Files
neovim/src/nvim/spell.c
Thiago de Arruda bf6bb27e79 ui: Remove redundant ui.h includes
Also move read_error_exit to os/input.c
2014-11-27 15:00:30 -03:00

13364 lines
418 KiB
C

// VIM - Vi IMproved by Bram Moolenaar
//
// Do ":help uganda" in Vim to read copying and usage conditions.
// Do ":help credits" in Vim to see a list of people who contributed.
// See README.txt for an overview of the Vim source code.
// spell.c: code for spell checking
//
// The spell checking mechanism uses a tree (aka trie). Each node in the tree
// has a list of bytes that can appear (siblings). For each byte there is a
// pointer to the node with the byte that follows in the word (child).
//
// A NUL byte is used where the word may end. The bytes are sorted, so that
// binary searching can be used and the NUL bytes are at the start. The
// number of possible bytes is stored before the list of bytes.
//
// The tree uses two arrays: "byts" stores the characters, "idxs" stores
// either the next index or flags. The tree starts at index 0. For example,
// to lookup "vi" this sequence is followed:
// i = 0
// len = byts[i]
// n = where "v" appears in byts[i + 1] to byts[i + len]
// i = idxs[n]
// len = byts[i]
// n = where "i" appears in byts[i + 1] to byts[i + len]
// i = idxs[n]
// len = byts[i]
// find that byts[i + 1] is 0, idxs[i + 1] has flags for "vi".
//
// There are two word trees: one with case-folded words and one with words in
// original case. The second one is only used for keep-case words and is
// usually small.
//
// There is one additional tree for when not all prefixes are applied when
// generating the .spl file. This tree stores all the possible prefixes, as
// if they were words. At each word (prefix) end the prefix nr is stored, the
// following word must support this prefix nr. And the condition nr is
// stored, used to lookup the condition that the word must match with.
//
// Thanks to Olaf Seibert for providing an example implementation of this tree
// and the compression mechanism.
// LZ trie ideas:
// http://www.irb.hr/hr/home/ristov/papers/RistovLZtrieRevision1.pdf
// More papers: http://www-igm.univ-mlv.fr/~laporte/publi_en.html
//
// Matching involves checking the caps type: Onecap ALLCAP KeepCap.
//
// Why doesn't Vim use aspell/ispell/myspell/etc.?
// See ":help develop-spell".
// Use SPELL_PRINTTREE for debugging: dump the word tree after adding a word.
// Only use it for small word lists!
// Use DEBUG_TRIEWALK to print the changes made in suggest_trie_walk() for a
// specific word.
// Use this to adjust the score after finding suggestions, based on the
// suggested word sounding like the bad word. This is much faster than doing
// it for every possible suggestion.
// Disadvantage: When "the" is typed as "hte" it sounds quite different ("@"
// vs "ht") and goes down in the list.
// Used when 'spellsuggest' is set to "best".
#define RESCORE(word_score, sound_score) ((3 * word_score + sound_score) / 4)
// Do the opposite: based on a maximum end score and a known sound score,
// compute the maximum word score that can be used.
#define MAXSCORE(word_score, sound_score) ((4 * word_score - sound_score) / 3)
// Vim spell file format: <HEADER>
// <SECTIONS>
// <LWORDTREE>
// <KWORDTREE>
// <PREFIXTREE>
//
// <HEADER>: <fileID> <versionnr>
//
// <fileID> 8 bytes "VIMspell"
// <versionnr> 1 byte VIMSPELLVERSION
//
//
// Sections make it possible to add information to the .spl file without
// making it incompatible with previous versions. There are two kinds of
// sections:
// 1. Not essential for correct spell checking. E.g. for making suggestions.
// These are skipped when not supported.
// 2. Optional information, but essential for spell checking when present.
// E.g. conditions for affixes. When this section is present but not
// supported an error message is given.
//
// <SECTIONS>: <section> ... <sectionend>
//
// <section>: <sectionID> <sectionflags> <sectionlen> (section contents)
//
// <sectionID> 1 byte number from 0 to 254 identifying the section
//
// <sectionflags> 1 byte SNF_REQUIRED: this section is required for correct
// spell checking
//
// <sectionlen> 4 bytes length of section contents, MSB first
//
// <sectionend> 1 byte SN_END
//
//
// sectionID == SN_INFO: <infotext>
// <infotext> N bytes free format text with spell file info (version,
// website, etc)
//
// sectionID == SN_REGION: <regionname> ...
// <regionname> 2 bytes Up to 8 region names: ca, au, etc. Lower case.
// First <regionname> is region 1.
//
// sectionID == SN_CHARFLAGS: <charflagslen> <charflags>
// <folcharslen> <folchars>
// <charflagslen> 1 byte Number of bytes in <charflags> (should be 128).
// <charflags> N bytes List of flags (first one is for character 128):
// 0x01 word character CF_WORD
// 0x02 upper-case character CF_UPPER
// <folcharslen> 2 bytes Number of bytes in <folchars>.
// <folchars> N bytes Folded characters, first one is for character 128.
//
// sectionID == SN_MIDWORD: <midword>
// <midword> N bytes Characters that are word characters only when used
// in the middle of a word.
//
// sectionID == SN_PREFCOND: <prefcondcnt> <prefcond> ...
// <prefcondcnt> 2 bytes Number of <prefcond> items following.
// <prefcond> : <condlen> <condstr>
// <condlen> 1 byte Length of <condstr>.
// <condstr> N bytes Condition for the prefix.
//
// sectionID == SN_REP: <repcount> <rep> ...
// <repcount> 2 bytes number of <rep> items, MSB first.
// <rep> : <repfromlen> <repfrom> <reptolen> <repto>
// <repfromlen> 1 byte length of <repfrom>
// <repfrom> N bytes "from" part of replacement
// <reptolen> 1 byte length of <repto>
// <repto> N bytes "to" part of replacement
//
// sectionID == SN_REPSAL: <repcount> <rep> ...
// just like SN_REP but for soundfolded words
//
// sectionID == SN_SAL: <salflags> <salcount> <sal> ...
// <salflags> 1 byte flags for soundsalike conversion:
// SAL_F0LLOWUP
// SAL_COLLAPSE
// SAL_REM_ACCENTS
// <salcount> 2 bytes number of <sal> items following
// <sal> : <salfromlen> <salfrom> <saltolen> <salto>
// <salfromlen> 1 byte length of <salfrom>
// <salfrom> N bytes "from" part of soundsalike
// <saltolen> 1 byte length of <salto>
// <salto> N bytes "to" part of soundsalike
//
// sectionID == SN_SOFO: <sofofromlen> <sofofrom> <sofotolen> <sofoto>
// <sofofromlen> 2 bytes length of <sofofrom>
// <sofofrom> N bytes "from" part of soundfold
// <sofotolen> 2 bytes length of <sofoto>
// <sofoto> N bytes "to" part of soundfold
//
// sectionID == SN_SUGFILE: <timestamp>
// <timestamp> 8 bytes time in seconds that must match with .sug file
//
// sectionID == SN_NOSPLITSUGS: nothing
//
// sectionID == SN_WORDS: <word> ...
// <word> N bytes NUL terminated common word
//
// sectionID == SN_MAP: <mapstr>
// <mapstr> N bytes String with sequences of similar characters,
// separated by slashes.
//
// sectionID == SN_COMPOUND: <compmax> <compminlen> <compsylmax> <compoptions>
// <comppatcount> <comppattern> ... <compflags>
// <compmax> 1 byte Maximum nr of words in compound word.
// <compminlen> 1 byte Minimal word length for compounding.
// <compsylmax> 1 byte Maximum nr of syllables in compound word.
// <compoptions> 2 bytes COMP_ flags.
// <comppatcount> 2 bytes number of <comppattern> following
// <compflags> N bytes Flags from COMPOUNDRULE items, separated by
// slashes.
//
// <comppattern>: <comppatlen> <comppattext>
// <comppatlen> 1 byte length of <comppattext>
// <comppattext> N bytes end or begin chars from CHECKCOMPOUNDPATTERN
//
// sectionID == SN_NOBREAK: (empty, its presence is what matters)
//
// sectionID == SN_SYLLABLE: <syllable>
// <syllable> N bytes String from SYLLABLE item.
//
// <LWORDTREE>: <wordtree>
//
// <KWORDTREE>: <wordtree>
//
// <PREFIXTREE>: <wordtree>
//
//
// <wordtree>: <nodecount> <nodedata> ...
//
// <nodecount> 4 bytes Number of nodes following. MSB first.
//
// <nodedata>: <siblingcount> <sibling> ...
//
// <siblingcount> 1 byte Number of siblings in this node. The siblings
// follow in sorted order.
//
// <sibling>: <byte> [ <nodeidx> <xbyte>
// | <flags> [<flags2>] [<region>] [<affixID>]
// | [<pflags>] <affixID> <prefcondnr> ]
//
// <byte> 1 byte Byte value of the sibling. Special cases:
// BY_NOFLAGS: End of word without flags and for all
// regions.
// For PREFIXTREE <affixID> and
// <prefcondnr> follow.
// BY_FLAGS: End of word, <flags> follow.
// For PREFIXTREE <pflags>, <affixID>
// and <prefcondnr> follow.
// BY_FLAGS2: End of word, <flags> and <flags2>
// follow. Not used in PREFIXTREE.
// BY_INDEX: Child of sibling is shared, <nodeidx>
// and <xbyte> follow.
//
// <nodeidx> 3 bytes Index of child for this sibling, MSB first.
//
// <xbyte> 1 byte Byte value of the sibling.
//
// <flags> 1 byte Bitmask of:
// WF_ALLCAP word must have only capitals
// WF_ONECAP first char of word must be capital
// WF_KEEPCAP keep-case word
// WF_FIXCAP keep-case word, all caps not allowed
// WF_RARE rare word
// WF_BANNED bad word
// WF_REGION <region> follows
// WF_AFX <affixID> follows
//
// <flags2> 1 byte Bitmask of:
// WF_HAS_AFF >> 8 word includes affix
// WF_NEEDCOMP >> 8 word only valid in compound
// WF_NOSUGGEST >> 8 word not used for suggestions
// WF_COMPROOT >> 8 word already a compound
// WF_NOCOMPBEF >> 8 no compounding before this word
// WF_NOCOMPAFT >> 8 no compounding after this word
//
// <pflags> 1 byte Bitmask of:
// WFP_RARE rare prefix
// WFP_NC non-combining prefix
// WFP_UP letter after prefix made upper case
//
// <region> 1 byte Bitmask for regions in which word is valid. When
// omitted it's valid in all regions.
// Lowest bit is for region 1.
//
// <affixID> 1 byte ID of affix that can be used with this word. In
// PREFIXTREE used for the required prefix ID.
//
// <prefcondnr> 2 bytes Prefix condition number, index in <prefcond> list
// from HEADER.
//
// All text characters are in 'encoding', but stored as single bytes.
// Vim .sug file format: <SUGHEADER>
// <SUGWORDTREE>
// <SUGTABLE>
//
// <SUGHEADER>: <fileID> <versionnr> <timestamp>
//
// <fileID> 6 bytes "VIMsug"
// <versionnr> 1 byte VIMSUGVERSION
// <timestamp> 8 bytes timestamp that must match with .spl file
//
//
// <SUGWORDTREE>: <wordtree> (see above, no flags or region used)
//
//
// <SUGTABLE>: <sugwcount> <sugline> ...
//
// <sugwcount> 4 bytes number of <sugline> following
//
// <sugline>: <sugnr> ... NUL
//
// <sugnr>: X bytes word number that results in this soundfolded word,
// stored as an offset to the previous number in as
// few bytes as possible, see offset2bytes())
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
#include <stdlib.h>
#include <wctype.h>
#include "nvim/vim.h"
#include "nvim/ascii.h"
#include "nvim/spell.h"
#include "nvim/buffer.h"
#include "nvim/charset.h"
#include "nvim/cursor.h"
#include "nvim/edit.h"
#include "nvim/eval.h"
#include "nvim/ex_cmds.h"
#include "nvim/ex_cmds2.h"
#include "nvim/ex_docmd.h"
#include "nvim/fileio.h"
#include "nvim/func_attr.h"
#include "nvim/getchar.h"
#include "nvim/hashtab.h"
#include "nvim/mbyte.h"
#include "nvim/memline.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/misc1.h"
#include "nvim/misc2.h"
#include "nvim/garray.h"
#include "nvim/normal.h"
#include "nvim/option.h"
#include "nvim/os_unix.h"
#include "nvim/path.h"
#include "nvim/regexp.h"
#include "nvim/screen.h"
#include "nvim/search.h"
#include "nvim/strings.h"
#include "nvim/syntax.h"
#include "nvim/term.h"
#include "nvim/tempfile.h"
#include "nvim/undo.h"
#include "nvim/os/os.h"
#include "nvim/os/input.h"
#ifndef UNIX // it's in os_unix_defs.h for Unix
# include <time.h> // for time_t
#endif
#define MAXWLEN 250 // Assume max. word len is this many bytes.
// Some places assume a word length fits in a
// byte, thus it can't be above 255.
// Type used for indexes in the word tree need to be at least 4 bytes. If int
// is 8 bytes we could use something smaller, but what?
typedef int idx_T;
# define SPL_FNAME_TMPL "%s.%s.spl"
# define SPL_FNAME_ADD ".add."
# define SPL_FNAME_ASCII ".ascii."
// Flags used for a word. Only the lowest byte can be used, the region byte
// comes above it.
#define WF_REGION 0x01 // region byte follows
#define WF_ONECAP 0x02 // word with one capital (or all capitals)
#define WF_ALLCAP 0x04 // word must be all capitals
#define WF_RARE 0x08 // rare word
#define WF_BANNED 0x10 // bad word
#define WF_AFX 0x20 // affix ID follows
#define WF_FIXCAP 0x40 // keep-case word, allcap not allowed
#define WF_KEEPCAP 0x80 // keep-case word
// for <flags2>, shifted up one byte to be used in wn_flags
#define WF_HAS_AFF 0x0100 // word includes affix
#define WF_NEEDCOMP 0x0200 // word only valid in compound
#define WF_NOSUGGEST 0x0400 // word not to be suggested
#define WF_COMPROOT 0x0800 // already compounded word, COMPOUNDROOT
#define WF_NOCOMPBEF 0x1000 // no compounding before this word
#define WF_NOCOMPAFT 0x2000 // no compounding after this word
// only used for su_badflags
#define WF_MIXCAP 0x20 // mix of upper and lower case: macaRONI
#define WF_CAPMASK (WF_ONECAP | WF_ALLCAP | WF_KEEPCAP | WF_FIXCAP)
// flags for <pflags>
#define WFP_RARE 0x01 // rare prefix
#define WFP_NC 0x02 // prefix is not combining
#define WFP_UP 0x04 // to-upper prefix
#define WFP_COMPPERMIT 0x08 // prefix with COMPOUNDPERMITFLAG
#define WFP_COMPFORBID 0x10 // prefix with COMPOUNDFORBIDFLAG
// Flags for postponed prefixes in "sl_pidxs". Must be above affixID (one
// byte) and prefcondnr (two bytes).
#define WF_RAREPFX (WFP_RARE << 24) // rare postponed prefix
#define WF_PFX_NC (WFP_NC << 24) // non-combining postponed prefix
#define WF_PFX_UP (WFP_UP << 24) // to-upper postponed prefix
#define WF_PFX_COMPPERMIT (WFP_COMPPERMIT << 24) // postponed prefix with
// COMPOUNDPERMITFLAG
#define WF_PFX_COMPFORBID (WFP_COMPFORBID << 24) // postponed prefix with
// COMPOUNDFORBIDFLAG
// flags for <compoptions>
#define COMP_CHECKDUP 1 // CHECKCOMPOUNDDUP
#define COMP_CHECKREP 2 // CHECKCOMPOUNDREP
#define COMP_CHECKCASE 4 // CHECKCOMPOUNDCASE
#define COMP_CHECKTRIPLE 8 // CHECKCOMPOUNDTRIPLE
// Special byte values for <byte>. Some are only used in the tree for
// postponed prefixes, some only in the other trees. This is a bit messy...
#define BY_NOFLAGS 0 // end of word without flags or region; for
// postponed prefix: no <pflags>
#define BY_INDEX 1 // child is shared, index follows
#define BY_FLAGS 2 // end of word, <flags> byte follows; for
// postponed prefix: <pflags> follows
#define BY_FLAGS2 3 // end of word, <flags> and <flags2> bytes
// follow; never used in prefix tree
#define BY_SPECIAL BY_FLAGS2 // highest special byte value
// Info from "REP", "REPSAL" and "SAL" entries in ".aff" file used in si_rep,
// si_repsal, sl_rep, and si_sal. Not for sl_sal!
// One replacement: from "ft_from" to "ft_to".
typedef struct fromto_S {
char_u *ft_from;
char_u *ft_to;
} fromto_T;
// Info from "SAL" entries in ".aff" file used in sl_sal.
// The info is split for quick processing by spell_soundfold().
// Note that "sm_oneof" and "sm_rules" point into sm_lead.
typedef struct salitem_S {
char_u *sm_lead; // leading letters
int sm_leadlen; // length of "sm_lead"
char_u *sm_oneof; // letters from () or NULL
char_u *sm_rules; // rules like ^, $, priority
char_u *sm_to; // replacement.
int *sm_lead_w; // wide character copy of "sm_lead"
int *sm_oneof_w; // wide character copy of "sm_oneof"
int *sm_to_w; // wide character copy of "sm_to"
} salitem_T;
typedef int salfirst_T;
// Values for SP_*ERROR are negative, positive values are used by
// read_cnt_string().
#define SP_TRUNCERROR -1 // spell file truncated error
#define SP_FORMERROR -2 // format error in spell file
#define SP_OTHERERROR -3 // other error while reading spell file
// Structure used to store words and other info for one language, loaded from
// a .spl file.
// The main access is through the tree in "sl_fbyts/sl_fidxs", storing the
// case-folded words. "sl_kbyts/sl_kidxs" is for keep-case words.
//
// The "byts" array stores the possible bytes in each tree node, preceded by
// the number of possible bytes, sorted on byte value:
// <len> <byte1> <byte2> ...
// The "idxs" array stores the index of the child node corresponding to the
// byte in "byts".
// Exception: when the byte is zero, the word may end here and "idxs" holds
// the flags, region mask and affixID for the word. There may be several
// zeros in sequence for alternative flag/region/affixID combinations.
typedef struct slang_S slang_T;
struct slang_S {
slang_T *sl_next; // next language
char_u *sl_name; // language name "en", "en.rare", "nl", etc.
char_u *sl_fname; // name of .spl file
bool sl_add; // true if it's a .add file.
char_u *sl_fbyts; // case-folded word bytes
idx_T *sl_fidxs; // case-folded word indexes
char_u *sl_kbyts; // keep-case word bytes
idx_T *sl_kidxs; // keep-case word indexes
char_u *sl_pbyts; // prefix tree word bytes
idx_T *sl_pidxs; // prefix tree word indexes
char_u *sl_info; // infotext string or NULL
char_u sl_regions[17]; // table with up to 8 region names plus NUL
char_u *sl_midword; // MIDWORD string or NULL
hashtab_T sl_wordcount; // hashtable with word count, wordcount_T
int sl_compmax; // COMPOUNDWORDMAX (default: MAXWLEN)
int sl_compminlen; // COMPOUNDMIN (default: 0)
int sl_compsylmax; // COMPOUNDSYLMAX (default: MAXWLEN)
int sl_compoptions; // COMP_* flags
garray_T sl_comppat; // CHECKCOMPOUNDPATTERN items
regprog_T *sl_compprog; // COMPOUNDRULE turned into a regexp progrm
// (NULL when no compounding)
char_u *sl_comprules; // all COMPOUNDRULE concatenated (or NULL)
char_u *sl_compstartflags; // flags for first compound word
char_u *sl_compallflags; // all flags for compound words
bool sl_nobreak; // When true: no spaces between words
char_u *sl_syllable; // SYLLABLE repeatable chars or NULL
garray_T sl_syl_items; // syllable items
int sl_prefixcnt; // number of items in "sl_prefprog"
regprog_T **sl_prefprog; // table with regprogs for prefixes
garray_T sl_rep; // list of fromto_T entries from REP lines
short sl_rep_first[256]; // indexes where byte first appears, -1 if
// there is none
garray_T sl_sal; // list of salitem_T entries from SAL lines
salfirst_T sl_sal_first[256]; // indexes where byte first appears, -1 if
// there is none
bool sl_followup; // SAL followup
bool sl_collapse; // SAL collapse_result
bool sl_rem_accents; // SAL remove_accents
bool sl_sofo; // SOFOFROM and SOFOTO instead of SAL items:
// "sl_sal_first" maps chars, when has_mbyte
// "sl_sal" is a list of wide char lists.
garray_T sl_repsal; // list of fromto_T entries from REPSAL lines
short sl_repsal_first[256]; // sl_rep_first for REPSAL lines
bool sl_nosplitsugs; // don't suggest splitting a word
// Info from the .sug file. Loaded on demand.
time_t sl_sugtime; // timestamp for .sug file
char_u *sl_sbyts; // soundfolded word bytes
idx_T *sl_sidxs; // soundfolded word indexes
buf_T *sl_sugbuf; // buffer with word number table
bool sl_sugloaded; // true when .sug file was loaded or failed to
// load
bool sl_has_map; // true, if there is a MAP line
hashtab_T sl_map_hash; // MAP for multi-byte chars
int sl_map_array[256]; // MAP for first 256 chars
hashtab_T sl_sounddone; // table with soundfolded words that have
// handled, see add_sound_suggest()
};
// First language that is loaded, start of the linked list of loaded
// languages.
static slang_T *first_lang = NULL;
// Flags used in .spl file for soundsalike flags.
#define SAL_F0LLOWUP 1
#define SAL_COLLAPSE 2
#define SAL_REM_ACCENTS 4
// Structure used in "b_langp", filled from 'spelllang'.
typedef struct langp_S {
slang_T *lp_slang; // info for this language
slang_T *lp_sallang; // language used for sound folding or NULL
slang_T *lp_replang; // language used for REP items or NULL
int lp_region; // bitmask for region or REGION_ALL
} langp_T;
#define LANGP_ENTRY(ga, i) (((langp_T *)(ga).ga_data) + (i))
#define REGION_ALL 0xff // word valid in all regions
#define VIMSPELLMAGIC "VIMspell" // string at start of Vim spell file
#define VIMSPELLMAGICL 8
#define VIMSPELLVERSION 50
#define VIMSUGMAGIC "VIMsug" // string at start of Vim .sug file
#define VIMSUGMAGICL 6
#define VIMSUGVERSION 1
// Section IDs. Only renumber them when VIMSPELLVERSION changes!
#define SN_REGION 0 // <regionname> section
#define SN_CHARFLAGS 1 // charflags section
#define SN_MIDWORD 2 // <midword> section
#define SN_PREFCOND 3 // <prefcond> section
#define SN_REP 4 // REP items section
#define SN_SAL 5 // SAL items section
#define SN_SOFO 6 // soundfolding section
#define SN_MAP 7 // MAP items section
#define SN_COMPOUND 8 // compound words section
#define SN_SYLLABLE 9 // syllable section
#define SN_NOBREAK 10 // NOBREAK section
#define SN_SUGFILE 11 // timestamp for .sug file
#define SN_REPSAL 12 // REPSAL items section
#define SN_WORDS 13 // common words
#define SN_NOSPLITSUGS 14 // don't split word for suggestions
#define SN_INFO 15 // info section
#define SN_END 255 // end of sections
#define SNF_REQUIRED 1 // <sectionflags>: required section
// Result values. Lower number is accepted over higher one.
#define SP_BANNED -1
#define SP_OK 0
#define SP_RARE 1
#define SP_LOCAL 2
#define SP_BAD 3
// file used for "zG" and "zW"
static char_u *int_wordlist = NULL;
typedef struct wordcount_S {
uint16_t wc_count; // nr of times word was seen
char_u wc_word[1]; // word, actually longer
} wordcount_T;
static wordcount_T dumwc;
#define WC_KEY_OFF (unsigned)(dumwc.wc_word - (char_u *)&dumwc)
#define HI2WC(hi) ((wordcount_T *)((hi)->hi_key - WC_KEY_OFF))
#define MAXWORDCOUNT 0xffff
// Information used when looking for suggestions.
typedef struct suginfo_S {
garray_T su_ga; // suggestions, contains "suggest_T"
int su_maxcount; // max. number of suggestions displayed
int su_maxscore; // maximum score for adding to su_ga
int su_sfmaxscore; // idem, for when doing soundfold words
garray_T su_sga; // like su_ga, sound-folded scoring
char_u *su_badptr; // start of bad word in line
int su_badlen; // length of detected bad word in line
int su_badflags; // caps flags for bad word
char_u su_badword[MAXWLEN]; // bad word truncated at su_badlen
char_u su_fbadword[MAXWLEN]; // su_badword case-folded
char_u su_sal_badword[MAXWLEN]; // su_badword soundfolded
hashtab_T su_banned; // table with banned words
slang_T *su_sallang; // default language for sound folding
} suginfo_T;
// One word suggestion. Used in "si_ga".
typedef struct {
char_u *st_word; // suggested word, allocated string
int st_wordlen; // STRLEN(st_word)
int st_orglen; // length of replaced text
int st_score; // lower is better
int st_altscore; // used when st_score compares equal
bool st_salscore; // st_score is for soundalike
bool st_had_bonus; // bonus already included in score
slang_T *st_slang; // language used for sound folding
} suggest_T;
#define SUG(ga, i) (((suggest_T *)(ga).ga_data)[i])
// True if a word appears in the list of banned words.
#define WAS_BANNED(su, word) (!HASHITEM_EMPTY(hash_find(&su->su_banned, word)))
// Number of suggestions kept when cleaning up. We need to keep more than
// what is displayed, because when rescore_suggestions() is called the score
// may change and wrong suggestions may be removed later.
#define SUG_CLEAN_COUNT(su) ((su)->su_maxcount < \
130 ? 150 : (su)->su_maxcount + 20)
// Threshold for sorting and cleaning up suggestions. Don't want to keep lots
// of suggestions that are not going to be displayed.
#define SUG_MAX_COUNT(su) (SUG_CLEAN_COUNT(su) + 50)
// score for various changes
#define SCORE_SPLIT 149 // split bad word
#define SCORE_SPLIT_NO 249 // split bad word with NOSPLITSUGS
#define SCORE_ICASE 52 // slightly different case
#define SCORE_REGION 200 // word is for different region
#define SCORE_RARE 180 // rare word
#define SCORE_SWAP 75 // swap two characters
#define SCORE_SWAP3 110 // swap two characters in three
#define SCORE_REP 65 // REP replacement
#define SCORE_SUBST 93 // substitute a character
#define SCORE_SIMILAR 33 // substitute a similar character
#define SCORE_SUBCOMP 33 // substitute a composing character
#define SCORE_DEL 94 // delete a character
#define SCORE_DELDUP 66 // delete a duplicated character
#define SCORE_DELCOMP 28 // delete a composing character
#define SCORE_INS 96 // insert a character
#define SCORE_INSDUP 67 // insert a duplicate character
#define SCORE_INSCOMP 30 // insert a composing character
#define SCORE_NONWORD 103 // change non-word to word char
#define SCORE_FILE 30 // suggestion from a file
#define SCORE_MAXINIT 350 // Initial maximum score: higher == slower.
// 350 allows for about three changes.
#define SCORE_COMMON1 30 // subtracted for words seen before
#define SCORE_COMMON2 40 // subtracted for words often seen
#define SCORE_COMMON3 50 // subtracted for words very often seen
#define SCORE_THRES2 10 // word count threshold for COMMON2
#define SCORE_THRES3 100 // word count threshold for COMMON3
// When trying changed soundfold words it becomes slow when trying more than
// two changes. With less then two changes it's slightly faster but we miss a
// few good suggestions. In rare cases we need to try three of four changes.
#define SCORE_SFMAX1 200 // maximum score for first try
#define SCORE_SFMAX2 300 // maximum score for second try
#define SCORE_SFMAX3 400 // maximum score for third try
#define SCORE_BIG SCORE_INS * 3 // big difference
#define SCORE_MAXMAX 999999 // accept any score
#define SCORE_LIMITMAX 350 // for spell_edit_score_limit()
// for spell_edit_score_limit() we need to know the minimum value of
// SCORE_ICASE, SCORE_SWAP, SCORE_DEL, SCORE_SIMILAR and SCORE_INS
#define SCORE_EDIT_MIN SCORE_SIMILAR
// Structure to store info for word matching.
typedef struct matchinf_S {
langp_T *mi_lp; // info for language and region
// pointers to original text to be checked
char_u *mi_word; // start of word being checked
char_u *mi_end; // end of matching word so far
char_u *mi_fend; // next char to be added to mi_fword
char_u *mi_cend; // char after what was used for
// mi_capflags
// case-folded text
char_u mi_fword[MAXWLEN + 1]; // mi_word case-folded
int mi_fwordlen; // nr of valid bytes in mi_fword
// for when checking word after a prefix
int mi_prefarridx; // index in sl_pidxs with list of
// affixID/condition
int mi_prefcnt; // number of entries at mi_prefarridx
int mi_prefixlen; // byte length of prefix
int mi_cprefixlen; // byte length of prefix in original
// case
// for when checking a compound word
int mi_compoff; // start of following word offset
char_u mi_compflags[MAXWLEN]; // flags for compound words used
int mi_complen; // nr of compound words used
int mi_compextra; // nr of COMPOUNDROOT words
// others
int mi_result; // result so far: SP_BAD, SP_OK, etc.
int mi_capflags; // WF_ONECAP WF_ALLCAP WF_KEEPCAP
win_T *mi_win; // buffer being checked
// for NOBREAK
int mi_result2; // "mi_resul" without following word
char_u *mi_end2; // "mi_end" without following word
} matchinf_T;
// The tables used for recognizing word characters according to spelling.
// These are only used for the first 256 characters of 'encoding'.
typedef struct {
bool st_isw[256]; // flags: is word char
bool st_isu[256]; // flags: is uppercase char
char_u st_fold[256]; // chars: folded case
char_u st_upper[256]; // chars: upper case
} spelltab_T;
// For finding suggestions: At each node in the tree these states are tried:
typedef enum {
STATE_START = 0, // At start of node check for NUL bytes (goodword
// ends); if badword ends there is a match, otherwise
// try splitting word.
STATE_NOPREFIX, // try without prefix
STATE_SPLITUNDO, // Undo splitting.
STATE_ENDNUL, // Past NUL bytes at start of the node.
STATE_PLAIN, // Use each byte of the node.
STATE_DEL, // Delete a byte from the bad word.
STATE_INS_PREP, // Prepare for inserting bytes.
STATE_INS, // Insert a byte in the bad word.
STATE_SWAP, // Swap two bytes.
STATE_UNSWAP, // Undo swap two characters.
STATE_SWAP3, // Swap two characters over three.
STATE_UNSWAP3, // Undo Swap two characters over three.
STATE_UNROT3L, // Undo rotate three characters left
STATE_UNROT3R, // Undo rotate three characters right
STATE_REP_INI, // Prepare for using REP items.
STATE_REP, // Use matching REP items from the .aff file.
STATE_REP_UNDO, // Undo a REP item replacement.
STATE_FINAL // End of this node.
} state_T;
// Struct to keep the state at each level in suggest_try_change().
typedef struct trystate_S {
state_T ts_state; // state at this level, STATE_
int ts_score; // score
idx_T ts_arridx; // index in tree array, start of node
short ts_curi; // index in list of child nodes
char_u ts_fidx; // index in fword[], case-folded bad word
char_u ts_fidxtry; // ts_fidx at which bytes may be changed
char_u ts_twordlen; // valid length of tword[]
char_u ts_prefixdepth; // stack depth for end of prefix or
// PFD_PREFIXTREE or PFD_NOPREFIX
char_u ts_flags; // TSF_ flags
char_u ts_tcharlen; // number of bytes in tword character
char_u ts_tcharidx; // current byte index in tword character
char_u ts_isdiff; // DIFF_ values
char_u ts_fcharstart; // index in fword where badword char started
char_u ts_prewordlen; // length of word in "preword[]"
char_u ts_splitoff; // index in "tword" after last split
char_u ts_splitfidx; // "ts_fidx" at word split
char_u ts_complen; // nr of compound words used
char_u ts_compsplit; // index for "compflags" where word was spit
char_u ts_save_badflags; // su_badflags saved here
char_u ts_delidx; // index in fword for char that was deleted,
// valid when "ts_flags" has TSF_DIDDEL
} trystate_T;
// Structure used for the cookie argument of do_in_runtimepath().
typedef struct spelload_S {
char_u sl_lang[MAXWLEN + 1]; // language name
slang_T *sl_slang; // resulting slang_T struct
int sl_nobreak; // NOBREAK language found
} spelload_T;
#define SY_MAXLEN 30
typedef struct syl_item_S {
char_u sy_chars[SY_MAXLEN]; // the sequence of chars
int sy_len;
} syl_item_T;
#define MAXLINELEN 500 // Maximum length in bytes of a line in a .aff
// and .dic file.
