mirror of
https://github.com/odin-lang/Odin.git
synced 2026-01-03 03:32:37 +00:00
602 lines
13 KiB
Odin
602 lines
13 KiB
Odin
|
|
import (
|
|
"fmt.odin";
|
|
"strconv.odin";
|
|
"mem.odin";
|
|
"thread.odin" when ODIN_OS == "windows";
|
|
win32 "sys/windows.odin" when ODIN_OS == "windows";
|
|
|
|
/*
|
|
"atomics.odin";
|
|
"bits.odin";
|
|
"hash.odin";
|
|
"math.odin";
|
|
"opengl.odin";
|
|
"os.odin";
|
|
"raw.odin";
|
|
"sort.odin";
|
|
"strings.odin";
|
|
"sync.odin";
|
|
"types.odin";
|
|
"utf8.odin";
|
|
"utf16.odin";
|
|
*/
|
|
)
|
|
|
|
general_stuff :: proc() {
|
|
{ // `do` for inline statmes rather than block
|
|
foo :: proc() do fmt.println("Foo!");
|
|
if false do foo();
|
|
for false do foo();
|
|
when false do foo();
|
|
|
|
if false do foo();
|
|
else do foo();
|
|
}
|
|
|
|
{ // Removal of `++` and `--` (again)
|
|
x: int;
|
|
x += 1;
|
|
x -= 1;
|
|
}
|
|
{ // Casting syntaxes
|
|
i := i32(137);
|
|
ptr := &i;
|
|
|
|
fp1 := (^f32)(ptr);
|
|
// ^f32(ptr) == ^(f32(ptr))
|
|
fp2 := cast(^f32)ptr;
|
|
|
|
f1 := (^f32)(ptr)^;
|
|
f2 := (cast(^f32)ptr)^;
|
|
|
|
// Questions: Should there be two ways to do it?
|
|
}
|
|
|
|
/*
|
|
* Remove *_val_of built-in procedures
|
|
* size_of, align_of, offset_of
|
|
* type_of, type_info_of
|
|
*/
|
|
|
|
{ // `expand_to_tuple` built-in procedure
|
|
Foo :: struct {
|
|
x: int;
|
|
b: bool;
|
|
}
|
|
f := Foo{137, true};
|
|
x, b := expand_to_tuple(f);
|
|
fmt.println(f);
|
|
fmt.println(x, b);
|
|
fmt.println(expand_to_tuple(f));
|
|
}
|
|
|
|
{
|
|
// .. half-closed range
|
|
// ... open range
|
|
|
|
for in 0..2 {} // 0, 1
|
|
for in 0...2 {} // 0, 1, 2
|
|
}
|
|
}
|
|
|
|
nested_struct_declarations :: proc() {
|
|
{
|
|
FooInteger :: int;
|
|
Foo :: struct {
|
|
i: FooInteger;
|
|
};
|
|
f := Foo{FooInteger(137)};
|
|
}
|
|
{
|
|
Foo :: struct {
|
|
Integer :: int;
|
|
|
|
i: Integer;
|
|
}
|
|
f := Foo{Foo.Integer(137)};
|
|
|
|
}
|
|
}
|
|
|
|
default_struct_values :: proc() {
|
|
{
|
|
Vector3 :: struct {
|
|
x: f32;
|
|
y: f32;
|
|
z: f32;
|
|
}
|
|
v: Vector3;
|
|
fmt.println(v);
|
|
}
|
|
{
|
|
// Default values must be constants
|
|
Vector3 :: struct {
|
|
x: f32 = 1;
|
|
y: f32 = 4;
|
|
z: f32 = 9;
|
|
}
|
|
v: Vector3;
|
|
fmt.println(v);
|
|
|
|
v = Vector3{};
|
|
fmt.println(v);
|
|
|
|
// Uses the same semantics as a default values in a procedure
|
|
v = Vector3{137};
|
|
fmt.println(v);
|
|
|
|
v = Vector3{z = 137};
|
|
fmt.println(v);
|
|
}
|
|
|
|
{
|
|
Vector3 :: struct {
|
|
x := 1.0;
|
|
y := 4.0;
|
|
z := 9.0;
|
|
}
|
|
stack_default: Vector3;
|
|
stack_literal := Vector3{};
|
|
heap_one := new(Vector3); defer free(heap_one);
|
|
heap_two := new_clone(Vector3{}); defer free(heap_two);
|
|
|
|
fmt.println("stack_default - ", stack_default);
|
|
fmt.println("stack_literal - ", stack_literal);
|
|
fmt.println("heap_one - ", heap_one^);
|
|
fmt.println("heap_two - ", heap_two^);
|
|
|
|
|
|
N :: 4;
|
|
stack_array: [N]Vector3;
|
|
heap_array := new([N]Vector3); defer free(heap_array);
|
|
heap_slice := make([]Vector3, N); defer free(heap_slice);
|
|
fmt.println("stack_array[1] - ", stack_array[1]);
|
|
fmt.println("heap_array[1] - ", heap_array[1]);
|
|
fmt.println("heap_slice[1] - ", heap_slice[1]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
union_type :: proc() {
|
|
{
|
|
val: union{int, bool};
|
|
val = 137;
|
|
if i, ok := val.(int); ok {
|
|
fmt.println(i);
|
|
}
|
|
val = true;
|
|
fmt.println(val);
|
|
|
|
val = nil;
|
|
|
|
match v in val {
|
|
case int: fmt.println("int", v);
|
|
case bool: fmt.println("bool", v);
|
|
case: fmt.println("nil");
