Files
ghostty/src/renderer/shaders/shaders.metal
Qwerasd da46a47726 renderer: add support for background images
Adds support for background images via the `background-image` config.

Resolves #3645, supersedes PRs #4226 and #5233.

See docs of added config keys for usage details.
2025-06-25 16:27:23 -04:00

879 lines
26 KiB
Metal

#include <metal_stdlib>
using namespace metal;
enum Padding : uint8_t {
EXTEND_LEFT = 1u,
EXTEND_RIGHT = 2u,
EXTEND_UP = 4u,
EXTEND_DOWN = 8u,
};
struct Uniforms {
float4x4 projection_matrix;
float2 screen_size;
float2 cell_size;
ushort2 grid_size;
float4 grid_padding;
uint8_t padding_extend;
float min_contrast;
ushort2 cursor_pos;
uchar4 cursor_color;
uchar4 bg_color;
bool cursor_wide;
bool use_display_p3;
bool use_linear_blending;
bool use_linear_correction;
};
//-------------------------------------------------------------------
// Color Functions
//-------------------------------------------------------------------
#pragma mark - Colors
// D50-adapted sRGB to XYZ conversion matrix.
// http://www.brucelindbloom.com/Eqn_RGB_XYZ_Matrix.html
constant float3x3 sRGB_XYZ = transpose(float3x3(
0.4360747, 0.3850649, 0.1430804,
0.2225045, 0.7168786, 0.0606169,
0.0139322, 0.0971045, 0.7141733
));
// XYZ to Display P3 conversion matrix.
// http://endavid.com/index.php?entry=79
constant float3x3 XYZ_DP3 = transpose(float3x3(
2.40414768,-0.99010704,-0.39759019,
-0.84239098, 1.79905954, 0.01597023,
0.04838763,-0.09752546, 1.27393636
));
// By composing the two above matrices we get
// our sRGB to Display P3 conversion matrix.
constant float3x3 sRGB_DP3 = XYZ_DP3 * sRGB_XYZ;
// Converts a color in linear sRGB to linear Display P3
//
// TODO: The color matrix should probably be computed
// dynamically and passed as a uniform, rather
// than being hard coded above.
float3 srgb_to_display_p3(float3 srgb) {
return sRGB_DP3 * srgb;
}
// Converts a color from sRGB gamma encoding to linear.
float4 linearize(float4 srgb) {
bool3 cutoff = srgb.rgb <= 0.04045;
float3 lower = srgb.rgb / 12.92;
float3 higher = pow((srgb.rgb + 0.055) / 1.055, 2.4);
srgb.rgb = mix(higher, lower, float3(cutoff));
return srgb;
}
float linearize(float v) {
return v <= 0.04045 ? v / 12.92 : pow((v + 0.055) / 1.055, 2.4);
}
// Converts a color from linear to sRGB gamma encoding.
float4 unlinearize(float4 linear) {
bool3 cutoff = linear.rgb <= 0.0031308;
float3 lower = linear.rgb * 12.92;
float3 higher = pow(linear.rgb, 1.0 / 2.4) * 1.055 - 0.055;
linear.rgb = mix(higher, lower, float3(cutoff));
return linear;
}
float unlinearize(float v) {
return v <= 0.0031308 ? v * 12.92 : pow(v, 1.0 / 2.4) * 1.055 - 0.055;
}
// Compute the luminance of the provided color.
//
// Takes colors in linear RGB space. If your colors are gamma
// encoded, linearize them before using them with this function.
float luminance(float3 color) {
return dot(color, float3(0.2126f, 0.7152f, 0.0722f));
}
// https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef
//
// Takes colors in linear RGB space. If your colors are gamma
// encoded, linearize them before using them with this function.
float contrast_ratio(float3 color1, float3 color2) {
float l1 = luminance(color1);
float l2 = luminance(color2);
return (max(l1, l2) + 0.05f) / (min(l1, l2) + 0.05f);
}
// Return the fg if the contrast ratio is greater than min, otherwise
// return a color that satisfies the contrast ratio. Currently, the color
// is always white or black, whichever has the highest contrast ratio.