// Main structure to store the contents of a ".aff" file.
typedef struct afffile_S {
char_u *af_enc; // "SET", normalized, alloc'ed string or NULL
int af_flagtype; // AFT_CHAR, AFT_LONG, AFT_NUM or AFT_CAPLONG
unsigned af_rare; // RARE ID for rare word
unsigned af_keepcase; // KEEPCASE ID for keep-case word
unsigned af_bad; // BAD ID for banned word
unsigned af_needaffix; // NEEDAFFIX ID
unsigned af_circumfix; // CIRCUMFIX ID
unsigned af_needcomp; // NEEDCOMPOUND ID
unsigned af_comproot; // COMPOUNDROOT ID
unsigned af_compforbid; // COMPOUNDFORBIDFLAG ID
unsigned af_comppermit; // COMPOUNDPERMITFLAG ID
unsigned af_nosuggest; // NOSUGGEST ID
int af_pfxpostpone; // postpone prefixes without chop string and
// without flags
hashtab_T af_pref; // hashtable for prefixes, affheader_T
hashtab_T af_suff; // hashtable for suffixes, affheader_T
hashtab_T af_comp; // hashtable for compound flags, compitem_T
} afffile_T;
#define AFT_CHAR 0 // flags are one character
#define AFT_LONG 1 // flags are two characters
#define AFT_CAPLONG 2 // flags are one or two characters
#define AFT_NUM 3 // flags are numbers, comma separated
typedef struct affentry_S affentry_T;
// Affix entry from ".aff" file. Used for prefixes and suffixes.
struct affentry_S {
affentry_T *ae_next; // next affix with same name/number
char_u *ae_chop; // text to chop off basic word (can be NULL)
char_u *ae_add; // text to add to basic word (can be NULL)
char_u *ae_flags; // flags on the affix (can be NULL)
char_u *ae_cond; // condition (NULL for ".")
regprog_T *ae_prog; // regexp program for ae_cond or NULL
char ae_compforbid; // COMPOUNDFORBIDFLAG found
char ae_comppermit; // COMPOUNDPERMITFLAG found
};
# define AH_KEY_LEN 17 // 2 x 8 bytes + NUL
// Affix header from ".aff" file. Used for af_pref and af_suff.
typedef struct affheader_S {
char_u ah_key[AH_KEY_LEN]; // key for hashtab == name of affix
unsigned ah_flag; // affix name as number, uses "af_flagtype"
int ah_newID; // prefix ID after renumbering; 0 if not used
int ah_combine; // suffix may combine with prefix
int ah_follows; // another affix block should be following
affentry_T *ah_first; // first affix entry
} affheader_T;
#define HI2AH(hi) ((affheader_T *)(hi)->hi_key)
// Flag used in compound items.
typedef struct compitem_S {
char_u ci_key[AH_KEY_LEN]; // key for hashtab == name of compound
unsigned ci_flag; // affix name as number, uses "af_flagtype"
int ci_newID; // affix ID after renumbering.
} compitem_T;
#define HI2CI(hi) ((compitem_T *)(hi)->hi_key)
// Structure that is used to store the items in the word tree. This avoids
// the need to keep track of each allocated thing, everything is freed all at
// once after ":mkspell" is done.
// Note: "sb_next" must be just before "sb_data" to make sure the alignment of
// "sb_data" is correct for systems where pointers must be aligned on
// pointer-size boundaries and sizeof(pointer) > sizeof(int) (e.g., Sparc).
#define SBLOCKSIZE 16000 // size of sb_data
typedef struct sblock_S sblock_T;
struct sblock_S {
int sb_used; // nr of bytes already in use
sblock_T *sb_next; // next block in list
char_u sb_data[1]; // data, actually longer
};
// A node in the tree.
typedef struct wordnode_S wordnode_T;
struct wordnode_S {
union // shared to save space
{
char_u hashkey[6]; // the hash key, only used while compressing
int index; // index in written nodes (valid after first
// round)
} wn_u1;
union // shared to save space
{
wordnode_T *next; // next node with same hash key
wordnode_T *wnode; // parent node that will write this node
} wn_u2;
wordnode_T *wn_child; // child (next byte in word)
wordnode_T *wn_sibling; // next sibling (alternate byte in word,
// always sorted)
int wn_refs; // Nr. of references to this node. Only
// relevant for first node in a list of
// siblings, in following siblings it is
// always one.
char_u wn_byte; // Byte for this node. NUL for word end
// Info for when "wn_byte" is NUL.
// In PREFIXTREE "wn_region" is used for the prefcondnr.
// In the soundfolded word tree "wn_flags" has the MSW of the wordnr and
// "wn_region" the LSW of the wordnr.
char_u wn_affixID; // supported/required prefix ID or 0
uint16_t wn_flags; // WF_ flags
short wn_region; // region mask
#ifdef SPELL_PRINTTREE
int wn_nr; // sequence nr for printing
#endif
};
#define WN_MASK 0xffff // mask relevant bits of "wn_flags"
#define HI2WN(hi) (wordnode_T *)((hi)->hi_key)
// Info used while reading the spell files.
typedef struct spellinfo_S {
wordnode_T *si_foldroot; // tree with case-folded words
long si_foldwcount; // nr of words in si_foldroot
wordnode_T *si_keeproot; // tree with keep-case words
long si_keepwcount; // nr of words in si_keeproot
wordnode_T *si_prefroot; // tree with postponed prefixes
long si_sugtree; // creating the soundfolding trie
sblock_T *si_blocks; // memory blocks used
long si_blocks_cnt; // memory blocks allocated
int si_did_emsg; // TRUE when ran out of memory
long si_compress_cnt; // words to add before lowering
// compression limit
wordnode_T *si_first_free; // List of nodes that have been freed during
// compression, linked by "wn_child" field.
long si_free_count; // number of nodes in si_first_free
#ifdef SPELL_PRINTTREE
int si_wordnode_nr; // sequence nr for nodes
#endif
buf_T *si_spellbuf; // buffer used to store soundfold word table
int si_ascii; // handling only ASCII words
int si_add; // addition file
int si_clear_chartab; // when TRUE clear char tables
int si_region; // region mask
vimconv_T si_conv; // for conversion to 'encoding'
int si_memtot; // runtime memory used
int si_verbose; // verbose messages
int si_msg_count; // number of words added since last message
char_u *si_info; // info text chars or NULL
int si_region_count; // number of regions supported (1 when there
// are no regions)
char_u si_region_name[17]; // region names; used only if
// si_region_count > 1)
garray_T si_rep; // list of fromto_T entries from REP lines
garray_T si_repsal; // list of fromto_T entries from REPSAL lines
garray_T si_sal; // list of fromto_T entries from SAL lines
char_u *si_sofofr; // SOFOFROM text
char_u *si_sofoto; // SOFOTO text
int si_nosugfile; // NOSUGFILE item found
int si_nosplitsugs; // NOSPLITSUGS item found
int si_followup; // soundsalike: ?
int si_collapse; // soundsalike: ?
hashtab_T si_commonwords; // hashtable for common words
time_t si_sugtime; // timestamp for .sug file
int si_rem_accents; // soundsalike: remove accents
garray_T si_map; // MAP info concatenated
char_u *si_midword; // MIDWORD chars or NULL
int si_compmax; // max nr of words for compounding
int si_compminlen; // minimal length for compounding
int si_compsylmax; // max nr of syllables for compounding
int si_compoptions; // COMP_ flags
garray_T si_comppat; // CHECKCOMPOUNDPATTERN items, each stored as
// a string
char_u *si_compflags; // flags used for compounding
char_u si_nobreak; // NOBREAK
char_u *si_syllable; // syllable string
garray_T si_prefcond; // table with conditions for postponed
// prefixes, each stored as a string
int si_newprefID; // current value for ah_newID
int si_newcompID; // current value for compound ID
} spellinfo_T;
static spelltab_T spelltab;
static int did_set_spelltab;
#define CF_WORD 0x01
#define CF_UPPER 0x02
// structure used to store soundfolded words that add_sound_suggest() has
// handled already.
typedef struct {
short sft_score; // lowest score used
char_u sft_word[1]; // soundfolded word, actually longer
} sftword_T;
typedef struct {
int badi;
int goodi;
int score;
} limitscore_T;
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "spell.c.generated.h"
#endif
// values for ts_isdiff
#define DIFF_NONE 0 // no different byte (yet)
#define DIFF_YES 1 // different byte found
#define DIFF_INSERT 2 // inserting character
// values for ts_flags
#define TSF_PREFIXOK 1 // already checked that prefix is OK
#define TSF_DIDSPLIT 2 // tried split at this point
#define TSF_DIDDEL 4 // did a delete, "ts_delidx" has index
// special values ts_prefixdepth
#define PFD_NOPREFIX 0xff // not using prefixes
#define PFD_PREFIXTREE 0xfe // walking through the prefix tree
#define PFD_NOTSPECIAL 0xfd // highest value that's not special
// mode values for find_word
#define FIND_FOLDWORD 0 // find word case-folded
#define FIND_KEEPWORD 1 // find keep-case word
#define FIND_PREFIX 2 // find word after prefix
#define FIND_COMPOUND 3 // find case-folded compound word
#define FIND_KEEPCOMPOUND 4 // find keep-case compound word
// Use our own character-case definitions, because the current locale may
// differ from what the .spl file uses.
// These must not be called with negative number!
#include <wchar.h> // for towupper() and towlower()
// Multi-byte implementation. For Unicode we can call utf_*(), but don't do
// that for ASCII, because we don't want to use 'casemap' here. Otherwise use
// the "w" library function for characters above 255.
#define SPELL_TOFOLD(c) (enc_utf8 && (c) >= 128 ? utf_fold(c) \
: (c) < \
256 ? (int)spelltab.st_fold[c] : (int)towlower(c))
#define SPELL_TOUPPER(c) (enc_utf8 && (c) >= 128 ? utf_toupper(c) \
: (c) < \
256 ? (int)spelltab.st_upper[c] : (int)towupper(c))
#define SPELL_ISUPPER(c) (enc_utf8 && (c) >= 128 ? utf_isupper(c) \
: (c) < 256 ? spelltab.st_isu[c] : iswupper(c))
static char *e_format = N_("E759: Format error in spell file");
static char *e_spell_trunc = N_("E758: Truncated spell file");
static char *e_afftrailing = N_("Trailing text in %s line %d: %s");
static char *e_affname = N_("Affix name too long in %s line %d: %s");
static char *e_affform = N_("E761: Format error in affix file FOL, LOW or UPP");
static char *e_affrange = N_(
"E762: Character in FOL, LOW or UPP is out of range");
static char *msg_compressing = N_("Compressing word tree...");
// Remember what "z?" replaced.
static char_u *repl_from = NULL;
static char_u *repl_to = NULL;
// Main spell-checking function.
// "ptr" points to a character that could be the start of a word.
// "*attrp" is set to the highlight index for a badly spelled word. For a
// non-word or when it's OK it remains unchanged.
// This must only be called when 'spelllang' is not empty.
//
// "capcol" is used to check for a Capitalised word after the end of a
// sentence. If it's zero then perform the check. Return the column where to
// check next, or -1 when no sentence end was found. If it's NULL then don't
// worry.
//
// Returns the length of the word in bytes, also when it's OK, so that the
// caller can skip over the word.
int
spell_check (
win_T *wp, // current window
char_u *ptr,
hlf_T *attrp,
int *capcol, // column to check for Capital
bool docount // count good words
)
{
matchinf_T mi; // Most things are put in "mi" so that it can
// be passed to functions quickly.
int nrlen = 0; // found a number first
int c;
int wrongcaplen = 0;
int lpi;
bool count_word = docount;
// A word never starts at a space or a control character. Return quickly
// then, skipping over the character.
if (*ptr <= ' ')
return 1;
// Return here when loading language files failed.
if (GA_EMPTY(&wp->w_s->b_langp))
return 1;
memset(&mi, 0, sizeof(matchinf_T));
// A number is always OK. Also skip hexadecimal numbers 0xFF99 and
// 0X99FF. But always do check spelling to find "3GPP" and "11
// julifeest".
if (*ptr >= '0' && *ptr <= '9') {
if (*ptr == '0' && (ptr[1] == 'x' || ptr[1] == 'X'))
mi.mi_end = skiphex(ptr + 2);
else
mi.mi_end = skipdigits(ptr);
nrlen = (int)(mi.mi_end - ptr);
}
// Find the normal end of the word (until the next non-word character).
mi.mi_word = ptr;
mi.mi_fend = ptr;
if (spell_iswordp(mi.mi_fend, wp)) {
do {
mb_ptr_adv(mi.mi_fend);
} while (*mi.mi_fend != NUL && spell_iswordp(mi.mi_fend, wp));
if (capcol != NULL && *capcol == 0 && wp->w_s->b_cap_prog != NULL) {
// Check word starting with capital letter.
c = PTR2CHAR(ptr);
if (!SPELL_ISUPPER(c))
wrongcaplen = (int)(mi.mi_fend - ptr);
}
}
if (capcol != NULL)
*capcol = -1;
// We always use the characters up to the next non-word character,
// also for bad words.
mi.mi_end = mi.mi_fend;
// Check caps type later.
mi.mi_capflags = 0;
mi.mi_cend = NULL;
mi.mi_win = wp;
// case-fold the word with one non-word character, so that we can check
// for the word end.
if (*mi.mi_fend != NUL)
mb_ptr_adv(mi.mi_fend);
(void)spell_casefold(ptr, (int)(mi.mi_fend - ptr), mi.mi_fword,
MAXWLEN + 1);
mi.mi_fwordlen = (int)STRLEN(mi.mi_fword);
// The word is bad unless we recognize it.
mi.mi_result = SP_BAD;
mi.mi_result2 = SP_BAD;
// Loop over the languages specified in 'spelllang'.
// We check them all, because a word may be matched longer in another
// language.
for (lpi = 0; lpi < wp->w_s->b_langp.ga_len; ++lpi) {
mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, lpi);
// If reloading fails the language is still in the list but everything
// has been cleared.
if (mi.mi_lp->lp_slang->sl_fidxs == NULL)
continue;
// Check for a matching word in case-folded words.
find_word(&mi, FIND_FOLDWORD);
// Check for a matching word in keep-case words.
find_word(&mi, FIND_KEEPWORD);
// Check for matching prefixes.
find_prefix(&mi, FIND_FOLDWORD);
// For a NOBREAK language, may want to use a word without a following
// word as a backup.
if (mi.mi_lp->lp_slang->sl_nobreak && mi.mi_result == SP_BAD
&& mi.mi_result2 != SP_BAD) {
mi.mi_result = mi.mi_result2;
mi.mi_end = mi.mi_end2;
}
// Count the word in the first language where it's found to be OK.
if (count_word && mi.mi_result == SP_OK) {
count_common_word(mi.mi_lp->lp_slang, ptr,
(int)(mi.mi_end - ptr), 1);
count_word = false;
}
}
if (mi.mi_result != SP_OK) {
// If we found a number skip over it. Allows for "42nd". Do flag
// rare and local words, e.g., "3GPP".
if (nrlen > 0) {
if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED)
return nrlen;
}
// When we are at a non-word character there is no error, just
// skip over the character (try looking for a word after it).
else if (!spell_iswordp_nmw(ptr, wp)) {
if (capcol != NULL && wp->w_s->b_cap_prog != NULL) {
regmatch_T regmatch;
// Check for end of sentence.
regmatch.regprog = wp->w_s->b_cap_prog;
regmatch.rm_ic = FALSE;
if (vim_regexec(&regmatch, ptr, 0))
*capcol = (int)(regmatch.endp[0] - ptr);
}
if (has_mbyte) {
return (*mb_ptr2len)(ptr);
}
return 1;
} else if (mi.mi_end == ptr)
// Always include at least one character. Required for when there
// is a mixup in "midword".
mb_ptr_adv(mi.mi_end);
else if (mi.mi_result == SP_BAD
&& LANGP_ENTRY(wp->w_s->b_langp, 0)->lp_slang->sl_nobreak) {
char_u *p, *fp;
int save_result = mi.mi_result;
// First language in 'spelllang' is NOBREAK. Find first position
// at which any word would be valid.
mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, 0);
if (mi.mi_lp->lp_slang->sl_fidxs != NULL) {
p = mi.mi_word;
fp = mi.mi_fword;
for (;; ) {
mb_ptr_adv(p);
mb_ptr_adv(fp);
if (p >= mi.mi_end)
break;
mi.mi_compoff = (int)(fp - mi.mi_fword);
find_word(&mi, FIND_COMPOUND);
if (mi.mi_result != SP_BAD) {
mi.mi_end = p;
break;
}
}
mi.mi_result = save_result;
}
}
if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED)
*attrp = HLF_SPB;
else if (mi.mi_result == SP_RARE)
*attrp = HLF_SPR;
else
*attrp = HLF_SPL;
}
if (wrongcaplen > 0 && (mi.mi_result == SP_OK || mi.mi_result == SP_RARE)) {
// Report SpellCap only when the word isn't badly spelled.
*attrp = HLF_SPC;
return wrongcaplen;
}
return (int)(mi.mi_end - ptr);
}
// Check if the word at "mip->mi_word" is in the tree.
// When "mode" is FIND_FOLDWORD check in fold-case word tree.
// When "mode" is FIND_KEEPWORD check in keep-case word tree.
// When "mode" is FIND_PREFIX check for word after prefix in fold-case word
// tree.
//
// For a match mip->mi_result is updated.
static void find_word(matchinf_T *mip, int mode)
{
int wlen = 0;
int flen;
char_u *ptr;
slang_T *slang = mip->mi_lp->lp_slang;
char_u *byts;
idx_T *idxs;
if (mode == FIND_KEEPWORD || mode == FIND_KEEPCOMPOUND) {
// Check for word with matching case in keep-case tree.
ptr = mip->mi_word;
flen = 9999; // no case folding, always enough bytes
byts = slang->sl_kbyts;
idxs = slang->sl_kidxs;
if (mode == FIND_KEEPCOMPOUND)
// Skip over the previously found word(s).
wlen += mip->mi_compoff;
} else {
// Check for case-folded in case-folded tree.
ptr = mip->mi_fword;
flen = mip->mi_fwordlen; // available case-folded bytes
byts = slang->sl_fbyts;
idxs = slang->sl_fidxs;
if (mode == FIND_PREFIX) {
// Skip over the prefix.
wlen = mip->mi_prefixlen;
flen -= mip->mi_prefixlen;
} else if (mode == FIND_COMPOUND) {
// Skip over the previously found word(s).
wlen = mip->mi_compoff;
flen -= mip->mi_compoff;
}
}
if (byts == NULL)
return; // array is empty
idx_T arridx = 0;
int endlen[MAXWLEN]; // length at possible word endings
idx_T endidx[MAXWLEN]; // possible word endings
int endidxcnt = 0;
int len;
int c;
// Repeat advancing in the tree until:
// - there is a byte that doesn't match,
// - we reach the end of the tree,
// - or we reach the end of the line.
for (;; ) {
if (flen <= 0 && *mip->mi_fend != NUL)
flen = fold_more(mip);
len = byts[arridx++];
// If the first possible byte is a zero the word could end here.
// Remember this index, we first check for the longest word.
if (byts[arridx] == 0) {
if (endidxcnt == MAXWLEN) {
// Must be a corrupted spell file.
EMSG(_(e_format));
return;
}
endlen[endidxcnt] = wlen;
endidx[endidxcnt++] = arridx++;
--len;
// Skip over the zeros, there can be several flag/region
// combinations.
while (len > 0 && byts[arridx] == 0) {
++arridx;
--len;
}
if (len == 0)
break; // no children, word must end here
}
// Stop looking at end of the line.
if (ptr[wlen] == NUL)
break;
// Perform a binary search in the list of accepted bytes.
c = ptr[wlen];
if (c == TAB) // <Tab> is handled like <Space>
c = ' ';
idx_T lo = arridx;
idx_T hi = arridx + len - 1;
while (lo < hi) {
idx_T m = (lo + hi) / 2;
if (byts[m] > c)
hi = m - 1;
else if (byts[m] < c)
lo = m + 1;
else {
lo = hi = m;
break;
}
}
// Stop if there is no matching byte.
if (hi < lo || byts[lo] != c)
break;
// Continue at the child (if there is one).
arridx = idxs[lo];
++wlen;
--flen;
// One space in the good word may stand for several spaces in the
// checked word.
if (c == ' ') {
for (;; ) {
if (flen <= 0 && *mip->mi_fend != NUL)
flen = fold_more(mip);
if (ptr[wlen] != ' ' && ptr[wlen] != TAB)
break;
++wlen;
--flen;
}
}
}
char_u *p;
bool word_ends;
// Verify that one of the possible endings is valid. Try the longest
// first.
while (endidxcnt > 0) {
--endidxcnt;
arridx = endidx[endidxcnt];
wlen = endlen[endidxcnt];
if ((*mb_head_off)(ptr, ptr + wlen) > 0)
continue; // not at first byte of character
if (spell_iswordp(ptr + wlen, mip->mi_win)) {
if (slang->sl_compprog == NULL && !slang->sl_nobreak)
continue; // next char is a word character
word_ends = false;
} else
word_ends = true;
// The prefix flag is before compound flags. Once a valid prefix flag
// has been found we try compound flags.
bool prefix_found = false;
if (mode != FIND_KEEPWORD && has_mbyte) {
// Compute byte length in original word, length may change
// when folding case. This can be slow, take a shortcut when the
// case-folded word is equal to the keep-case word.
p = mip->mi_word;
if (STRNCMP(ptr, p, wlen) != 0) {
for (char_u *s = ptr; s < ptr + wlen; mb_ptr_adv(s))
mb_ptr_adv(p);
wlen = (int)(p - mip->mi_word);
}
}
// Check flags and region. For FIND_PREFIX check the condition and
// prefix ID.
// Repeat this if there are more flags/region alternatives until there
// is a match.
for (len = byts[arridx - 1]; len > 0 && byts[arridx] == 0;
--len, ++arridx) {
uint32_t flags = idxs[arridx];
// For the fold-case tree check that the case of the checked word
// matches with what the word in the tree requires.
// For keep-case tree the case is always right. For prefixes we
// don't bother to check.
if (mode == FIND_FOLDWORD) {
if (mip->mi_cend != mip->mi_word + wlen) {
// mi_capflags was set for a different word length, need
// to do it again.
mip->mi_cend = mip->mi_word + wlen;
mip->mi_capflags = captype(mip->mi_word, mip->mi_cend);
}
if (mip->mi_capflags == WF_KEEPCAP
|| !spell_valid_case(mip->mi_capflags, flags))
continue;
}
// When mode is FIND_PREFIX the word must support the prefix:
// check the prefix ID and the condition. Do that for the list at
// mip->mi_prefarridx that find_prefix() filled.
else if (mode == FIND_PREFIX && !prefix_found) {
c = valid_word_prefix(mip->mi_prefcnt, mip->mi_prefarridx,
flags,
mip->mi_word + mip->mi_cprefixlen, slang,
false);
if (c == 0)
continue;
// Use the WF_RARE flag for a rare prefix.
if (c & WF_RAREPFX)
flags |= WF_RARE;
prefix_found = true;
}
if (slang->sl_nobreak) {
if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND)
&& (flags & WF_BANNED) == 0) {
// NOBREAK: found a valid following word. That's all we
// need to know, so return.
mip->mi_result = SP_OK;
break;
}
} else if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND
|| !word_ends)) {
// If there is no compound flag or the word is shorter than
// COMPOUNDMIN reject it quickly.
// Makes you wonder why someone puts a compound flag on a word
// that's too short... Myspell compatibility requires this
// anyway.
if (((unsigned)flags >> 24) == 0
|| wlen - mip->mi_compoff < slang->sl_compminlen)
continue;
// For multi-byte chars check character length against
// COMPOUNDMIN.
if (has_mbyte
&& slang->sl_compminlen > 0
&& mb_charlen_len(mip->mi_word + mip->mi_compoff,
wlen - mip->mi_compoff) < slang->sl_compminlen)
continue;
// Limit the number of compound words to COMPOUNDWORDMAX if no
// maximum for syllables is specified.
if (!word_ends && mip->mi_complen + mip->mi_compextra + 2
> slang->sl_compmax
&& slang->sl_compsylmax == MAXWLEN)
continue;
// Don't allow compounding on a side where an affix was added,
// unless COMPOUNDPERMITFLAG was used.
if (mip->mi_complen > 0 && (flags & WF_NOCOMPBEF))
continue;
if (!word_ends && (flags & WF_NOCOMPAFT))
continue;
// Quickly check if compounding is possible with this flag.
if (!byte_in_str(mip->mi_complen == 0
? slang->sl_compstartflags
: slang->sl_compallflags,
((unsigned)flags >> 24)))
continue;
// If there is a match with a CHECKCOMPOUNDPATTERN rule
// discard the compound word.
if (match_checkcompoundpattern(ptr, wlen, &slang->sl_comppat))
continue;
if (mode == FIND_COMPOUND) {
int capflags;
// Need to check the caps type of the appended compound
// word.
if (has_mbyte && STRNCMP(ptr, mip->mi_word,
mip->mi_compoff) != 0) {
// case folding may have changed the length
p = mip->mi_word;
for (char_u *s = ptr; s < ptr + mip->mi_compoff; mb_ptr_adv(s))
mb_ptr_adv(p);
} else
p = mip->mi_word + mip->mi_compoff;
capflags = captype(p, mip->mi_word + wlen);
if (capflags == WF_KEEPCAP || (capflags == WF_ALLCAP
&& (flags & WF_FIXCAP) != 0))
continue;
if (capflags != WF_ALLCAP) {
// When the character before the word is a word
// character we do not accept a Onecap word. We do
// accept a no-caps word, even when the dictionary
// word specifies ONECAP.
mb_ptr_back(mip->mi_word, p);
if (spell_iswordp_nmw(p, mip->mi_win)
? capflags == WF_ONECAP
: (flags & WF_ONECAP) != 0
&& capflags != WF_ONECAP)
continue;
}
}
// If the word ends the sequence of compound flags of the
// words must match with one of the COMPOUNDRULE items and
// the number of syllables must not be too large.
mip->mi_compflags[mip->mi_complen] = ((unsigned)flags >> 24);
mip->mi_compflags[mip->mi_complen + 1] = NUL;
if (word_ends) {
char_u fword[MAXWLEN];
if (slang->sl_compsylmax < MAXWLEN) {
// "fword" is only needed for checking syllables.
if (ptr == mip->mi_word)
(void)spell_casefold(ptr, wlen, fword, MAXWLEN);
else
STRLCPY(fword, ptr, endlen[endidxcnt] + 1);
}
if (!can_compound(slang, fword, mip->mi_compflags))
continue;
} else if (slang->sl_comprules != NULL
&& !match_compoundrule(slang, mip->mi_compflags))
// The compound flags collected so far do not match any
// COMPOUNDRULE, discard the compounded word.
continue;
}
// Check NEEDCOMPOUND: can't use word without compounding.
else if (flags & WF_NEEDCOMP)
continue;
int nobreak_result = SP_OK;
if (!word_ends) {
int save_result = mip->mi_result;
char_u *save_end = mip->mi_end;
langp_T *save_lp = mip->mi_lp;
// Check that a valid word follows. If there is one and we
// are compounding, it will set "mi_result", thus we are
// always finished here. For NOBREAK we only check that a
// valid word follows.
// Recursive!
if (slang->sl_nobreak)
mip->mi_result = SP_BAD;
// Find following word in case-folded tree.
mip->mi_compoff = endlen[endidxcnt];
if (has_mbyte && mode == FIND_KEEPWORD) {
// Compute byte length in case-folded word from "wlen":
// byte length in keep-case word. Length may change when
// folding case. This can be slow, take a shortcut when
// the case-folded word is equal to the keep-case word.
p = mip->mi_fword;
if (STRNCMP(ptr, p, wlen) != 0) {
for (char_u *s = ptr; s < ptr + wlen; mb_ptr_adv(s))
mb_ptr_adv(p);
mip->mi_compoff = (int)(p - mip->mi_fword);
}
}
#if 0
c = mip->mi_compoff;
#endif
++mip->mi_complen;
if (flags & WF_COMPROOT)
++mip->mi_compextra;
// For NOBREAK we need to try all NOBREAK languages, at least
// to find the ".add" file(s).
for (int lpi = 0; lpi < mip->mi_win->w_s->b_langp.ga_len; ++lpi) {
if (slang->sl_nobreak) {
mip->mi_lp = LANGP_ENTRY(mip->mi_win->w_s->b_langp, lpi);
if (mip->mi_lp->lp_slang->sl_fidxs == NULL
|| !mip->mi_lp->lp_slang->sl_nobreak)
continue;
}
find_word(mip, FIND_COMPOUND);
// When NOBREAK any word that matches is OK. Otherwise we
// need to find the longest match, thus try with keep-case
// and prefix too.
if (!slang->sl_nobreak || mip->mi_result == SP_BAD) {
// Find following word in keep-case tree.
mip->mi_compoff = wlen;
find_word(mip, FIND_KEEPCOMPOUND);
#if 0 // Disabled, a prefix must not appear halfway a compound word,
// unless the COMPOUNDPERMITFLAG is used and then it can't be a
// postponed prefix.
if (!slang->sl_nobreak || mip->mi_result == SP_BAD) {
// Check for following word with prefix.
mip->mi_compoff = c;
find_prefix(mip, FIND_COMPOUND);
}
#endif
}
if (!slang->sl_nobreak)
break;
}
--mip->mi_complen;
if (flags & WF_COMPROOT)
--mip->mi_compextra;
mip->mi_lp = save_lp;
if (slang->sl_nobreak) {
nobreak_result = mip->mi_result;
mip->mi_result = save_result;
mip->mi_end = save_end;
} else {
if (mip->mi_result == SP_OK)
break;
continue;
}
}
int res = SP_BAD;
if (flags & WF_BANNED)
res = SP_BANNED;
else if (flags & WF_REGION) {
// Check region.
if ((mip->mi_lp->lp_region & (flags >> 16)) != 0)
res = SP_OK;
else
res = SP_LOCAL;
} else if (flags & WF_RARE)
res = SP_RARE;
else
res = SP_OK;
// Always use the longest match and the best result. For NOBREAK
// we separately keep the longest match without a following good
// word as a fall-back.
if (nobreak_result == SP_BAD) {
if (mip->mi_result2 > res) {
mip->mi_result2 = res;
mip->mi_end2 = mip->mi_word + wlen;
} else if (mip->mi_result2 == res
&& mip->mi_end2 < mip->mi_word + wlen)
mip->mi_end2 = mip->mi_word + wlen;
} else if (mip->mi_result > res) {
mip->mi_result = res;
mip->mi_end = mip->mi_word + wlen;
} else if (mip->mi_result == res && mip->mi_end < mip->mi_word + wlen)
mip->mi_end = mip->mi_word + wlen;
if (mip->mi_result == SP_OK)
break;
}
if (mip->mi_result == SP_OK)
break;
}
}
// Returns true if there is a match between the word ptr[wlen] and
// CHECKCOMPOUNDPATTERN rules, assuming that we will concatenate with another
// word.
// A match means that the first part of CHECKCOMPOUNDPATTERN matches at the
// end of ptr[wlen] and the second part matches after it.
static bool
match_checkcompoundpattern (
char_u *ptr,
int wlen,
garray_T *gap // &sl_comppat
)
{
char_u *p;
int len;
for (int i = 0; i + 1 < gap->ga_len; i += 2) {
p = ((char_u **)gap->ga_data)[i + 1];
if (STRNCMP(ptr + wlen, p, STRLEN(p)) == 0) {
// Second part matches at start of following compound word, now
// check if first part matches at end of previous word.
p = ((char_u **)gap->ga_data)[i];
len = (int)STRLEN(p);
if (len <= wlen && STRNCMP(ptr + wlen - len, p, len) == 0)
return true;
}
}
return false;
}
// Returns true if "flags" is a valid sequence of compound flags and "word"
// does not have too many syllables.
static bool can_compound(slang_T *slang, char_u *word, char_u *flags)
{
regmatch_T regmatch;
char_u uflags[MAXWLEN * 2];
int i;
char_u *p;
if (slang->sl_compprog == NULL)
return false;
if (enc_utf8) {
// Need to convert the single byte flags to utf8 characters.
p = uflags;
for (i = 0; flags[i] != NUL; ++i)
p += mb_char2bytes(flags[i], p);
*p = NUL;
p = uflags;
} else
p = flags;
regmatch.regprog = slang->sl_compprog;
regmatch.rm_ic = FALSE;
if (!vim_regexec(&regmatch, p, 0))
return false;
// Count the number of syllables. This may be slow, do it last. If there
// are too many syllables AND the number of compound words is above
// COMPOUNDWORDMAX then compounding is not allowed.
if (slang->sl_compsylmax < MAXWLEN
&& count_syllables(slang, word) > slang->sl_compsylmax)
return (int)STRLEN(flags) < slang->sl_compmax;
return true;
}
// Returns true when the sequence of flags in "compflags" plus "flag" can
// possibly form a valid compounded word. This also checks the COMPOUNDRULE
// lines if they don't contain wildcards.
static bool can_be_compound(trystate_T *sp, slang_T *slang, char_u *compflags, int flag)
{
// If the flag doesn't appear in sl_compstartflags or sl_compallflags
// then it can't possibly compound.
if (!byte_in_str(sp->ts_complen == sp->ts_compsplit
? slang->sl_compstartflags : slang->sl_compallflags, flag))
return false;
// If there are no wildcards, we can check if the flags collected so far
// possibly can form a match with COMPOUNDRULE patterns. This only
// makes sense when we have two or more words.
if (slang->sl_comprules != NULL && sp->ts_complen > sp->ts_compsplit) {
compflags[sp->ts_complen] = flag;
compflags[sp->ts_complen + 1] = NUL;
bool v = match_compoundrule(slang, compflags + sp->ts_compsplit);
compflags[sp->ts_complen] = NUL;
return v;
}
return true;
}
// Returns true if the compound flags in compflags[] match the start of any
// compound rule. This is used to stop trying a compound if the flags
// collected so far can't possibly match any compound rule.
// Caller must check that slang->sl_comprules is not NULL.
static bool match_compoundrule(slang_T *slang, char_u *compflags)
{
char_u *p;
int i;
int c;
// loop over all the COMPOUNDRULE entries
for (p = slang->sl_comprules; *p != NUL; ++p) {
// loop over the flags in the compound word we have made, match
// them against the current rule entry
for (i = 0;; ++i) {
c = compflags[i];
if (c == NUL)
// found a rule that matches for the flags we have so far
return true;
if (*p == '/' || *p == NUL)
break; // end of rule, it's too short
if (*p == '[') {
bool match = false;
// compare against all the flags in []
++p;
while (*p != ']' && *p != NUL)
if (*p++ == c)
match = true;
if (!match)
break; // none matches
} else if (*p != c)
break; // flag of word doesn't match flag in pattern
++p;
}
// Skip to the next "/", where the next pattern starts.
p = vim_strchr(p, '/');
if (p == NULL)
break;
}
// Checked all the rules and none of them match the flags, so there
// can't possibly be a compound starting with these flags.
return false;
}
// Return non-zero if the prefix indicated by "arridx" matches with the prefix
// ID in "flags" for the word "word".