|
|
}
|
|
}
|
|
{
|
|
// There is a duality between `any` and `union`
|
|
// An `any` has a pointer to the data and allows for any type (open)
|
|
// A `union` has as binary blob to store the data and allows only certain types (closed)
|
|
// The following code is with `any` but has the same syntax
|
|
val: any;
|
|
val = 137;
|
|
if i, ok := val.(int); ok {
|
|
fmt.println(i);
|
|
}
|
|
val = true;
|
|
fmt.println(val);
|
|
|
|
val = nil;
|
|
|
|
match v in val {
|
|
case int: fmt.println("int", v);
|
|
case bool: fmt.println("bool", v);
|
|
case: fmt.println("nil");
|
|
}
|
|
}
|
|
|
|
Vector3 :: struct {
|
|
x, y, z: f32;
|
|
};
|
|
Quaternion :: struct {
|
|
x, y, z: f32;
|
|
w: f32 = 1;
|
|
};
|
|
|
|
// More realistic examples
|
|
{
|
|
// NOTE(bill): For the above basic examples, you may not have any
|
|
// particular use for it. However, my main use for them is not for these
|
|
// simple cases. My main use is for hierarchical types. Many prefer
|
|
// subtyping, embedding the base data into the derived types. Below is
|
|
// an example of this for a basic game Entity.
|
|
|
|
Entity :: struct {
|
|
id: u64;
|
|
name: string;
|
|
position: Vector3;
|
|
orientation: Quaternion;
|
|
|
|
derived: any;
|
|
}
|
|
|
|
Frog :: struct {
|
|
using entity: Entity;
|
|
jump_height: f32;
|
|
}
|
|
|
|
Monster :: struct {
|
|
using entity: Entity;
|
|
is_robot: bool;
|
|
is_zombie: bool;
|
|
}
|
|
|
|
// See `parametric_polymorphism` procedure for details
|
|
new_entity :: proc(T: type) -> ^Entity {
|
|
t := new(T);
|
|
t.derived = t^;
|
|
return t;
|
|
}
|
|
|
|
entity := new_entity(Monster);
|
|
|
|
match e in entity.derived {
|
|
case Frog:
|
|
fmt.println("Ribbit");
|
|
case Monster:
|
|
if e.is_robot do fmt.println("Robotic");
|
|
if e.is_zombie do fmt.println("Grrrr!");
|
|
}
|
|
}
|
|
|
|
{
|
|
// NOTE(bill): A union can be used to achieve something similar. Instead
|
|
// of embedding the base data into the derived types, the derived data
|
|
// in embedded into the base type. Below is the same example of the
|
|
// basic game Entity but using an union.
|
|
|
|
Entity :: struct {
|
|
id: u64;
|
|
name: string;
|
|
position: Vector3;
|
|
orientation: Quaternion;
|
|
|
|
derived: union {Frog, Monster};
|
|
}
|
|
|
|
Frog :: struct {
|
|
using entity: ^Entity;
|
|
jump_height: f32;
|
|
}
|
|
|
|
Monster :: struct {
|
|
using entity: ^Entity;
|
|
is_robot: bool;
|
|
is_zombie: bool;
|
|
}
|
|
|
|
// See `parametric_polymorphism` procedure for details
|
|
new_entity :: proc(T: type) -> ^Entity {
|
|
t := new(Entity);
|
|
t.derived = T{entity = t};
|
|
return t;
|
|
}
|
|
|
|
entity := new_entity(Monster);
|
|
|
|
match e in entity.derived {
|
|
case Frog:
|
|
fmt.println("Ribbit");
|
|
case Monster:
|
|
if e.is_robot do fmt.println("Robotic");
|
|
if e.is_zombie do fmt.println("Grrrr!");
|
|
}
|
|
|
|
// NOTE(bill): As you can see, the usage code has not changed, only its
|
|
// memory layout. Both approaches have their own advantages but they can
|
|
// be used together to achieve different results. The subtyping approach
|
|
// can allow for a greater control of the memory layout and memory
|
|
// allocation, e.g. storing the derivatives together. However, this is
|
|
// also its disadvantage. You must either preallocate arrays for each
|
|
// derivative separation (which can be easily missed) or preallocate a
|
|
// bunch of "raw" memory; determining the maximum size of the derived
|
|
// types would require the aid of metaprogramming. Unions solve this
|
|
// particular problem as the data is stored with the base data.