//
// Takes colors in linear RGB space. If your colors are gamma
// encoded, linearize them before using them with this function.
float4 contrasted_color(float min, float4 fg, float4 bg) {
float ratio = contrast_ratio(fg.rgb, bg.rgb);
if (ratio < min) {
float white_ratio = contrast_ratio(float3(1.0f), bg.rgb);
float black_ratio = contrast_ratio(float3(0.0f), bg.rgb);
if (white_ratio > black_ratio) {
return float4(1.0f);
} else {
return float4(0.0f, 0.0f, 0.0f, 1.0f);
}
}
return fg;
}
// Load a 4 byte RGBA non-premultiplied color and linearize
// and convert it as necessary depending on the provided info.
//
// Returns a color in the Display P3 color space.
//
// If `display_p3` is true, then the provided color is assumed to
// already be in the Display P3 color space, otherwise it's treated
// as an sRGB color and is appropriately converted to Display P3.
//
// `linear` controls whether the returned color is linear or gamma encoded.
float4 load_color(
uchar4 in_color,
bool display_p3,
bool linear
) {
// 0 .. 255 -> 0.0 .. 1.0
float4 color = float4(in_color) / 255.0f;
// If our color is already in Display P3 and
// we aren't doing linear blending, then we
// already have the correct color here and
// can premultiply and return it.
if (display_p3 && !linear) {
color.rgb *= color.a;
return color;
}
// The color is in either the sRGB or Display P3 color space,
// so in either case, it's a color space which uses the sRGB
// transfer function, so we can use one function in order to
// linearize it in either case.
//
// Even if we aren't doing linear blending, the color
// needs to be in linear space to convert color spaces.
color = linearize(color);
// If we're *NOT* using display P3 colors, then we're dealing
// with an sRGB color, in which case we need to convert it in
// to the Display P3 color space, since our output is always
// Display P3.
if (!display_p3) {
color.rgb = srgb_to_display_p3(color.rgb);
}
// If we're not doing linear blending, then we need to
// unlinearize after doing the color space conversion.
if (!linear) {
color = unlinearize(color);
}
// Premultiply our color by its alpha.
color.rgb *= color.a;
return color;
}
//-------------------------------------------------------------------
// Full Screen Vertex Shader
//-------------------------------------------------------------------
#pragma mark - Full Screen Vertex Shader
struct FullScreenVertexOut {
float4 position [[position]];
};
vertex FullScreenVertexOut full_screen_vertex(
uint vid [[vertex_id]]
) {
FullScreenVertexOut out;
float4 position;
position.x = (vid == 2) ? 3.0 : -1.0;
position.y = (vid == 0) ? -3.0 : 1.0;
position.zw = 1.0;
// Single triangle is clipped to viewport.
//
// X <- vid == 0: (-1, -3)
// |\
// | \
// | \
// |###\
// |#+# \ `+` is (0, 0). `#`s are viewport area.
// |### \
// X------X <- vid == 2: (3, 1)
// ^
// vid == 1: (-1, 1)
out.position = position;
return out;
}
//-------------------------------------------------------------------
// Background Color Shader
//-------------------------------------------------------------------
#pragma mark - BG Color Shader
fragment float4 bg_color_fragment(
FullScreenVertexOut in [[stage_in]],
constant Uniforms& uniforms [[buffer(1)]]
) {
return load_color(
uniforms.bg_color,
uniforms.use_display_p3,
uniforms.use_linear_blending
);
}
//-------------------------------------------------------------------
// Background Image Shader
//-------------------------------------------------------------------
#pragma mark - BG Image Shader
struct BgImageVertexIn {
float opacity [[attribute(0)]];
uint8_t info [[attribute(1)]];
};
enum BgImagePosition : uint8_t {
// 4 bits of info.