// The WF_RAREPFX flag is included in the return value for a rare prefix.
static int
valid_word_prefix (
int totprefcnt, // nr of prefix IDs
int arridx, // idx in sl_pidxs[]
int flags,
char_u *word,
slang_T *slang,
bool cond_req // only use prefixes with a condition
)
{
int prefcnt;
int pidx;
regprog_T *rp;
regmatch_T regmatch;
int prefid;
prefid = (unsigned)flags >> 24;
for (prefcnt = totprefcnt - 1; prefcnt >= 0; --prefcnt) {
pidx = slang->sl_pidxs[arridx + prefcnt];
// Check the prefix ID.
if (prefid != (pidx & 0xff))
continue;
// Check if the prefix doesn't combine and the word already has a
// suffix.
if ((flags & WF_HAS_AFF) && (pidx & WF_PFX_NC))
continue;
// Check the condition, if there is one. The condition index is
// stored in the two bytes above the prefix ID byte.
rp = slang->sl_prefprog[((unsigned)pidx >> 8) & 0xffff];
if (rp != NULL) {
regmatch.regprog = rp;
regmatch.rm_ic = FALSE;
if (!vim_regexec(&regmatch, word, 0))
continue;
} else if (cond_req)
continue;
// It's a match! Return the WF_ flags.
return pidx;
}
return 0;
}
// Check if the word at "mip->mi_word" has a matching prefix.
// If it does, then check the following word.
//
// If "mode" is "FIND_COMPOUND" then do the same after another word, find a
// prefix in a compound word.
//
// For a match mip->mi_result is updated.
static void find_prefix(matchinf_T *mip, int mode)
{
idx_T arridx = 0;
int len;
int wlen = 0;
int flen;
int c;
char_u *ptr;
idx_T lo, hi, m;
slang_T *slang = mip->mi_lp->lp_slang;
char_u *byts;
idx_T *idxs;
byts = slang->sl_pbyts;
if (byts == NULL)
return; // array is empty
// We use the case-folded word here, since prefixes are always
// case-folded.
ptr = mip->mi_fword;
flen = mip->mi_fwordlen; // available case-folded bytes
if (mode == FIND_COMPOUND) {
// Skip over the previously found word(s).
ptr += mip->mi_compoff;
flen -= mip->mi_compoff;
}
idxs = slang->sl_pidxs;
// Repeat advancing in the tree until:
// - there is a byte that doesn't match,
// - we reach the end of the tree,
// - or we reach the end of the line.
for (;; ) {
if (flen == 0 && *mip->mi_fend != NUL)
flen = fold_more(mip);
len = byts[arridx++];
// If the first possible byte is a zero the prefix could end here.
// Check if the following word matches and supports the prefix.
if (byts[arridx] == 0) {
// There can be several prefixes with different conditions. We
// try them all, since we don't know which one will give the
// longest match. The word is the same each time, pass the list
// of possible prefixes to find_word().
mip->mi_prefarridx = arridx;
mip->mi_prefcnt = len;
while (len > 0 && byts[arridx] == 0) {
++arridx;
--len;
}
mip->mi_prefcnt -= len;
// Find the word that comes after the prefix.
mip->mi_prefixlen = wlen;
if (mode == FIND_COMPOUND)
// Skip over the previously found word(s).
mip->mi_prefixlen += mip->mi_compoff;
if (has_mbyte) {
// Case-folded length may differ from original length.
mip->mi_cprefixlen = nofold_len(mip->mi_fword,
mip->mi_prefixlen, mip->mi_word);
} else
mip->mi_cprefixlen = mip->mi_prefixlen;
find_word(mip, FIND_PREFIX);
if (len == 0)
break; // no children, word must end here
}
// Stop looking at end of the line.
if (ptr[wlen] == NUL)
break;
// Perform a binary search in the list of accepted bytes.
c = ptr[wlen];
lo = arridx;
hi = arridx + len - 1;
while (lo < hi) {
m = (lo + hi) / 2;
if (byts[m] > c)
hi = m - 1;
else if (byts[m] < c)
lo = m + 1;
else {
lo = hi = m;
break;
}
}
// Stop if there is no matching byte.
if (hi < lo || byts[lo] != c)
break;
// Continue at the child (if there is one).
arridx = idxs[lo];
++wlen;
--flen;
}
}
// Need to fold at least one more character. Do until next non-word character
// for efficiency. Include the non-word character too.
// Return the length of the folded chars in bytes.
static int fold_more(matchinf_T *mip)
{
int flen;
char_u *p;
p = mip->mi_fend;
do {
mb_ptr_adv(mip->mi_fend);
} while (*mip->mi_fend != NUL && spell_iswordp(mip->mi_fend, mip->mi_win));
// Include the non-word character so that we can check for the word end.
if (*mip->mi_fend != NUL)
mb_ptr_adv(mip->mi_fend);
(void)spell_casefold(p, (int)(mip->mi_fend - p),
mip->mi_fword + mip->mi_fwordlen,
MAXWLEN - mip->mi_fwordlen);
flen = (int)STRLEN(mip->mi_fword + mip->mi_fwordlen);
mip->mi_fwordlen += flen;
return flen;
}
/// Checks case flags for a word. Returns true, if the word has the requested
/// case.
///
/// @param wordflags Flags for the checked word.
/// @param treeflags Flags for the word in the spell tree.
static bool spell_valid_case(int wordflags, int treeflags)
{
return (wordflags == WF_ALLCAP && (treeflags & WF_FIXCAP) == 0)
|| ((treeflags & (WF_ALLCAP | WF_KEEPCAP)) == 0
&& ((treeflags & WF_ONECAP) == 0
|| (wordflags & WF_ONECAP) != 0));
}
// Returns true if spell checking is not enabled.
static bool no_spell_checking(win_T *wp)
{
if (!wp->w_p_spell || *wp->w_s->b_p_spl == NUL
|| GA_EMPTY(&wp->w_s->b_langp)) {
EMSG(_("E756: Spell checking is not enabled"));
return true;
}
return false;
}
// Moves to the next spell error.
// "curline" is false for "[s", "]s", "[S" and "]S".
// "curline" is true to find word under/after cursor in the same line.
// For Insert mode completion "dir" is BACKWARD and "curline" is true: move
// to after badly spelled word before the cursor.
// Return 0 if not found, length of the badly spelled word otherwise.
int
spell_move_to (
win_T *wp,
int dir, // FORWARD or BACKWARD
bool allwords, // true for "[s"/"]s", false for "[S"/"]S"
bool curline,
hlf_T *attrp // return: attributes of bad word or NULL
// (only when "dir" is FORWARD)
)
{
linenr_T lnum;
pos_T found_pos;
int found_len = 0;
char_u *line;
char_u *p;
char_u *endp;
hlf_T attr = HLF_COUNT;
int len;
int has_syntax = syntax_present(wp);
int col;
bool can_spell;
char_u *buf = NULL;
int buflen = 0;
int skip = 0;
int capcol = -1;
bool found_one = false;
bool wrapped = false;
if (no_spell_checking(wp))
return 0;
// Start looking for bad word at the start of the line, because we can't
// start halfway a word, we don't know where it starts or ends.
//
// When searching backwards, we continue in the line to find the last
// bad word (in the cursor line: before the cursor).
//
// We concatenate the start of the next line, so that wrapped words work
// (e.g. "et<line-break>cetera"). Doesn't work when searching backwards
// though...
lnum = wp->w_cursor.lnum;
clearpos(&found_pos);
while (!got_int) {
line = ml_get_buf(wp->w_buffer, lnum, FALSE);
len = (int)STRLEN(line);
if (buflen < len + MAXWLEN + 2) {
free(buf);
buflen = len + MAXWLEN + 2;
buf = xmalloc(buflen);
}
assert(buf && buflen >= len + MAXWLEN + 2);
// In first line check first word for Capital.
if (lnum == 1)
capcol = 0;
// For checking first word with a capital skip white space.
if (capcol == 0)
capcol = (int)(skipwhite(line) - line);
else if (curline && wp == curwin) {
// For spellbadword(): check if first word needs a capital.
col = (int)(skipwhite(line) - line);
if (check_need_cap(lnum, col))
capcol = col;
// Need to get the line again, may have looked at the previous
// one.
line = ml_get_buf(wp->w_buffer, lnum, FALSE);
}
// Copy the line into "buf" and append the start of the next line if
// possible.
STRCPY(buf, line);
if (lnum < wp->w_buffer->b_ml.ml_line_count)
spell_cat_line(buf + STRLEN(buf),
ml_get_buf(wp->w_buffer, lnum + 1, FALSE), MAXWLEN);
p = buf + skip;
endp = buf + len;
while (p < endp) {
// When searching backward don't search after the cursor. Unless
// we wrapped around the end of the buffer.
if (dir == BACKWARD
&& lnum == wp->w_cursor.lnum
&& !wrapped
&& (colnr_T)(p - buf) >= wp->w_cursor.col)
break;
// start of word
attr = HLF_COUNT;
len = spell_check(wp, p, &attr, &capcol, false);
if (attr != HLF_COUNT) {
// We found a bad word. Check the attribute.
if (allwords || attr == HLF_SPB) {
// When searching forward only accept a bad word after
// the cursor.
if (dir == BACKWARD
|| lnum != wp->w_cursor.lnum
|| (lnum == wp->w_cursor.lnum
&& (wrapped
|| (colnr_T)(curline ? p - buf + len
: p - buf)
> wp->w_cursor.col))) {
if (has_syntax) {
col = (int)(p - buf);
(void)syn_get_id(wp, lnum, (colnr_T)col,
FALSE, &can_spell, FALSE);
if (!can_spell)
attr = HLF_COUNT;
} else
can_spell = true;
if (can_spell) {
found_one = true;
found_pos.lnum = lnum;
found_pos.col = (int)(p - buf);
found_pos.coladd = 0;
if (dir == FORWARD) {
// No need to search further.
wp->w_cursor = found_pos;
free(buf);
if (attrp != NULL)
*attrp = attr;
return len;
} else if (curline)
// Insert mode completion: put cursor after
// the bad word.
found_pos.col += len;
found_len = len;
}
} else
found_one = true;
}
}
// advance to character after the word
p += len;
capcol -= len;
}
if (dir == BACKWARD && found_pos.lnum != 0) {
// Use the last match in the line (before the cursor).
wp->w_cursor = found_pos;
free(buf);
return found_len;
}
if (curline)
break; // only check cursor line
// Advance to next line.
if (dir == BACKWARD) {
// If we are back at the starting line and searched it again there
// is no match, give up.
if (lnum == wp->w_cursor.lnum && wrapped)
break;
if (lnum > 1)
--lnum;
else if (!p_ws)
break; // at first line and 'nowrapscan'
else {
// Wrap around to the end of the buffer. May search the
// starting line again and accept the last match.
lnum = wp->w_buffer->b_ml.ml_line_count;
wrapped = true;
if (!shortmess(SHM_SEARCH))
give_warning((char_u *)_(top_bot_msg), true);
}
capcol = -1;
} else {
if (lnum < wp->w_buffer->b_ml.ml_line_count)
++lnum;
else if (!p_ws)
break; // at first line and 'nowrapscan'
else {
// Wrap around to the start of the buffer. May search the
// starting line again and accept the first match.
lnum = 1;
wrapped = true;
if (!shortmess(SHM_SEARCH))
give_warning((char_u *)_(bot_top_msg), true);
}
// If we are back at the starting line and there is no match then
// give up.
if (lnum == wp->w_cursor.lnum && (!found_one || wrapped))
break;
// Skip the characters at the start of the next line that were
// included in a match crossing line boundaries.
if (attr == HLF_COUNT)
skip = (int)(p - endp);
else
skip = 0;
// Capcol skips over the inserted space.
--capcol;
// But after empty line check first word in next line
if (*skipwhite(line) == NUL)
capcol = 0;
}
line_breakcheck();
}
free(buf);
return 0;
}
// For spell checking: concatenate the start of the following line "line" into
// "buf", blanking-out special characters. Copy less then "maxlen" bytes.
// Keep the blanks at the start of the next line, this is used in win_line()
// to skip those bytes if the word was OK.
void spell_cat_line(char_u *buf, char_u *line, int maxlen)
{
char_u *p;
int n;
p = skipwhite(line);
while (vim_strchr((char_u *)"*#/\"\t", *p) != NULL)
p = skipwhite(p + 1);
if (*p != NUL) {
// Only worth concatenating if there is something else than spaces to
// concatenate.
n = (int)(p - line) + 1;
if (n < maxlen - 1) {
memset(buf, ' ', n);
STRLCPY(buf + n, p, maxlen - n);
}
}
}
// Load word list(s) for "lang" from Vim spell file(s).
// "lang" must be the language without the region: e.g., "en".
static void spell_load_lang(char_u *lang)
{
char_u fname_enc[85];
int r;
spelload_T sl;
int round;
// Copy the language name to pass it to spell_load_cb() as a cookie.
// It's truncated when an error is detected.
STRCPY(sl.sl_lang, lang);
sl.sl_slang = NULL;
sl.sl_nobreak = false;
// We may retry when no spell file is found for the language, an
// autocommand may load it then.
for (round = 1; round <= 2; ++round) {
// Find the first spell file for "lang" in 'runtimepath' and load it.
vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5,
"spell/%s.%s.spl",
lang, spell_enc());
r = do_in_runtimepath(fname_enc, FALSE, spell_load_cb, &sl);
if (r == FAIL && *sl.sl_lang != NUL) {
// Try loading the ASCII version.
vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5,
"spell/%s.ascii.spl",
lang);
r = do_in_runtimepath(fname_enc, FALSE, spell_load_cb, &sl);
if (r == FAIL && *sl.sl_lang != NUL && round == 1
&& apply_autocmds(EVENT_SPELLFILEMISSING, lang,
curbuf->b_fname, FALSE, curbuf))
continue;
break;
}
break;
}
if (r == FAIL) {
smsg((char_u *)
_("Warning: Cannot find word list \"%s.%s.spl\" or \"%s.ascii.spl\""),
lang, spell_enc(), lang);
} else if (sl.sl_slang != NULL) {
// At least one file was loaded, now load ALL the additions.
STRCPY(fname_enc + STRLEN(fname_enc) - 3, "add.spl");
do_in_runtimepath(fname_enc, TRUE, spell_load_cb, &sl);
}
}
// Return the encoding used for spell checking: Use 'encoding', except that we
// use "latin1" for "latin9". And limit to 60 characters (just in case).
static char_u *spell_enc(void)
{
if (STRLEN(p_enc) < 60 && STRCMP(p_enc, "iso-8859-15") != 0)
return p_enc;
return (char_u *)"latin1";
}
// Get the name of the .spl file for the internal wordlist into
// "fname[MAXPATHL]".
static void int_wordlist_spl(char_u *fname)
{
vim_snprintf((char *)fname, MAXPATHL, SPL_FNAME_TMPL,
int_wordlist, spell_enc());
}
// Allocate a new slang_T for language "lang". "lang" can be NULL.
// Caller must fill "sl_next".
static slang_T *slang_alloc(char_u *lang)
{
slang_T *lp = xcalloc(1, sizeof(slang_T));
if (lang != NULL)
lp->sl_name = vim_strsave(lang);
ga_init(&lp->sl_rep, sizeof(fromto_T), 10);
ga_init(&lp->sl_repsal, sizeof(fromto_T), 10);
lp->sl_compmax = MAXWLEN;
lp->sl_compsylmax = MAXWLEN;
hash_init(&lp->sl_wordcount);
return lp;
}
// Free the contents of an slang_T and the structure itself.
static void slang_free(slang_T *lp)
{
free(lp->sl_name);
free(lp->sl_fname);
slang_clear(lp);
free(lp);
}
// Clear an slang_T so that the file can be reloaded.
static void slang_clear(slang_T *lp)
{
garray_T *gap;
fromto_T *ftp;
salitem_T *smp;
int round;
free(lp->sl_fbyts);
lp->sl_fbyts = NULL;
free(lp->sl_kbyts);
lp->sl_kbyts = NULL;
free(lp->sl_pbyts);
lp->sl_pbyts = NULL;
free(lp->sl_fidxs);
lp->sl_fidxs = NULL;
free(lp->sl_kidxs);
lp->sl_kidxs = NULL;
free(lp->sl_pidxs);
lp->sl_pidxs = NULL;
for (round = 1; round <= 2; ++round) {
gap = round == 1 ? &lp->sl_rep : &lp->sl_repsal;
while (!GA_EMPTY(gap)) {
ftp = &((fromto_T *)gap->ga_data)[--gap->ga_len];
free(ftp->ft_from);
free(ftp->ft_to);
}
ga_clear(gap);
}
gap = &lp->sl_sal;
if (lp->sl_sofo) {
// "ga_len" is set to 1 without adding an item for latin1
if (gap->ga_data != NULL)
// SOFOFROM and SOFOTO items: free lists of wide characters.
for (int i = 0; i < gap->ga_len; ++i) {
free(((int **)gap->ga_data)[i]);
}
} else
// SAL items: free salitem_T items
while (!GA_EMPTY(gap)) {
smp = &((salitem_T *)gap->ga_data)[--gap->ga_len];
free(smp->sm_lead);
// Don't free sm_oneof and sm_rules, they point into sm_lead.
free(smp->sm_to);
free(smp->sm_lead_w);
free(smp->sm_oneof_w);
free(smp->sm_to_w);
}
ga_clear(gap);
for (int i = 0; i < lp->sl_prefixcnt; ++i) {
vim_regfree(lp->sl_prefprog[i]);
}
lp->sl_prefixcnt = 0;
free(lp->sl_prefprog);
lp->sl_prefprog = NULL;
free(lp->sl_info);
lp->sl_info = NULL;
free(lp->sl_midword);
lp->sl_midword = NULL;
vim_regfree(lp->sl_compprog);
free(lp->sl_comprules);
free(lp->sl_compstartflags);
free(lp->sl_compallflags);
lp->sl_compprog = NULL;
lp->sl_comprules = NULL;
lp->sl_compstartflags = NULL;
lp->sl_compallflags = NULL;
free(lp->sl_syllable);
lp->sl_syllable = NULL;
ga_clear(&lp->sl_syl_items);
ga_clear_strings(&lp->sl_comppat);
hash_clear_all(&lp->sl_wordcount, WC_KEY_OFF);
hash_init(&lp->sl_wordcount);
hash_clear_all(&lp->sl_map_hash, 0);
// Clear info from .sug file.
slang_clear_sug(lp);
lp->sl_compmax = MAXWLEN;
lp->sl_compminlen = 0;
lp->sl_compsylmax = MAXWLEN;
lp->sl_regions[0] = NUL;
}
// Clear the info from the .sug file in "lp".
static void slang_clear_sug(slang_T *lp)
{
free(lp->sl_sbyts);
lp->sl_sbyts = NULL;
free(lp->sl_sidxs);
lp->sl_sidxs = NULL;
close_spellbuf(lp->sl_sugbuf);
lp->sl_sugbuf = NULL;
lp->sl_sugloaded = false;
lp->sl_sugtime = 0;
}
// Load one spell file and store the info into a slang_T.
// Invoked through do_in_runtimepath().
static void spell_load_cb(char_u *fname, void *cookie)
{
spelload_T *slp = (spelload_T *)cookie;
slang_T *slang;
slang = spell_load_file(fname, slp->sl_lang, NULL, false);
if (slang != NULL) {
// When a previously loaded file has NOBREAK also use it for the
// ".add" files.
if (slp->sl_nobreak && slang->sl_add)
slang->sl_nobreak = true;
else if (slang->sl_nobreak)
slp->sl_nobreak = true;
slp->sl_slang = slang;
}
}
// Load one spell file and store the info into a slang_T.
//
// This is invoked in three ways:
// - From spell_load_cb() to load a spell file for the first time. "lang" is
// the language name, "old_lp" is NULL. Will allocate an slang_T.
// - To reload a spell file that was changed. "lang" is NULL and "old_lp"
// points to the existing slang_T.
// - Just after writing a .spl file; it's read back to produce the .sug file.
// "old_lp" is NULL and "lang" is NULL. Will allocate an slang_T.
//
// Returns the slang_T the spell file was loaded into. NULL for error.
static slang_T *
spell_load_file (
char_u *fname,
char_u *lang,
slang_T *old_lp,
bool silent // no error if file doesn't exist
)
{
FILE *fd;
char_u buf[VIMSPELLMAGICL];
char_u *p;
int i;
int n;
int len;
char_u *save_sourcing_name = sourcing_name;
linenr_T save_sourcing_lnum = sourcing_lnum;
slang_T *lp = NULL;
int c = 0;
int res;
fd = mch_fopen((char *)fname, "r");
if (fd == NULL) {
if (!silent)
EMSG2(_(e_notopen), fname);
else if (p_verbose > 2) {
verbose_enter();
smsg((char_u *)e_notopen, fname);
verbose_leave();
}
goto endFAIL;
}
if (p_verbose > 2) {
verbose_enter();
smsg((char_u *)_("Reading spell file \"%s\""), fname);
verbose_leave();
}
if (old_lp == NULL) {
lp = slang_alloc(lang);
// Remember the file name, used to reload the file when it's updated.
lp->sl_fname = vim_strsave(fname);
// Check for .add.spl.
lp->sl_add = strstr((char *)path_tail(fname), SPL_FNAME_ADD) != NULL;
} else
lp = old_lp;
// Set sourcing_name, so that error messages mention the file name.
sourcing_name = fname;
sourcing_lnum = 0;
// <HEADER>: <fileID>
for (i = 0; i < VIMSPELLMAGICL; ++i)
buf[i] = getc(fd); // <fileID>
if (STRNCMP(buf, VIMSPELLMAGIC, VIMSPELLMAGICL) != 0) {
EMSG(_("E757: This does not look like a spell file"));
goto endFAIL;
}
c = getc(fd); // <versionnr>
if (c < VIMSPELLVERSION) {
EMSG(_("E771: Old spell file, needs to be updated"));
goto endFAIL;
} else if (c > VIMSPELLVERSION) {
EMSG(_("E772: Spell file is for newer version of Vim"));
goto endFAIL;
}
// <SECTIONS>: <section> ... <sectionend>
// <section>: <sectionID> <sectionflags> <sectionlen> (section contents)
for (;; ) {
n = getc(fd); // <sectionID> or <sectionend>
if (n == SN_END)
break;
c = getc(fd); // <sectionflags>
len = get4c(fd); // <sectionlen>
if (len < 0)
goto truncerr;
res = 0;
switch (n) {
case SN_INFO:
lp->sl_info = READ_STRING(fd, len); // <infotext>
if (lp->sl_info == NULL)
goto endFAIL;
break;
case SN_REGION:
res = read_region_section(fd, lp, len);
break;
case SN_CHARFLAGS:
res = read_charflags_section(fd);
break;
case SN_MIDWORD:
lp->sl_midword = READ_STRING(fd, len); // <midword>
if (lp->sl_midword == NULL)
goto endFAIL;
break;
case SN_PREFCOND:
res = read_prefcond_section(fd, lp);
break;
case SN_REP:
res = read_rep_section(fd, &lp->sl_rep, lp->sl_rep_first);
break;
case SN_REPSAL:
res = read_rep_section(fd, &lp->sl_repsal, lp->sl_repsal_first);
break;
case SN_SAL:
res = read_sal_section(fd, lp);
break;
case SN_SOFO:
res = read_sofo_section(fd, lp);
break;
case SN_MAP:
p = READ_STRING(fd, len); // <mapstr>
if (p == NULL)
goto endFAIL;
set_map_str(lp, p);
free(p);
break;
case SN_WORDS:
res = read_words_section(fd, lp, len);
break;
case SN_SUGFILE:
lp->sl_sugtime = get8ctime(fd); // <timestamp>
break;
case SN_NOSPLITSUGS:
lp->sl_nosplitsugs = true; // <timestamp>
break;
case SN_COMPOUND:
res = read_compound(fd, lp, len);
break;
case SN_NOBREAK:
lp->sl_nobreak = true;
break;
case SN_SYLLABLE:
lp->sl_syllable = READ_STRING(fd, len); // <syllable>
if (lp->sl_syllable == NULL)
goto endFAIL;
if (init_syl_tab(lp) == FAIL)
goto endFAIL;
break;
default:
// Unsupported section. When it's required give an error
// message. When it's not required skip the contents.
if (c & SNF_REQUIRED) {
EMSG(_("E770: Unsupported section in spell file"));
goto endFAIL;
}
while (--len >= 0)
if (getc(fd) < 0)
goto truncerr;
break;
}
someerror:
if (res == SP_FORMERROR) {
EMSG(_(e_format));
goto endFAIL;
}
if (res == SP_TRUNCERROR) {
truncerr:
EMSG(_(e_spell_trunc));
goto endFAIL;
}
if (res == SP_OTHERERROR)
goto endFAIL;
}
// <LWORDTREE>
res = spell_read_tree(fd, &lp->sl_fbyts, &lp->sl_fidxs, false, 0);
if (res != 0)
goto someerror;
// <KWORDTREE>
res = spell_read_tree(fd, &lp->sl_kbyts, &lp->sl_kidxs, false, 0);
if (res != 0)
goto someerror;
// <PREFIXTREE>
res = spell_read_tree(fd, &lp->sl_pbyts, &lp->sl_pidxs, true,
lp->sl_prefixcnt);
if (res != 0)
goto someerror;
// For a new file link it in the list of spell files.
if (old_lp == NULL && lang != NULL) {
lp->sl_next = first_lang;
first_lang = lp;
}
goto endOK;
endFAIL:
if (lang != NULL)
// truncating the name signals the error to spell_load_lang()
*lang = NUL;
if (lp != NULL && old_lp == NULL)
slang_free(lp);
lp = NULL;
endOK:
if (fd != NULL)
fclose(fd);
sourcing_name = save_sourcing_name;
sourcing_lnum = save_sourcing_lnum;
return lp;
}
// Read a length field from "fd" in "cnt_bytes" bytes.
// Allocate memory, read the string into it and add a NUL at the end.
// Returns NULL when the count is zero.
// Sets "*cntp" to SP_*ERROR when there is an error, length of the result
// otherwise.
static char_u *read_cnt_string(FILE *fd, int cnt_bytes, int *cntp)
{
int cnt = 0;
int i;
char_u *str;
// read the length bytes, MSB first
for (i = 0; i < cnt_bytes; ++i)
cnt = (cnt << 8) + getc(fd);
if (cnt < 0) {
*cntp = SP_TRUNCERROR;
return NULL;
}
*cntp = cnt;
if (cnt == 0)
return NULL; // nothing to read, return NULL
str = READ_STRING(fd, cnt);
if (str == NULL)
*cntp = SP_OTHERERROR;
return str;
}
// Read SN_REGION: <regionname> ...
// Return SP_*ERROR flags.
static int read_region_section(FILE *fd, slang_T *lp, int len)
{
int i;
if (len > 16)
return SP_FORMERROR;
for (i = 0; i < len; ++i)
lp->sl_regions[i] = getc(fd); // <regionname>
lp->sl_regions[len] = NUL;
return 0;
}
// Read SN_CHARFLAGS section: <charflagslen> <charflags>
// <folcharslen> <folchars>
// Return SP_*ERROR flags.
static int read_charflags_section(FILE *fd)
{
char_u *flags;
char_u *fol;
int flagslen, follen;
// <charflagslen> <charflags>
flags = read_cnt_string(fd, 1, &flagslen);
if (flagslen < 0)
return flagslen;
// <folcharslen> <folchars>
fol = read_cnt_string(fd, 2, &follen);
if (follen < 0) {
free(flags);
return follen;
}
// Set the word-char flags and fill SPELL_ISUPPER() table.
if (flags != NULL && fol != NULL)
set_spell_charflags(flags, flagslen, fol);
free(flags);
free(fol);
// When <charflagslen> is zero then <fcharlen> must also be zero.
if ((flags == NULL) != (fol == NULL))
return SP_FORMERROR;
return 0;
}
// Read SN_PREFCOND section.
// Return SP_*ERROR flags.
static int read_prefcond_section(FILE *fd, slang_T *lp)
{
int cnt;
int i;
int n;
char_u *p;
char_u buf[MAXWLEN + 1];
// <prefcondcnt> <prefcond> ...
cnt = get2c(fd); // <prefcondcnt>
if (cnt <= 0)
return SP_FORMERROR;
lp->sl_prefprog = xcalloc(cnt, sizeof(regprog_T *));
lp->sl_prefixcnt = cnt;
for (i = 0; i < cnt; ++i) {
// <prefcond> : <condlen> <condstr>
n = getc(fd); // <condlen>
if (n < 0 || n >= MAXWLEN)
return SP_FORMERROR;
// When <condlen> is zero we have an empty condition. Otherwise
// compile the regexp program used to check for the condition.
if (n > 0) {
buf[0] = '^'; // always match at one position only
p = buf + 1;
while (n-- > 0)
*p++ = getc(fd); // <condstr>
*p = NUL;
lp->sl_prefprog[i] = vim_regcomp(buf, RE_MAGIC + RE_STRING);
}
}
return 0;
}
// Read REP or REPSAL items section from "fd": <repcount> <rep> ...
// Return SP_*ERROR flags.
static int read_rep_section(FILE *fd, garray_T *gap, short *first)
{
int cnt;
fromto_T *ftp;
cnt = get2c(fd); // <repcount>
if (cnt < 0)
return SP_TRUNCERROR;
ga_grow(gap, cnt);
// <rep> : <repfromlen> <repfrom> <reptolen> <repto>
for (; gap->ga_len < cnt; ++gap->ga_len) {
int c;
ftp = &((fromto_T *)gap->ga_data)[gap->ga_len];
ftp->ft_from = read_cnt_string(fd, 1, &c);
if (c < 0)
return c;
if (c == 0)
return SP_FORMERROR;
ftp->ft_to = read_cnt_string(fd, 1, &c);
if (c <= 0) {
free(ftp->ft_from);
if (c < 0)
return c;
return SP_FORMERROR;
}
}
// Fill the first-index table.
for (int i = 0; i < 256; ++i) {
first[i] = -1;
}
for (int i = 0; i < gap->ga_len; ++i) {
ftp = &((fromto_T *)gap->ga_data)[i];
if (first[*ftp->ft_from] == -1)
first[*ftp->ft_from] = i;
}
return 0;
}
// Read SN_SAL section: <salflags> <salcount> <sal> ...
// Return SP_*ERROR flags.
static int read_sal_section(FILE *fd, slang_T *slang)
{
int i;
int cnt;
garray_T *gap;
salitem_T *smp;
int ccnt;
char_u *p;
int c = NUL;
slang->sl_sofo = false;
i = getc(fd); // <salflags>
if (i & SAL_F0LLOWUP)
slang->sl_followup = true;
if (i & SAL_COLLAPSE)
slang->sl_collapse = true;
if (i & SAL_REM_ACCENTS)
slang->sl_rem_accents = true;
cnt = get2c(fd); // <salcount>
if (cnt < 0)
return SP_TRUNCERROR;
gap = &slang->sl_sal;
ga_init(gap, sizeof(salitem_T), 10);
ga_grow(gap, cnt + 1);
// <sal> : <salfromlen> <salfrom> <saltolen> <salto>
for (; gap->ga_len < cnt; ++gap->ga_len) {
smp = &((salitem_T *)gap->ga_data)[gap->ga_len];
ccnt = getc(fd); // <salfromlen>
if (ccnt < 0)
return SP_TRUNCERROR;
p = xmalloc(ccnt + 2);
smp->sm_lead = p;
// Read up to the first special char into sm_lead.
for (i = 0; i < ccnt; ++i) {
c = getc(fd); // <salfrom>
if (vim_strchr((char_u *)"0123456789(-<^$", c) != NULL)
break;
*p++ = c;
}
smp->sm_leadlen = (int)(p - smp->sm_lead);
*p++ = NUL;
// Put (abc) chars in sm_oneof, if any.
if (c == '(') {
smp->sm_oneof = p;
for (++i; i < ccnt; ++i) {
c = getc(fd); // <salfrom>
if (c == ')')
break;
*p++ = c;
}
*p++ = NUL;
if (++i < ccnt)
c = getc(fd);
} else
smp->sm_oneof = NULL;
// Any following chars go in sm_rules.
smp->sm_rules = p;
if (i < ccnt)
// store the char we got while checking for end of sm_lead
*p++ = c;
for (++i; i < ccnt; ++i)
*p++ = getc(fd); // <salfrom>
*p++ = NUL;
// <saltolen> <salto>
smp->sm_to = read_cnt_string(fd, 1, &ccnt);
if (ccnt < 0) {
free(smp->sm_lead);
return ccnt;
}
if (has_mbyte) {
// convert the multi-byte strings to wide char strings
smp->sm_lead_w = mb_str2wide(smp->sm_lead);
smp->sm_leadlen = mb_charlen(smp->sm_lead);
if (smp->sm_oneof == NULL)
smp->sm_oneof_w = NULL;
else
smp->sm_oneof_w = mb_str2wide(smp->sm_oneof);
if (smp->sm_to == NULL)
smp->sm_to_w = NULL;
else
smp->sm_to_w = mb_str2wide(smp->sm_to);
}
}
if (!GA_EMPTY(gap)) {
// Add one extra entry to mark the end with an empty sm_lead. Avoids
// that we need to check the index every time.
smp = &((salitem_T *)gap->ga_data)[gap->ga_len];
p = xmalloc(1);
p[0] = NUL;
smp->sm_lead = p;
smp->sm_leadlen = 0;
smp->sm_oneof = NULL;
smp->sm_rules = p;
smp->sm_to = NULL;
if (has_mbyte) {
smp->sm_lead_w = mb_str2wide(smp->sm_lead);
smp->sm_leadlen = 0;
smp->sm_oneof_w = NULL;
smp->sm_to_w = NULL;
}
++gap->ga_len;
}
// Fill the first-index table.
set_sal_first(slang);
return 0;
}
// Read SN_WORDS: <word> ...
// Return SP_*ERROR flags.
static int read_words_section(FILE *fd, slang_T *lp, int len)
{
int done = 0;
int i;
int c;
char_u word[MAXWLEN];
while (done < len) {
// Read one word at a time.
for (i = 0;; ++i) {
c = getc(fd);
if (c == EOF)
return SP_TRUNCERROR;
word[i] = c;
if (word[i] == NUL)
break;
if (i == MAXWLEN - 1)
return SP_FORMERROR;
}
// Init the count to 10.
count_common_word(lp, word, -1, 10);
done += i + 1;
}
return 0;
}
// Add a word to the hashtable of common words.
