Now we render directly to the window, scaling as appropriate. This fixes some
concerns the render target introduced, like the quality of the final scaled
output, how to step outside of the logical size temporarily to draw some
things sharply at the native resolution, and loss of sub-pixel precision.
Fixes#8736.
Most SDL functions used to indicate success or failure using an int return code. These functions have been changed to return SDL_bool.
Here is a coccinelle patch to change code that previously compared the return value to 0 and changes it to a boolean test:
@ bool_return_type @
identifier func =~ "^(SDL_AddEventWatch|SDL_AddHintCallback|SDL_AddSurfaceAlternateImage|SDL_AddVulkanRenderSemaphores|SDL_BindAudioStream|SDL_BindAudioStreams|SDL_BlitSurface|SDL_BlitSurface9Grid|SDL_BlitSurfaceScaled|SDL_BlitSurfaceTiled|SDL_BlitSurfaceTiledWithScale|SDL_BlitSurfaceUnchecked|SDL_BlitSurfaceUncheckedScaled|SDL_CaptureMouse|SDL_ClearAudioStream|SDL_ClearClipboardData|SDL_ClearComposition|SDL_ClearError|SDL_ClearProperty|SDL_ClearSurface|SDL_CloseIO|SDL_CloseStorage|SDL_ConvertAudioSamples|SDL_ConvertEventToRenderCoordinates|SDL_ConvertPixels|SDL_ConvertPixelsAndColorspace|SDL_CopyFile|SDL_CopyProperties|SDL_CopyStorageFile|SDL_CreateDirectory|SDL_CreateStorageDirectory|SDL_CreateWindowAndRenderer|SDL_DateTimeToTime|SDL_DestroyWindowSurface|SDL_DetachVirtualJoystick|SDL_DisableScreenSaver|SDL_EnableScreenSaver|SDL_EnumerateDirectory|SDL_EnumerateProperties|SDL_EnumerateStorageDirectory|SDL_FillSurfaceRect|SDL_FillSurfaceRects|SDL_FlashWindow|SDL_FlipSurface|SDL_FlushAudioStream|SDL_FlushRenderer|SDL_GL_DestroyContext|SDL_GL_GetAttribute|SDL_GL_GetSwapInterval|SDL_GL_LoadLibrary|SDL_GL_MakeCurrent|SDL_GL_SetAttribute|SDL_GL_SetSwapInterval|SDL_GL_SwapWindow|SDL_GetAudioDeviceFormat|SDL_GetAudioStreamFormat|SDL_GetCameraFormat|SDL_GetClosestFullscreenDisplayMode|SDL_GetCurrentRenderOutputSize|SDL_GetCurrentTime|SDL_GetDXGIOutputInfo|SDL_GetDateTimeLocalePreferences|SDL_GetDisplayBounds|SDL_GetDisplayUsableBounds|SDL_GetGDKDefaultUser|SDL_GetGDKTaskQueue|SDL_GetGamepadSensorData|SDL_GetGamepadTouchpadFinger|SDL_GetHapticEffectStatus|SDL_GetJoystickBall|SDL_GetMasksForPixelFormat|SDL_GetPathInfo|SDL_GetRectUnion|SDL_GetRectUnionFloat|SDL_GetRenderClipRect|SDL_GetRenderColorScale|SDL_GetRenderDrawBlendMode|SDL_GetRenderDrawColor|SDL_GetRenderDrawColorFloat|SDL_GetRenderLogicalPresentation|SDL_GetRenderLogicalPresentationRect|SDL_GetRenderOutputSize|SDL_GetRenderSafeArea|SDL_GetRenderScale|SDL_GetRenderVSync|SDL_GetRenderViewport|SDL_GetSensorData|SDL_GetStorageFileSize|SDL_GetStoragePathInfo|SDL_GetSurfaceAlphaMod|SDL_GetSurfaceBlendMode|SDL_GetSurfaceClipRect|SDL_GetSurfaceColorKey|SDL_GetSurfaceColorMod|SDL_GetTextInputArea|SDL_GetTextureAlphaMod|SDL_GetTextureAlphaModFloat|SDL_GetTextureBlendMode|SDL_GetTextureColorMod|SDL_GetTextureColorModFloat|SDL_GetTextureScaleMode|SDL_GetTextureSize|SDL_GetWindowAspectRatio|SDL_GetWindowBordersSize|SDL_GetWindowMaximumSize|SDL_GetWindowMinimumSize|SDL_GetWindowPosition|SDL_GetWindowRelativeMouseMode|SDL_GetWindowSafeArea|SDL_GetWindowSize|SDL_GetWindowSizeInPixels|SDL_GetWindowSurfaceVSync|SDL_HideCursor|SDL_HideWindow|SDL_Init|SDL_InitHapticRumble|SDL_InitSubSystem|SDL_LoadWAV|SDL_LoadWAV_IO|SDL_LockAudioStream|SDL_LockProperties|SDL_LockSurface|SDL_LockTexture|SDL_LockTextureToSurface|SDL_MaximizeWindow|SDL_MinimizeWindow|SDL_MixAudio|SDL_OpenURL|SDL_OutOfMemory|SDL_PauseAudioDevice|SDL_PauseAudioStreamDevice|SDL_PauseHaptic|SDL_PlayHapticRumble|SDL_PremultiplyAlpha|SDL_PremultiplySurfaceAlpha|SDL_PushEvent|SDL_PutAudioStreamData|SDL_RaiseWindow|SDL_ReadStorageFile|SDL_ReadSurfacePixel|SDL_ReadSurfacePixelFloat|SDL_RegisterApp|SDL_ReloadGamepadMappings|SDL_RemovePath|SDL_RemoveStoragePath|SDL_RemoveTimer|SDL_RenamePath|SDL_RenameStoragePath|SDL_RenderClear|SDL_RenderCoordinatesFromWindow|SDL_RenderCoordinatesToWindow|SDL_RenderFillRect|SDL_RenderFillRects|SDL_RenderGeometry|SDL_RenderGeometryRaw|SDL_RenderLine|SDL_RenderLines|SDL_RenderPoint|SDL_RenderPoints|SDL_RenderPresent|SDL_RenderRect|SDL_RenderRects|SDL_RenderTexture|SDL_RenderTexture9Grid|SDL_RenderTextureRotated|SDL_RenderTextureTiled|SDL_RequestAndroidPermission|SDL_RestoreWindow|SDL_ResumeAudioDevice|SDL_ResumeAudioStreamDevice|SDL_ResumeHaptic|SDL_RumbleGamepad|SDL_RumbleGamepadTriggers|SDL_RumbleJoystick|SDL_RumbleJoystickTriggers|SDL_RunHapticEffect|SDL_SaveBMP|SDL_SaveBMP_IO|SDL_SendAndroidMessage|SDL_SendGamepadEffect|SDL_SendJoystickEffect|SDL_SendJoystickVirtualSensorData|SDL_SetAppMetadata|SDL_SetAppMetadataProperty|SDL_SetAudioDeviceGain|SDL_SetAudioPostmixCallback|SDL_SetAudioStreamFormat|SDL_SetAudioStreamFrequencyRatio|SDL_SetAudioStreamGain|SDL_SetAudioStreamGetCallback|SDL_SetAudioStreamInputChannelMap|SDL_SetAudioStreamOutputChannelMap|SDL_SetAudioStreamPutCallback|SDL_SetBooleanProperty|SDL_SetClipboardData|SDL_SetClipboardText|SDL_SetCursor|SDL_SetFloatProperty|SDL_SetGamepadLED|SDL_SetGamepadMapping|SDL_SetGamepadPlayerIndex|SDL_SetGamepadSensorEnabled|SDL_SetHapticAutocenter|SDL_SetHapticGain|SDL_SetJoystickLED|SDL_SetJoystickPlayerIndex|SDL_SetJoystickVirtualAxis|SDL_SetJoystickVirtualBall|SDL_SetJoystickVirtualButton|SDL_SetJoystickVirtualHat|SDL_SetJoystickVirtualTouchpad|SDL_SetLinuxThreadPriority|SDL_SetLinuxThreadPriorityAndPolicy|SDL_SetLogPriorityPrefix|SDL_SetMemoryFunctions|SDL_SetNumberProperty|SDL_SetPaletteColors|SDL_SetPointerProperty|SDL_SetPointerPropertyWithCleanup|SDL_SetPrimarySelectionText|SDL_SetRenderClipRect|SDL_SetRenderColorScale|SDL_SetRenderDrawBlendMode|SDL_SetRenderDrawColor|SDL_SetRenderDrawColorFloat|SDL_SetRenderLogicalPresentation|SDL_SetRenderScale|SDL_SetRenderTarget|SDL_SetRenderVSync|SDL_SetRenderViewport|SDL_SetScancodeName|SDL_SetStringProperty|SDL_SetSurfaceAlphaMod|SDL_SetSurfaceBlendMode|SDL_SetSurfaceColorKey|SDL_SetSurfaceColorMod|SDL_SetSurfaceColorspace|SDL_SetSurfacePalette|SDL_SetSurfaceRLE|SDL_SetTLS|SDL_SetTextInputArea|SDL_SetTextureAlphaMod|SDL_SetTextureAlphaModFloat|SDL_SetTextureBlendMode|SDL_SetTextureColorMod|SDL_SetTextureColorModFloat|SDL_SetTextureScaleMode|SDL_SetThreadPriority|SDL_SetWindowAlwaysOnTop|SDL_SetWindowAspectRatio|SDL_SetWindowBordered|SDL_SetWindowFocusable|SDL_SetWindowFullscreen|SDL_SetWindowFullscreenMode|SDL_SetWindowHitTest|SDL_SetWindowIcon|SDL_SetWindowKeyboardGrab|SDL_SetWindowMaximumSize|SDL_SetWindowMinimumSize|SDL_SetWindowModalFor|SDL_SetWindowMouseGrab|SDL_SetWindowMouseRect|SDL_SetWindowOpacity|SDL_SetWindowPosition|SDL_SetWindowRelativeMouseMode|SDL_SetWindowResizable|SDL_SetWindowShape|SDL_SetWindowSize|SDL_SetWindowSurfaceVSync|SDL_SetWindowTitle|SDL_SetiOSAnimationCallback|SDL_ShowAndroidToast|SDL_ShowCursor|SDL_ShowMessageBox|SDL_ShowSimpleMessageBox|SDL_ShowWindow|SDL_ShowWindowSystemMenu|SDL_StartTextInput|SDL_StartTextInputWithProperties|SDL_StopHapticEffect|SDL_StopHapticEffects|SDL_StopHapticRumble|SDL_StopTextInput|SDL_SyncWindow|SDL_TimeToDateTime|SDL_TryLockMutex|SDL_TryLockRWLockForReading|SDL_TryLockRWLockForWriting|SDL_TryWaitSemaphore|SDL_UnlockAudioStream|SDL_UpdateHapticEffect|SDL_UpdateNVTexture|SDL_UpdateTexture|SDL_UpdateWindowSurface|SDL_UpdateWindowSurfaceRects|SDL_UpdateYUVTexture|SDL_Vulkan_CreateSurface|SDL_Vulkan_LoadLibrary|SDL_WaitConditionTimeout|SDL_WaitSemaphoreTimeout|SDL_WarpMouseGlobal|SDL_WriteStorageFile|SDL_WriteSurfacePixel|SDL_WriteSurfacePixelFloat)$";
@@
(
func(
...
)
- == 0
|
- func(
+ !func(
...
)
- < 0
|
- func(
+ !func(
...
)
- != 0
|
- func(
+ !func(
...
)
- == -1
)
This was done to SDL_DisplayMode for consistency with SDL_Surface and gives it a type so we don't have to do casts in SDL code.
I considered switching to an ID and hashing the driver data, etc. but all of that involved a lot of internal code churn and this solution gives us flexibility in how we handle this in the future.
After consideration, I made this renaming global across the project, for consistency.
Fixes https://github.com/libsdl-org/SDL/issues/10198
Turns out that there isn't a strong OpenGL naming convention for "Delete" ...
WGL offers "wglDeleteContext" but the GLX equivalent is "glxDestroyContext"
and then EGL sealed the deal by going with Destroy as well! Since it matches
SDL3 naming conventions (Create/Destroy), we're renaming it.
Fixes#10197.
SDL_Surface has been simplified and internal details are no longer in the public structure.
The `format` member of SDL_Surface is now an enumerated pixel format value. You can get the full details of the pixel format by calling `SDL_GetPixelFormatDetails(surface->format)`. You can get the palette associated with the surface by calling SDL_GetSurfacePalette(). You can get the clip rectangle by calling SDL_GetSurfaceClipRect().
SDL_PixelFormat has been renamed SDL_PixelFormatDetails and just describes the pixel format, it does not include a palette for indexed pixel types.
SDL_PixelFormatEnum has been renamed SDL_PixelFormat and is used instead of Uint32 for API functions that refer to pixel format by enumerated value.
SDL_MapRGB(), SDL_MapRGBA(), SDL_GetRGB(), and SDL_GetRGBA() take an optional palette parameter for indexed color lookups.
These are integer values internally, but the API has been changed to make it easier to mix other render code with querying those values.
Fixes https://github.com/libsdl-org/SDL/issues/7519
The flags parameter has been removed from SDL_CreateRenderer() and SDL_RENDERER_PRESENTVSYNC has been replaced with SDL_PROP_RENDERER_CREATE_PRESENT_VSYNC_NUMBER during window creation and SDL_PROP_RENDERER_VSYNC_NUMBER after renderer creation.
SDL_SetRenderVSync() now takes additional values besides 0 and 1.
The maximum texture size has been removed from SDL_RendererInfo, replaced with SDL_PROP_RENDERER_MAX_TEXTURE_SIZE_NUMBER.