BG_IMAGE_POSITION = 15u,
BG_IMAGE_TL = 0u,
BG_IMAGE_TC = 1u,
BG_IMAGE_TR = 2u,
BG_IMAGE_ML = 3u,
BG_IMAGE_MC = 4u,
BG_IMAGE_MR = 5u,
BG_IMAGE_BL = 6u,
BG_IMAGE_BC = 7u,
BG_IMAGE_BR = 8u,
};
enum BgImageFit : uint8_t {
// 2 bits of info shifted 4.
BG_IMAGE_FIT = 3u << 4,
BG_IMAGE_CONTAIN = 0u << 4,
BG_IMAGE_COVER = 1u << 4,
BG_IMAGE_STRETCH = 2u << 4,
BG_IMAGE_NO_FIT = 3u << 4,
};
enum BgImageRepeat : uint8_t {
// 1 bit of info shifted 6.
BG_IMAGE_REPEAT = 1u << 6,
};
struct BgImageVertexOut {
float4 position [[position]];
float4 bg_color [[flat]];
float2 offset [[flat]];
float2 scale [[flat]];
float opacity [[flat]];
bool repeat [[flat]];
};
vertex BgImageVertexOut bg_image_vertex(
uint vid [[vertex_id]],
BgImageVertexIn in [[stage_in]],
texture2d<float> image [[texture(0)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
BgImageVertexOut out;
float4 position;
position.x = (vid == 2) ? 3.0 : -1.0;
position.y = (vid == 0) ? -3.0 : 1.0;
position.zw = 1.0;
// Single triangle is clipped to viewport.
//
// X <- vid == 0: (-1, -3)
// |\
// | \
// | \
// |###\
// |#+# \ `+` is (0, 0). `#`s are viewport area.
// |### \
// X------X <- vid == 2: (3, 1)
// ^
// vid == 1: (-1, 1)
out.position = position;
out.opacity = in.opacity;
out.repeat = (in.info & BG_IMAGE_REPEAT) == BG_IMAGE_REPEAT;
float2 screen_size = uniforms.screen_size;
float2 tex_size = float2(image.get_width(), image.get_height());
float2 dest_size = tex_size;
switch (in.info & BG_IMAGE_FIT) {
// For `contain` we scale by a factor that makes the image
// width match the screen width or makes the image height
// match the screen height, whichever is smaller.
case BG_IMAGE_CONTAIN: {
float scale = min(screen_size.x / tex_size.x, screen_size.y / tex_size.y);
dest_size = tex_size * scale;
} break;
// For `cover` we scale by a factor that makes the image
// width match the screen width or makes the image height
// match the screen height, whichever is larger.
case BG_IMAGE_COVER: {
float scale = max(screen_size.x / tex_size.x, screen_size.y / tex_size.y);
dest_size = tex_size * scale;
} break;
// For `stretch` we stretch the image to the size of
// the screen without worrying about aspect ratio.
case BG_IMAGE_STRETCH: {
dest_size = screen_size;
} break;
// For `none` we just use the original texture size.
case BG_IMAGE_NO_FIT: {
dest_size = tex_size;
} break;
}
float2 start = float2(0.0);
float2 mid = (screen_size - dest_size) / 2;
float2 end = screen_size - dest_size;
float2 dest_offset = mid;
switch (in.info & BG_IMAGE_POSITION) {
case BG_IMAGE_TL: {
dest_offset = float2(start.x, start.y);
} break;
case BG_IMAGE_TC: {
dest_offset = float2(mid.x, start.y);
} break;
case BG_IMAGE_TR: {
dest_offset = float2(end.x, start.y);
} break;
case BG_IMAGE_ML: {
dest_offset = float2(start.x, mid.y);
} break;
case BG_IMAGE_MC: {
dest_offset = float2(mid.x, mid.y);
} break;
case BG_IMAGE_MR: {
dest_offset = float2(end.x, mid.y);
} break;
case BG_IMAGE_BL: {
dest_offset = float2(start.x, end.y);
} break;
case BG_IMAGE_BC: {
dest_offset = float2(mid.x, end.y);
} break;
case BG_IMAGE_BR: {
dest_offset = float2(end.x, end.y);
} break;
}
out.offset = dest_offset;
out.scale = tex_size / dest_size;
// We load a fully opaque version of the bg color and combine it with
// the alpha separately, because we need these as separate values in
// the framgment shader.