// If it's already there then the counter is increased.
static void
count_common_word (
slang_T *lp,
char_u *word,
int len, // word length, -1 for upto NUL
int count // 1 to count once, 10 to init
)
{
hash_T hash;
hashitem_T *hi;
wordcount_T *wc;
char_u buf[MAXWLEN];
char_u *p;
if (len == -1)
p = word;
else {
STRLCPY(buf, word, len + 1);
p = buf;
}
hash = hash_hash(p);
hi = hash_lookup(&lp->sl_wordcount, p, hash);
if (HASHITEM_EMPTY(hi)) {
wc = xmalloc(sizeof(wordcount_T) + STRLEN(p));
STRCPY(wc->wc_word, p);
wc->wc_count = count;
hash_add_item(&lp->sl_wordcount, hi, wc->wc_word, hash);
} else {
wc = HI2WC(hi);
if ((wc->wc_count += count) < (unsigned)count) // check for overflow
wc->wc_count = MAXWORDCOUNT;
}
}
// Adjust the score of common words.
static int
score_wordcount_adj (
slang_T *slang,
int score,
char_u *word,
bool split // word was split, less bonus
)
{
hashitem_T *hi;
wordcount_T *wc;
int bonus;
int newscore;
hi = hash_find(&slang->sl_wordcount, word);
if (!HASHITEM_EMPTY(hi)) {
wc = HI2WC(hi);
if (wc->wc_count < SCORE_THRES2)
bonus = SCORE_COMMON1;
else if (wc->wc_count < SCORE_THRES3)
bonus = SCORE_COMMON2;
else
bonus = SCORE_COMMON3;
if (split)
newscore = score - bonus / 2;
else
newscore = score - bonus;
if (newscore < 0)
return 0;
return newscore;
}
return score;
}
// SN_SOFO: <sofofromlen> <sofofrom> <sofotolen> <sofoto>
// Return SP_*ERROR flags.
static int read_sofo_section(FILE *fd, slang_T *slang)
{
int cnt;
char_u *from, *to;
int res;
slang->sl_sofo = true;
// <sofofromlen> <sofofrom>
from = read_cnt_string(fd, 2, &cnt);
if (cnt < 0)
return cnt;
// <sofotolen> <sofoto>
to = read_cnt_string(fd, 2, &cnt);
if (cnt < 0) {
free(from);
return cnt;
}
// Store the info in slang->sl_sal and/or slang->sl_sal_first.
if (from != NULL && to != NULL)
res = set_sofo(slang, from, to);
else if (from != NULL || to != NULL)
res = SP_FORMERROR; // only one of two strings is an error
else
res = 0;
free(from);
free(to);
return res;
}
// Read the compound section from the .spl file:
// <compmax> <compminlen> <compsylmax> <compoptions> <compflags>
// Returns SP_*ERROR flags.
static int read_compound(FILE *fd, slang_T *slang, int len)
{
int todo = len;
int c;
int atstart;
char_u *pat;
char_u *pp;
char_u *cp;
char_u *ap;
char_u *crp;
int cnt;
garray_T *gap;
if (todo < 2)
return SP_FORMERROR; // need at least two bytes
--todo;
c = getc(fd); // <compmax>
if (c < 2)
c = MAXWLEN;
slang->sl_compmax = c;
--todo;
c = getc(fd); // <compminlen>
if (c < 1)
c = 0;
slang->sl_compminlen = c;
--todo;
c = getc(fd); // <compsylmax>
if (c < 1)
c = MAXWLEN;
slang->sl_compsylmax = c;
c = getc(fd); // <compoptions>
if (c != 0)
ungetc(c, fd); // be backwards compatible with Vim 7.0b
else {
--todo;
c = getc(fd); // only use the lower byte for now
--todo;
slang->sl_compoptions = c;
gap = &slang->sl_comppat;
c = get2c(fd); // <comppatcount>
todo -= 2;
ga_init(gap, sizeof(char_u *), c);
ga_grow(gap, c);
while (--c >= 0) {
((char_u **)(gap->ga_data))[gap->ga_len++] =
read_cnt_string(fd, 1, &cnt);
// <comppatlen> <comppattext>
if (cnt < 0)
return cnt;
todo -= cnt + 1;
}
}
if (todo < 0)
return SP_FORMERROR;
// Turn the COMPOUNDRULE items into a regexp pattern:
// "a[bc]/a*b+" -> "^\(a[bc]\|a*b\+\)$".
// Inserting backslashes may double the length, "^\(\)$<Nul>" is 7 bytes.
// Conversion to utf-8 may double the size.
c = todo * 2 + 7;
if (enc_utf8)
c += todo * 2;
pat = xmalloc(c);
// We also need a list of all flags that can appear at the start and one
// for all flags.
cp = xmalloc(todo + 1);
slang->sl_compstartflags = cp;
*cp = NUL;
ap = xmalloc(todo + 1);
slang->sl_compallflags = ap;
*ap = NUL;
// And a list of all patterns in their original form, for checking whether
// compounding may work in match_compoundrule(). This is freed when we
// encounter a wildcard, the check doesn't work then.
crp = xmalloc(todo + 1);
slang->sl_comprules = crp;
pp = pat;
*pp++ = '^';
*pp++ = '\\';
*pp++ = '(';
atstart = 1;
while (todo-- > 0) {
c = getc(fd); // <compflags>
if (c == EOF) {
free(pat);
return SP_TRUNCERROR;
}
// Add all flags to "sl_compallflags".
if (vim_strchr((char_u *)"?*+[]/", c) == NULL
&& !byte_in_str(slang->sl_compallflags, c)) {
*ap++ = c;
*ap = NUL;
}
if (atstart != 0) {
// At start of item: copy flags to "sl_compstartflags". For a
// [abc] item set "atstart" to 2 and copy up to the ']'.
if (c == '[')
atstart = 2;
else if (c == ']')
atstart = 0;
else {
if (!byte_in_str(slang->sl_compstartflags, c)) {
*cp++ = c;
*cp = NUL;
}
if (atstart == 1)
atstart = 0;
}
}
// Copy flag to "sl_comprules", unless we run into a wildcard.
if (crp != NULL) {
if (c == '?' || c == '+' || c == '*') {
free(slang->sl_comprules);
slang->sl_comprules = NULL;
crp = NULL;
} else
*crp++ = c;
}
if (c == '/') { // slash separates two items
*pp++ = '\\';
*pp++ = '|';
atstart = 1;
} else { // normal char, "[abc]" and '*' are copied as-is
if (c == '?' || c == '+' || c == '~')
*pp++ = '\\'; // "a?" becomes "a\?", "a+" becomes "a\+"
if (enc_utf8)
pp += mb_char2bytes(c, pp);
else
*pp++ = c;
}
}
*pp++ = '\\';
*pp++ = ')';
*pp++ = '$';
*pp = NUL;
if (crp != NULL)
*crp = NUL;
slang->sl_compprog = vim_regcomp(pat, RE_MAGIC + RE_STRING + RE_STRICT);
free(pat);
if (slang->sl_compprog == NULL)
return SP_FORMERROR;
return 0;
}
// Returns true if byte "n" appears in "str".
// Like strchr() but independent of locale.
static bool byte_in_str(char_u *str, int n)
{
char_u *p;
for (p = str; *p != NUL; ++p)
if (*p == n)
return true;
return false;
}
// Truncate "slang->sl_syllable" at the first slash and put the following items
// in "slang->sl_syl_items".
static int init_syl_tab(slang_T *slang)
{
char_u *p;
char_u *s;
int l;
ga_init(&slang->sl_syl_items, sizeof(syl_item_T), 4);
p = vim_strchr(slang->sl_syllable, '/');
while (p != NULL) {
*p++ = NUL;
if (*p == NUL) // trailing slash
break;
s = p;
p = vim_strchr(p, '/');
if (p == NULL)
l = (int)STRLEN(s);
else
l = (int)(p - s);
if (l >= SY_MAXLEN)
return SP_FORMERROR;
syl_item_T *syl = GA_APPEND_VIA_PTR(syl_item_T, &slang->sl_syl_items);
STRLCPY(syl->sy_chars, s, l + 1);
syl->sy_len = l;
}
return OK;
}
// Count the number of syllables in "word".
// When "word" contains spaces the syllables after the last space are counted.
// Returns zero if syllables are not defines.
static int count_syllables(slang_T *slang, char_u *word)
{
int cnt = 0;
bool skip = false;
char_u *p;
int len;
syl_item_T *syl;
int c;
if (slang->sl_syllable == NULL)
return 0;
for (p = word; *p != NUL; p += len) {
// When running into a space reset counter.
if (*p == ' ') {
len = 1;
cnt = 0;
continue;
}
// Find longest match of syllable items.
len = 0;
for (int i = 0; i < slang->sl_syl_items.ga_len; ++i) {
syl = ((syl_item_T *)slang->sl_syl_items.ga_data) + i;
if (syl->sy_len > len
&& STRNCMP(p, syl->sy_chars, syl->sy_len) == 0)
len = syl->sy_len;
}
if (len != 0) { // found a match, count syllable
++cnt;
skip = false;
} else {
// No recognized syllable item, at least a syllable char then?
c = mb_ptr2char(p);
len = (*mb_ptr2len)(p);
if (vim_strchr(slang->sl_syllable, c) == NULL)
skip = false; // No, search for next syllable
else if (!skip) {
++cnt; // Yes, count it
skip = true; // don't count following syllable chars
}
}
}
return cnt;
}
// Set the SOFOFROM and SOFOTO items in language "lp".
// Returns SP_*ERROR flags when there is something wrong.
static int set_sofo(slang_T *lp, char_u *from, char_u *to)
{
int i;
garray_T *gap;
char_u *s;
char_u *p;
int c;
int *inp;
if (has_mbyte) {
// Use "sl_sal" as an array with 256 pointers to a list of wide
// characters. The index is the low byte of the character.
// The list contains from-to pairs with a terminating NUL.
// sl_sal_first[] is used for latin1 "from" characters.
gap = &lp->sl_sal;
ga_init(gap, sizeof(int *), 1);
ga_grow(gap, 256);
memset(gap->ga_data, 0, sizeof(int *) * 256);
gap->ga_len = 256;
// First count the number of items for each list. Temporarily use
// sl_sal_first[] for this.
for (p = from, s = to; *p != NUL && *s != NUL; ) {
c = mb_cptr2char_adv(&p);
mb_cptr_adv(s);
if (c >= 256)
++lp->sl_sal_first[c & 0xff];
}
if (*p != NUL || *s != NUL) // lengths differ
return SP_FORMERROR;
// Allocate the lists.
for (i = 0; i < 256; ++i)
if (lp->sl_sal_first[i] > 0) {
p = xmalloc(sizeof(int) * (lp->sl_sal_first[i] * 2 + 1));
((int **)gap->ga_data)[i] = (int *)p;
*(int *)p = 0;
}
// Put the characters up to 255 in sl_sal_first[] the rest in a sl_sal
// list.
memset(lp->sl_sal_first, 0, sizeof(salfirst_T) * 256);
for (p = from, s = to; *p != NUL && *s != NUL; ) {
c = mb_cptr2char_adv(&p);
i = mb_cptr2char_adv(&s);
if (c >= 256) {
// Append the from-to chars at the end of the list with
// the low byte.
inp = ((int **)gap->ga_data)[c & 0xff];
while (*inp != 0)
++inp;
*inp++ = c; // from char
*inp++ = i; // to char
*inp++ = NUL; // NUL at the end
} else
// mapping byte to char is done in sl_sal_first[]
lp->sl_sal_first[c] = i;
}
} else {
// mapping bytes to bytes is done in sl_sal_first[]
if (STRLEN(from) != STRLEN(to))
return SP_FORMERROR;
for (i = 0; to[i] != NUL; ++i)
lp->sl_sal_first[from[i]] = to[i];
lp->sl_sal.ga_len = 1; // indicates we have soundfolding
}
return 0;
}
// Fill the first-index table for "lp".
static void set_sal_first(slang_T *lp)
{
salfirst_T *sfirst;
salitem_T *smp;
int c;
garray_T *gap = &lp->sl_sal;
sfirst = lp->sl_sal_first;
for (int i = 0; i < 256; ++i) {
sfirst[i] = -1;
}
smp = (salitem_T *)gap->ga_data;
for (int i = 0; i < gap->ga_len; ++i) {
if (has_mbyte)
// Use the lowest byte of the first character. For latin1 it's
// the character, for other encodings it should differ for most
// characters.
c = *smp[i].sm_lead_w & 0xff;
else
c = *smp[i].sm_lead;
if (sfirst[c] == -1) {
sfirst[c] = i;
if (has_mbyte) {
int n;
// Make sure all entries with this byte are following each
// other. Move the ones that are in the wrong position. Do
// keep the same ordering!
while (i + 1 < gap->ga_len
&& (*smp[i + 1].sm_lead_w & 0xff) == c)
// Skip over entry with same index byte.
++i;
for (n = 1; i + n < gap->ga_len; ++n)
if ((*smp[i + n].sm_lead_w & 0xff) == c) {
salitem_T tsal;
// Move entry with same index byte after the entries
// we already found.
++i;
--n;
tsal = smp[i + n];
memmove(smp + i + 1, smp + i,
sizeof(salitem_T) * n);
smp[i] = tsal;
}
}
}
}
}
// Turn a multi-byte string into a wide character string.
// Return it in allocated memory.
static int *mb_str2wide(char_u *s)
{
int i = 0;
int *res = xmalloc((mb_charlen(s) + 1) * sizeof(int));
for (char_u *p = s; *p != NUL; )
res[i++] = mb_ptr2char_adv(&p);
res[i] = NUL;
return res;
}
// Reads a tree from the .spl or .sug file.
// Allocates the memory and stores pointers in "bytsp" and "idxsp".
// This is skipped when the tree has zero length.
// Returns zero when OK, SP_ value for an error.
static int
spell_read_tree (
FILE *fd,
char_u **bytsp,
idx_T **idxsp,
bool prefixtree, // true for the prefix tree
int prefixcnt // when "prefixtree" is true: prefix count
)
{
int idx;
char_u *bp;
idx_T *ip;
// The tree size was computed when writing the file, so that we can
// allocate it as one long block. <nodecount>
int len = get4c(fd);
if (len < 0)
return SP_TRUNCERROR;
if (len > 0) {
// Allocate the byte array.
bp = xmalloc(len);
*bytsp = bp;
// Allocate the index array.
ip = xcalloc(len, sizeof(*ip));
*idxsp = ip;
// Recursively read the tree and store it in the array.
idx = read_tree_node(fd, bp, ip, len, 0, prefixtree, prefixcnt);
if (idx < 0)
return idx;
}
return 0;
}
// Read one row of siblings from the spell file and store it in the byte array
// "byts" and index array "idxs". Recursively read the children.
//
// NOTE: The code here must match put_node()!
//
// Returns the index (>= 0) following the siblings.
// Returns SP_TRUNCERROR if the file is shorter than expected.
// Returns SP_FORMERROR if there is a format error.
static idx_T
read_tree_node (
FILE *fd,
char_u *byts,
idx_T *idxs,
int maxidx, // size of arrays
idx_T startidx, // current index in "byts" and "idxs"
bool prefixtree, // true for reading PREFIXTREE
int maxprefcondnr // maximum for <prefcondnr>
)
{
int len;
int i;
int n;
idx_T idx = startidx;
int c;
int c2;
#define SHARED_MASK 0x8000000
len = getc(fd); // <siblingcount>
if (len <= 0)
return SP_TRUNCERROR;
if (startidx + len >= maxidx)
return SP_FORMERROR;
byts[idx++] = len;
// Read the byte values, flag/region bytes and shared indexes.
for (i = 1; i <= len; ++i) {
c = getc(fd); // <byte>
if (c < 0)
return SP_TRUNCERROR;
if (c <= BY_SPECIAL) {
if (c == BY_NOFLAGS && !prefixtree) {
// No flags, all regions.
idxs[idx] = 0;
c = 0;
} else if (c != BY_INDEX) {
if (prefixtree) {
// Read the optional pflags byte, the prefix ID and the
// condition nr. In idxs[] store the prefix ID in the low
// byte, the condition index shifted up 8 bits, the flags
// shifted up 24 bits.
if (c == BY_FLAGS)
c = getc(fd) << 24; // <pflags>
else
c = 0;
c |= getc(fd); // <affixID>
n = get2c(fd); // <prefcondnr>
if (n >= maxprefcondnr)
return SP_FORMERROR;
c |= (n << 8);
} else { // c must be BY_FLAGS or BY_FLAGS2
// Read flags and optional region and prefix ID. In
// idxs[] the flags go in the low two bytes, region above
// that and prefix ID above the region.
c2 = c;
c = getc(fd); // <flags>
if (c2 == BY_FLAGS2)
c = (getc(fd) << 8) + c; // <flags2>
if (c & WF_REGION)
c = (getc(fd) << 16) + c; // <region>
if (c & WF_AFX)
c = (getc(fd) << 24) + c; // <affixID>
}
idxs[idx] = c;
c = 0;
} else { // c == BY_INDEX
// <nodeidx>
n = get3c(fd);
if (n < 0 || n >= maxidx)
return SP_FORMERROR;
idxs[idx] = n + SHARED_MASK;
c = getc(fd); // <xbyte>
}
}
byts[idx++] = c;
}
// Recursively read the children for non-shared siblings.
// Skip the end-of-word ones (zero byte value) and the shared ones (and
// remove SHARED_MASK)
for (i = 1; i <= len; ++i)
if (byts[startidx + i] != 0) {
if (idxs[startidx + i] & SHARED_MASK)
idxs[startidx + i] &= ~SHARED_MASK;
else {
idxs[startidx + i] = idx;
idx = read_tree_node(fd, byts, idxs, maxidx, idx,
prefixtree, maxprefcondnr);
if (idx < 0)
break;
}
}
return idx;
}
// Parse 'spelllang' and set w_s->b_langp accordingly.
// Returns NULL if it's OK, an error message otherwise.
char_u *did_set_spelllang(win_T *wp)
{
garray_T ga;
char_u *splp;
char_u *region;
char_u region_cp[3];
bool filename;
int region_mask;
slang_T *slang;
int c;
char_u lang[MAXWLEN + 1];
char_u spf_name[MAXPATHL];
int len;
char_u *p;
int round;
char_u *spf;
char_u *use_region = NULL;
bool dont_use_region = false;
bool nobreak = false;
langp_T *lp, *lp2;
static bool recursive = false;
char_u *ret_msg = NULL;
char_u *spl_copy;
// We don't want to do this recursively. May happen when a language is
// not available and the SpellFileMissing autocommand opens a new buffer
// in which 'spell' is set.
if (recursive)
return NULL;
recursive = true;
ga_init(&ga, sizeof(langp_T), 2);
clear_midword(wp);
// Make a copy of 'spelllang', the SpellFileMissing autocommands may change
// it under our fingers.
spl_copy = vim_strsave(wp->w_s->b_p_spl);
wp->w_s->b_cjk = 0;
// Loop over comma separated language names.
for (splp = spl_copy; *splp != NUL; ) {
// Get one language name.
copy_option_part(&splp, lang, MAXWLEN, ",");
region = NULL;
len = (int)STRLEN(lang);
if (STRCMP(lang, "cjk") == 0) {
wp->w_s->b_cjk = 1;
continue;
}
// If the name ends in ".spl" use it as the name of the spell file.
// If there is a region name let "region" point to it and remove it
// from the name.
if (len > 4 && fnamecmp(lang + len - 4, ".spl") == 0) {
filename = true;
// Locate a region and remove it from the file name.
p = vim_strchr(path_tail(lang), '_');
if (p != NULL && ASCII_ISALPHA(p[1]) && ASCII_ISALPHA(p[2])
&& !ASCII_ISALPHA(p[3])) {
STRLCPY(region_cp, p + 1, 3);
memmove(p, p + 3, len - (p - lang) - 2);
region = region_cp;
} else
dont_use_region = true;
// Check if we loaded this language before.
for (slang = first_lang; slang != NULL; slang = slang->sl_next)
if (path_full_compare(lang, slang->sl_fname, FALSE) == kEqualFiles)
break;
} else {
filename = false;
if (len > 3 && lang[len - 3] == '_') {
region = lang + len - 2;
lang[len - 3] = NUL;
} else
dont_use_region = true;
// Check if we loaded this language before.
for (slang = first_lang; slang != NULL; slang = slang->sl_next)
if (STRICMP(lang, slang->sl_name) == 0)
break;
}
if (region != NULL) {
// If the region differs from what was used before then don't
// use it for 'spellfile'.
if (use_region != NULL && STRCMP(region, use_region) != 0)
dont_use_region = true;
use_region = region;
}
// If not found try loading the language now.
if (slang == NULL) {
if (filename)
(void)spell_load_file(lang, lang, NULL, false);
else {
spell_load_lang(lang);
// SpellFileMissing autocommands may do anything, including
// destroying the buffer we are using...
if (!buf_valid(wp->w_buffer)) {
ret_msg =
(char_u *)"E797: SpellFileMissing autocommand deleted buffer";
goto theend;
}
}
}
// Loop over the languages, there can be several files for "lang".
for (slang = first_lang; slang != NULL; slang = slang->sl_next)
if (filename ? path_full_compare(lang, slang->sl_fname, FALSE) == kEqualFiles
: STRICMP(lang, slang->sl_name) == 0) {
region_mask = REGION_ALL;
if (!filename && region != NULL) {
// find region in sl_regions
c = find_region(slang->sl_regions, region);
if (c == REGION_ALL) {
if (slang->sl_add) {
if (*slang->sl_regions != NUL)
// This addition file is for other regions.
region_mask = 0;
} else
// This is probably an error. Give a warning and
// accept the words anyway.
smsg((char_u *)
_("Warning: region %s not supported"),
region);
} else
region_mask = 1 << c;
}
if (region_mask != 0) {
langp_T *p = GA_APPEND_VIA_PTR(langp_T, &ga);
p->lp_slang = slang;
p->lp_region = region_mask;
use_midword(slang, wp);
if (slang->sl_nobreak)
nobreak = true;
}
}
}
// round 0: load int_wordlist, if possible.
// round 1: load first name in 'spellfile'.
// round 2: load second name in 'spellfile.
// etc.
spf = curwin->w_s->b_p_spf;
for (round = 0; round == 0 || *spf != NUL; ++round) {
if (round == 0) {
// Internal wordlist, if there is one.
if (int_wordlist == NULL)
continue;
int_wordlist_spl(spf_name);
} else {
// One entry in 'spellfile'.
copy_option_part(&spf, spf_name, MAXPATHL - 5, ",");
STRCAT(spf_name, ".spl");
// If it was already found above then skip it.
for (c = 0; c < ga.ga_len; ++c) {
p = LANGP_ENTRY(ga, c)->lp_slang->sl_fname;
if (p != NULL && path_full_compare(spf_name, p, FALSE) == kEqualFiles)
break;
}
if (c < ga.ga_len)
continue;
}
// Check if it was loaded already.
for (slang = first_lang; slang != NULL; slang = slang->sl_next)
if (path_full_compare(spf_name, slang->sl_fname, FALSE) == kEqualFiles)
break;
if (slang == NULL) {
// Not loaded, try loading it now. The language name includes the
// region name, the region is ignored otherwise. for int_wordlist
// use an arbitrary name.
if (round == 0)
STRCPY(lang, "internal wordlist");
else {
STRLCPY(lang, path_tail(spf_name), MAXWLEN + 1);
p = vim_strchr(lang, '.');
if (p != NULL)
*p = NUL; // truncate at ".encoding.add"
}
slang = spell_load_file(spf_name, lang, NULL, true);
// If one of the languages has NOBREAK we assume the addition
// files also have this.
if (slang != NULL && nobreak)
slang->sl_nobreak = true;
}
if (slang != NULL) {
region_mask = REGION_ALL;
if (use_region != NULL && !dont_use_region) {
// find region in sl_regions
c = find_region(slang->sl_regions, use_region);
if (c != REGION_ALL)
region_mask = 1 << c;
else if (*slang->sl_regions != NUL)
// This spell file is for other regions.
region_mask = 0;
}
if (region_mask != 0) {
langp_T *p = GA_APPEND_VIA_PTR(langp_T, &ga);
p->lp_slang = slang;
p->lp_sallang = NULL;
p->lp_replang = NULL;
p->lp_region = region_mask;
use_midword(slang, wp);
}
}
}
// Everything is fine, store the new b_langp value.
ga_clear(&wp->w_s->b_langp);
wp->w_s->b_langp = ga;
// For each language figure out what language to use for sound folding and
// REP items. If the language doesn't support it itself use another one
// with the same name. E.g. for "en-math" use "en".
for (int i = 0; i < ga.ga_len; ++i) {
lp = LANGP_ENTRY(ga, i);
// sound folding
if (!GA_EMPTY(&lp->lp_slang->sl_sal))
// language does sound folding itself
lp->lp_sallang = lp->lp_slang;
else
// find first similar language that does sound folding
for (int j = 0; j < ga.ga_len; ++j) {
lp2 = LANGP_ENTRY(ga, j);
if (!GA_EMPTY(&lp2->lp_slang->sl_sal)
&& STRNCMP(lp->lp_slang->sl_name,
lp2->lp_slang->sl_name, 2) == 0) {
lp->lp_sallang = lp2->lp_slang;
break;
}
}
// REP items
if (!GA_EMPTY(&lp->lp_slang->sl_rep))
// language has REP items itself
lp->lp_replang = lp->lp_slang;
else
// find first similar language that has REP items
for (int j = 0; j < ga.ga_len; ++j) {
lp2 = LANGP_ENTRY(ga, j);
if (!GA_EMPTY(&lp2->lp_slang->sl_rep)
&& STRNCMP(lp->lp_slang->sl_name,
lp2->lp_slang->sl_name, 2) == 0) {
lp->lp_replang = lp2->lp_slang;
break;
}
}
}
theend:
free(spl_copy);
recursive = false;
redraw_win_later(wp, NOT_VALID);
return ret_msg;
}
// Clear the midword characters for buffer "buf".
static void clear_midword(win_T *wp)
{
memset(wp->w_s->b_spell_ismw, 0, 256);
free(wp->w_s->b_spell_ismw_mb);
wp->w_s->b_spell_ismw_mb = NULL;
}
// Use the "sl_midword" field of language "lp" for buffer "buf".
// They add up to any currently used midword characters.
static void use_midword(slang_T *lp, win_T *wp)
{
char_u *p;
if (lp->sl_midword == NULL) // there aren't any
return;
for (p = lp->sl_midword; *p != NUL; )
if (has_mbyte) {
int c, l, n;
char_u *bp;
c = mb_ptr2char(p);
l = (*mb_ptr2len)(p);
if (c < 256 && l <= 2)
wp->w_s->b_spell_ismw[c] = true;
else if (wp->w_s->b_spell_ismw_mb == NULL)
// First multi-byte char in "b_spell_ismw_mb".
wp->w_s->b_spell_ismw_mb = vim_strnsave(p, l);
else {
// Append multi-byte chars to "b_spell_ismw_mb".
n = (int)STRLEN(wp->w_s->b_spell_ismw_mb);
bp = vim_strnsave(wp->w_s->b_spell_ismw_mb, n + l);
free(wp->w_s->b_spell_ismw_mb);
wp->w_s->b_spell_ismw_mb = bp;
STRLCPY(bp + n, p, l + 1);
}
p += l;
} else
wp->w_s->b_spell_ismw[*p++] = true;
}
// Find the region "region[2]" in "rp" (points to "sl_regions").
// Each region is simply stored as the two characters of it's name.
// Returns the index if found (first is 0), REGION_ALL if not found.
static int find_region(char_u *rp, char_u *region)
{
int i;
for (i = 0;; i += 2) {
if (rp[i] == NUL)
return REGION_ALL;
if (rp[i] == region[0] && rp[i + 1] == region[1])
break;
}
return i / 2;
}
// Return case type of word:
// w word 0
// Word WF_ONECAP
// W WORD WF_ALLCAP
// WoRd wOrd WF_KEEPCAP
static int
captype (
char_u *word,
char_u *end // When NULL use up to NUL byte.
)
{
char_u *p;
int c;
int firstcap;
bool allcap;
bool past_second = false; // past second word char
// find first letter
for (p = word; !spell_iswordp_nmw(p, curwin); mb_ptr_adv(p))
if (end == NULL ? *p == NUL : p >= end)
return 0; // only non-word characters, illegal word
if (has_mbyte)
c = mb_ptr2char_adv(&p);
else
c = *p++;
firstcap = allcap = SPELL_ISUPPER(c);
// Need to check all letters to find a word with mixed upper/lower.
// But a word with an upper char only at start is a ONECAP.
for (; end == NULL ? *p != NUL : p < end; mb_ptr_adv(p))
if (spell_iswordp_nmw(p, curwin)) {
c = PTR2CHAR(p);
if (!SPELL_ISUPPER(c)) {
// UUl -> KEEPCAP
if (past_second && allcap)
return WF_KEEPCAP;
allcap = false;
} else if (!allcap)
// UlU -> KEEPCAP
return WF_KEEPCAP;
past_second = true;
}
if (allcap)
return WF_ALLCAP;
if (firstcap)
return WF_ONECAP;
return 0;
}
// Like captype() but for a KEEPCAP word add ONECAP if the word starts with a
// capital. So that make_case_word() can turn WOrd into Word.
// Add ALLCAP for "WOrD".
static int badword_captype(char_u *word, char_u *end)
{
int flags = captype(word, end);
int c;
int l, u;
bool first;
char_u *p;
if (flags & WF_KEEPCAP) {
// Count the number of UPPER and lower case letters.
l = u = 0;
first = false;
for (p = word; p < end; mb_ptr_adv(p)) {
c = PTR2CHAR(p);
if (SPELL_ISUPPER(c)) {
++u;
if (p == word)
first = true;
} else
++l;
}
// If there are more UPPER than lower case letters suggest an
// ALLCAP word. Otherwise, if the first letter is UPPER then
// suggest ONECAP. Exception: "ALl" most likely should be "All",
// require three upper case letters.
if (u > l && u > 2)
flags |= WF_ALLCAP;
else if (first)
flags |= WF_ONECAP;
if (u >= 2 && l >= 2) // maCARONI maCAroni
flags |= WF_MIXCAP;
}
return flags;
}
// Delete the internal wordlist and its .spl file.
void spell_delete_wordlist(void)
{
char_u fname[MAXPATHL];
if (int_wordlist != NULL) {
os_remove((char *)int_wordlist);
int_wordlist_spl(fname);
os_remove((char *)fname);
free(int_wordlist);
int_wordlist = NULL;
}
}
// Free all languages.
void spell_free_all(void)
{
slang_T *slang;
// Go through all buffers and handle 'spelllang'. <VN>
FOR_ALL_BUFFERS(buf) {
ga_clear(&buf->b_s.b_langp);
}
while (first_lang != NULL) {
slang = first_lang;
first_lang = slang->sl_next;
slang_free(slang);
}
spell_delete_wordlist();
free(repl_to);
repl_to = NULL;
free(repl_from);
repl_from = NULL;
}
// Clear all spelling tables and reload them.
// Used after 'encoding' is set and when ":mkspell" was used.
void spell_reload(void)
{
// Initialize the table for spell_iswordp().
init_spell_chartab();
// Unload all allocated memory.
spell_free_all();
// Go through all buffers and handle 'spelllang'.
FOR_ALL_WINDOWS_IN_TAB(wp, curtab) {
// Only load the wordlists when 'spelllang' is set and there is a
// window for this buffer in which 'spell' is set.
if (*wp->w_s->b_p_spl != NUL) {
if (wp->w_p_spell) {
(void)did_set_spelllang(wp);
break;
}
}
}
}
// Reload the spell file "fname" if it's loaded.
static void
spell_reload_one (
char_u *fname,
bool added_word // invoked through "zg"
)
{
slang_T *slang;
bool didit = false;
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (path_full_compare(fname, slang->sl_fname, FALSE) == kEqualFiles) {
slang_clear(slang);
if (spell_load_file(fname, NULL, slang, false) == NULL)
// reloading failed, clear the language
slang_clear(slang);
redraw_all_later(SOME_VALID);
didit = true;
}
}
// When "zg" was used and the file wasn't loaded yet, should redo
// 'spelllang' to load it now.
if (added_word && !didit)
did_set_spelllang(curwin);
}
// Functions for ":mkspell".
// In the postponed prefixes tree wn_flags is used to store the WFP_ flags,
// but it must be negative to indicate the prefix tree to tree_add_word().
// Use a negative number with the lower 8 bits zero.
#define PFX_FLAGS -256
// flags for "condit" argument of store_aff_word()
#define CONDIT_COMB 1 // affix must combine
#define CONDIT_CFIX 2 // affix must have CIRCUMFIX flag
#define CONDIT_SUF 4 // add a suffix for matching flags
#define CONDIT_AFF 8 // word already has an affix
// Tunable parameters for when the tree is compressed. See 'mkspellmem'.
static long compress_start = 30000; // memory / SBLOCKSIZE
static long compress_inc = 100; // memory / SBLOCKSIZE
static long compress_added = 500000; // word count
#ifdef SPELL_PRINTTREE
// For debugging the tree code: print the current tree in a (more or less)
// readable format, so that we can see what happens when adding a word and/or
// compressing the tree.
// Based on code from Olaf Seibert.
#define PRINTLINESIZE 1000
#define PRINTWIDTH 6
#define PRINTSOME(l, depth, fmt, a1, a2) vim_snprintf(l + depth * PRINTWIDTH, \
PRINTLINESIZE - PRINTWIDTH * depth, fmt, a1, a2)
static char line1[PRINTLINESIZE];
static char line2[PRINTLINESIZE];
static char line3[PRINTLINESIZE];
static void spell_clear_flags(wordnode_T *node)
{
wordnode_T *np;
for (np = node; np != NULL; np = np->wn_sibling) {
np->wn_u1.index = FALSE;
spell_clear_flags(np->wn_child);
}
}
static void spell_print_node(wordnode_T *node, int depth)
{
if (node->wn_u1.index) {
// Done this node before, print the reference.
