5939
ctx.h[4] = 0x67332667ffc00b31
ctx.h[5] = 0x8eb44a8768581511
ctx.h[6] = 0xdb0c2e0d64f98fa7
ctx.h[7] = 0x47b5481dbefa4fa4
case 512:
// SHA-512
ctx.h[0] = 0x6a09e667f3bcc908
ctx.h[1] = 0xbb67ae8584caa73b
ctx.h[2] = 0x3c6ef372fe94f82b
ctx.h[3] = 0xa54ff53a5f1d36f1
ctx.h[4] = 0x510e527fade682d1
ctx.h[5] = 0x9b05688c2b3e6c1f
ctx.h[6] = 0x1f83d9abfb41bd6b
ctx.h[7] = 0x5be0cd19137e2179
case:
panic("crypto/sha2: invalid digest output length")
}
}
ctx.length = 0
ctx.bitlength = 0
ctx.is_initialized = true
}
update :: proc(ctx: ^$T, data: []byte) {
assert(ctx.is_initialized)
when T == Context_256 {
CURR_BLOCK_SIZE :: SHA256_BLOCK_SIZE
} else when T == Context_512 {
CURR_BLOCK_SIZE :: SHA512_BLOCK_SIZE
}
data := data
ctx.length += u64(len(data))
if ctx.bitlength > 0 {
n := copy(ctx.block[ctx.bitlength:], data[:])
ctx.bitlength += u64(n)
if ctx.bitlength == CURR_BLOCK_SIZE {
sha2_transf(ctx, ctx.block[:])
ctx.bitlength = 0
}
data = data[n:]
}
if len(data) >= CURR_BLOCK_SIZE {
n := len(data) &~ (CURR_BLOCK_SIZE - 1)
sha2_transf(ctx, data[:n])
data = data[n:]
}
if len(data) > 0 {
ctx.bitlength = u64(copy(ctx.block[:], data[:]))
}
}
final :: proc(ctx: ^$T, hash: []byte) {
assert(ctx.is_initialized)
if len(hash) * 8 < ctx.md_bits {
panic("crypto/sha2: invalid destination digest size")
}
length := ctx.length
raw_pad: [SHA512_BLOCK_SIZE]byte
when T == Context_256 {
CURR_BLOCK_SIZE :: SHA256_BLOCK_SIZE
pm_len := 8 // 64-bits for length
} else when T == Context_512 {
CURR_BLOCK_SIZE :: SHA512_BLOCK_SIZE
pm_len := 16 // 128-bits for length
}
pad := raw_pad[:CURR_BLOCK_SIZE]
pad_len := u64(CURR_BLOCK_SIZE - pm_len)
pad[0] = 0x80
if length % CURR_BLOCK_SIZE < pad_len {
update(ctx, pad[0:pad_len - length % CURR_BLOCK_SIZE])
} else {
update(ctx, pad[0:CURR_BLOCK_SIZE + pad_len - length % CURR_BLOCK_SIZE])
}
length_hi, length_lo := bits.mul_u64(length, 8) // Length in bits
when T == Context_256 {
_ = length_hi
endian.unchecked_put_u64be(pad[:], length_lo)
update(ctx, pad[:8])
} else when T == Context_512 {
endian.unchecked_put_u64be(pad[:], length_hi)
endian.unchecked_put_u64be(pad[8:], length_lo)
update(ctx, pad[0:16])
}
assert(ctx.bitlength == 0)
when T == Context_256 {
for i := 0; i < ctx.md_bits / 32; i += 1 {
endian.unchecked_put_u32be(hash[i * 4:], ctx.h[i])
}
} else when T == Context_512 {
for i := 0; i < ctx.md_bits / 64; i += 1 {
endian.unchecked_put_u64be(hash[i * 8:], ctx.h[i])
}
}
ctx.is_initialized = false
}
/*
SHA2 implementation
*/
SHA256_BLOCK_SIZE :: 64
SHA512_BLOCK_SIZE :: 128
Context_256 :: struct {
block: [SHA256_BLOCK_SIZE]byte,
h: [8]u32,
bitlength: u64,
length: u64,
md_bits: int,
is_initialized: bool,
}
Context_512 :: struct {
block: [SHA512_BLOCK_SIZE]byte,
h: [8]u64,
bitlength: u64,
length: u64,
md_bits: int,
is_initialized: bool,
}
@(private)
sha256_k := [64]u32 {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
}
@(private)
sha512_k := [80]u64 {
0x428a2f98d728ae22, 0x7137449123ef65cd,
0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
0x3956c25bf348b538, 0x59f111f1b605d019,
0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
0xd807aa98a3030242, 0x12835b0145706fbe,
0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f, 0x80deb1fe3b1696b1,
0x9bdc06a725c71235, 0xc19bf174cf692694,
0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
0x2de92c6f592b0275, 0x4a7484aa6ea6e483,
0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
0x983e5152ee66dfab, 0xa831c66d2db43210,
0xb00327c898fb213f, 0xbf597fc7beef0ee4,
0xc6e00bf33da88fc2, 0xd5a79147930aa725,
0x06ca6351e003826f, 0x142929670a0e6e70,
0x27b70a8546d22ffc, 0x2e1b21385c26c926,
0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
0x650a73548baf63de, 0x766a0abb3c77b2a8,
0x81c2c92e47edaee6, 0x92722c851482353b,
0xa2bfe8a14cf10364, 0xa81a664bbc423001,
0xc24b8b70d0f89791, 0xc76c51a30654be30,
0xd192e819d6ef5218, 0xd69906245565a910,