out.bg_color = float4(load_color(
uchar4(uniforms.bg_color.rgb, 255),
uniforms.use_display_p3,
uniforms.use_linear_blending
).rgb, float(uniforms.bg_color.a) / 255.0);
return out;
}
fragment float4 bg_image_fragment(
BgImageVertexOut in [[stage_in]],
texture2d<float> image [[texture(0)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
constexpr sampler textureSampler(
coord::pixel,
address::clamp_to_zero,
filter::linear
);
// Our texture coordinate is based on the screen position, offset by the
// dest rect origin, and scaled by the ratio between the dest rect size
// and the original texture size, which effectively scales the original
// size of the texture to the dest rect size.
float2 tex_coord = (in.position.xy - in.offset) * in.scale;
// If we need to repeat the texture, wrap the coordinates.
if (in.repeat) {
float2 tex_size = float2(image.get_width(), image.get_height());
tex_coord = fmod(fmod(tex_coord, tex_size) + tex_size, tex_size);
}
float4 rgba = image.sample(textureSampler, tex_coord);
if (!uniforms.use_linear_blending) {
rgba = unlinearize(rgba);
}
// Premultiply the bg image.
rgba.rgb *= rgba.a;
// Multiply it by the configured opacity, but cap it at
// the value that will make it fully opaque relative to
// the background color alpha, so it isn't overexposed.
rgba *= min(in.opacity, 1.0 / in.bg_color.a);
// Blend it on to a fully opaque version of the background color.
rgba += max(float4(0.0), float4(in.bg_color.rgb, 1.0) * (1.0 - rgba.a));
// Multiply everything by the background color alpha.
rgba *= in.bg_color.a;
return rgba;
}
//-------------------------------------------------------------------
// Cell Background Shader
//-------------------------------------------------------------------
#pragma mark - Cell BG Shader
fragment float4 cell_bg_fragment(
FullScreenVertexOut in [[stage_in]],
constant Uniforms& uniforms [[buffer(1)]],
constant uchar4 *cells [[buffer(2)]]
) {
int2 grid_pos = int2(floor((in.position.xy - uniforms.grid_padding.wx) / uniforms.cell_size));
float4 bg = float4(0.0);
// Clamp x position, extends edge bg colors in to padding on sides.
if (grid_pos.x < 0) {
if (uniforms.padding_extend & EXTEND_LEFT) {
grid_pos.x = 0;
} else {
return bg;
}
} else if (grid_pos.x > uniforms.grid_size.x - 1) {
if (uniforms.padding_extend & EXTEND_RIGHT) {
grid_pos.x = uniforms.grid_size.x - 1;
} else {
return bg;
}
}
// Clamp y position if we should extend, otherwise discard if out of bounds.
if (grid_pos.y < 0) {
if (uniforms.padding_extend & EXTEND_UP) {
grid_pos.y = 0;
} else {
return bg;
}
} else if (grid_pos.y > uniforms.grid_size.y - 1) {
if (uniforms.padding_extend & EXTEND_DOWN) {
grid_pos.y = uniforms.grid_size.y - 1;
} else {
return bg;
}
}
// Load the color for the cell.
uchar4 cell_color = cells[grid_pos.y * uniforms.grid_size.x + grid_pos.x];
// Convert the color and return it.