PRINTSOME(line1, depth, "(%d)", node->wn_nr, 0);
PRINTSOME(line2, depth, " ", 0, 0);
PRINTSOME(line3, depth, " ", 0, 0);
msg(line1);
msg(line2);
msg(line3);
} else {
node->wn_u1.index = TRUE;
if (node->wn_byte != NUL) {
if (node->wn_child != NULL)
PRINTSOME(line1, depth, " %c -> ", node->wn_byte, 0);
else
// Cannot happen?
PRINTSOME(line1, depth, " %c ???", node->wn_byte, 0);
} else
PRINTSOME(line1, depth, " $ ", 0, 0);
PRINTSOME(line2, depth, "%d/%d ", node->wn_nr, node->wn_refs);
if (node->wn_sibling != NULL)
PRINTSOME(line3, depth, " | ", 0, 0);
else
PRINTSOME(line3, depth, " ", 0, 0);
if (node->wn_byte == NUL) {
msg(line1);
msg(line2);
msg(line3);
}
// do the children
if (node->wn_byte != NUL && node->wn_child != NULL)
spell_print_node(node->wn_child, depth + 1);
// do the siblings
if (node->wn_sibling != NULL) {
// get rid of all parent details except |
STRCPY(line1, line3);
STRCPY(line2, line3);
spell_print_node(node->wn_sibling, depth);
}
}
}
static void spell_print_tree(wordnode_T *root)
{
if (root != NULL) {
// Clear the "wn_u1.index" fields, used to remember what has been
// done.
spell_clear_flags(root);
// Recursively print the tree.
spell_print_node(root, 0);
}
}
#endif // SPELL_PRINTTREE
// Reads the affix file "fname".
// Returns an afffile_T, NULL for complete failure.
static afffile_T *spell_read_aff(spellinfo_T *spin, char_u *fname)
{
FILE *fd;
afffile_T *aff;
char_u rline[MAXLINELEN];
char_u *line;
char_u *pc = NULL;
#define MAXITEMCNT 30
char_u *(items[MAXITEMCNT]);
int itemcnt;
char_u *p;
int lnum = 0;
affheader_T *cur_aff = NULL;
bool did_postpone_prefix = false;
int aff_todo = 0;
hashtab_T *tp;
char_u *low = NULL;
char_u *fol = NULL;
char_u *upp = NULL;
int do_rep;
int do_repsal;
int do_sal;
int do_mapline;
bool found_map = false;
hashitem_T *hi;
int l;
int compminlen = 0; // COMPOUNDMIN value
int compsylmax = 0; // COMPOUNDSYLMAX value
int compoptions = 0; // COMP_ flags
int compmax = 0; // COMPOUNDWORDMAX value
char_u *compflags = NULL; // COMPOUNDFLAG and COMPOUNDRULE
// concatenated
char_u *midword = NULL; // MIDWORD value
char_u *syllable = NULL; // SYLLABLE value
char_u *sofofrom = NULL; // SOFOFROM value
char_u *sofoto = NULL; // SOFOTO value
// Open the file.
fd = mch_fopen((char *)fname, "r");
if (fd == NULL) {
EMSG2(_(e_notopen), fname);
return NULL;
}
vim_snprintf((char *)IObuff, IOSIZE, _("Reading affix file %s ..."), fname);
spell_message(spin, IObuff);
// Only do REP lines when not done in another .aff file already.
do_rep = GA_EMPTY(&spin->si_rep);
// Only do REPSAL lines when not done in another .aff file already.
do_repsal = GA_EMPTY(&spin->si_repsal);
// Only do SAL lines when not done in another .aff file already.
do_sal = GA_EMPTY(&spin->si_sal);
// Only do MAP lines when not done in another .aff file already.
do_mapline = GA_EMPTY(&spin->si_map);
// Allocate and init the afffile_T structure.
aff = (afffile_T *)getroom(spin, sizeof(afffile_T), true);
if (aff == NULL) {
fclose(fd);
return NULL;
}
hash_init(&aff->af_pref);
hash_init(&aff->af_suff);
hash_init(&aff->af_comp);
// Read all the lines in the file one by one.
while (!vim_fgets(rline, MAXLINELEN, fd) && !got_int) {
line_breakcheck();
++lnum;
// Skip comment lines.
if (*rline == '#')
continue;
// Convert from "SET" to 'encoding' when needed.
free(pc);
if (spin->si_conv.vc_type != CONV_NONE) {
pc = string_convert(&spin->si_conv, rline, NULL);
if (pc == NULL) {
smsg((char_u *)_("Conversion failure for word in %s line %d: %s"),
fname, lnum, rline);
continue;
}
line = pc;
} else {
pc = NULL;
line = rline;
}
// Split the line up in white separated items. Put a NUL after each
// item.
itemcnt = 0;
for (p = line;; ) {
while (*p != NUL && *p <= ' ') // skip white space and CR/NL
++p;
if (*p == NUL)
break;
if (itemcnt == MAXITEMCNT) // too many items
break;
items[itemcnt++] = p;
// A few items have arbitrary text argument, don't split them.
if (itemcnt == 2 && spell_info_item(items[0]))
while (*p >= ' ' || *p == TAB) // skip until CR/NL
++p;
else
while (*p > ' ') // skip until white space or CR/NL
++p;
if (*p == NUL)
break;
*p++ = NUL;
}
// Handle non-empty lines.
if (itemcnt > 0) {
if (is_aff_rule(items, itemcnt, "SET", 2) && aff->af_enc == NULL) {
// Setup for conversion from "ENC" to 'encoding'.
aff->af_enc = enc_canonize(items[1]);
if (!spin->si_ascii
&& convert_setup(&spin->si_conv, aff->af_enc,
p_enc) == FAIL)
smsg((char_u *)_("Conversion in %s not supported: from %s to %s"),
fname, aff->af_enc, p_enc);
spin->si_conv.vc_fail = true;
} else if (is_aff_rule(items, itemcnt, "FLAG", 2)
&& aff->af_flagtype == AFT_CHAR) {
if (STRCMP(items[1], "long") == 0)
aff->af_flagtype = AFT_LONG;
else if (STRCMP(items[1], "num") == 0)
aff->af_flagtype = AFT_NUM;
else if (STRCMP(items[1], "caplong") == 0)
aff->af_flagtype = AFT_CAPLONG;
else
smsg((char_u *)_("Invalid value for FLAG in %s line %d: %s"),
fname, lnum, items[1]);
if (aff->af_rare != 0
|| aff->af_keepcase != 0
|| aff->af_bad != 0
|| aff->af_needaffix != 0
|| aff->af_circumfix != 0
|| aff->af_needcomp != 0
|| aff->af_comproot != 0
|| aff->af_nosuggest != 0
|| compflags != NULL
|| aff->af_suff.ht_used > 0
|| aff->af_pref.ht_used > 0)
smsg((char_u *)_("FLAG after using flags in %s line %d: %s"),
fname, lnum, items[1]);
} else if (spell_info_item(items[0]) && itemcnt > 1) {
p = (char_u *)getroom(spin,
(spin->si_info == NULL ? 0 : STRLEN(spin->si_info))
+ STRLEN(items[0])
+ STRLEN(items[1]) + 3, false);
if (p != NULL) {
if (spin->si_info != NULL) {
STRCPY(p, spin->si_info);
STRCAT(p, "\n");
}
STRCAT(p, items[0]);
STRCAT(p, " ");
STRCAT(p, items[1]);
spin->si_info = p;
}
} else if (is_aff_rule(items, itemcnt, "MIDWORD", 2)
&& midword == NULL) {
midword = getroom_save(spin, items[1]);
} else if (is_aff_rule(items, itemcnt, "TRY", 2)) {
// ignored, we look in the tree for what chars may appear
}
// TODO: remove "RAR" later
else if ((is_aff_rule(items, itemcnt, "RAR", 2)
|| is_aff_rule(items, itemcnt, "RARE", 2))
&& aff->af_rare == 0) {
aff->af_rare = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
}
// TODO: remove "KEP" later
else if ((is_aff_rule(items, itemcnt, "KEP", 2)
|| is_aff_rule(items, itemcnt, "KEEPCASE", 2))
&& aff->af_keepcase == 0) {
aff->af_keepcase = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
} else if ((is_aff_rule(items, itemcnt, "BAD", 2)
|| is_aff_rule(items, itemcnt, "FORBIDDENWORD", 2))
&& aff->af_bad == 0) {
aff->af_bad = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "NEEDAFFIX", 2)
&& aff->af_needaffix == 0) {
aff->af_needaffix = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "CIRCUMFIX", 2)
&& aff->af_circumfix == 0) {
aff->af_circumfix = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "NOSUGGEST", 2)
&& aff->af_nosuggest == 0) {
aff->af_nosuggest = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
} else if ((is_aff_rule(items, itemcnt, "NEEDCOMPOUND", 2)
|| is_aff_rule(items, itemcnt, "ONLYINCOMPOUND", 2))
&& aff->af_needcomp == 0) {
aff->af_needcomp = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "COMPOUNDROOT", 2)
&& aff->af_comproot == 0) {
aff->af_comproot = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "COMPOUNDFORBIDFLAG", 2)
&& aff->af_compforbid == 0) {
aff->af_compforbid = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
if (aff->af_pref.ht_used > 0)
smsg((char_u *)_(
"Defining COMPOUNDFORBIDFLAG after PFX item may give wrong results in %s line %d"),
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "COMPOUNDPERMITFLAG", 2)
&& aff->af_comppermit == 0) {
aff->af_comppermit = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
if (aff->af_pref.ht_used > 0)
smsg((char_u *)_(
"Defining COMPOUNDPERMITFLAG after PFX item may give wrong results in %s line %d"),
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "COMPOUNDFLAG", 2)
&& compflags == NULL) {
// Turn flag "c" into COMPOUNDRULE compatible string "c+",
// "Na" into "Na+", "1234" into "1234+".
p = getroom(spin, STRLEN(items[1]) + 2, false);
if (p != NULL) {
STRCPY(p, items[1]);
STRCAT(p, "+");
compflags = p;
}
} else if (is_aff_rule(items, itemcnt, "COMPOUNDRULES", 2)) {
// We don't use the count, but do check that it's a number and
// not COMPOUNDRULE mistyped.
if (atoi((char *)items[1]) == 0)
smsg((char_u *)_("Wrong COMPOUNDRULES value in %s line %d: %s"),
fname, lnum, items[1]);
} else if (is_aff_rule(items, itemcnt, "COMPOUNDRULE", 2)) {
// Don't use the first rule if it is a number.
if (compflags != NULL || *skipdigits(items[1]) != NUL) {
// Concatenate this string to previously defined ones,
// using a slash to separate them.
l = (int)STRLEN(items[1]) + 1;
if (compflags != NULL)
l += (int)STRLEN(compflags) + 1;
p = getroom(spin, l, false);
if (p != NULL) {
if (compflags != NULL) {
STRCPY(p, compflags);
STRCAT(p, "/");
}
STRCAT(p, items[1]);
compflags = p;
}
}
} else if (is_aff_rule(items, itemcnt, "COMPOUNDWORDMAX", 2)
&& compmax == 0) {
compmax = atoi((char *)items[1]);
if (compmax == 0)
smsg((char_u *)_("Wrong COMPOUNDWORDMAX value in %s line %d: %s"),
fname, lnum, items[1]);
} else if (is_aff_rule(items, itemcnt, "COMPOUNDMIN", 2)
&& compminlen == 0) {
compminlen = atoi((char *)items[1]);
if (compminlen == 0)
smsg((char_u *)_("Wrong COMPOUNDMIN value in %s line %d: %s"),
fname, lnum, items[1]);
} else if (is_aff_rule(items, itemcnt, "COMPOUNDSYLMAX", 2)
&& compsylmax == 0) {
compsylmax = atoi((char *)items[1]);
if (compsylmax == 0)
smsg((char_u *)_("Wrong COMPOUNDSYLMAX value in %s line %d: %s"),
fname, lnum, items[1]);
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDDUP", 1)) {
compoptions |= COMP_CHECKDUP;
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDREP", 1)) {
compoptions |= COMP_CHECKREP;
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDCASE", 1)) {
compoptions |= COMP_CHECKCASE;
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDTRIPLE", 1)) {
compoptions |= COMP_CHECKTRIPLE;
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDPATTERN", 2)) {
if (atoi((char *)items[1]) == 0)
smsg((char_u *)_("Wrong CHECKCOMPOUNDPATTERN value in %s line %d: %s"),
fname, lnum, items[1]);
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDPATTERN", 3)) {
garray_T *gap = &spin->si_comppat;
int i;
// Only add the couple if it isn't already there.
for (i = 0; i < gap->ga_len - 1; i += 2)
if (STRCMP(((char_u **)(gap->ga_data))[i], items[1]) == 0
&& STRCMP(((char_u **)(gap->ga_data))[i + 1],
items[2]) == 0)
break;
if (i >= gap->ga_len) {
ga_grow(gap, 2);
((char_u **)(gap->ga_data))[gap->ga_len++]
= getroom_save(spin, items[1]);
((char_u **)(gap->ga_data))[gap->ga_len++]
= getroom_save(spin, items[2]);
}
} else if (is_aff_rule(items, itemcnt, "SYLLABLE", 2)
&& syllable == NULL) {
syllable = getroom_save(spin, items[1]);
} else if (is_aff_rule(items, itemcnt, "NOBREAK", 1)) {
spin->si_nobreak = true;
} else if (is_aff_rule(items, itemcnt, "NOSPLITSUGS", 1)) {
spin->si_nosplitsugs = true;
} else if (is_aff_rule(items, itemcnt, "NOSUGFILE", 1)) {
spin->si_nosugfile = true;
} else if (is_aff_rule(items, itemcnt, "PFXPOSTPONE", 1)) {
aff->af_pfxpostpone = true;
} else if ((STRCMP(items[0], "PFX") == 0
|| STRCMP(items[0], "SFX") == 0)
&& aff_todo == 0
&& itemcnt >= 4) {
int lasti = 4;
char_u key[AH_KEY_LEN];
if (*items[0] == 'P')
tp = &aff->af_pref;
else
tp = &aff->af_suff;
// Myspell allows the same affix name to be used multiple
// times. The affix files that do this have an undocumented
// "S" flag on all but the last block, thus we check for that
// and store it in ah_follows.
STRLCPY(key, items[1], AH_KEY_LEN);
hi = hash_find(tp, key);
if (!HASHITEM_EMPTY(hi)) {
cur_aff = HI2AH(hi);
if (cur_aff->ah_combine != (*items[2] == 'Y'))
smsg((char_u *)_(
"Different combining flag in continued affix block in %s line %d: %s"),
fname, lnum, items[1]);
if (!cur_aff->ah_follows)
smsg((char_u *)_("Duplicate affix in %s line %d: %s"),
fname, lnum, items[1]);
} else {
// New affix letter.
cur_aff = (affheader_T *)getroom(spin,
sizeof(affheader_T), true);
if (cur_aff == NULL)
break;
cur_aff->ah_flag = affitem2flag(aff->af_flagtype, items[1],
fname, lnum);
if (cur_aff->ah_flag == 0 || STRLEN(items[1]) >= AH_KEY_LEN)
break;
if (cur_aff->ah_flag == aff->af_bad
|| cur_aff->ah_flag == aff->af_rare
|| cur_aff->ah_flag == aff->af_keepcase
|| cur_aff->ah_flag == aff->af_needaffix
|| cur_aff->ah_flag == aff->af_circumfix
|| cur_aff->ah_flag == aff->af_nosuggest
|| cur_aff->ah_flag == aff->af_needcomp
|| cur_aff->ah_flag == aff->af_comproot)
smsg((char_u *)_(
"Affix also used for BAD/RARE/KEEPCASE/NEEDAFFIX/NEEDCOMPOUND/NOSUGGEST in %s line %d: %s"),
fname, lnum, items[1]);
STRCPY(cur_aff->ah_key, items[1]);
hash_add(tp, cur_aff->ah_key);
cur_aff->ah_combine = (*items[2] == 'Y');
}
// Check for the "S" flag, which apparently means that another
// block with the same affix name is following.
if (itemcnt > lasti && STRCMP(items[lasti], "S") == 0) {
++lasti;
cur_aff->ah_follows = true;
} else
cur_aff->ah_follows = false;
// Myspell allows extra text after the item, but that might
// mean mistakes go unnoticed. Require a comment-starter.
if (itemcnt > lasti && *items[lasti] != '#')
smsg((char_u *)_(e_afftrailing), fname, lnum, items[lasti]);
if (STRCMP(items[2], "Y") != 0 && STRCMP(items[2], "N") != 0)
smsg((char_u *)_("Expected Y or N in %s line %d: %s"),
fname, lnum, items[2]);
if (*items[0] == 'P' && aff->af_pfxpostpone) {
if (cur_aff->ah_newID == 0) {
// Use a new number in the .spl file later, to be able
// to handle multiple .aff files.
check_renumber(spin);
cur_aff->ah_newID = ++spin->si_newprefID;
// We only really use ah_newID if the prefix is
// postponed. We know that only after handling all
// the items.
did_postpone_prefix = false;
} else
// Did use the ID in a previous block.
did_postpone_prefix = true;
}
aff_todo = atoi((char *)items[3]);
} else if ((STRCMP(items[0], "PFX") == 0
|| STRCMP(items[0], "SFX") == 0)
&& aff_todo > 0
&& STRCMP(cur_aff->ah_key, items[1]) == 0
&& itemcnt >= 5) {
affentry_T *aff_entry;
bool upper = false;
int lasti = 5;
// Myspell allows extra text after the item, but that might
// mean mistakes go unnoticed. Require a comment-starter.
// Hunspell uses a "-" item.
if (itemcnt > lasti && *items[lasti] != '#'
&& (STRCMP(items[lasti], "-") != 0
|| itemcnt != lasti + 1))
smsg((char_u *)_(e_afftrailing), fname, lnum, items[lasti]);
// New item for an affix letter.
--aff_todo;
aff_entry = (affentry_T *)getroom(spin,
sizeof(affentry_T), true);
if (aff_entry == NULL)
break;
if (STRCMP(items[2], "0") != 0)
aff_entry->ae_chop = getroom_save(spin, items[2]);
if (STRCMP(items[3], "0") != 0) {
aff_entry->ae_add = getroom_save(spin, items[3]);
// Recognize flags on the affix: abcd/XYZ
aff_entry->ae_flags = vim_strchr(aff_entry->ae_add, '/');
if (aff_entry->ae_flags != NULL) {
*aff_entry->ae_flags++ = NUL;
aff_process_flags(aff, aff_entry);
}
}
// Don't use an affix entry with non-ASCII characters when
// "spin->si_ascii" is true.
if (!spin->si_ascii || !(has_non_ascii(aff_entry->ae_chop)
|| has_non_ascii(aff_entry->ae_add))) {
aff_entry->ae_next = cur_aff->ah_first;
cur_aff->ah_first = aff_entry;
if (STRCMP(items[4], ".") != 0) {
char_u buf[MAXLINELEN];
aff_entry->ae_cond = getroom_save(spin, items[4]);
if (*items[0] == 'P')
sprintf((char *)buf, "^%s", items[4]);
else
sprintf((char *)buf, "%s$", items[4]);
aff_entry->ae_prog = vim_regcomp(buf,
RE_MAGIC + RE_STRING + RE_STRICT);
if (aff_entry->ae_prog == NULL)
smsg((char_u *)_("Broken condition in %s line %d: %s"),
fname, lnum, items[4]);
}
// For postponed prefixes we need an entry in si_prefcond
// for the condition. Use an existing one if possible.
// Can't be done for an affix with flags, ignoring
// COMPOUNDFORBIDFLAG and COMPOUNDPERMITFLAG.
if (*items[0] == 'P' && aff->af_pfxpostpone
&& aff_entry->ae_flags == NULL) {
// When the chop string is one lower-case letter and
// the add string ends in the upper-case letter we set
// the "upper" flag, clear "ae_chop" and remove the
// letters from "ae_add". The condition must either
// be empty or start with the same letter.
if (aff_entry->ae_chop != NULL
&& aff_entry->ae_add != NULL
&& aff_entry->ae_chop[(*mb_ptr2len)(
aff_entry->ae_chop)] == NUL
) {
int c, c_up;
c = PTR2CHAR(aff_entry->ae_chop);
c_up = SPELL_TOUPPER(c);
if (c_up != c
&& (aff_entry->ae_cond == NULL
|| PTR2CHAR(aff_entry->ae_cond) == c)) {
p = aff_entry->ae_add
+ STRLEN(aff_entry->ae_add);
mb_ptr_back(aff_entry->ae_add, p);
if (PTR2CHAR(p) == c_up) {
upper = true;
aff_entry->ae_chop = NULL;
*p = NUL;
// The condition is matched with the
// actual word, thus must check for the
// upper-case letter.
if (aff_entry->ae_cond != NULL) {
char_u buf[MAXLINELEN];
if (has_mbyte) {
onecap_copy(items[4], buf, true);
aff_entry->ae_cond = getroom_save(
spin, buf);
} else
*aff_entry->ae_cond = c_up;
if (aff_entry->ae_cond != NULL) {
sprintf((char *)buf, "^%s",
aff_entry->ae_cond);
vim_regfree(aff_entry->ae_prog);
aff_entry->ae_prog = vim_regcomp(
buf, RE_MAGIC + RE_STRING);
}
}
}
}
}
if (aff_entry->ae_chop == NULL
&& aff_entry->ae_flags == NULL) {
int idx;
char_u **pp;
int n;
// Find a previously used condition.
for (idx = spin->si_prefcond.ga_len - 1; idx >= 0;
--idx) {
p = ((char_u **)spin->si_prefcond.ga_data)[idx];
if (str_equal(p, aff_entry->ae_cond))
break;
}
if (idx < 0) {
// Not found, add a new condition.
idx = spin->si_prefcond.ga_len;
pp = GA_APPEND_VIA_PTR(char_u *, &spin->si_prefcond);
*pp = (aff_entry->ae_cond == NULL) ?
NULL : getroom_save(spin, aff_entry->ae_cond);
}
// Add the prefix to the prefix tree.
if (aff_entry->ae_add == NULL)
p = (char_u *)"";
else
p = aff_entry->ae_add;
// PFX_FLAGS is a negative number, so that
// tree_add_word() knows this is the prefix tree.
n = PFX_FLAGS;
if (!cur_aff->ah_combine)
n |= WFP_NC;
if (upper)
n |= WFP_UP;
if (aff_entry->ae_comppermit)
n |= WFP_COMPPERMIT;
if (aff_entry->ae_compforbid)
n |= WFP_COMPFORBID;
tree_add_word(spin, p, spin->si_prefroot, n,
idx, cur_aff->ah_newID);
did_postpone_prefix = true;
}
// Didn't actually use ah_newID, backup si_newprefID.
if (aff_todo == 0 && !did_postpone_prefix) {
--spin->si_newprefID;
cur_aff->ah_newID = 0;
}
}
}
} else if (is_aff_rule(items, itemcnt, "FOL", 2) && fol == NULL) {
fol = vim_strsave(items[1]);
} else if (is_aff_rule(items, itemcnt, "LOW", 2) && low == NULL) {
low = vim_strsave(items[1]);
} else if (is_aff_rule(items, itemcnt, "UPP", 2) && upp == NULL) {
upp = vim_strsave(items[1]);
} else if (is_aff_rule(items, itemcnt, "REP", 2)
|| is_aff_rule(items, itemcnt, "REPSAL", 2)) {
/* Ignore REP/REPSAL count */;
if (!isdigit(*items[1]))
smsg((char_u *)_("Expected REP(SAL) count in %s line %d"),
fname, lnum);
} else if ((STRCMP(items[0], "REP") == 0
|| STRCMP(items[0], "REPSAL") == 0)
&& itemcnt >= 3) {
// REP/REPSAL item
// Myspell ignores extra arguments, we require it starts with
// # to detect mistakes.
if (itemcnt > 3 && items[3][0] != '#')
smsg((char_u *)_(e_afftrailing), fname, lnum, items[3]);
if (items[0][3] == 'S' ? do_repsal : do_rep) {
// Replace underscore with space (can't include a space
// directly).
for (p = items[1]; *p != NUL; mb_ptr_adv(p))
if (*p == '_')
*p = ' ';
for (p = items[2]; *p != NUL; mb_ptr_adv(p))
if (*p == '_')
*p = ' ';
add_fromto(spin, items[0][3] == 'S'
? &spin->si_repsal
: &spin->si_rep, items[1], items[2]);
}
} else if (is_aff_rule(items, itemcnt, "MAP", 2)) {
// MAP item or count
if (!found_map) {
// First line contains the count.
found_map = true;
if (!isdigit(*items[1]))
smsg((char_u *)_("Expected MAP count in %s line %d"),
fname, lnum);
} else if (do_mapline) {
int c;
// Check that every character appears only once.
for (p = items[1]; *p != NUL; ) {
c = mb_ptr2char_adv(&p);
if ((!GA_EMPTY(&spin->si_map)
&& vim_strchr(spin->si_map.ga_data, c)
!= NULL)
|| vim_strchr(p, c) != NULL)
smsg((char_u *)_("Duplicate character in MAP in %s line %d"),
fname, lnum);
}
// We simply concatenate all the MAP strings, separated by
// slashes.
ga_concat(&spin->si_map, items[1]);
ga_append(&spin->si_map, '/');
}
}
// Accept "SAL from to" and "SAL from to #comment".
else if (is_aff_rule(items, itemcnt, "SAL", 3)) {
if (do_sal) {
// SAL item (sounds-a-like)
// Either one of the known keys or a from-to pair.
if (STRCMP(items[1], "followup") == 0)
spin->si_followup = sal_to_bool(items[2]);
else if (STRCMP(items[1], "collapse_result") == 0)
spin->si_collapse = sal_to_bool(items[2]);
else if (STRCMP(items[1], "remove_accents") == 0)
spin->si_rem_accents = sal_to_bool(items[2]);
else
// when "to" is "_" it means empty
add_fromto(spin, &spin->si_sal, items[1],
STRCMP(items[2], "_") == 0 ? (char_u *)""
: items[2]);
}
} else if (is_aff_rule(items, itemcnt, "SOFOFROM", 2)
&& sofofrom == NULL) {
sofofrom = getroom_save(spin, items[1]);
} else if (is_aff_rule(items, itemcnt, "SOFOTO", 2)
&& sofoto == NULL) {
sofoto = getroom_save(spin, items[1]);
} else if (STRCMP(items[0], "COMMON") == 0) {
int i;
for (i = 1; i < itemcnt; ++i) {
if (HASHITEM_EMPTY(hash_find(&spin->si_commonwords,
items[i]))) {
p = vim_strsave(items[i]);
hash_add(&spin->si_commonwords, p);
}
}
} else
smsg((char_u *)_("Unrecognized or duplicate item in %s line %d: %s"),
fname, lnum, items[0]);
}
}
if (fol != NULL || low != NULL || upp != NULL) {
if (spin->si_clear_chartab) {
// Clear the char type tables, don't want to use any of the
// currently used spell properties.
init_spell_chartab();
spin->si_clear_chartab = false;
}
// Don't write a word table for an ASCII file, so that we don't check
// for conflicts with a word table that matches 'encoding'.
// Don't write one for utf-8 either, we use utf_*() and
// mb_get_class(), the list of chars in the file will be incomplete.
if (!spin->si_ascii
&& !enc_utf8
) {
if (fol == NULL || low == NULL || upp == NULL)
smsg((char_u *)_("Missing FOL/LOW/UPP line in %s"), fname);
else
(void)set_spell_chartab(fol, low, upp);
}
free(fol);
free(low);
free(upp);
}
// Use compound specifications of the .aff file for the spell info.
if (compmax != 0) {
aff_check_number(spin->si_compmax, compmax, "COMPOUNDWORDMAX");
spin->si_compmax = compmax;
}
if (compminlen != 0) {
aff_check_number(spin->si_compminlen, compminlen, "COMPOUNDMIN");
spin->si_compminlen = compminlen;
}
if (compsylmax != 0) {
if (syllable == NULL)
smsg((char_u *)_("COMPOUNDSYLMAX used without SYLLABLE"));
aff_check_number(spin->si_compsylmax, compsylmax, "COMPOUNDSYLMAX");
spin->si_compsylmax = compsylmax;
}
if (compoptions != 0) {
aff_check_number(spin->si_compoptions, compoptions, "COMPOUND options");
spin->si_compoptions |= compoptions;
}
if (compflags != NULL)
process_compflags(spin, aff, compflags);
// Check that we didn't use too many renumbered flags.
if (spin->si_newcompID < spin->si_newprefID) {
if (spin->si_newcompID == 127 || spin->si_newcompID == 255)
MSG(_("Too many postponed prefixes"));
else if (spin->si_newprefID == 0 || spin->si_newprefID == 127)
MSG(_("Too many compound flags"));
else
MSG(_("Too many postponed prefixes and/or compound flags"));
}
if (syllable != NULL) {
aff_check_string(spin->si_syllable, syllable, "SYLLABLE");
spin->si_syllable = syllable;
}
if (sofofrom != NULL || sofoto != NULL) {
if (sofofrom == NULL || sofoto == NULL)
smsg((char_u *)_("Missing SOFO%s line in %s"),
sofofrom == NULL ? "FROM" : "TO", fname);
else if (!GA_EMPTY(&spin->si_sal))
smsg((char_u *)_("Both SAL and SOFO lines in %s"), fname);
else {
aff_check_string(spin->si_sofofr, sofofrom, "SOFOFROM");
aff_check_string(spin->si_sofoto, sofoto, "SOFOTO");
spin->si_sofofr = sofofrom;
spin->si_sofoto = sofoto;
}
}
if (midword != NULL) {
aff_check_string(spin->si_midword, midword, "MIDWORD");
spin->si_midword = midword;
}
free(pc);
fclose(fd);
return aff;
}
// Returns true when items[0] equals "rulename", there are "mincount" items or
// a comment is following after item "mincount".
static bool is_aff_rule(char_u **items, int itemcnt, char *rulename, int mincount)
{
return STRCMP(items[0], rulename) == 0
&& (itemcnt == mincount
|| (itemcnt > mincount && items[mincount][0] == '#'));
}
// For affix "entry" move COMPOUNDFORBIDFLAG and COMPOUNDPERMITFLAG from
// ae_flags to ae_comppermit and ae_compforbid.
static void aff_process_flags(afffile_T *affile, affentry_T *entry)
{
char_u *p;
char_u *prevp;
unsigned flag;
if (entry->ae_flags != NULL
&& (affile->af_compforbid != 0 || affile->af_comppermit != 0)) {
for (p = entry->ae_flags; *p != NUL; ) {
prevp = p;
flag = get_affitem(affile->af_flagtype, &p);
if (flag == affile->af_comppermit || flag == affile->af_compforbid) {
STRMOVE(prevp, p);
p = prevp;
if (flag == affile->af_comppermit)
entry->ae_comppermit = true;
else
entry->ae_compforbid = true;
}
if (affile->af_flagtype == AFT_NUM && *p == ',')
++p;
}
if (*entry->ae_flags == NUL)
entry->ae_flags = NULL; // nothing left
}
}
// Returns true if "s" is the name of an info item in the affix file.
static bool spell_info_item(char_u *s)
{
return STRCMP(s, "NAME") == 0
|| STRCMP(s, "HOME") == 0
|| STRCMP(s, "VERSION") == 0
|| STRCMP(s, "AUTHOR") == 0
|| STRCMP(s, "EMAIL") == 0
|| STRCMP(s, "COPYRIGHT") == 0;
}
// Turn an affix flag name into a number, according to the FLAG type.
// returns zero for failure.
static unsigned affitem2flag(int flagtype, char_u *item, char_u *fname, int lnum)
{
unsigned res;
char_u *p = item;
res = get_affitem(flagtype, &p);
if (res == 0) {
if (flagtype == AFT_NUM)
smsg((char_u *)_("Flag is not a number in %s line %d: %s"),
fname, lnum, item);
else
smsg((char_u *)_("Illegal flag in %s line %d: %s"),
fname, lnum, item);
}
if (*p != NUL) {
smsg((char_u *)_(e_affname), fname, lnum, item);
return 0;
}
return res;
}
// Get one affix name from "*pp" and advance the pointer.
// Returns zero for an error, still advances the pointer then.
static unsigned get_affitem(int flagtype, char_u **pp)
{
int res;
if (flagtype == AFT_NUM) {
if (!VIM_ISDIGIT(**pp)) {
++*pp; // always advance, avoid getting stuck
return 0;
}
res = getdigits(pp);
} else {
res = mb_ptr2char_adv(pp);
if (flagtype == AFT_LONG || (flagtype == AFT_CAPLONG
&& res >= 'A' && res <= 'Z')) {
if (**pp == NUL)
return 0;
res = mb_ptr2char_adv(pp) + (res << 16);
}
}
return res;
}
// Process the "compflags" string used in an affix file and append it to
// spin->si_compflags.
// The processing involves changing the affix names to ID numbers, so that
// they fit in one byte.
static void process_compflags(spellinfo_T *spin, afffile_T *aff, char_u *compflags)
{
char_u *p;
char_u *prevp;
unsigned flag;
compitem_T *ci;
int id;
int len;
char_u *tp;
char_u key[AH_KEY_LEN];
hashitem_T *hi;
// Make room for the old and the new compflags, concatenated with a / in
// between. Processing it makes it shorter, but we don't know by how
// much, thus allocate the maximum.
len = (int)STRLEN(compflags) + 1;
if (spin->si_compflags != NULL)
len += (int)STRLEN(spin->si_compflags) + 1;
p = getroom(spin, len, false);
if (p == NULL)
return;
if (spin->si_compflags != NULL) {
STRCPY(p, spin->si_compflags);
STRCAT(p, "/");
}
spin->si_compflags = p;
tp = p + STRLEN(p);
for (p = compflags; *p != NUL; ) {
if (vim_strchr((char_u *)"/?*+[]", *p) != NULL)
// Copy non-flag characters directly.