|
|
// Therefore, it is possible to preallocate, e.g. [100]Entity.
|
|
|
|
// It should be noted that the union approach can have the same memory
|
|
// layout as the any and with the same type restrictions by using a
|
|
// pointer type for the derivatives.
|
|
|
|
/*
|
|
Entity :: struct {
|
|
...
|
|
derived: union{^Frog, ^Monster};
|
|
}
|
|
|
|
Frog :: struct {
|
|
using entity: Entity;
|
|
...
|
|
}
|
|
Monster :: struct {
|
|
using entity: Entity;
|
|
...
|
|
|
|
}
|
|
new_entity :: proc(T: type) -> ^Entity {
|
|
t := new(T);
|
|
t.derived = t;
|
|
return t;
|
|
}
|
|
*/
|
|
}
|
|
}
|
|
|
|
parametric_polymorphism :: proc() {
|
|
print_value :: proc(value: $T) {
|
|
fmt.printf("print_value: %T %v\n", value, value);
|
|
}
|
|
|
|
v1: int = 1;
|
|
v2: f32 = 2.1;
|
|
v3: f64 = 3.14;
|
|
v4: string = "message";
|
|
|
|
print_value(v1);
|
|
print_value(v2);
|
|
print_value(v3);
|
|
print_value(v4);
|
|
|
|
fmt.println();
|
|
|
|
add :: proc(p, q: $T) -> T {
|
|
x: T = p + q;
|
|
return x;
|
|
}
|
|
|
|
a := add(3, 4);
|
|
fmt.printf("a: %T = %v\n", a, a);
|
|
|
|
b := add(3.2, 4.3);
|
|
fmt.printf("b: %T = %v\n", b, b);
|
|
|
|
// This is how `new` is implemented
|
|
alloc_type :: proc(T: type) -> ^T {
|
|
t := cast(^T)alloc(size_of(T), align_of(T));
|
|
t^ = T{}; // Use default initialization value
|
|
return t;
|
|
}
|
|
|
|
copy_slice :: proc(dst, src: []$T) -> int {
|
|
n := min(len(dst), len(src));
|
|
if n > 0 {
|
|
mem.copy(&dst[0], &src[0], n*size_of(T));
|
|
}
|
|
return n;
|
|
}
|
|
|
|
double_params :: proc(a: $A, b: $B) -> A {
|
|
return a + A(b);
|
|
}
|
|
|
|
fmt.println(double_params(12, 1.345));
|
|
|
|
|
|
|
|
{ // Polymorphic Types and Type Specialization
|
|
Table :: struct(Key, Value: type) {
|
|
Slot :: struct {
|
|
occupied: bool;
|
|
hash: u32;
|
|
key: Key;
|
|
value: Value;
|
|
}
|
|
SIZE_MIN :: 32;
|
|
|
|
count: int;
|
|
allocator: Allocator;
|
|
slots: []Slot;
|
|
}
|
|
|
|
// Only allow types that are specializations of a (polymorphic) slice
|
|
make_slice :: proc(T: type/[]$E, len: int) -> T {
|
|
return make(T, len);
|
|
}
|
|
|
|
|
|
// Only allow types that are specializations of `Table`
|
|
allocate :: proc(table: ^$T/Table, capacity: int) {
|
|
c := context;
|
|
if table.allocator.procedure != nil do c.allocator = table.allocator;
|
|
|
|
push_context c {
|
|
table.slots = make_slice([]T.Slot, max(capacity, T.SIZE_MIN));
|
|
}
|
|
}
|
|
|
|
expand :: proc(table: ^$T/Table) {
|
|
c := context;
|
|
if table.allocator.procedure != nil do c.allocator = table.allocator;
|
|
|
|
push_context c {
|
|
old_slots := table.slots;
|
|
|
|
cap := max(2*cap(table.slots), T.SIZE_MIN);
|
|
allocate(table, cap);
|
|
|
|
for s in old_slots do if s.occupied {
|
|
put(table, s.key, s.value);
|
|
}
|
|
|
|
free(old_slots);
|
|
}
|
|
}
|
|
|
|
// Polymorphic determination of a polymorphic struct
|
|
// put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
|
|
put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
|
|
hash := get_hash(key); // Ad-hoc method which would fail in a different scope
|
|
index := find_index(table, key, hash);
|
|
if index < 0 {
|
|
if f64(table.count) >= 0.75*f64(cap(table.slots)) {
|
|
expand(table);
|
|
}
|
|
assert(table.count <= cap(table.slots));
|
|
|
|
hash := get_hash(key);
|
|
index = int(hash % u32(cap(table.slots)));
|
|
|
|
for table.slots[index].occupied {
|
|
if index += 1; index >= cap(table.slots) {
|
|
index = 0;
|
|
}
|
|
}
|
|
|
|
table.count += 1;
|
|
}
|
|
|
|
slot := &table.slots[index];
|
|
slot.occupied = true;