//
// TODO: It might be a good idea to do a pass before this
// to convert all of the bg colors, so we don't waste
// a bunch of work converting the cell color in every
// fragment of each cell. It's not the most epxensive
// operation, but it is still wasted work.
return load_color(
cell_color,
uniforms.use_display_p3,
uniforms.use_linear_blending
);
}
//-------------------------------------------------------------------
// Cell Text Shader
//-------------------------------------------------------------------
#pragma mark - Cell Text Shader
// The possible modes that a cell fg entry can take.
enum CellTextMode : uint8_t {
MODE_TEXT = 1u,
MODE_TEXT_CONSTRAINED = 2u,
MODE_TEXT_COLOR = 3u,
MODE_TEXT_CURSOR = 4u,
MODE_TEXT_POWERLINE = 5u,
};
struct CellTextVertexIn {
// The position of the glyph in the texture (x, y)
uint2 glyph_pos [[attribute(0)]];
// The size of the glyph in the texture (w, h)
uint2 glyph_size [[attribute(1)]];
// The left and top bearings for the glyph (x, y)
int2 bearings [[attribute(2)]];
// The grid coordinates (x, y) where x < columns and y < rows
ushort2 grid_pos [[attribute(3)]];
// The color of the rendered text glyph.
uchar4 color [[attribute(4)]];
// The mode for this cell.
uint8_t mode [[attribute(5)]];
// The width to constrain the glyph to, in cells, or 0 for no constraint.
uint8_t constraint_width [[attribute(6)]];
};
struct CellTextVertexOut {
float4 position [[position]];
uint8_t mode [[flat]];
float4 color [[flat]];
float4 bg_color [[flat]];
float2 tex_coord;
};
vertex CellTextVertexOut cell_text_vertex(
uint vid [[vertex_id]],
CellTextVertexIn in [[stage_in]],
constant Uniforms& uniforms [[buffer(1)]],
constant uchar4 *bg_colors [[buffer(2)]]
) {
// Convert the grid x, y into world space x, y by accounting for cell size
float2 cell_pos = uniforms.cell_size * float2(in.grid_pos);
// We use a triangle strip with 4 vertices to render quads,
// so we determine which corner of the cell this vertex is in
// based on the vertex ID.
//
// 0 --> 1
// | .'|
// | / |
// | L |
// 2 --> 3
//
// 0 = top-left (0, 0)
// 1 = top-right (1, 0)
// 2 = bot-left (0, 1)
// 3 = bot-right (1, 1)
float2 corner;
corner.x = float(vid == 1 || vid == 3);
corner.y = float(vid == 2 || vid == 3);
CellTextVertexOut out;
out.mode = in.mode;
// === Grid Cell ===
// +X
// 0,0--...->
// |
// . offset.x = bearings.x
// +Y. .|.
// . | |
// | cell_pos -> +-------+ _.
// v ._| |_. _|- offset.y = cell_size.y - bearings.y
// | | .###. | |
// | | #...# | |
// glyph_size.y -+ | ##### | |
// | | #.... | +- bearings.y
// |_| .#### | |
// | |_|
// +-------+
// |_._|
// |
// glyph_size.x
//
// In order to get the top left of the glyph, we compute an offset based on
// the bearings. The Y bearing is the distance from the bottom of the cell
// to the top of the glyph, so we subtract it from the cell height to get
// the y offset. The X bearing is the distance from the left of the cell
// to the left of the glyph, so it works as the x offset directly.
float2 size = float2(in.glyph_size);
float2 offset = float2(in.bearings);
offset.y = uniforms.cell_size.y - offset.y;
// If we're constrained then we need to scale the glyph.
if (in.mode == MODE_TEXT_CONSTRAINED) {
float max_width = uniforms.cell_size.x * in.constraint_width;
// If this glyph is wider than the constraint width,
// fit it to the width and remove its horizontal offset.
if (size.x > max_width) {
float new_y = size.y * (max_width / size.x);
offset.y += (size.y - new_y) / 2;
offset.x = 0;
size.y = new_y;
size.x = max_width;
} else if (max_width - size.x > offset.x) {
// However, if it does fit in the constraint width, make
// sure the offset is small enough to not push it over the
// right edge of the constraint width.