*tp++ = *p++;
else {
// First get the flag number, also checks validity.
prevp = p;
flag = get_affitem(aff->af_flagtype, &p);
if (flag != 0) {
// Find the flag in the hashtable. If it was used before, use
// the existing ID. Otherwise add a new entry.
STRLCPY(key, prevp, p - prevp + 1);
hi = hash_find(&aff->af_comp, key);
if (!HASHITEM_EMPTY(hi))
id = HI2CI(hi)->ci_newID;
else {
ci = (compitem_T *)getroom(spin, sizeof(compitem_T), true);
if (ci == NULL)
break;
STRCPY(ci->ci_key, key);
ci->ci_flag = flag;
// Avoid using a flag ID that has a special meaning in a
// regexp (also inside []).
do {
check_renumber(spin);
id = spin->si_newcompID--;
} while (vim_strchr((char_u *)"/?*+[]\\-^", id) != NULL);
ci->ci_newID = id;
hash_add(&aff->af_comp, ci->ci_key);
}
*tp++ = id;
}
if (aff->af_flagtype == AFT_NUM && *p == ',')
++p;
}
}
*tp = NUL;
}
// Check that the new IDs for postponed affixes and compounding don't overrun
// each other. We have almost 255 available, but start at 0-127 to avoid
// using two bytes for utf-8. When the 0-127 range is used up go to 128-255.
// When that is used up an error message is given.
static void check_renumber(spellinfo_T *spin)
{
if (spin->si_newprefID == spin->si_newcompID && spin->si_newcompID < 128) {
spin->si_newprefID = 127;
spin->si_newcompID = 255;
}
}
// Returns true if flag "flag" appears in affix list "afflist".
static bool flag_in_afflist(int flagtype, char_u *afflist, unsigned flag)
{
char_u *p;
unsigned n;
switch (flagtype) {
case AFT_CHAR:
return vim_strchr(afflist, flag) != NULL;
case AFT_CAPLONG:
case AFT_LONG:
for (p = afflist; *p != NUL; ) {
n = mb_ptr2char_adv(&p);
if ((flagtype == AFT_LONG || (n >= 'A' && n <= 'Z'))
&& *p != NUL)
n = mb_ptr2char_adv(&p) + (n << 16);
if (n == flag)
return true;
}
break;
case AFT_NUM:
for (p = afflist; *p != NUL; ) {
n = getdigits(&p);
if (n == flag)
return true;
if (*p != NUL) // skip over comma
++p;
}
break;
}
return false;
}
// Give a warning when "spinval" and "affval" numbers are set and not the same.
static void aff_check_number(int spinval, int affval, char *name)
{
if (spinval != 0 && spinval != affval)
smsg((char_u *)_(
"%s value differs from what is used in another .aff file"), name);
}
// Give a warning when "spinval" and "affval" strings are set and not the same.
static void aff_check_string(char_u *spinval, char_u *affval, char *name)
{
if (spinval != NULL && STRCMP(spinval, affval) != 0)
smsg((char_u *)_(
"%s value differs from what is used in another .aff file"), name);
}
// Returns true if strings "s1" and "s2" are equal. Also consider both being
// NULL as equal.
static bool str_equal(char_u *s1, char_u *s2)
{
if (s1 == NULL || s2 == NULL)
return s1 == s2;
return STRCMP(s1, s2) == 0;
}
// Add a from-to item to "gap". Used for REP and SAL items.
// They are stored case-folded.
static void add_fromto(spellinfo_T *spin, garray_T *gap, char_u *from, char_u *to)
{
char_u word[MAXWLEN];
fromto_T *ftp = GA_APPEND_VIA_PTR(fromto_T, gap);
(void)spell_casefold(from, (int)STRLEN(from), word, MAXWLEN);
ftp->ft_from = getroom_save(spin, word);
(void)spell_casefold(to, (int)STRLEN(to), word, MAXWLEN);
ftp->ft_to = getroom_save(spin, word);
}
// Converts a boolean argument in a SAL line to true or false;
static bool sal_to_bool(char_u *s)
{
return STRCMP(s, "1") == 0 || STRCMP(s, "true") == 0;
}
// Free the structure filled by spell_read_aff().
static void spell_free_aff(afffile_T *aff)
{
hashtab_T *ht;
hashitem_T *hi;
int todo;
affheader_T *ah;
affentry_T *ae;
free(aff->af_enc);
// All this trouble to free the "ae_prog" items...
for (ht = &aff->af_pref;; ht = &aff->af_suff) {
todo = (int)ht->ht_used;
for (hi = ht->ht_array; todo > 0; ++hi) {
if (!HASHITEM_EMPTY(hi)) {
--todo;
ah = HI2AH(hi);
for (ae = ah->ah_first; ae != NULL; ae = ae->ae_next)
vim_regfree(ae->ae_prog);
}
}
if (ht == &aff->af_suff)
break;
}
hash_clear(&aff->af_pref);
hash_clear(&aff->af_suff);
hash_clear(&aff->af_comp);
}
// Read dictionary file "fname".
// Returns OK or FAIL;
static int spell_read_dic(spellinfo_T *spin, char_u *fname, afffile_T *affile)
{
hashtab_T ht;
char_u line[MAXLINELEN];
char_u *p;
char_u *afflist;
char_u store_afflist[MAXWLEN];
int pfxlen;
bool need_affix;
char_u *dw;
char_u *pc;
char_u *w;
int l;
hash_T hash;
hashitem_T *hi;
FILE *fd;
int lnum = 1;
int non_ascii = 0;
int retval = OK;
char_u message[MAXLINELEN + MAXWLEN];
int flags;
int duplicate = 0;
// Open the file.
fd = mch_fopen((char *)fname, "r");
if (fd == NULL) {
EMSG2(_(e_notopen), fname);
return FAIL;
}
// The hashtable is only used to detect duplicated words.
hash_init(&ht);
vim_snprintf((char *)IObuff, IOSIZE,
_("Reading dictionary file %s ..."), fname);
spell_message(spin, IObuff);
// start with a message for the first line
spin->si_msg_count = 999999;
// Read and ignore the first line: word count.
(void)vim_fgets(line, MAXLINELEN, fd);
if (!vim_isdigit(*skipwhite(line)))
EMSG2(_("E760: No word count in %s"), fname);
// Read all the lines in the file one by one.
// The words are converted to 'encoding' here, before being added to
// the hashtable.
while (!vim_fgets(line, MAXLINELEN, fd) && !got_int) {
line_breakcheck();
++lnum;
if (line[0] == '#' || line[0] == '/')
continue; // comment line
// Remove CR, LF and white space from the end. White space halfway
// the word is kept to allow e.g., "et al.".
l = (int)STRLEN(line);
while (l > 0 && line[l - 1] <= ' ')
--l;
if (l == 0)
continue; // empty line
line[l] = NUL;
// Convert from "SET" to 'encoding' when needed.
if (spin->si_conv.vc_type != CONV_NONE) {
pc = string_convert(&spin->si_conv, line, NULL);
if (pc == NULL) {
smsg((char_u *)_("Conversion failure for word in %s line %d: %s"),
fname, lnum, line);
continue;
}
w = pc;
} else {
pc = NULL;
w = line;
}
// Truncate the word at the "/", set "afflist" to what follows.
// Replace "\/" by "/" and "\\" by "\".
afflist = NULL;
for (p = w; *p != NUL; mb_ptr_adv(p)) {
if (*p == '\\' && (p[1] == '\\' || p[1] == '/'))
STRMOVE(p, p + 1);
else if (*p == '/') {
*p = NUL;
afflist = p + 1;
break;
}
}
// Skip non-ASCII words when "spin->si_ascii" is true.
if (spin->si_ascii && has_non_ascii(w)) {
++non_ascii;
free(pc);
continue;
}
// This takes time, print a message every 10000 words.
if (spin->si_verbose && spin->si_msg_count > 10000) {
spin->si_msg_count = 0;
vim_snprintf((char *)message, sizeof(message),
_("line %6d, word %6d - %s"),
lnum, spin->si_foldwcount + spin->si_keepwcount, w);
msg_start();
msg_puts_long_attr(message, 0);
msg_clr_eos();
msg_didout = FALSE;
msg_col = 0;
out_flush();
}
// Store the word in the hashtable to be able to find duplicates.
dw = (char_u *)getroom_save(spin, w);
if (dw == NULL) {
retval = FAIL;
free(pc);
break;
}
hash = hash_hash(dw);
hi = hash_lookup(&ht, dw, hash);
if (!HASHITEM_EMPTY(hi)) {
if (p_verbose > 0)
smsg((char_u *)_("Duplicate word in %s line %d: %s"),
fname, lnum, dw);
else if (duplicate == 0)
smsg((char_u *)_("First duplicate word in %s line %d: %s"),
fname, lnum, dw);
++duplicate;
} else
hash_add_item(&ht, hi, dw, hash);
flags = 0;
store_afflist[0] = NUL;
pfxlen = 0;
need_affix = false;
if (afflist != NULL) {
// Extract flags from the affix list.
flags |= get_affix_flags(affile, afflist);
if (affile->af_needaffix != 0 && flag_in_afflist(
affile->af_flagtype, afflist, affile->af_needaffix))
need_affix = true;
if (affile->af_pfxpostpone)
// Need to store the list of prefix IDs with the word.
pfxlen = get_pfxlist(affile, afflist, store_afflist);
if (spin->si_compflags != NULL)
// Need to store the list of compound flags with the word.
// Concatenate them to the list of prefix IDs.
get_compflags(affile, afflist, store_afflist + pfxlen);
}
// Add the word to the word tree(s).
if (store_word(spin, dw, flags, spin->si_region,
store_afflist, need_affix) == FAIL)
retval = FAIL;
if (afflist != NULL) {
// Find all matching suffixes and add the resulting words.
// Additionally do matching prefixes that combine.
if (store_aff_word(spin, dw, afflist, affile,
&affile->af_suff, &affile->af_pref,
CONDIT_SUF, flags, store_afflist, pfxlen) == FAIL)
retval = FAIL;
// Find all matching prefixes and add the resulting words.
if (store_aff_word(spin, dw, afflist, affile,
&affile->af_pref, NULL,
CONDIT_SUF, flags, store_afflist, pfxlen) == FAIL)
retval = FAIL;
}
free(pc);
}
if (duplicate > 0)
smsg((char_u *)_("%d duplicate word(s) in %s"), duplicate, fname);
if (spin->si_ascii && non_ascii > 0)
smsg((char_u *)_("Ignored %d word(s) with non-ASCII characters in %s"),
non_ascii, fname);
hash_clear(&ht);
fclose(fd);
return retval;
}
// Check for affix flags in "afflist" that are turned into word flags.
// Return WF_ flags.
static int get_affix_flags(afffile_T *affile, char_u *afflist)
{
int flags = 0;
if (affile->af_keepcase != 0 && flag_in_afflist(
affile->af_flagtype, afflist, affile->af_keepcase))
flags |= WF_KEEPCAP | WF_FIXCAP;
if (affile->af_rare != 0 && flag_in_afflist(
affile->af_flagtype, afflist, affile->af_rare))
flags |= WF_RARE;
if (affile->af_bad != 0 && flag_in_afflist(
affile->af_flagtype, afflist, affile->af_bad))
flags |= WF_BANNED;
if (affile->af_needcomp != 0 && flag_in_afflist(
affile->af_flagtype, afflist, affile->af_needcomp))
flags |= WF_NEEDCOMP;
if (affile->af_comproot != 0 && flag_in_afflist(
affile->af_flagtype, afflist, affile->af_comproot))
flags |= WF_COMPROOT;
if (affile->af_nosuggest != 0 && flag_in_afflist(
affile->af_flagtype, afflist, affile->af_nosuggest))
flags |= WF_NOSUGGEST;
return flags;
}
// Get the list of prefix IDs from the affix list "afflist".
// Used for PFXPOSTPONE.
// Put the resulting flags in "store_afflist[MAXWLEN]" with a terminating NUL
// and return the number of affixes.
static int get_pfxlist(afffile_T *affile, char_u *afflist, char_u *store_afflist)
{
char_u *p;
char_u *prevp;
int cnt = 0;
int id;
char_u key[AH_KEY_LEN];
hashitem_T *hi;
for (p = afflist; *p != NUL; ) {
prevp = p;
if (get_affitem(affile->af_flagtype, &p) != 0) {
// A flag is a postponed prefix flag if it appears in "af_pref"
// and it's ID is not zero.
STRLCPY(key, prevp, p - prevp + 1);
hi = hash_find(&affile->af_pref, key);
if (!HASHITEM_EMPTY(hi)) {
id = HI2AH(hi)->ah_newID;
if (id != 0)
store_afflist[cnt++] = id;
}
}
if (affile->af_flagtype == AFT_NUM && *p == ',')
++p;
}
store_afflist[cnt] = NUL;
return cnt;
}
// Get the list of compound IDs from the affix list "afflist" that are used
// for compound words.
// Puts the flags in "store_afflist[]".
static void get_compflags(afffile_T *affile, char_u *afflist, char_u *store_afflist)
{
char_u *p;
char_u *prevp;
int cnt = 0;
char_u key[AH_KEY_LEN];
hashitem_T *hi;
for (p = afflist; *p != NUL; ) {
prevp = p;
if (get_affitem(affile->af_flagtype, &p) != 0) {
// A flag is a compound flag if it appears in "af_comp".
STRLCPY(key, prevp, p - prevp + 1);
hi = hash_find(&affile->af_comp, key);
if (!HASHITEM_EMPTY(hi))
store_afflist[cnt++] = HI2CI(hi)->ci_newID;
}
if (affile->af_flagtype == AFT_NUM && *p == ',')
++p;
}
store_afflist[cnt] = NUL;
}
// Apply affixes to a word and store the resulting words.
// "ht" is the hashtable with affentry_T that need to be applied, either
// prefixes or suffixes.
// "xht", when not NULL, is the prefix hashtable, to be used additionally on
// the resulting words for combining affixes.
//
// Returns FAIL when out of memory.
static int
store_aff_word (
spellinfo_T *spin, // spell info
char_u *word, // basic word start
char_u *afflist, // list of names of supported affixes
afffile_T *affile,
hashtab_T *ht,
hashtab_T *xht,
int condit, // CONDIT_SUF et al.
int flags, // flags for the word
char_u *pfxlist, // list of prefix IDs
int pfxlen // nr of flags in "pfxlist" for prefixes, rest
// is compound flags
)
{
int todo;
hashitem_T *hi;
affheader_T *ah;
affentry_T *ae;
regmatch_T regmatch;
char_u newword[MAXWLEN];
int retval = OK;
int i, j;
char_u *p;
int use_flags;
char_u *use_pfxlist;
int use_pfxlen;
bool need_affix;
char_u store_afflist[MAXWLEN];
char_u pfx_pfxlist[MAXWLEN];
size_t wordlen = STRLEN(word);
int use_condit;
todo = (int)ht->ht_used;
for (hi = ht->ht_array; todo > 0 && retval == OK; ++hi) {
if (!HASHITEM_EMPTY(hi)) {
--todo;
ah = HI2AH(hi);
// Check that the affix combines, if required, and that the word
// supports this affix.
if (((condit & CONDIT_COMB) == 0 || ah->ah_combine)
&& flag_in_afflist(affile->af_flagtype, afflist,
ah->ah_flag)) {
// Loop over all affix entries with this name.
for (ae = ah->ah_first; ae != NULL; ae = ae->ae_next) {
// Check the condition. It's not logical to match case
// here, but it is required for compatibility with
// Myspell.
// Another requirement from Myspell is that the chop
// string is shorter than the word itself.
// For prefixes, when "PFXPOSTPONE" was used, only do
// prefixes with a chop string and/or flags.
// When a previously added affix had CIRCUMFIX this one
// must have it too, if it had not then this one must not
// have one either.
regmatch.regprog = ae->ae_prog;
regmatch.rm_ic = FALSE;
if ((xht != NULL || !affile->af_pfxpostpone
|| ae->ae_chop != NULL
|| ae->ae_flags != NULL)
&& (ae->ae_chop == NULL
|| STRLEN(ae->ae_chop) < wordlen)
&& (ae->ae_prog == NULL
|| vim_regexec(&regmatch, word, (colnr_T)0))
&& (((condit & CONDIT_CFIX) == 0)
== ((condit & CONDIT_AFF) == 0
|| ae->ae_flags == NULL
|| !flag_in_afflist(affile->af_flagtype,
ae->ae_flags, affile->af_circumfix)))) {
// Match. Remove the chop and add the affix.
if (xht == NULL) {
// prefix: chop/add at the start of the word
if (ae->ae_add == NULL)
*newword = NUL;
else
STRLCPY(newword, ae->ae_add, MAXWLEN);
p = word;
if (ae->ae_chop != NULL) {
// Skip chop string.
if (has_mbyte) {
i = mb_charlen(ae->ae_chop);
for (; i > 0; --i)
mb_ptr_adv(p);
} else
p += STRLEN(ae->ae_chop);
}
STRCAT(newword, p);
} else {
// suffix: chop/add at the end of the word
STRLCPY(newword, word, MAXWLEN);
if (ae->ae_chop != NULL) {
// Remove chop string.
p = newword + STRLEN(newword);
i = (int)MB_CHARLEN(ae->ae_chop);
for (; i > 0; --i)
mb_ptr_back(newword, p);
*p = NUL;
}
if (ae->ae_add != NULL)
STRCAT(newword, ae->ae_add);
}
use_flags = flags;
use_pfxlist = pfxlist;
use_pfxlen = pfxlen;
need_affix = false;
use_condit = condit | CONDIT_COMB | CONDIT_AFF;
if (ae->ae_flags != NULL) {
// Extract flags from the affix list.
use_flags |= get_affix_flags(affile, ae->ae_flags);
if (affile->af_needaffix != 0 && flag_in_afflist(
affile->af_flagtype, ae->ae_flags,
affile->af_needaffix))
need_affix = true;
// When there is a CIRCUMFIX flag the other affix
// must also have it and we don't add the word
// with one affix.
if (affile->af_circumfix != 0 && flag_in_afflist(
affile->af_flagtype, ae->ae_flags,
affile->af_circumfix)) {
use_condit |= CONDIT_CFIX;
if ((condit & CONDIT_CFIX) == 0)
need_affix = true;
}
if (affile->af_pfxpostpone
|| spin->si_compflags != NULL) {
if (affile->af_pfxpostpone)
// Get prefix IDS from the affix list.
use_pfxlen = get_pfxlist(affile,
ae->ae_flags, store_afflist);
else
use_pfxlen = 0;
use_pfxlist = store_afflist;
// Combine the prefix IDs. Avoid adding the
// same ID twice.
for (i = 0; i < pfxlen; ++i) {
for (j = 0; j < use_pfxlen; ++j)
if (pfxlist[i] == use_pfxlist[j])
break;
if (j == use_pfxlen)
use_pfxlist[use_pfxlen++] = pfxlist[i];
}
if (spin->si_compflags != NULL)
// Get compound IDS from the affix list.
get_compflags(affile, ae->ae_flags,
use_pfxlist + use_pfxlen);
else
use_pfxlist[use_pfxlen] = NUL;
// Combine the list of compound flags.
// Concatenate them to the prefix IDs list.
// Avoid adding the same ID twice.
for (i = pfxlen; pfxlist[i] != NUL; ++i) {
for (j = use_pfxlen;
use_pfxlist[j] != NUL; ++j)
if (pfxlist[i] == use_pfxlist[j])
break;
if (use_pfxlist[j] == NUL) {
use_pfxlist[j++] = pfxlist[i];
use_pfxlist[j] = NUL;
}
}
}
}
// Obey a "COMPOUNDFORBIDFLAG" of the affix: don't
// use the compound flags.
if (use_pfxlist != NULL && ae->ae_compforbid) {
STRLCPY(pfx_pfxlist, use_pfxlist, use_pfxlen + 1);
use_pfxlist = pfx_pfxlist;
}
// When there are postponed prefixes...
if (spin->si_prefroot != NULL
&& spin->si_prefroot->wn_sibling != NULL) {
// ... add a flag to indicate an affix was used.
use_flags |= WF_HAS_AFF;
// ... don't use a prefix list if combining
// affixes is not allowed. But do use the
// compound flags after them.
if (!ah->ah_combine && use_pfxlist != NULL)
use_pfxlist += use_pfxlen;
}
// When compounding is supported and there is no
// "COMPOUNDPERMITFLAG" then forbid compounding on the
// side where the affix is applied.
if (spin->si_compflags != NULL && !ae->ae_comppermit) {
if (xht != NULL)
use_flags |= WF_NOCOMPAFT;
else
use_flags |= WF_NOCOMPBEF;
}
// Store the modified word.
if (store_word(spin, newword, use_flags,
spin->si_region, use_pfxlist,
need_affix) == FAIL)
retval = FAIL;
// When added a prefix or a first suffix and the affix
// has flags may add a(nother) suffix. RECURSIVE!
if ((condit & CONDIT_SUF) && ae->ae_flags != NULL)
if (store_aff_word(spin, newword, ae->ae_flags,
affile, &affile->af_suff, xht,
use_condit & (xht == NULL
? ~0 : ~CONDIT_SUF),
use_flags, use_pfxlist, pfxlen) == FAIL)
retval = FAIL;
// When added a suffix and combining is allowed also
// try adding a prefix additionally. Both for the
// word flags and for the affix flags. RECURSIVE!
if (xht != NULL && ah->ah_combine) {
if (store_aff_word(spin, newword,
afflist, affile,
xht, NULL, use_condit,
use_flags, use_pfxlist,
pfxlen) == FAIL
|| (ae->ae_flags != NULL
&& store_aff_word(spin, newword,
ae->ae_flags, affile,
xht, NULL, use_condit,
use_flags, use_pfxlist,
pfxlen) == FAIL))
retval = FAIL;
}
}
}
}
}
}
return retval;
}
// Read a file with a list of words.
static int spell_read_wordfile(spellinfo_T *spin, char_u *fname)
{
FILE *fd;
long lnum = 0;
char_u rline[MAXLINELEN];
char_u *line;
char_u *pc = NULL;
char_u *p;
int l;
int retval = OK;
bool did_word = false;
int non_ascii = 0;
int flags;
int regionmask;
// Open the file.
fd = mch_fopen((char *)fname, "r");
if (fd == NULL) {
EMSG2(_(e_notopen), fname);
return FAIL;
}
vim_snprintf((char *)IObuff, IOSIZE, _("Reading word file %s ..."), fname);
spell_message(spin, IObuff);
// Read all the lines in the file one by one.
while (!vim_fgets(rline, MAXLINELEN, fd) && !got_int) {
line_breakcheck();
++lnum;
// Skip comment lines.
if (*rline == '#')
continue;
// Remove CR, LF and white space from the end.
l = (int)STRLEN(rline);
while (l > 0 && rline[l - 1] <= ' ')
--l;
if (l == 0)
continue; // empty or blank line
rline[l] = NUL;
// Convert from "/encoding={encoding}" to 'encoding' when needed.
free(pc);
if (spin->si_conv.vc_type != CONV_NONE) {
pc = string_convert(&spin->si_conv, rline, NULL);
if (pc == NULL) {
smsg((char_u *)_("Conversion failure for word in %s line %d: %s"),
fname, lnum, rline);
continue;
}
line = pc;
} else {
pc = NULL;
line = rline;
}
if (*line == '/') {
++line;
if (STRNCMP(line, "encoding=", 9) == 0) {
if (spin->si_conv.vc_type != CONV_NONE)
smsg((char_u *)_(
"Duplicate /encoding= line ignored in %s line %d: %s"),
fname, lnum, line - 1);
else if (did_word)
smsg((char_u *)_(
"/encoding= line after word ignored in %s line %d: %s"),
fname, lnum, line - 1);
else {
char_u *enc;
// Setup for conversion to 'encoding'.
line += 9;
enc = enc_canonize(line);
if (!spin->si_ascii
&& convert_setup(&spin->si_conv, enc,
p_enc) == FAIL)
smsg((char_u *)_("Conversion in %s not supported: from %s to %s"),
fname, line, p_enc);
free(enc);
spin->si_conv.vc_fail = true;
}
continue;
}
if (STRNCMP(line, "regions=", 8) == 0) {
if (spin->si_region_count > 1)
smsg((char_u *)_("Duplicate /regions= line ignored in %s line %d: %s"),
fname, lnum, line);
else {
line += 8;
if (STRLEN(line) > 16)
smsg((char_u *)_("Too many regions in %s line %d: %s"),
fname, lnum, line);
else {
spin->si_region_count = (int)STRLEN(line) / 2;
STRCPY(spin->si_region_name, line);
// Adjust the mask for a word valid in all regions.
spin->si_region = (1 << spin->si_region_count) - 1;
}
}
continue;
}
smsg((char_u *)_("/ line ignored in %s line %d: %s"),
fname, lnum, line - 1);
continue;
}
flags = 0;
regionmask = spin->si_region;
// Check for flags and region after a slash.
p = vim_strchr(line, '/');
if (p != NULL) {
*p++ = NUL;
while (*p != NUL) {
if (*p == '=') // keep-case word
flags |= WF_KEEPCAP | WF_FIXCAP;
else if (*p == '!') // Bad, bad, wicked word.
flags |= WF_BANNED;
else if (*p == '?') // Rare word.
flags |= WF_RARE;
else if (VIM_ISDIGIT(*p)) { // region number(s)
if ((flags & WF_REGION) == 0) // first one
regionmask = 0;
flags |= WF_REGION;
l = *p - '0';
if (l > spin->si_region_count) {
smsg((char_u *)_("Invalid region nr in %s line %d: %s"),
fname, lnum, p);
break;
}
regionmask |= 1 << (l - 1);
} else {
smsg((char_u *)_("Unrecognized flags in %s line %d: %s"),
fname, lnum, p);
break;
}
++p;
}
}
// Skip non-ASCII words when "spin->si_ascii" is true.
if (spin->si_ascii && has_non_ascii(line)) {
++non_ascii;
continue;
}
// Normal word: store it.
if (store_word(spin, line, flags, regionmask, NULL, false) == FAIL) {
retval = FAIL;
break;
}
did_word = true;
}
free(pc);
fclose(fd);
if (spin->si_ascii && non_ascii > 0) {
vim_snprintf((char *)IObuff, IOSIZE,
_("Ignored %d words with non-ASCII characters"), non_ascii);
spell_message(spin, IObuff);
}
return retval;
}
/// Get part of an sblock_T, "len" bytes long.
/// This avoids calling free() for every little struct we use (and keeping
/// track of them).
/// The memory is cleared to all zeros.
///
/// @param len Length needed (<= SBLOCKSIZE).
/// @param align Align for pointer.
/// @return Pointer into block data.
static void *getroom(spellinfo_T *spin, size_t len, bool align)
FUNC_ATTR_NONNULL_RET
{
char_u *p;
sblock_T *bl = spin->si_blocks;
assert(len <= SBLOCKSIZE);
if (align && bl != NULL)
// Round size up for alignment. On some systems structures need to be
// aligned to the size of a pointer (e.g., SPARC).
bl->sb_used = (bl->sb_used + sizeof(char *) - 1)
& ~(sizeof(char *) - 1);
if (bl == NULL || bl->sb_used + len > SBLOCKSIZE) {
// Allocate a block of memory. It is not freed until much later.
bl = xcalloc(1, (sizeof(sblock_T) + SBLOCKSIZE));
bl->sb_next = spin->si_blocks;
spin->si_blocks = bl;
bl->sb_used = 0;
++spin->si_blocks_cnt;
}
p = bl->sb_data + bl->sb_used;
bl->sb_used += (int)len;
return p;
}
// Make a copy of a string into memory allocated with getroom().
// Returns NULL when out of memory.
static char_u *getroom_save(spellinfo_T *spin, char_u *s)
{
char_u *sc;
sc = (char_u *)getroom(spin, STRLEN(s) + 1, false);
if (sc != NULL)
STRCPY(sc, s);
return sc;
}
// Free the list of allocated sblock_T.
static void free_blocks(sblock_T *bl)
{
sblock_T *next;
while (bl != NULL) {
next = bl->sb_next;
free(bl);
bl = next;
}
}
// Allocate the root of a word tree.
// Returns NULL when out of memory.
static wordnode_T *wordtree_alloc(spellinfo_T *spin)
{
return (wordnode_T *)getroom(spin, sizeof(wordnode_T), true);
}
// Store a word in the tree(s).
// Always store it in the case-folded tree. For a keep-case word this is
// useful when the word can also be used with all caps (no WF_FIXCAP flag) and
// used to find suggestions.
// For a keep-case word also store it in the keep-case tree.
// When "pfxlist" is not NULL store the word for each postponed prefix ID and
// compound flag.
static int
store_word (
spellinfo_T *spin,
char_u *word,
int flags, // extra flags, WF_BANNED
int region, // supported region(s)
char_u *pfxlist, // list of prefix IDs or NULL
bool need_affix // only store word with affix ID
)
{
int len = (int)STRLEN(word);
int ct = captype(word, word + len);
char_u foldword[MAXWLEN];
int res = OK;
char_u *p;
(void)spell_casefold(word, len, foldword, MAXWLEN);
for (p = pfxlist; res == OK; ++p) {
if (!need_affix || (p != NULL && *p != NUL))
res = tree_add_word(spin, foldword, spin->si_foldroot, ct | flags,
region, p == NULL ? 0 : *p);
if (p == NULL || *p == NUL)
break;
}
++spin->si_foldwcount;
if (res == OK && (ct == WF_KEEPCAP || (flags & WF_KEEPCAP))) {
for (p = pfxlist; res == OK; ++p) {
if (!need_affix || (p != NULL && *p != NUL))
res = tree_add_word(spin, word, spin->si_keeproot, flags,
region, p == NULL ? 0 : *p);
if (p == NULL || *p == NUL)
break;
}
++spin->si_keepwcount;
}
return res;
}
// Add word "word" to a word tree at "root".
// When "flags" < 0 we are adding to the prefix tree where "flags" is used for
// "rare" and "region" is the condition nr.
// Returns FAIL when out of memory.
static int tree_add_word(spellinfo_T *spin, char_u *word, wordnode_T *root, int flags, int region, int affixID)
{
wordnode_T *node = root;
wordnode_T *np;
wordnode_T *copyp, **copyprev;
wordnode_T **prev = NULL;
int i;
// Add each byte of the word to the tree, including the NUL at the end.
for (i = 0;; ++i) {
// When there is more than one reference to this node we need to make
// a copy, so that we can modify it. Copy the whole list of siblings
// (we don't optimize for a partly shared list of siblings).
if (node != NULL && node->wn_refs > 1) {
--node->wn_refs;
copyprev = prev;
for (copyp = node; copyp != NULL; copyp = copyp->wn_sibling) {
// Allocate a new node and copy the info.
np = get_wordnode(spin);
if (np == NULL)
return FAIL;
np->wn_child = copyp->wn_child;
if (np->wn_child != NULL)
++np->wn_child->wn_refs; // child gets extra ref
np->wn_byte = copyp->wn_byte;
if (np->wn_byte == NUL) {
np->wn_flags = copyp->wn_flags;
np->wn_region = copyp->wn_region;
np->wn_affixID = copyp->wn_affixID;
}
// Link the new node in the list, there will be one ref.
np->wn_refs = 1;
if (copyprev != NULL)
*copyprev = np;
copyprev = &np->wn_sibling;
// Let "node" point to the head of the copied list.
if (copyp == node)
node = np;
}
}
// Look for the sibling that has the same character. They are sorted
// on byte value, thus stop searching when a sibling is found with a
// higher byte value. For zero bytes (end of word) the sorting is
// done on flags and then on affixID.
while (node != NULL
&& (node->wn_byte < word[i]
|| (node->wn_byte == NUL
&& (flags < 0
? node->wn_affixID < (unsigned)affixID
: (node->wn_flags < (unsigned)(flags & WN_MASK)
|| (node->wn_flags == (flags & WN_MASK)
&& (spin->si_sugtree
? (node->wn_region & 0xffff) < region
: node->wn_affixID
< (unsigned)affixID))))))) {
prev = &node->wn_sibling;
node = *prev;
}
if (node == NULL
|| node->wn_byte != word[i]
|| (word[i] == NUL
&& (flags < 0
|| spin->si_sugtree
|| node->wn_flags != (flags & WN_MASK)
|| node->wn_affixID != affixID))) {
// Allocate a new node.
np = get_wordnode(spin);
if (np == NULL)
return FAIL;
np->wn_byte = word[i];
// If "node" is NULL this is a new child or the end of the sibling
// list: ref count is one. Otherwise use ref count of sibling and
// make ref count of sibling one (matters when inserting in front
// of the list of siblings).
if (node == NULL)
np->wn_refs = 1;
else {
np->wn_refs = node->wn_refs;
node->wn_refs = 1;
}
if (prev != NULL)
*prev = np;
np->wn_sibling = node;
node = np;
}
if (word[i] == NUL) {
node->wn_flags = flags;
node->wn_region |= region;
node->wn_affixID = affixID;
break;
}
prev = &node->wn_child;
node = *prev;
}
#ifdef SPELL_PRINTTREE
smsg("Added \"%s\"", word);
spell_print_tree(root->wn_sibling);
#endif
// count nr of words added since last message
++spin->si_msg_count;
if (spin->si_compress_cnt > 1) {
if (--spin->si_compress_cnt == 1)
// Did enough words to lower the block count limit.
spin->si_blocks_cnt += compress_inc;
}
// When we have allocated lots of memory we need to compress the word tree
// to free up some room. But compression is slow, and we might actually
// need that room, thus only compress in the following situations:
// 1. When not compressed before (si_compress_cnt == 0): when using
// "compress_start" blocks.
// 2. When compressed before and used "compress_inc" blocks before
// adding "compress_added" words (si_compress_cnt > 1).
// 3. When compressed before, added "compress_added" words
// (si_compress_cnt == 1) and the number of free nodes drops below the
// maximum word length.