Previously, each backend would allocate and free the renderer struct. Now
the higher level does it, so the backends only manage their private resources.
This removes some boilerplate and avoids some potential accidents.
Renamed the following property define names to have a type suffix to
match other property names.
SDL_PROP_TEXTURE_OPENGL_TEXTURE_TARGET (number)
SDL_PROP_TEXTURE_OPENGLES2_TEXTURE_TARGET (number)
SDL_PROP_WINDOW_CREATE_WAYLAND_SCALE_TO_DISPLAY (boolean)
SDL_PROP_WINDOW_RENDERER (pointer)
SDL_PROP_WINDOW_TEXTUREDATA (pointer)
The renderer will always use the sRGB colorspace for drawing, and will default to the sRGB output colorspace. If you want blending in linear space and HDR support, you can select the scRGB output colorspace, which is supported by the direct3d11 and direct3d12
This allows color operations to happen in linear space between sRGB input and sRGB output. This is currently supported on the direct3d11, direct3d12 and opengl renderers.
This is a good resource on blending in linear space vs sRGB space:
https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
Also added testcolorspace to verify colorspace changes
SDL window size, state, and position functions have been considered immediate, with their effects assuming to have taken effect upon successful return of the function. However, several windowing systems handle these requests asynchronously, resulting in the functions blocking until the changes have taken effect, potentially for long periods of time. Additionally, some windowing systems treat these as requests, and can potentially deny or fulfill the request in a manner differently than the application expects, such as not allowing a window to be positioned or sized beyond desktop borders, prohibiting fullscreen, and so on.
With these changes, applications can make requests of the window manager that do not block, with the understanding that an associated event will be sent if the request is fulfilled. Currently, size, position, maximize, minimize, and fullscreen calls are handled as asynchronous requests, with events being returned if the request is honored. If the application requires that the change take effect immediately, it can call the new SDL_SyncWindow function, which will attempt to block until the request is fulfilled, or some arbitrary timeout period elapses, the duration of which depends not only on the windowing system, but on the operation requested as well (e.g. a 100ms timeout is fine for most X11 events, but maximizing a window can take considerably longer for some reason). There is also a new hint 'SDL_VIDEO_SYNC_ALL_WINDOW_OPS' that will mimic the old behavior by synchronizing after every window operation with, again, the understanding that using this may result in the associated calls blocking for a relatively long period.
The deferred model also results in the window size and position getters not reporting false coordinates anymore, as they only forward what the window manager reports vs allowing applications to set arbitrary values, and fullscreen enter/leave events that were initiated via the window manager update the window state appropriately, where they didn't before.
Care was taken to ensure that order of operations is maintained, and that requests are not ignored or dropped. This does require some implicit internal synchronization in the various backends if many requests are made in a short period, as some state and behavior depends on other bits of state that need to be known at that particular point in time, but this isn't something that typical applications will hit, unless they are sending a lot of window state in a short time as the tests do.
The automated tests developed to test the previous behavior also resulted in previously undefined behavior being defined and normalized across platforms, particularly when it comes to the sizing and positioning of windows when they are in a fixed-size state, such as maximized or fullscreen. Size and position requests made when the window is not in a movable or resizable state will be deferred until it can be applied, so no requests are lost. These changes fix another long-standing issue with renderers recreating maximized windows, where the original non-maximized size was lost, resulting in the window being restored to the wrong size. All automated video tests pass across all platforms.
Overall, the "make a request/get an event" model better reflects how most windowing systems work, and some backends avoid spending significant time blocking while waiting for operations to complete.
At the earliest place, immediatly after driverdata is set.
(Doing it in SDL_render.c, after creation, would be too late, because there're renderers that already use/change those values in the CreateRender() function).
This means the allocator's caller doesn't need to use SDL_OutOfMemory directly
if the allocation fails.
This applies to the usual allocators: SDL_malloc, SDL_calloc, SDL_realloc
(all of these regardless of if the app supplied a custom allocator or we're
using system malloc() or an internal copy of dlmalloc under the hood),
SDL_aligned_alloc, SDL_small_alloc, SDL_strdup, SDL_asprintf, SDL_wcsdup...
probably others. If it returns something you can pass to SDL_free, it should
work.
The caller might still need to use SDL_OutOfMemory if something that wasn't
SDL allocated the memory: operator new in C++ code, Objective-C's alloc
message, win32 GlobalAlloc, etc.
Fixes#8642.
This uses the same `SDL_VerbNoun` format as the rest of SDL3, and also
adds stronger effort to invalidate cached state in the backend, so cooperation
improves with apps that are using lowlevel rendering APIs directly.
Fixes#367.