offset.x = max_width - size.x;
}
}
// Calculate the final position of the cell which uses our glyph size
// and glyph offset to create the correct bounding box for the glyph.
cell_pos = cell_pos + size * corner + offset;
out.position =
uniforms.projection_matrix * float4(cell_pos.x, cell_pos.y, 0.0f, 1.0f);
// Calculate the texture coordinate in pixels. This is NOT normalized
// (between 0.0 and 1.0), and does not need to be, since the texture will
// be sampled with pixel coordinate mode.
out.tex_coord = float2(in.glyph_pos) + float2(in.glyph_size) * corner;
// Get our color. We always fetch a linearized version to
// make it easier to handle minimum contrast calculations.
out.color = load_color(
in.color,
uniforms.use_display_p3,
true
);
// Get the BG color
out.bg_color = load_color(
bg_colors[in.grid_pos.y * uniforms.grid_size.x + in.grid_pos.x],
uniforms.use_display_p3,
true
);
// Blend it with the global bg color
float4 global_bg = load_color(
uniforms.bg_color,
uniforms.use_display_p3,
true
);
out.bg_color += global_bg * (1.0 - out.bg_color.a);
// If we have a minimum contrast, we need to check if we need to
// change the color of the text to ensure it has enough contrast
// with the background.
// We only apply this adjustment to "normal" text with MODE_TEXT,
// since we want color glyphs to appear in their original color
// and Powerline glyphs to be unaffected (else parts of the line would
// have different colors as some parts are displayed via background colors).
if (uniforms.min_contrast > 1.0f && in.mode == MODE_TEXT) {
// Ensure our minimum contrast
out.color = contrasted_color(uniforms.min_contrast, out.color, out.bg_color);
}
// Check if current position is under cursor (including wide cursor)
bool is_cursor_pos = (
in.grid_pos.x == uniforms.cursor_pos.x ||
uniforms.cursor_wide &&
in.grid_pos.x == uniforms.cursor_pos.x + 1
) && in.grid_pos.y == uniforms.cursor_pos.y;
// If this cell is the cursor cell, then we need to change the color.
if (in.mode != MODE_TEXT_CURSOR && is_cursor_pos) {
out.color = load_color(
uniforms.cursor_color,
uniforms.use_display_p3,
false
);
}
return out;
}
fragment float4 cell_text_fragment(
CellTextVertexOut in [[stage_in]],
texture2d<float> textureGrayscale [[texture(0)]],
texture2d<float> textureColor [[texture(1)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
constexpr sampler textureSampler(
coord::pixel,
address::clamp_to_edge,
// TODO(qwerasd): This can be changed back to filter::nearest when
// we move the constraint logic out of the GPU code
// which should once again guarantee pixel perfect
// sizing.
filter::linear
);
switch (in.mode) {
default:
case MODE_TEXT_CURSOR:
case MODE_TEXT_CONSTRAINED:
case MODE_TEXT_POWERLINE:
case MODE_TEXT: {
// Our input color is always linear.
float4 color = in.color;
// If we're not doing linear blending, then we need to
// re-apply the gamma encoding to our color manually.
//
// Since the alpha is premultiplied, we need to divide
// it out before unlinearizing and re-multiply it after.
if (!uniforms.use_linear_blending) {
color.rgb /= color.a;
color = unlinearize(color);
color.rgb *= color.a;
}
// Fetch our alpha mask for this pixel.
float a = textureGrayscale.sample(textureSampler, in.tex_coord).r;
// Linear blending weight correction corrects the alpha value to
// produce blending results which match gamma-incorrect blending.
if (uniforms.use_linear_correction) {
// Short explanation of how this works:
//
// We get the luminances of the foreground and background colors,
// and then unlinearize them and perform blending on them. This
// gives us our desired luminance, which we derive our new alpha
// value from by mapping the range [bg_l, fg_l] to [0, 1], since
// our final blend will be a linear interpolation from bg to fg.