#ifndef SPELL_PRINTTREE
if (spin->si_compress_cnt == 1
? spin->si_free_count < MAXWLEN
: spin->si_blocks_cnt >= compress_start)
#endif
{
// Decrement the block counter. The effect is that we compress again
// when the freed up room has been used and another "compress_inc"
// blocks have been allocated. Unless "compress_added" words have
// been added, then the limit is put back again.
spin->si_blocks_cnt -= compress_inc;
spin->si_compress_cnt = compress_added;
if (spin->si_verbose) {
msg_start();
msg_puts((char_u *)_(msg_compressing));
msg_clr_eos();
msg_didout = FALSE;
msg_col = 0;
out_flush();
}
// Compress both trees. Either they both have many nodes, which makes
// compression useful, or one of them is small, which means
// compression goes fast. But when filling the soundfold word tree
// there is no keep-case tree.
wordtree_compress(spin, spin->si_foldroot);
if (affixID >= 0)
wordtree_compress(spin, spin->si_keeproot);
}
return OK;
}
// Check the 'mkspellmem' option. Return FAIL if it's wrong.
// Sets "sps_flags".
int spell_check_msm(void)
{
char_u *p = p_msm;
long start = 0;
long incr = 0;
long added = 0;
if (!VIM_ISDIGIT(*p))
return FAIL;
// block count = (value * 1024) / SBLOCKSIZE (but avoid overflow)
start = (getdigits(&p) * 10) / (SBLOCKSIZE / 102);
if (*p != ',')
return FAIL;
++p;
if (!VIM_ISDIGIT(*p))
return FAIL;
incr = (getdigits(&p) * 102) / (SBLOCKSIZE / 10);
if (*p != ',')
return FAIL;
++p;
if (!VIM_ISDIGIT(*p))
return FAIL;
added = getdigits(&p) * 1024;
if (*p != NUL)
return FAIL;
if (start == 0 || incr == 0 || added == 0 || incr > start)
return FAIL;
compress_start = start;
compress_inc = incr;
compress_added = added;
return OK;
}
// Get a wordnode_T, either from the list of previously freed nodes or
// allocate a new one.
// Returns NULL when out of memory.
static wordnode_T *get_wordnode(spellinfo_T *spin)
{
wordnode_T *n;
if (spin->si_first_free == NULL)
n = (wordnode_T *)getroom(spin, sizeof(wordnode_T), true);
else {
n = spin->si_first_free;
spin->si_first_free = n->wn_child;
memset(n, 0, sizeof(wordnode_T));
--spin->si_free_count;
}
#ifdef SPELL_PRINTTREE
if (n != NULL)
n->wn_nr = ++spin->si_wordnode_nr;
#endif
return n;
}
// Decrement the reference count on a node (which is the head of a list of
// siblings). If the reference count becomes zero free the node and its
// siblings.
// Returns the number of nodes actually freed.
static int deref_wordnode(spellinfo_T *spin, wordnode_T *node)
{
wordnode_T *np;
int cnt = 0;
if (--node->wn_refs == 0) {
for (np = node; np != NULL; np = np->wn_sibling) {
if (np->wn_child != NULL)
cnt += deref_wordnode(spin, np->wn_child);
free_wordnode(spin, np);
++cnt;
}
++cnt; // length field
}
return cnt;
}
// Free a wordnode_T for re-use later.
// Only the "wn_child" field becomes invalid.
static void free_wordnode(spellinfo_T *spin, wordnode_T *n)
{
n->wn_child = spin->si_first_free;
spin->si_first_free = n;
++spin->si_free_count;
}
// Compress a tree: find tails that are identical and can be shared.
static void wordtree_compress(spellinfo_T *spin, wordnode_T *root)
{
hashtab_T ht;
int n;
int tot = 0;
int perc;
// Skip the root itself, it's not actually used. The first sibling is the
// start of the tree.
if (root->wn_sibling != NULL) {
hash_init(&ht);
n = node_compress(spin, root->wn_sibling, &ht, &tot);
#ifndef SPELL_PRINTTREE
if (spin->si_verbose || p_verbose > 2)
#endif
{
if (tot > 1000000)
perc = (tot - n) / (tot / 100);
else if (tot == 0)
perc = 0;
else
perc = (tot - n) * 100 / tot;
vim_snprintf((char *)IObuff, IOSIZE,
_("Compressed %d of %d nodes; %d (%d%%) remaining"),
n, tot, tot - n, perc);
spell_message(spin, IObuff);
}
#ifdef SPELL_PRINTTREE
spell_print_tree(root->wn_sibling);
#endif
hash_clear(&ht);
}
}
// Compress a node, its siblings and its children, depth first.
// Returns the number of compressed nodes.
static int
node_compress (
spellinfo_T *spin,
wordnode_T *node,
hashtab_T *ht,
int *tot // total count of nodes before compressing,
// incremented while going through the tree
)
{
wordnode_T *np;
wordnode_T *tp;
wordnode_T *child;
hash_T hash;
hashitem_T *hi;
int len = 0;
unsigned nr, n;
int compressed = 0;
// Go through the list of siblings. Compress each child and then try
// finding an identical child to replace it.
// Note that with "child" we mean not just the node that is pointed to,
// but the whole list of siblings of which the child node is the first.
for (np = node; np != NULL && !got_int; np = np->wn_sibling) {
++len;
if ((child = np->wn_child) != NULL) {
// Compress the child first. This fills hashkey.
compressed += node_compress(spin, child, ht, tot);
// Try to find an identical child.
hash = hash_hash(child->wn_u1.hashkey);
hi = hash_lookup(ht, child->wn_u1.hashkey, hash);
if (!HASHITEM_EMPTY(hi)) {
// There are children we encountered before with a hash value
// identical to the current child. Now check if there is one
// that is really identical.
for (tp = HI2WN(hi); tp != NULL; tp = tp->wn_u2.next)
if (node_equal(child, tp)) {
// Found one! Now use that child in place of the
// current one. This means the current child and all
// its siblings is unlinked from the tree.
++tp->wn_refs;
compressed += deref_wordnode(spin, child);
np->wn_child = tp;
break;
}
if (tp == NULL) {
// No other child with this hash value equals the child of
// the node, add it to the linked list after the first
// item.
tp = HI2WN(hi);
child->wn_u2.next = tp->wn_u2.next;
tp->wn_u2.next = child;
}
} else
// No other child has this hash value, add it to the
// hashtable.
hash_add_item(ht, hi, child->wn_u1.hashkey, hash);
}
}
*tot += len + 1; // add one for the node that stores the length
// Make a hash key for the node and its siblings, so that we can quickly
// find a lookalike node. This must be done after compressing the sibling
// list, otherwise the hash key would become invalid by the compression.
node->wn_u1.hashkey[0] = len;
nr = 0;
for (np = node; np != NULL; np = np->wn_sibling) {
if (np->wn_byte == NUL)
// end node: use wn_flags, wn_region and wn_affixID
n = np->wn_flags + (np->wn_region << 8) + (np->wn_affixID << 16);
else
// byte node: use the byte value and the child pointer
n = (unsigned)(np->wn_byte + ((long_u)np->wn_child << 8));
nr = nr * 101 + n;
}
// Avoid NUL bytes, it terminates the hash key.
n = nr & 0xff;
node->wn_u1.hashkey[1] = n == 0 ? 1 : n;
n = (nr >> 8) & 0xff;
node->wn_u1.hashkey[2] = n == 0 ? 1 : n;
n = (nr >> 16) & 0xff;
node->wn_u1.hashkey[3] = n == 0 ? 1 : n;
n = (nr >> 24) & 0xff;
node->wn_u1.hashkey[4] = n == 0 ? 1 : n;
node->wn_u1.hashkey[5] = NUL;
// Check for CTRL-C pressed now and then.
fast_breakcheck();
return compressed;
}
// Returns true when two nodes have identical siblings and children.
static bool node_equal(wordnode_T *n1, wordnode_T *n2)
{
wordnode_T *p1;
wordnode_T *p2;
for (p1 = n1, p2 = n2; p1 != NULL && p2 != NULL;
p1 = p1->wn_sibling, p2 = p2->wn_sibling)
if (p1->wn_byte != p2->wn_byte
|| (p1->wn_byte == NUL
? (p1->wn_flags != p2->wn_flags
|| p1->wn_region != p2->wn_region
|| p1->wn_affixID != p2->wn_affixID)
: (p1->wn_child != p2->wn_child)))
break;
return p1 == NULL && p2 == NULL;
}
// Function given to qsort() to sort the REP items on "from" string.
static int rep_compare(const void *s1, const void *s2)
{
fromto_T *p1 = (fromto_T *)s1;
fromto_T *p2 = (fromto_T *)s2;
return STRCMP(p1->ft_from, p2->ft_from);
}
// Write the Vim .spl file "fname".
// Return FAIL or OK;
static int write_vim_spell(spellinfo_T *spin, char_u *fname)
{
FILE *fd;
int regionmask;
int round;
wordnode_T *tree;
int nodecount;
int i;
int l;
garray_T *gap;
fromto_T *ftp;
char_u *p;
int rr;
int retval = OK;
size_t fwv = 1; // collect return value of fwrite() to avoid
// warnings from picky compiler
fd = mch_fopen((char *)fname, "w");
if (fd == NULL) {
EMSG2(_(e_notopen), fname);
return FAIL;
}
// <HEADER>: <fileID> <versionnr>
// <fileID>
fwv &= fwrite(VIMSPELLMAGIC, VIMSPELLMAGICL, (size_t)1, fd);
if (fwv != (size_t)1)
// Catch first write error, don't try writing more.
goto theend;
putc(VIMSPELLVERSION, fd); // <versionnr>
// <SECTIONS>: <section> ... <sectionend>
// SN_INFO: <infotext>
if (spin->si_info != NULL) {
putc(SN_INFO, fd); // <sectionID>
putc(0, fd); // <sectionflags>
i = (int)STRLEN(spin->si_info);
put_bytes(fd, (long_u)i, 4); // <sectionlen>
fwv &= fwrite(spin->si_info, (size_t)i, (size_t)1, fd); // <infotext>
}
// SN_REGION: <regionname> ...
// Write the region names only if there is more than one.
if (spin->si_region_count > 1) {
putc(SN_REGION, fd); // <sectionID>
putc(SNF_REQUIRED, fd); // <sectionflags>
l = spin->si_region_count * 2;
put_bytes(fd, (long_u)l, 4); // <sectionlen>
fwv &= fwrite(spin->si_region_name, (size_t)l, (size_t)1, fd);
// <regionname> ...
regionmask = (1 << spin->si_region_count) - 1;
} else
regionmask = 0;
// SN_CHARFLAGS: <charflagslen> <charflags> <folcharslen> <folchars>
//
// The table with character flags and the table for case folding.
// This makes sure the same characters are recognized as word characters
// when generating an when using a spell file.
// Skip this for ASCII, the table may conflict with the one used for
// 'encoding'.
// Also skip this for an .add.spl file, the main spell file must contain
// the table (avoids that it conflicts). File is shorter too.
if (!spin->si_ascii && !spin->si_add) {
char_u folchars[128 * 8];
int flags;
putc(SN_CHARFLAGS, fd); // <sectionID>
putc(SNF_REQUIRED, fd); // <sectionflags>
// Form the <folchars> string first, we need to know its length.
l = 0;
for (i = 128; i < 256; ++i) {
if (has_mbyte)
l += mb_char2bytes(spelltab.st_fold[i], folchars + l);
else
folchars[l++] = spelltab.st_fold[i];
}
put_bytes(fd, (long_u)(1 + 128 + 2 + l), 4); // <sectionlen>
fputc(128, fd); // <charflagslen>
for (i = 128; i < 256; ++i) {
flags = 0;
if (spelltab.st_isw[i])
flags |= CF_WORD;
if (spelltab.st_isu[i])
flags |= CF_UPPER;
fputc(flags, fd); // <charflags>
}
put_bytes(fd, (long_u)l, 2); // <folcharslen>
fwv &= fwrite(folchars, (size_t)l, (size_t)1, fd); // <folchars>
}
// SN_MIDWORD: <midword>
if (spin->si_midword != NULL) {
putc(SN_MIDWORD, fd); // <sectionID>
putc(SNF_REQUIRED, fd); // <sectionflags>
i = (int)STRLEN(spin->si_midword);
put_bytes(fd, (long_u)i, 4); // <sectionlen>
fwv &= fwrite(spin->si_midword, (size_t)i, (size_t)1, fd);
// <midword>
}
// SN_PREFCOND: <prefcondcnt> <prefcond> ...
if (!GA_EMPTY(&spin->si_prefcond)) {
putc(SN_PREFCOND, fd); // <sectionID>
putc(SNF_REQUIRED, fd); // <sectionflags>
l = write_spell_prefcond(NULL, &spin->si_prefcond);
put_bytes(fd, (long_u)l, 4); // <sectionlen>
write_spell_prefcond(fd, &spin->si_prefcond);
}
// SN_REP: <repcount> <rep> ...
// SN_SAL: <salflags> <salcount> <sal> ...
// SN_REPSAL: <repcount> <rep> ...
// round 1: SN_REP section
// round 2: SN_SAL section (unless SN_SOFO is used)
// round 3: SN_REPSAL section
for (round = 1; round <= 3; ++round) {
if (round == 1)
gap = &spin->si_rep;
else if (round == 2) {
// Don't write SN_SAL when using a SN_SOFO section
if (spin->si_sofofr != NULL && spin->si_sofoto != NULL)
continue;
gap = &spin->si_sal;
} else
gap = &spin->si_repsal;
// Don't write the section if there are no items.
if (GA_EMPTY(gap))
continue;
// Sort the REP/REPSAL items.
if (round != 2)
qsort(gap->ga_data, (size_t)gap->ga_len,
sizeof(fromto_T), rep_compare);
i = round == 1 ? SN_REP : (round == 2 ? SN_SAL : SN_REPSAL);
putc(i, fd); // <sectionID>
// This is for making suggestions, section is not required.
putc(0, fd); // <sectionflags>
// Compute the length of what follows.
l = 2; // count <repcount> or <salcount>
for (int i = 0; i < gap->ga_len; ++i) {
ftp = &((fromto_T *)gap->ga_data)[i];
l += 1 + (int)STRLEN(ftp->ft_from); // count <*fromlen> and <*from>
l += 1 + (int)STRLEN(ftp->ft_to); // count <*tolen> and <*to>
}
if (round == 2)
++l; // count <salflags>
put_bytes(fd, (long_u)l, 4); // <sectionlen>
if (round == 2) {
i = 0;
if (spin->si_followup)
i |= SAL_F0LLOWUP;
if (spin->si_collapse)
i |= SAL_COLLAPSE;
if (spin->si_rem_accents)
i |= SAL_REM_ACCENTS;
putc(i, fd); // <salflags>
}
put_bytes(fd, (long_u)gap->ga_len, 2); // <repcount> or <salcount>
for (int i = 0; i < gap->ga_len; ++i) {
// <rep> : <repfromlen> <repfrom> <reptolen> <repto>
// <sal> : <salfromlen> <salfrom> <saltolen> <salto>
ftp = &((fromto_T *)gap->ga_data)[i];
for (rr = 1; rr <= 2; ++rr) {
p = rr == 1 ? ftp->ft_from : ftp->ft_to;
l = (int)STRLEN(p);
putc(l, fd);
if (l > 0)
fwv &= fwrite(p, l, (size_t)1, fd);
}
}
}
// SN_SOFO: <sofofromlen> <sofofrom> <sofotolen> <sofoto>
// This is for making suggestions, section is not required.
if (spin->si_sofofr != NULL && spin->si_sofoto != NULL) {
putc(SN_SOFO, fd); // <sectionID>
putc(0, fd); // <sectionflags>
l = (int)STRLEN(spin->si_sofofr);
put_bytes(fd, (long_u)(l + STRLEN(spin->si_sofoto) + 4), 4);
// <sectionlen>
put_bytes(fd, (long_u)l, 2); // <sofofromlen>
fwv &= fwrite(spin->si_sofofr, l, (size_t)1, fd); // <sofofrom>
l = (int)STRLEN(spin->si_sofoto);
put_bytes(fd, (long_u)l, 2); // <sofotolen>
fwv &= fwrite(spin->si_sofoto, l, (size_t)1, fd); // <sofoto>
}
// SN_WORDS: <word> ...
// This is for making suggestions, section is not required.
if (spin->si_commonwords.ht_used > 0) {
putc(SN_WORDS, fd); // <sectionID>
putc(0, fd); // <sectionflags>
// round 1: count the bytes
// round 2: write the bytes
for (round = 1; round <= 2; ++round) {
int todo;
int len = 0;
hashitem_T *hi;
todo = (int)spin->si_commonwords.ht_used;
for (hi = spin->si_commonwords.ht_array; todo > 0; ++hi)
if (!HASHITEM_EMPTY(hi)) {
l = (int)STRLEN(hi->hi_key) + 1;
len += l;
if (round == 2) // <word>
fwv &= fwrite(hi->hi_key, (size_t)l, (size_t)1, fd);
--todo;
}
if (round == 1)
put_bytes(fd, (long_u)len, 4); // <sectionlen>
}
}
// SN_MAP: <mapstr>
// This is for making suggestions, section is not required.
if (!GA_EMPTY(&spin->si_map)) {
putc(SN_MAP, fd); // <sectionID>
putc(0, fd); // <sectionflags>
l = spin->si_map.ga_len;
put_bytes(fd, (long_u)l, 4); // <sectionlen>
fwv &= fwrite(spin->si_map.ga_data, (size_t)l, (size_t)1, fd);
// <mapstr>
}
// SN_SUGFILE: <timestamp>
// This is used to notify that a .sug file may be available and at the
// same time allows for checking that a .sug file that is found matches
// with this .spl file. That's because the word numbers must be exactly
// right.
if (!spin->si_nosugfile
&& (!GA_EMPTY(&spin->si_sal)
|| (spin->si_sofofr != NULL && spin->si_sofoto != NULL))) {
putc(SN_SUGFILE, fd); // <sectionID>
putc(0, fd); // <sectionflags>
put_bytes(fd, (long_u)8, 4); // <sectionlen>
// Set si_sugtime and write it to the file.
spin->si_sugtime = time(NULL);
put_time(fd, spin->si_sugtime); // <timestamp>
}
// SN_NOSPLITSUGS: nothing
// This is used to notify that no suggestions with word splits are to be
// made.
if (spin->si_nosplitsugs) {
putc(SN_NOSPLITSUGS, fd); // <sectionID>
putc(0, fd); // <sectionflags>
put_bytes(fd, (long_u)0, 4); // <sectionlen>
}
// SN_COMPOUND: compound info.
// We don't mark it required, when not supported all compound words will
// be bad words.
if (spin->si_compflags != NULL) {
putc(SN_COMPOUND, fd); // <sectionID>
putc(0, fd); // <sectionflags>
l = (int)STRLEN(spin->si_compflags);
for (int i = 0; i < spin->si_comppat.ga_len; ++i) {
l += (int)STRLEN(((char_u **)(spin->si_comppat.ga_data))[i]) + 1;
}
put_bytes(fd, (long_u)(l + 7), 4); // <sectionlen>
putc(spin->si_compmax, fd); // <compmax>
putc(spin->si_compminlen, fd); // <compminlen>
putc(spin->si_compsylmax, fd); // <compsylmax>
putc(0, fd); // for Vim 7.0b compatibility
putc(spin->si_compoptions, fd); // <compoptions>
put_bytes(fd, (long_u)spin->si_comppat.ga_len, 2);
// <comppatcount>
for (int i = 0; i < spin->si_comppat.ga_len; ++i) {
p = ((char_u **)(spin->si_comppat.ga_data))[i];
putc((int)STRLEN(p), fd); // <comppatlen>
fwv &= fwrite(p, (size_t)STRLEN(p), (size_t)1, fd);
// <comppattext>
}
// <compflags>
fwv &= fwrite(spin->si_compflags, (size_t)STRLEN(spin->si_compflags),
(size_t)1, fd);
}
// SN_NOBREAK: NOBREAK flag
if (spin->si_nobreak) {
putc(SN_NOBREAK, fd); // <sectionID>
putc(0, fd); // <sectionflags>
// It's empty, the presence of the section flags the feature.
put_bytes(fd, (long_u)0, 4); // <sectionlen>
}
// SN_SYLLABLE: syllable info.
// We don't mark it required, when not supported syllables will not be
// counted.
if (spin->si_syllable != NULL) {
putc(SN_SYLLABLE, fd); // <sectionID>
putc(0, fd); // <sectionflags>
l = (int)STRLEN(spin->si_syllable);
put_bytes(fd, (long_u)l, 4); // <sectionlen>
fwv &= fwrite(spin->si_syllable, (size_t)l, (size_t)1, fd);
// <syllable>
}
// end of <SECTIONS>
putc(SN_END, fd); // <sectionend>
// <LWORDTREE> <KWORDTREE> <PREFIXTREE>
spin->si_memtot = 0;
for (round = 1; round <= 3; ++round) {
if (round == 1)
tree = spin->si_foldroot->wn_sibling;
else if (round == 2)
tree = spin->si_keeproot->wn_sibling;
else
tree = spin->si_prefroot->wn_sibling;
// Clear the index and wnode fields in the tree.
clear_node(tree);
// Count the number of nodes. Needed to be able to allocate the
// memory when reading the nodes. Also fills in index for shared
// nodes.
nodecount = put_node(NULL, tree, 0, regionmask, round == 3);
// number of nodes in 4 bytes
put_bytes(fd, (long_u)nodecount, 4); // <nodecount>
spin->si_memtot += nodecount + nodecount * sizeof(int);
// Write the nodes.
(void)put_node(fd, tree, 0, regionmask, round == 3);
}
// Write another byte to check for errors (file system full).
if (putc(0, fd) == EOF)
retval = FAIL;
theend:
if (fclose(fd) == EOF)
retval = FAIL;
if (fwv != (size_t)1)
retval = FAIL;
if (retval == FAIL)
EMSG(_(e_write));
return retval;
}
// Clear the index and wnode fields of "node", it siblings and its
// children. This is needed because they are a union with other items to save
// space.
static void clear_node(wordnode_T *node)
{
wordnode_T *np;
if (node != NULL)
for (np = node; np != NULL; np = np->wn_sibling) {
np->wn_u1.index = 0;
np->wn_u2.wnode = NULL;
if (np->wn_byte != NUL)
clear_node(np->wn_child);
}
}
// Dump a word tree at node "node".
//
// This first writes the list of possible bytes (siblings). Then for each
// byte recursively write the children.
//
// NOTE: The code here must match the code in read_tree_node(), since
// assumptions are made about the indexes (so that we don't have to write them
// in the file).
//
// Returns the number of nodes used.
static int
put_node (
FILE *fd, // NULL when only counting
wordnode_T *node,
int idx,
int regionmask,
bool prefixtree // true for PREFIXTREE
)
{
int newindex = idx;
int siblingcount = 0;
wordnode_T *np;
int flags;
// If "node" is zero the tree is empty.
if (node == NULL)
return 0;
// Store the index where this node is written.
node->wn_u1.index = idx;
// Count the number of siblings.
for (np = node; np != NULL; np = np->wn_sibling)
++siblingcount;
// Write the sibling count.
if (fd != NULL)
putc(siblingcount, fd); // <siblingcount>
// Write each sibling byte and optionally extra info.
for (np = node; np != NULL; np = np->wn_sibling) {
if (np->wn_byte == 0) {
if (fd != NULL) {
// For a NUL byte (end of word) write the flags etc.
if (prefixtree) {
// In PREFIXTREE write the required affixID and the
// associated condition nr (stored in wn_region). The
// byte value is misused to store the "rare" and "not
// combining" flags
if (np->wn_flags == (uint16_t)PFX_FLAGS)
putc(BY_NOFLAGS, fd); // <byte>
else {
putc(BY_FLAGS, fd); // <byte>
putc(np->wn_flags, fd); // <pflags>
}
putc(np->wn_affixID, fd); // <affixID>
put_bytes(fd, (long_u)np->wn_region, 2); // <prefcondnr>
} else {
// For word trees we write the flag/region items.
flags = np->wn_flags;
if (regionmask != 0 && np->wn_region != regionmask)
flags |= WF_REGION;
if (np->wn_affixID != 0)
flags |= WF_AFX;
if (flags == 0) {
// word without flags or region
putc(BY_NOFLAGS, fd); // <byte>
} else {
if (np->wn_flags >= 0x100) {
putc(BY_FLAGS2, fd); // <byte>
putc(flags, fd); // <flags>
putc((unsigned)flags >> 8, fd); // <flags2>
} else {
putc(BY_FLAGS, fd); // <byte>
putc(flags, fd); // <flags>
}
if (flags & WF_REGION)
putc(np->wn_region, fd); // <region>
if (flags & WF_AFX)
putc(np->wn_affixID, fd); // <affixID>
}
}
}
} else {
if (np->wn_child->wn_u1.index != 0
&& np->wn_child->wn_u2.wnode != node) {
// The child is written elsewhere, write the reference.
if (fd != NULL) {
putc(BY_INDEX, fd); // <byte>
// <nodeidx>
put_bytes(fd, (long_u)np->wn_child->wn_u1.index, 3);
}
} else if (np->wn_child->wn_u2.wnode == NULL)
// We will write the child below and give it an index.
np->wn_child->wn_u2.wnode = node;
if (fd != NULL)
if (putc(np->wn_byte, fd) == EOF) { // <byte> or <xbyte>
EMSG(_(e_write));
return 0;
}
}
}
// Space used in the array when reading: one for each sibling and one for
// the count.
newindex += siblingcount + 1;
// Recursively dump the children of each sibling.
for (np = node; np != NULL; np = np->wn_sibling)
if (np->wn_byte != 0 && np->wn_child->wn_u2.wnode == node)
newindex = put_node(fd, np->wn_child, newindex, regionmask,
prefixtree);
return newindex;
}
// ":mkspell [-ascii] outfile infile ..."
// ":mkspell [-ascii] addfile"
void ex_mkspell(exarg_T *eap)
{
int fcount;
char_u **fnames;
char_u *arg = eap->arg;
bool ascii = false;
if (STRNCMP(arg, "-ascii", 6) == 0) {
ascii = true;
arg = skipwhite(arg + 6);
}
// Expand all the remaining arguments (e.g., $VIMRUNTIME).
if (get_arglist_exp(arg, &fcount, &fnames, false) == OK) {
mkspell(fcount, fnames, ascii, eap->forceit, false);
FreeWild(fcount, fnames);
}
}
// Create the .sug file.
// Uses the soundfold info in "spin".
// Writes the file with the name "wfname", with ".spl" changed to ".sug".
static void spell_make_sugfile(spellinfo_T *spin, char_u *wfname)
{
char_u *fname = NULL;
int len;
slang_T *slang;
bool free_slang = false;
// Read back the .spl file that was written. This fills the required
// info for soundfolding. This also uses less memory than the
// pointer-linked version of the trie. And it avoids having two versions
// of the code for the soundfolding stuff.
// It might have been done already by spell_reload_one().
for (slang = first_lang; slang != NULL; slang = slang->sl_next)
if (path_full_compare(wfname, slang->sl_fname, FALSE) == kEqualFiles)
break;
if (slang == NULL) {
spell_message(spin, (char_u *)_("Reading back spell file..."));
slang = spell_load_file(wfname, NULL, NULL, false);
if (slang == NULL)
return;
free_slang = true;
}
// Clear the info in "spin" that is used.
spin->si_blocks = NULL;
spin->si_blocks_cnt = 0;
spin->si_compress_cnt = 0; // will stay at 0 all the time
spin->si_free_count = 0;
spin->si_first_free = NULL;
spin->si_foldwcount = 0;
// Go through the trie of good words, soundfold each word and add it to
// the soundfold trie.
spell_message(spin, (char_u *)_("Performing soundfolding..."));
if (sug_filltree(spin, slang) == FAIL)
goto theend;
// Create the table which links each soundfold word with a list of the
// good words it may come from. Creates buffer "spin->si_spellbuf".
// This also removes the wordnr from the NUL byte entries to make
// compression possible.
if (sug_maketable(spin) == FAIL)
goto theend;
smsg((char_u *)_("Number of words after soundfolding: %" PRId64),
(int64_t)spin->si_spellbuf->b_ml.ml_line_count);
// Compress the soundfold trie.
spell_message(spin, (char_u *)_(msg_compressing));
wordtree_compress(spin, spin->si_foldroot);
// Write the .sug file.
// Make the file name by changing ".spl" to ".sug".
fname = xmalloc(MAXPATHL);
STRLCPY(fname, wfname, MAXPATHL);
len = (int)STRLEN(fname);
fname[len - 2] = 'u';
fname[len - 1] = 'g';
sug_write(spin, fname);
theend:
free(fname);
if (free_slang)
slang_free(slang);
free_blocks(spin->si_blocks);
close_spellbuf(spin->si_spellbuf);
}
// Build the soundfold trie for language "slang".
static int sug_filltree(spellinfo_T *spin, slang_T *slang)
{
char_u *byts;
idx_T *idxs;
int depth;
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
char_u tword[MAXWLEN];
char_u tsalword[MAXWLEN];
int c;
idx_T n;
unsigned words_done = 0;
int wordcount[MAXWLEN];
// We use si_foldroot for the soundfolded trie.
spin->si_foldroot = wordtree_alloc(spin);
if (spin->si_foldroot == NULL)
return FAIL;
// Let tree_add_word() know we're adding to the soundfolded tree
spin->si_sugtree = true;
// Go through the whole case-folded tree, soundfold each word and put it
// in the trie.
byts = slang->sl_fbyts;
idxs = slang->sl_fidxs;
arridx[0] = 0;
curi[0] = 1;
wordcount[0] = 0;
depth = 0;
while (depth >= 0 && !got_int) {
if (curi[depth] > byts[arridx[depth]]) {
// Done all bytes at this node, go up one level.
idxs[arridx[depth]] = wordcount[depth];
if (depth > 0)
wordcount[depth - 1] += wordcount[depth];
--depth;
line_breakcheck();
} else {
// Do one more byte at this node.
n = arridx[depth] + curi[depth];
++curi[depth];
c = byts[n];
if (c == 0) {
// Sound-fold the word.
tword[depth] = NUL;
spell_soundfold(slang, tword, true, tsalword);
// We use the "flags" field for the MSB of the wordnr,
// "region" for the LSB of the wordnr.
if (tree_add_word(spin, tsalword, spin->si_foldroot,
words_done >> 16, words_done & 0xffff,
0) == FAIL)
return FAIL;
++words_done;
++wordcount[depth];
// Reset the block count each time to avoid compression
// kicking in.
spin->si_blocks_cnt = 0;
// Skip over any other NUL bytes (same word with different
// flags).
while (byts[n + 1] == 0) {
++n;
++curi[depth];
}
} else {
// Normal char, go one level deeper.
tword[depth++] = c;
arridx[depth] = idxs[n];
curi[depth] = 1;
wordcount[depth] = 0;
}
}
}
smsg((char_u *)_("Total number of words: %d"), words_done);
return OK;
}
// Make the table that links each word in the soundfold trie to the words it
// can be produced from.
// This is not unlike lines in a file, thus use a memfile to be able to access
// the table efficiently.
// Returns FAIL when out of memory.
static int sug_maketable(spellinfo_T *spin)
{
garray_T ga;
int res = OK;
// Allocate a buffer, open a memline for it and create the swap file
// (uses a temp file, not a .swp file).
spin->si_spellbuf = open_spellbuf();
// Use a buffer to store the line info, avoids allocating many small
// pieces of memory.
ga_init(&ga, 1, 100);
// recursively go through the tree
if (sug_filltable(spin, spin->si_foldroot->wn_sibling, 0, &ga) == -1)
res = FAIL;
ga_clear(&ga);
return res;
}
// Fill the table for one node and its children.
// Returns the wordnr at the start of the node.
// Returns -1 when out of memory.
static int
sug_filltable (
spellinfo_T *spin,
wordnode_T *node,
int startwordnr,
garray_T *gap // place to store line of numbers
)
{
wordnode_T *p, *np;
int wordnr = startwordnr;
int nr;
int prev_nr;
for (p = node; p != NULL; p = p->wn_sibling) {
if (p->wn_byte == NUL) {
gap->ga_len = 0;
prev_nr = 0;
for (np = p; np != NULL && np->wn_byte == NUL; np = np->wn_sibling) {
ga_grow(gap, 10);
nr = (np->wn_flags << 16) + (np->wn_region & 0xffff);
// Compute the offset from the previous nr and store the
// offset in a way that it takes a minimum number of bytes.
// It's a bit like utf-8, but without the need to mark
// following bytes.
nr -= prev_nr;
prev_nr += nr;
gap->ga_len += offset2bytes(nr,
(char_u *)gap->ga_data + gap->ga_len);
}
// add the NUL byte
((char_u *)gap->ga_data)[gap->ga_len++] = NUL;
if (ml_append_buf(spin->si_spellbuf, (linenr_T)wordnr,
gap->ga_data, gap->ga_len, TRUE) == FAIL)
return -1;
++wordnr;
// Remove extra NUL entries, we no longer need them. We don't
// bother freeing the nodes, the won't be reused anyway.
while (p->wn_sibling != NULL && p->wn_sibling->wn_byte == NUL)
p->wn_sibling = p->wn_sibling->wn_sibling;
// Clear the flags on the remaining NUL node, so that compression
// works a lot better.
p->wn_flags = 0;
p->wn_region = 0;
} else {
wordnr = sug_filltable(spin, p->wn_child, wordnr, gap);
if (wordnr == -1)
return -1;
}
}
return wordnr;
}
// Convert an offset into a minimal number of bytes.
// Similar to utf_char2byters, but use 8 bits in followup bytes and avoid NUL
// bytes.
static int offset2bytes(int nr, char_u *buf)
{
int rem;
int b1, b2, b3, b4;
// Split the number in parts of base 255. We need to avoid NUL bytes.
b1 = nr % 255 + 1;
rem = nr / 255;
b2 = rem % 255 + 1;
rem = rem / 255;
b3 = rem % 255 + 1;
b4 = rem / 255 + 1;
if (b4 > 1 || b3 > 0x1f) { // 4 bytes
buf[0] = 0xe0 + b4;
buf[1] = b3;
buf[2] = b2;
buf[3] = b1;
return 4;
}
if (b3 > 1 || b2 > 0x3f ) { // 3 bytes
buf[0] = 0xc0 + b3;
buf[1] = b2;
buf[2] = b1;
return 3;
}
if (b2 > 1 || b1 > 0x7f ) { // 2 bytes
buf[0] = 0x80 + b2;
buf[1] = b1;
return 2;
}
// 1 byte
buf[0] = b1;
return 1;
}
// Opposite of offset2bytes().