0xf40e35855771202a, 0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8, 0x1e376c085141ab53,
0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
0x748f82ee5defb2fc, 0x78a5636f43172f60,
0x84c87814a1f0ab72, 0x8cc702081a6439ec,
0x90befffa23631e28, 0xa4506cebde82bde9,
0xbef9a3f7b2c67915, 0xc67178f2e372532b,
0xca273eceea26619c, 0xd186b8c721c0c207,
0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
0x06f067aa72176fba, 0x0a637dc5a2c898a6,
0x113f9804bef90dae, 0x1b710b35131c471b,
0x28db77f523047d84, 0x32caab7b40c72493,
0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
0x5fcb6fab3ad6faec, 0x6c44198c4a475817,
}
@(private)
SHA256_CH :: #force_inline proc "contextless" (x, y, z: u32) -> u32 {
return (x & y) ~ (~x & z)
}
@(private)
SHA256_MAJ :: #force_inline proc "contextless" (x, y, z: u32) -> u32 {
return (x & y) ~ (x & z) ~ (y & z)
}
@(private)
SHA512_CH :: #force_inline proc "contextless" (x, y, z: u64) -> u64 {
return (x & y) ~ (~x & z)
}
@(private)
SHA512_MAJ :: #force_inline proc "contextless" (x, y, z: u64) -> u64 {
return (x & y) ~ (x & z) ~ (y & z)
}
@(private)
SHA256_F1 :: #force_inline proc "contextless" (x: u32) -> u32 {
return bits.rotate_left32(x, 30) ~ bits.rotate_left32(x, 19) ~ bits.rotate_left32(x, 10)
}
@(private)
SHA256_F2 :: #force_inline proc "contextless" (x: u32) -> u32 {
return bits.rotate_left32(x, 26) ~ bits.rotate_left32(x, 21) ~ bits.rotate_left32(x, 7)
}
@(private)
SHA256_F3 :: #force_inline proc "contextless" (x: u32) -> u32 {
return bits.rotate_left32(x, 25) ~ bits.rotate_left32(x, 14) ~ (x >> 3)
}
@(private)
SHA256_F4 :: #force_inline proc "contextless" (x: u32) -> u32 {
return bits.rotate_left32(x, 15) ~ bits.rotate_left32(x, 13) ~ (x >> 10)
}
@(private)
SHA512_F1 :: #force_inline proc "contextless" (x: u64) -> u64 {
return bits.rotate_left64(x, 36) ~ bits.rotate_left64(x, 30) ~ bits.rotate_left64(x, 25)
}
@(private)
SHA512_F2 :: #force_inline proc "contextless" (x: u64) -> u64 {
return bits.rotate_left64(x, 50) ~ bits.rotate_left64(x, 46) ~ bits.rotate_left64(x, 23)
}
@(private)
SHA512_F3 :: #force_inline proc "contextless" (x: u64) -> u64 {
return bits.rotate_left64(x, 63) ~ bits.rotate_left64(x, 56) ~ (x >> 7)
}
@(private)
SHA512_F4 :: #force_inline proc "contextless" (x: u64) -> u64 {
return bits.rotate_left64(x, 45) ~ bits.rotate_left64(x, 3) ~ (x >> 6)
}
@(private)
sha2_transf :: proc "contextless" (ctx: ^$T, data: []byte) {
when T == Context_256 {
w: [64]u32
wv: [8]u32
t1, t2: u32
CURR_BLOCK_SIZE :: SHA256_BLOCK_SIZE
} else when T == Context_512 {
w: [80]u64
wv: [8]u64
t1, t2: u64
CURR_BLOCK_SIZE :: SHA512_BLOCK_SIZE
}
data := data
for len(data) >= CURR_BLOCK_SIZE {
for i := 0; i < 16; i += 1 {
when T == Context_256 {
w[i] = endian.unchecked_get_u32be(data[i * 4:])
} else when T == Context_512 {
w[i] = endian.unchecked_get_u64be(data[i * 8:])
}
}
when T == Context_256 {
for i := 16; i < 64; i += 1 {
w[i] = SHA256_F4(w[i - 2]) + w[i - 7] + SHA256_F3(w[i - 15]) + w[i - 16]
}
} else when T == Context_512 {
for i := 16; i < 80; i += 1 {
w[i] = SHA512_F4(w[i - 2]) + w[i - 7] + SHA512_F3(w[i - 15]) + w[i - 16]
}
}
for i := 0; i < 8; i += 1 {
wv[i] = ctx.h[i]
}
when T == Context_256 {
for i := 0; i < 64; i += 1 {
t1 = wv[7] + SHA256_F2(wv[4]) + SHA256_CH(wv[4], wv[5], wv[6]) + sha256_k[i] + w[i]
t2 = SHA256_F1(wv[0]) + SHA256_MAJ(wv[0], wv[1], wv[2])
wv[7] = wv[6]
wv[6] = wv[5]
wv[5] = wv[4]
wv[4] = wv[3] + t1
wv[3] = wv[2]
wv[2] = wv[1]
wv[1] = wv[0]
wv[0] = t1 + t2
}
} else when T == Context_512 {
for i := 0; i < 80; i += 1 {
t1 = wv[7] + SHA512_F2(wv[4]) + SHA512_CH(wv[4], wv[5], wv[6]) + sha512_k[i] + w[i]
t2 = SHA512_F1(wv[0]) + SHA512_MAJ(wv[0], wv[1], wv[2])
wv[7] = wv[6]
wv[6] = wv[5]
wv[5] = wv[4]
wv[4] = wv[3] + t1
wv[3] = wv[2]
wv[2] = wv[1]
wv[1] = wv[0]
wv[0] = t1 + t2
}
}
for i := 0; i < 8; i += 1 {
ctx.h[i] += wv[i]
}
data = data[CURR_BLOCK_SIZE:]
}
}