|
|
slot.hash = hash;
|
|
slot.key = key;
|
|
slot.value = value;
|
|
}
|
|
|
|
|
|
// find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
|
|
find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
|
|
hash := get_hash(key);
|
|
index := find_index(table, key, hash);
|
|
if index < 0 {
|
|
return Value{}, false;
|
|
}
|
|
return table.slots[index].value, true;
|
|
}
|
|
|
|
find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
|
|
if cap(table.slots) <= 0 do return -1;
|
|
|
|
index := int(hash % u32(cap(table.slots)));
|
|
for table.slots[index].occupied {
|
|
if table.slots[index].hash == hash {
|
|
if table.slots[index].key == key {
|
|
return index;
|
|
}
|
|
}
|
|
|
|
if index += 1; index >= cap(table.slots) {
|
|
index = 0;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
get_hash :: proc(s: string) -> u32 { // fnv32a
|
|
h: u32 = 0x811c9dc5;
|
|
for i in 0..len(s) {
|
|
h = (h ~ u32(s[i])) * 0x01000193;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
|
|
table: Table(string, int);
|
|
|
|
for i in 0..36 do put(&table, "Hellope", i);
|
|
for i in 0..42 do put(&table, "World!", i);
|
|
|
|
found, _ := find(&table, "Hellope");
|
|
fmt.printf("`found` is %v\n", found);
|
|
|
|
found, _ = find(&table, "World!");
|
|
fmt.printf("`found` is %v\n", found);
|
|
|
|
// I would not personally design a hash table like this in production
|
|
// but this is a nice basic example
|
|
// A better approach would either use a `u64` or equivalent for the key
|
|
// and let the user specify the hashing function or make the user store
|
|
// the hashing procedure with the table
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
prefix_table := [...]string{
|
|
"White",
|
|
"Red",
|
|
"Green",
|
|
"Blue",
|
|
"Octarine",
|
|
"Black",
|
|
};
|
|
|
|
threading_example :: proc() {
|
|
when ODIN_OS == "windows" {
|
|
unordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
|
|
__bounds_check_error_loc(loc, index, len(array));
|
|
array[index] = array[len(array)-1];
|
|
pop(array);
|
|
}
|
|
ordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
|
|
__bounds_check_error_loc(loc, index, len(array));
|
|
copy(array[index..], array[index+1..]);
|
|
pop(array);
|
|
}
|
|
|
|
worker_proc :: proc(t: ^thread.Thread) -> int {
|
|
for iteration in 1...5 {
|
|
fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
|
|
fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
|
|
// win32.sleep(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
threads := make([]^thread.Thread, 0, len(prefix_table));
|
|
defer free(threads);
|
|
|
|
for i in 0..len(prefix_table) {
|
|
if t := thread.create(worker_proc); t != nil {
|
|
t.init_context = context;
|
|
t.use_init_context = true;
|
|
t.user_index = len(threads);
|
|
append(&threads, t);
|
|
thread.start(t);
|
|
}
|
|
}
|
|
|
|
for len(threads) > 0 {
|
|
for i := 0; i < len(threads); {
|
|
if t := threads[i]; thread.is_done(t) {
|
|
fmt.printf("Thread %d is done\n", t.user_index);
|
|
thread.destroy(t);
|
|
|
|
ordered_remove(&threads, i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
main :: proc() {
|
|
when true {
|
|
fmt.println("\n# general_stuff"); general_stuff();
|
|
fmt.println("\n# nested_struct_declarations"); nested_struct_declarations();
|
|
fmt.println("\n# default_struct_values"); default_struct_values();
|
|
fmt.println("\n# union_type"); union_type();
|
|
fmt.println("\n# parametric_polymorphism"); parametric_polymorphism();
|
|
fmt.println("\n# threading_example"); threading_example();
|
|
}
|
|
}
|
|
|