//
// This yields virtually identical results for grayscale blending,
// and very similar but non-identical results for color blending.
float4 bg = in.bg_color;
float fg_l = luminance(color.rgb);
float bg_l = luminance(bg.rgb);
// To avoid numbers going haywire, we don't apply correction
// when the bg and fg luminances are within 0.001 of each other.
if (abs(fg_l - bg_l) > 0.001) {
float blend_l = linearize(unlinearize(fg_l) * a + unlinearize(bg_l) * (1.0 - a));
a = clamp((blend_l - bg_l) / (fg_l - bg_l), 0.0, 1.0);
}
}
// Multiply our whole color by the alpha mask.
// Since we use premultiplied alpha, this is
// the correct way to apply the mask.
color *= a;
return color;
}
case MODE_TEXT_COLOR: {
// For now, we assume that color glyphs
// are already premultiplied linear colors.
float4 color = textureColor.sample(textureSampler, in.tex_coord);
// If we're doing linear blending, we can return this right away.
if (uniforms.use_linear_blending) {
return color;
}
// Otherwise we need to unlinearize the color. Since the alpha is
// premultiplied, we need to divide it out before unlinearizing.
color.rgb /= color.a;
color = unlinearize(color);
color.rgb *= color.a;
return color;
}
}
}
//-------------------------------------------------------------------
// Image Shader
//-------------------------------------------------------------------
#pragma mark - Image Shader
struct ImageVertexIn {
// The grid coordinates (x, y) where x < columns and y < rows where
// the image will be rendered. It will be rendered from the top left.
float2 grid_pos [[attribute(0)]];
// Offset in pixels from the top-left of the cell to make the top-left
// corner of the image.
float2 cell_offset [[attribute(1)]];
// The source rectangle of the texture to sample from.
float4 source_rect [[attribute(2)]];
// The final width/height of the image in pixels.
float2 dest_size [[attribute(3)]];
};
struct ImageVertexOut {
float4 position [[position]];
float2 tex_coord;
};
vertex ImageVertexOut image_vertex(
uint vid [[vertex_id]],
ImageVertexIn in [[stage_in]],
texture2d<uint> image [[texture(0)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
// We use a triangle strip with 4 vertices to render quads,
// so we determine which corner of the cell this vertex is in
// based on the vertex ID.
//
// 0 --> 1
// | .'|
// | / |
// | L |
// 2 --> 3
//
// 0 = top-left (0, 0)
// 1 = top-right (1, 0)
// 2 = bot-left (0, 1)
// 3 = bot-right (1, 1)
float2 corner;
corner.x = float(vid == 1 || vid == 3);
corner.y = float(vid == 2 || vid == 3);
// The texture coordinates start at our source x/y
// and add the width/height depending on the corner.
//
// We don't need to normalize because we use pixel addressing for our sampler.
float2 tex_coord = in.source_rect.xy;
tex_coord += in.source_rect.zw * corner;
ImageVertexOut out;
// The position of our image starts at the top-left of the grid cell and
// adds the source rect width/height components.
float2 image_pos = (uniforms.cell_size * in.grid_pos) + in.cell_offset;
image_pos += in.dest_size * corner;
out.position =
uniforms.projection_matrix * float4(image_pos.x, image_pos.y, 0.0f, 1.0f);
out.tex_coord = tex_coord;
return out;
}
fragment float4 image_fragment(
ImageVertexOut in [[stage_in]],
texture2d<float> image [[texture(0)]],
constant Uniforms& uniforms [[buffer(1)]]
) {
constexpr sampler textureSampler(
coord::pixel,
address::clamp_to_edge,
filter::linear
);
float4 rgba = image.sample(textureSampler, in.tex_coord);
if (!uniforms.use_linear_blending) {
rgba = unlinearize(rgba);
}
rgba.rgb *= rgba.a;
return rgba;
}