This better reflects how HDR content is actually used, e.g. most content is in the SDR range, with specular highlights and bright details beyond the SDR range, in the HDR headroom.
This more closely matches how HDR is handled on Apple platforms, as EDR.
This also greatly simplifies application code which no longer has to think about color scaling. SDR content is rendered at the appropriate brightness automatically, and HDR content is scaled to the correct range for the display HDR headroom.
Renamed the following property define names to have a type suffix to
match other property names.
SDL_PROP_TEXTURE_OPENGL_TEXTURE_TARGET (number)
SDL_PROP_TEXTURE_OPENGLES2_TEXTURE_TARGET (number)
SDL_PROP_WINDOW_CREATE_WAYLAND_SCALE_TO_DISPLAY (boolean)
SDL_PROP_WINDOW_RENDERER (pointer)
SDL_PROP_WINDOW_TEXTUREDATA (pointer)
Eventually we can re-add a fast path for that data down to the individual renderers. Setting color scale would still require converting to float, and most hardware accelerated renderers prefer to consume colors as float, so this requires some thought and performance testing.
Fixes https://github.com/libsdl-org/SDL/issues/9009
The renderer will always use the sRGB colorspace for drawing, and will default to the sRGB output colorspace. If you want blending in linear space and HDR support, you can select the scRGB output colorspace, which is supported by the direct3d11 and direct3d12
Testing: Modified testgeometry to clear the background to 0.5 and then changed the triangle color to 0.5, and verified that they were the same color when using the D3D11 renderer.
This allows color operations to happen in linear space between sRGB input and sRGB output. This is currently supported on the direct3d11, direct3d12 and opengl renderers.
This is a good resource on blending in linear space vs sRGB space:
https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
Also added testcolorspace to verify colorspace changes
The drawing uses the origin of the viewport as the coordinate origin, so we only need to clip against the size of the viewport.
Also added a unit test to catch this case in the future
This means the allocator's caller doesn't need to use SDL_OutOfMemory directly
if the allocation fails.
This applies to the usual allocators: SDL_malloc, SDL_calloc, SDL_realloc
(all of these regardless of if the app supplied a custom allocator or we're
using system malloc() or an internal copy of dlmalloc under the hood),
SDL_aligned_alloc, SDL_small_alloc, SDL_strdup, SDL_asprintf, SDL_wcsdup...
probably others. If it returns something you can pass to SDL_free, it should
work.
The caller might still need to use SDL_OutOfMemory if something that wasn't
SDL allocated the memory: operator new in C++ code, Objective-C's alloc
message, win32 GlobalAlloc, etc.
Fixes#8642.
This uses the same `SDL_VerbNoun` format as the rest of SDL3, and also
adds stronger effort to invalidate cached state in the backend, so cooperation
improves with apps that are using lowlevel rendering APIs directly.
Fixes#367.
Otherwise, a massive line might generate gigabytes worth of points to render,
which the backend would simply throw away anyhow.
Fixes#8113.
(cherry picked from commit 4339647d90)