// "pp" points to the bytes and is advanced over it.
// Returns the offset.
static int bytes2offset(char_u **pp)
{
char_u *p = *pp;
int nr;
int c;
c = *p++;
if ((c & 0x80) == 0x00) { // 1 byte
nr = c - 1;
} else if ((c & 0xc0) == 0x80) { // 2 bytes
nr = (c & 0x3f) - 1;
nr = nr * 255 + (*p++ - 1);
} else if ((c & 0xe0) == 0xc0) { // 3 bytes
nr = (c & 0x1f) - 1;
nr = nr * 255 + (*p++ - 1);
nr = nr * 255 + (*p++ - 1);
} else { // 4 bytes
nr = (c & 0x0f) - 1;
nr = nr * 255 + (*p++ - 1);
nr = nr * 255 + (*p++ - 1);
nr = nr * 255 + (*p++ - 1);
}
*pp = p;
return nr;
}
// Write the .sug file in "fname".
static void sug_write(spellinfo_T *spin, char_u *fname)
{
FILE *fd;
wordnode_T *tree;
int nodecount;
int wcount;
char_u *line;
linenr_T lnum;
int len;
// Create the file. Note that an existing file is silently overwritten!
fd = mch_fopen((char *)fname, "w");
if (fd == NULL) {
EMSG2(_(e_notopen), fname);
return;
}
vim_snprintf((char *)IObuff, IOSIZE,
_("Writing suggestion file %s ..."), fname);
spell_message(spin, IObuff);
// <SUGHEADER>: <fileID> <versionnr> <timestamp>
if (fwrite(VIMSUGMAGIC, VIMSUGMAGICL, (size_t)1, fd) != 1) { // <fileID>
EMSG(_(e_write));
goto theend;
}
putc(VIMSUGVERSION, fd); // <versionnr>
// Write si_sugtime to the file.
put_time(fd, spin->si_sugtime); // <timestamp>
// <SUGWORDTREE>
spin->si_memtot = 0;
tree = spin->si_foldroot->wn_sibling;
// Clear the index and wnode fields in the tree.
clear_node(tree);
// Count the number of nodes. Needed to be able to allocate the
// memory when reading the nodes. Also fills in index for shared
// nodes.
nodecount = put_node(NULL, tree, 0, 0, false);
// number of nodes in 4 bytes
put_bytes(fd, (long_u)nodecount, 4); // <nodecount>
spin->si_memtot += nodecount + nodecount * sizeof(int);
// Write the nodes.
(void)put_node(fd, tree, 0, 0, false);
// <SUGTABLE>: <sugwcount> <sugline> ...
wcount = spin->si_spellbuf->b_ml.ml_line_count;
put_bytes(fd, (long_u)wcount, 4); // <sugwcount>
for (lnum = 1; lnum <= (linenr_T)wcount; ++lnum) {
// <sugline>: <sugnr> ... NUL
line = ml_get_buf(spin->si_spellbuf, lnum, FALSE);
len = (int)STRLEN(line) + 1;
if (fwrite(line, (size_t)len, (size_t)1, fd) == 0) {
EMSG(_(e_write));
goto theend;
}
spin->si_memtot += len;
}
// Write another byte to check for errors.
if (putc(0, fd) == EOF)
EMSG(_(e_write));
vim_snprintf((char *)IObuff, IOSIZE,
_("Estimated runtime memory use: %d bytes"), spin->si_memtot);
spell_message(spin, IObuff);
theend:
// close the file
fclose(fd);
}
// Open a spell buffer. This is a nameless buffer that is not in the buffer
// list and only contains text lines. Can use a swapfile to reduce memory
// use.
// Most other fields are invalid! Esp. watch out for string options being
// NULL and there is no undo info.
static buf_T *open_spellbuf(void)
{
buf_T *buf = xcalloc(1, sizeof(buf_T));
buf->b_spell = true;
buf->b_p_swf = true; // may create a swap file
ml_open(buf);
ml_open_file(buf); // create swap file now
return buf;
}
// Close the buffer used for spell info.
static void close_spellbuf(buf_T *buf)
{
if (buf != NULL) {
ml_close(buf, TRUE);
free(buf);
}
}
// Create a Vim spell file from one or more word lists.
// "fnames[0]" is the output file name.
// "fnames[fcount - 1]" is the last input file name.
// Exception: when "fnames[0]" ends in ".add" it's used as the input file name
// and ".spl" is appended to make the output file name.
static void
mkspell (
int fcount,
char_u **fnames,
bool ascii, // -ascii argument given
bool over_write, // overwrite existing output file
bool added_word // invoked through "zg"
)
{
char_u *fname = NULL;
char_u *wfname;
char_u **innames;
int incount;
afffile_T *(afile[8]);
int i;
int len;
bool error = false;
spellinfo_T spin;
memset(&spin, 0, sizeof(spin));
spin.si_verbose = !added_word;
spin.si_ascii = ascii;
spin.si_followup = true;
spin.si_rem_accents = true;
ga_init(&spin.si_rep, (int)sizeof(fromto_T), 20);
ga_init(&spin.si_repsal, (int)sizeof(fromto_T), 20);
ga_init(&spin.si_sal, (int)sizeof(fromto_T), 20);
ga_init(&spin.si_map, (int)sizeof(char_u), 100);
ga_init(&spin.si_comppat, (int)sizeof(char_u *), 20);
ga_init(&spin.si_prefcond, (int)sizeof(char_u *), 50);
hash_init(&spin.si_commonwords);
spin.si_newcompID = 127; // start compound ID at first maximum
// default: fnames[0] is output file, following are input files
innames = &fnames[1];
incount = fcount - 1;
wfname = xmalloc(MAXPATHL);
if (fcount >= 1) {
len = (int)STRLEN(fnames[0]);
if (fcount == 1 && len > 4 && STRCMP(fnames[0] + len - 4, ".add") == 0) {
// For ":mkspell path/en.latin1.add" output file is
// "path/en.latin1.add.spl".
innames = &fnames[0];
incount = 1;
vim_snprintf((char *)wfname, MAXPATHL, "%s.spl", fnames[0]);
} else if (fcount == 1) {
// For ":mkspell path/vim" output file is "path/vim.latin1.spl".
innames = &fnames[0];
incount = 1;
vim_snprintf((char *)wfname, MAXPATHL, SPL_FNAME_TMPL,
fnames[0], spin.si_ascii ? (char_u *)"ascii" : spell_enc());
} else if (len > 4 && STRCMP(fnames[0] + len - 4, ".spl") == 0) {
// Name ends in ".spl", use as the file name.
STRLCPY(wfname, fnames[0], MAXPATHL);
} else
// Name should be language, make the file name from it.
vim_snprintf((char *)wfname, MAXPATHL, SPL_FNAME_TMPL,
fnames[0], spin.si_ascii ? (char_u *)"ascii" : spell_enc());
// Check for .ascii.spl.
if (strstr((char *)path_tail(wfname), SPL_FNAME_ASCII) != NULL)
spin.si_ascii = true;
// Check for .add.spl.
if (strstr((char *)path_tail(wfname), SPL_FNAME_ADD) != NULL)
spin.si_add = true;
}
if (incount <= 0)
EMSG(_(e_invarg)); // need at least output and input names
else if (vim_strchr(path_tail(wfname), '_') != NULL)
EMSG(_("E751: Output file name must not have region name"));
else if (incount > 8)
EMSG(_("E754: Only up to 8 regions supported"));
else {
// Check for overwriting before doing things that may take a lot of
// time.
if (!over_write && os_file_exists(wfname)) {
EMSG(_(e_exists));
goto theend;
}
if (os_isdir(wfname)) {
EMSG2(_(e_isadir2), wfname);
goto theend;
}
fname = xmalloc(MAXPATHL);
// Init the aff and dic pointers.
// Get the region names if there are more than 2 arguments.
for (i = 0; i < incount; ++i) {
afile[i] = NULL;
if (incount > 1) {
len = (int)STRLEN(innames[i]);
if (STRLEN(path_tail(innames[i])) < 5
|| innames[i][len - 3] != '_') {
EMSG2(_("E755: Invalid region in %s"), innames[i]);
goto theend;
}
spin.si_region_name[i * 2] = TOLOWER_ASC(innames[i][len - 2]);
spin.si_region_name[i * 2 + 1] =
TOLOWER_ASC(innames[i][len - 1]);
}
}
spin.si_region_count = incount;
spin.si_foldroot = wordtree_alloc(&spin);
spin.si_keeproot = wordtree_alloc(&spin);
spin.si_prefroot = wordtree_alloc(&spin);
if (spin.si_foldroot == NULL
|| spin.si_keeproot == NULL
|| spin.si_prefroot == NULL) {
free_blocks(spin.si_blocks);
goto theend;
}
// When not producing a .add.spl file clear the character table when
// we encounter one in the .aff file. This means we dump the current
// one in the .spl file if the .aff file doesn't define one. That's
// better than guessing the contents, the table will match a
// previously loaded spell file.
if (!spin.si_add)
spin.si_clear_chartab = true;
// Read all the .aff and .dic files.
// Text is converted to 'encoding'.
// Words are stored in the case-folded and keep-case trees.
for (i = 0; i < incount && !error; ++i) {
spin.si_conv.vc_type = CONV_NONE;
spin.si_region = 1 << i;
vim_snprintf((char *)fname, MAXPATHL, "%s.aff", innames[i]);
if (os_file_exists(fname)) {
// Read the .aff file. Will init "spin->si_conv" based on the
// "SET" line.
afile[i] = spell_read_aff(&spin, fname);
if (afile[i] == NULL)
error = true;
else {
// Read the .dic file and store the words in the trees.
vim_snprintf((char *)fname, MAXPATHL, "%s.dic",
innames[i]);
if (spell_read_dic(&spin, fname, afile[i]) == FAIL)
error = true;
}
} else {
// No .aff file, try reading the file as a word list. Store
// the words in the trees.
if (spell_read_wordfile(&spin, innames[i]) == FAIL)
error = true;
}
// Free any conversion stuff.
convert_setup(&spin.si_conv, NULL, NULL);
}
if (spin.si_compflags != NULL && spin.si_nobreak)
MSG(_("Warning: both compounding and NOBREAK specified"));
if (!error && !got_int) {
// Combine tails in the tree.
spell_message(&spin, (char_u *)_(msg_compressing));
wordtree_compress(&spin, spin.si_foldroot);
wordtree_compress(&spin, spin.si_keeproot);
wordtree_compress(&spin, spin.si_prefroot);
}
if (!error && !got_int) {
// Write the info in the spell file.
vim_snprintf((char *)IObuff, IOSIZE,
_("Writing spell file %s ..."), wfname);
spell_message(&spin, IObuff);
error = write_vim_spell(&spin, wfname) == FAIL;
spell_message(&spin, (char_u *)_("Done!"));
vim_snprintf((char *)IObuff, IOSIZE,
_("Estimated runtime memory use: %d bytes"), spin.si_memtot);
spell_message(&spin, IObuff);
// If the file is loaded need to reload it.
if (!error)
spell_reload_one(wfname, added_word);
}
// Free the allocated memory.
ga_clear(&spin.si_rep);
ga_clear(&spin.si_repsal);
ga_clear(&spin.si_sal);
ga_clear(&spin.si_map);
ga_clear(&spin.si_comppat);
ga_clear(&spin.si_prefcond);
hash_clear_all(&spin.si_commonwords, 0);
// Free the .aff file structures.
for (i = 0; i < incount; ++i)
if (afile[i] != NULL)
spell_free_aff(afile[i]);
// Free all the bits and pieces at once.
free_blocks(spin.si_blocks);
// If there is soundfolding info and no NOSUGFILE item create the
// .sug file with the soundfolded word trie.
if (spin.si_sugtime != 0 && !error && !got_int)
spell_make_sugfile(&spin, wfname);
}
theend:
free(fname);
free(wfname);
}
// Display a message for spell file processing when 'verbose' is set or using
// ":mkspell". "str" can be IObuff.
static void spell_message(spellinfo_T *spin, char_u *str)
{
if (spin->si_verbose || p_verbose > 2) {
if (!spin->si_verbose)
verbose_enter();
MSG(str);
out_flush();
if (!spin->si_verbose)
verbose_leave();
}
}
// ":[count]spellgood {word}"
// ":[count]spellwrong {word}"
// ":[count]spellundo {word}"
void ex_spell(exarg_T *eap)
{
spell_add_word(eap->arg, (int)STRLEN(eap->arg), eap->cmdidx == CMD_spellwrong,
eap->forceit ? 0 : (int)eap->line2,
eap->cmdidx == CMD_spellundo);
}
// Add "word[len]" to 'spellfile' as a good or bad word.
void
spell_add_word (
char_u *word,
int len,
int bad,
int idx, // "zG" and "zW": zero, otherwise index in
// 'spellfile'
bool undo // true for "zug", "zuG", "zuw" and "zuW"
)
{
FILE *fd = NULL;
buf_T *buf = NULL;
bool new_spf = false;
char_u *fname;
char_u *fnamebuf = NULL;
char_u line[MAXWLEN * 2];
long fpos, fpos_next = 0;
int i;
char_u *spf;
if (idx == 0) { // use internal wordlist
if (int_wordlist == NULL) {
int_wordlist = vim_tempname();
if (int_wordlist == NULL)
return;
}
fname = int_wordlist;
} else {
// If 'spellfile' isn't set figure out a good default value.
if (*curwin->w_s->b_p_spf == NUL) {
init_spellfile();
new_spf = true;
}
if (*curwin->w_s->b_p_spf == NUL) {
EMSG2(_(e_notset), "spellfile");
return;
}
fnamebuf = xmalloc(MAXPATHL);
for (spf = curwin->w_s->b_p_spf, i = 1; *spf != NUL; ++i) {
copy_option_part(&spf, fnamebuf, MAXPATHL, ",");
if (i == idx)
break;
if (*spf == NUL) {
EMSGN(_("E765: 'spellfile' does not have %" PRId64 " entries"), idx);
free(fnamebuf);
return;
}
}
// Check that the user isn't editing the .add file somewhere.
buf = buflist_findname_exp(fnamebuf);
if (buf != NULL && buf->b_ml.ml_mfp == NULL)
buf = NULL;
if (buf != NULL && bufIsChanged(buf)) {
EMSG(_(e_bufloaded));
free(fnamebuf);
return;
}
fname = fnamebuf;
}
if (bad || undo) {
// When the word appears as good word we need to remove that one,
// since its flags sort before the one with WF_BANNED.
fd = mch_fopen((char *)fname, "r");
if (fd != NULL) {
while (!vim_fgets(line, MAXWLEN * 2, fd)) {
fpos = fpos_next;
fpos_next = ftell(fd);
if (STRNCMP(word, line, len) == 0
&& (line[len] == '/' || line[len] < ' ')) {
// Found duplicate word. Remove it by writing a '#' at
// the start of the line. Mixing reading and writing
// doesn't work for all systems, close the file first.
fclose(fd);
fd = mch_fopen((char *)fname, "r+");
if (fd == NULL)
break;
if (fseek(fd, fpos, SEEK_SET) == 0) {
fputc('#', fd);
if (undo) {
home_replace(NULL, fname, NameBuff, MAXPATHL, TRUE);
smsg((char_u *)_("Word '%.*s' removed from %s"),
len, word, NameBuff);
}
}
fseek(fd, fpos_next, SEEK_SET);
}
}
if (fd != NULL)
fclose(fd);
}
}
if (!undo) {
fd = mch_fopen((char *)fname, "a");
if (fd == NULL && new_spf) {
char_u *p;
// We just initialized the 'spellfile' option and can't open the
// file. We may need to create the "spell" directory first. We
// already checked the runtime directory is writable in
// init_spellfile().
if (!dir_of_file_exists(fname) && (p = path_tail_with_sep(fname)) != fname) {
int c = *p;
// The directory doesn't exist. Try creating it and opening
// the file again.
*p = NUL;
os_mkdir((char *)fname, 0755);
*p = c;
fd = mch_fopen((char *)fname, "a");
}
}
if (fd == NULL)
EMSG2(_(e_notopen), fname);
else {
if (bad)
fprintf(fd, "%.*s/!\n", len, word);
else
fprintf(fd, "%.*s\n", len, word);
fclose(fd);
home_replace(NULL, fname, NameBuff, MAXPATHL, TRUE);
smsg((char_u *)_("Word '%.*s' added to %s"), len, word, NameBuff);
}
}
if (fd != NULL) {
// Update the .add.spl file.
mkspell(1, &fname, false, true, true);
// If the .add file is edited somewhere, reload it.
if (buf != NULL)
buf_reload(buf, buf->b_orig_mode);
redraw_all_later(SOME_VALID);
}
free(fnamebuf);
}
// Initialize 'spellfile' for the current buffer.
static void init_spellfile(void)
{
char_u *buf;
int l;
char_u *fname;
char_u *rtp;
char_u *lend;
bool aspath = false;
char_u *lstart = curbuf->b_s.b_p_spl;
if (*curwin->w_s->b_p_spl != NUL && !GA_EMPTY(&curwin->w_s->b_langp)) {
buf = xmalloc(MAXPATHL);
// Find the end of the language name. Exclude the region. If there
// is a path separator remember the start of the tail.
for (lend = curwin->w_s->b_p_spl; *lend != NUL
&& vim_strchr((char_u *)",._", *lend) == NULL; ++lend)
if (vim_ispathsep(*lend)) {
aspath = true;
lstart = lend + 1;
}
// Loop over all entries in 'runtimepath'. Use the first one where we
// are allowed to write.
rtp = p_rtp;
while (*rtp != NUL) {
if (aspath)
// Use directory of an entry with path, e.g., for
// "/dir/lg.utf-8.spl" use "/dir".
STRLCPY(buf, curbuf->b_s.b_p_spl,
lstart - curbuf->b_s.b_p_spl);
else
// Copy the path from 'runtimepath' to buf[].
copy_option_part(&rtp, buf, MAXPATHL, ",");
if (os_file_is_writable((char *)buf) == 2) {
// Use the first language name from 'spelllang' and the
// encoding used in the first loaded .spl file.
if (aspath)
STRLCPY(buf, curbuf->b_s.b_p_spl,
lend - curbuf->b_s.b_p_spl + 1);
else {
// Create the "spell" directory if it doesn't exist yet.
l = (int)STRLEN(buf);
vim_snprintf((char *)buf + l, MAXPATHL - l, "/spell");
if (os_file_is_writable((char *)buf) != 2) {
os_mkdir((char *)buf, 0755);
}
l = (int)STRLEN(buf);
vim_snprintf((char *)buf + l, MAXPATHL - l,
"/%.*s", (int)(lend - lstart), lstart);
}
l = (int)STRLEN(buf);
fname = LANGP_ENTRY(curwin->w_s->b_langp, 0)
->lp_slang->sl_fname;
vim_snprintf((char *)buf + l, MAXPATHL - l, ".%s.add",
fname != NULL
&& strstr((char *)path_tail(fname), ".ascii.") != NULL
? (char_u *)"ascii" : spell_enc());
set_option_value((char_u *)"spellfile", 0L, buf, OPT_LOCAL);
break;
}
aspath = false;
}
free(buf);
}
}
// Init the chartab used for spelling for ASCII.
static void clear_spell_chartab(spelltab_T *sp)
{
int i;
// Init everything to false.
memset(sp->st_isw, false, sizeof(sp->st_isw));
memset(sp->st_isu, false, sizeof(sp->st_isu));
for (i = 0; i < 256; ++i) {
sp->st_fold[i] = i;
sp->st_upper[i] = i;
}
// We include digits. A word shouldn't start with a digit, but handling
// that is done separately.
for (i = '0'; i <= '9'; ++i)
sp->st_isw[i] = true;
for (i = 'A'; i <= 'Z'; ++i) {
sp->st_isw[i] = true;
sp->st_isu[i] = true;
sp->st_fold[i] = i + 0x20;
}
for (i = 'a'; i <= 'z'; ++i) {
sp->st_isw[i] = true;
sp->st_upper[i] = i - 0x20;
}
}
// Init the chartab used for spelling. Only depends on 'encoding'.
// Called once while starting up and when 'encoding' changes.
// The default is to use isalpha(), but the spell file should define the word
// characters to make it possible that 'encoding' differs from the current
// locale. For utf-8 we don't use isalpha() but our own functions.
void init_spell_chartab(void)
{
int i;
did_set_spelltab = false;
clear_spell_chartab(&spelltab);
if (enc_dbcs) {
// DBCS: assume double-wide characters are word characters.
for (i = 128; i <= 255; ++i)
if (MB_BYTE2LEN(i) == 2)
spelltab.st_isw[i] = true;
} else if (enc_utf8) {
for (i = 128; i < 256; ++i) {
int f = utf_fold(i);
int u = utf_toupper(i);
spelltab.st_isu[i] = utf_isupper(i);
spelltab.st_isw[i] = spelltab.st_isu[i] || utf_islower(i);
// The folded/upper-cased value is different between latin1 and
// utf8 for 0xb5, causing E763 for no good reason. Use the latin1
// value for utf-8 to avoid this.
spelltab.st_fold[i] = (f < 256) ? f : i;
spelltab.st_upper[i] = (u < 256) ? u : i;
}
} else {
// Rough guess: use locale-dependent library functions.
for (i = 128; i < 256; ++i) {
if (vim_isupper(i)) {
spelltab.st_isw[i] = true;
spelltab.st_isu[i] = true;
spelltab.st_fold[i] = vim_tolower(i);
} else if (vim_islower(i)) {
spelltab.st_isw[i] = true;
spelltab.st_upper[i] = vim_toupper(i);
}
}
}
}
// Set the spell character tables from strings in the affix file.
static int set_spell_chartab(char_u *fol, char_u *low, char_u *upp)
{
// We build the new tables here first, so that we can compare with the
// previous one.
spelltab_T new_st;
char_u *pf = fol, *pl = low, *pu = upp;
int f, l, u;
clear_spell_chartab(&new_st);
while (*pf != NUL) {
if (*pl == NUL || *pu == NUL) {
EMSG(_(e_affform));
return FAIL;
}
f = mb_ptr2char_adv(&pf);
l = mb_ptr2char_adv(&pl);
u = mb_ptr2char_adv(&pu);
// Every character that appears is a word character.
if (f < 256)
new_st.st_isw[f] = true;
if (l < 256)
new_st.st_isw[l] = true;
if (u < 256)
new_st.st_isw[u] = true;
// if "LOW" and "FOL" are not the same the "LOW" char needs
// case-folding
if (l < 256 && l != f) {
if (f >= 256) {
EMSG(_(e_affrange));
return FAIL;
}
new_st.st_fold[l] = f;
}
// if "UPP" and "FOL" are not the same the "UPP" char needs
// case-folding, it's upper case and the "UPP" is the upper case of
// "FOL" .
if (u < 256 && u != f) {
if (f >= 256) {
EMSG(_(e_affrange));
return FAIL;
}
new_st.st_fold[u] = f;
new_st.st_isu[u] = true;
new_st.st_upper[f] = u;
}
}
if (*pl != NUL || *pu != NUL) {
EMSG(_(e_affform));
return FAIL;
}
return set_spell_finish(&new_st);
}
// Set the spell character tables from strings in the .spl file.
static void
set_spell_charflags (
char_u *flags,
int cnt, // length of "flags"
char_u *fol
)
{
// We build the new tables here first, so that we can compare with the
// previous one.
spelltab_T new_st;
int i;
char_u *p = fol;
int c;
clear_spell_chartab(&new_st);
for (i = 0; i < 128; ++i) {
if (i < cnt) {
new_st.st_isw[i + 128] = (flags[i] & CF_WORD) != 0;
new_st.st_isu[i + 128] = (flags[i] & CF_UPPER) != 0;
}
if (*p != NUL) {
c = mb_ptr2char_adv(&p);
new_st.st_fold[i + 128] = c;
if (i + 128 != c && new_st.st_isu[i + 128] && c < 256)
new_st.st_upper[c] = i + 128;
}
}
(void)set_spell_finish(&new_st);
}
static int set_spell_finish(spelltab_T *new_st)
{
int i;
if (did_set_spelltab) {
// check that it's the same table
for (i = 0; i < 256; ++i) {
if (spelltab.st_isw[i] != new_st->st_isw[i]
|| spelltab.st_isu[i] != new_st->st_isu[i]
|| spelltab.st_fold[i] != new_st->st_fold[i]
|| spelltab.st_upper[i] != new_st->st_upper[i]) {
EMSG(_("E763: Word characters differ between spell files"));
return FAIL;
}
}
} else {
// copy the new spelltab into the one being used
spelltab = *new_st;
did_set_spelltab = true;
}
return OK;
}
/// Returns true if "p" points to a word character.
/// As a special case we see "midword" characters as word character when it is
/// followed by a word character. This finds they'there but not 'they there'.
/// Thus this only works properly when past the first character of the word.
///
/// @param wp Buffer used.
static bool spell_iswordp(char_u *p, win_T *wp)
{
char_u *s;
int l;
int c;
if (has_mbyte) {
l = MB_BYTE2LEN(*p);
s = p;
if (l == 1) {
// be quick for ASCII
if (wp->w_s->b_spell_ismw[*p])
s = p + 1; // skip a mid-word character
} else {
c = mb_ptr2char(p);
if (c < 256 ? wp->w_s->b_spell_ismw[c]
: (wp->w_s->b_spell_ismw_mb != NULL
&& vim_strchr(wp->w_s->b_spell_ismw_mb, c) != NULL))
s = p + l;
}
c = mb_ptr2char(s);
if (c > 255)
return spell_mb_isword_class(mb_get_class(s), wp);
return spelltab.st_isw[c];
}
return spelltab.st_isw[wp->w_s->b_spell_ismw[*p] ? p[1] : p[0]];
}
// Returns true if "p" points to a word character.
// Unlike spell_iswordp() this doesn't check for "midword" characters.
static bool spell_iswordp_nmw(char_u *p, win_T *wp)
{
int c;
if (has_mbyte) {
c = mb_ptr2char(p);
if (c > 255)
return spell_mb_isword_class(mb_get_class(p), wp);
return spelltab.st_isw[c];
}
return spelltab.st_isw[*p];
}
// Returns true if word class indicates a word character.
// Only for characters above 255.
// Unicode subscript and superscript are not considered word characters.
// See also dbcs_class() and utf_class() in mbyte.c.
static bool spell_mb_isword_class(int cl, win_T *wp)
{
if (wp->w_s->b_cjk)
// East Asian characters are not considered word characters.
return cl == 2 || cl == 0x2800;
return cl >= 2 && cl != 0x2070 && cl != 0x2080;
}
// Returns true if "p" points to a word character.
// Wide version of spell_iswordp().
static bool spell_iswordp_w(int *p, win_T *wp)
{
int *s;
if (*p < 256 ? wp->w_s->b_spell_ismw[*p]
: (wp->w_s->b_spell_ismw_mb != NULL
&& vim_strchr(wp->w_s->b_spell_ismw_mb, *p) != NULL))
s = p + 1;
else
s = p;
if (*s > 255) {
if (enc_utf8)
return spell_mb_isword_class(utf_class(*s), wp);
if (enc_dbcs)
return spell_mb_isword_class(
dbcs_class((unsigned)*s >> 8, *s & 0xff), wp);
return false;
}
return spelltab.st_isw[*s];
}
// Write the table with prefix conditions to the .spl file.
// When "fd" is NULL only count the length of what is written.
static int write_spell_prefcond(FILE *fd, garray_T *gap)
{
char_u *p;
int len;
int totlen;
size_t x = 1; // collect return value of fwrite()
if (fd != NULL)
put_bytes(fd, (long_u)gap->ga_len, 2); // <prefcondcnt>
totlen = 2 + gap->ga_len; // length of <prefcondcnt> and <condlen> bytes
for (int i = 0; i < gap->ga_len; ++i) {
// <prefcond> : <condlen> <condstr>
p = ((char_u **)gap->ga_data)[i];
if (p != NULL) {
len = (int)STRLEN(p);
if (fd != NULL) {
fputc(len, fd);
x &= fwrite(p, (size_t)len, (size_t)1, fd);
}
totlen += len;
} else if (fd != NULL)
fputc(0, fd);
}
return totlen;
}
// Case-fold "str[len]" into "buf[buflen]". The result is NUL terminated.
// Uses the character definitions from the .spl file.
// When using a multi-byte 'encoding' the length may change!
// Returns FAIL when something wrong.
static int spell_casefold(char_u *str, int len, char_u *buf, int buflen)
{
int i;
if (len >= buflen) {
buf[0] = NUL;
return FAIL; // result will not fit
}
if (has_mbyte) {
int outi = 0;
char_u *p;
int c;
// Fold one character at a time.
for (p = str; p < str + len; ) {
if (outi + MB_MAXBYTES > buflen) {
buf[outi] = NUL;
return FAIL;
}
c = mb_cptr2char_adv(&p);
outi += mb_char2bytes(SPELL_TOFOLD(c), buf + outi);
}
buf[outi] = NUL;
} else {
// Be quick for non-multibyte encodings.
for (i = 0; i < len; ++i)
buf[i] = spelltab.st_fold[str[i]];
buf[i] = NUL;
}
return OK;
}
// values for sps_flags
#define SPS_BEST 1
#define SPS_FAST 2
#define SPS_DOUBLE 4
static int sps_flags = SPS_BEST; // flags from 'spellsuggest'
static int sps_limit = 9999; // max nr of suggestions given
// Check the 'spellsuggest' option. Return FAIL if it's wrong.
// Sets "sps_flags" and "sps_limit".
int spell_check_sps(void)
{
char_u *p;
char_u *s;
char_u buf[MAXPATHL];
int f;
sps_flags = 0;
sps_limit = 9999;
for (p = p_sps; *p != NUL; ) {
copy_option_part(&p, buf, MAXPATHL, ",");
f = 0;
if (VIM_ISDIGIT(*buf)) {
s = buf;
sps_limit = getdigits(&s);
if (*s != NUL && !VIM_ISDIGIT(*s))
f = -1;
} else if (STRCMP(buf, "best") == 0)
f = SPS_BEST;
else if (STRCMP(buf, "fast") == 0)
f = SPS_FAST;
else if (STRCMP(buf, "double") == 0)
f = SPS_DOUBLE;
else if (STRNCMP(buf, "expr:", 5) != 0
&& STRNCMP(buf, "file:", 5) != 0)
f = -1;
if (f == -1 || (sps_flags != 0 && f != 0)) {
sps_flags = SPS_BEST;
sps_limit = 9999;
return FAIL;
}
if (f != 0)
sps_flags = f;
}
if (sps_flags == 0)
sps_flags = SPS_BEST;
return OK;
}
// "z=": Find badly spelled word under or after the cursor.
// Give suggestions for the properly spelled word.
// In Visual mode use the highlighted word as the bad word.
// When "count" is non-zero use that suggestion.
void spell_suggest(int count)
{
char_u *line;
pos_T prev_cursor = curwin->w_cursor;
char_u wcopy[MAXWLEN + 2];
char_u *p;
int c;
suginfo_T sug;
suggest_T *stp;
int mouse_used;
int need_cap;
int limit;
int selected = count;
int badlen = 0;
int msg_scroll_save = msg_scroll;
if (no_spell_checking(curwin))
return;
if (VIsual_active) {
// Use the Visually selected text as the bad word. But reject
// a multi-line selection.
if (curwin->w_cursor.lnum != VIsual.lnum) {
vim_beep();
return;
}
badlen = (int)curwin->w_cursor.col - (int)VIsual.col;
if (badlen < 0)
badlen = -badlen;
else
curwin->w_cursor.col = VIsual.col;
++badlen;
end_visual_mode();
} else
// Find the start of the badly spelled word.
if (spell_move_to(curwin, FORWARD, true, true, NULL) == 0
|| curwin->w_cursor.col > prev_cursor.col) {
// No bad word or it starts after the cursor: use the word under the
// cursor.
curwin->w_cursor = prev_cursor;
line = get_cursor_line_ptr();
p = line + curwin->w_cursor.col;
// Backup to before start of word.
while (p > line && spell_iswordp_nmw(p, curwin))
mb_ptr_back(line, p);
// Forward to start of word.
while (*p != NUL && !spell_iswordp_nmw(p, curwin))
mb_ptr_adv(p);
if (!spell_iswordp_nmw(p, curwin)) { // No word found.
beep_flush();
return;
}
curwin->w_cursor.col = (colnr_T)(p - line);
}
// Get the word and its length.
// Figure out if the word should be capitalised.
need_cap = check_need_cap(curwin->w_cursor.lnum, curwin->w_cursor.col);
// Make a copy of current line since autocommands may free the line.
line = vim_strsave(get_cursor_line_ptr());
// Get the list of suggestions. Limit to 'lines' - 2 or the number in
// 'spellsuggest', whatever is smaller.
if (sps_limit > (int)Rows - 2)
limit = (int)Rows - 2;
else
limit = sps_limit;
spell_find_suggest(line + curwin->w_cursor.col, badlen, &sug, limit,
true, need_cap, true);
if (GA_EMPTY(&sug.su_ga))
MSG(_("Sorry, no suggestions"));
else if (count > 0) {
if (count > sug.su_ga.ga_len)
smsg((char_u *)_("Sorry, only %" PRId64 " suggestions"),
(int64_t)sug.su_ga.ga_len);
} else {
free(repl_from);
repl_from = NULL;
free(repl_to);
repl_to = NULL;
// When 'rightleft' is set the list is drawn right-left.
cmdmsg_rl = curwin->w_p_rl;
if (cmdmsg_rl)
msg_col = Columns - 1;
// List the suggestions.
msg_start();
msg_row = Rows - 1; // for when 'cmdheight' > 1
lines_left = Rows; // avoid more prompt
vim_snprintf((char *)IObuff, IOSIZE, _("Change \"%.*s\" to:"),
sug.su_badlen, sug.su_badptr);
if (cmdmsg_rl && STRNCMP(IObuff, "Change", 6) == 0) {
// And now the rabbit from the high hat: Avoid showing the
// untranslated message rightleft.
vim_snprintf((char *)IObuff, IOSIZE, ":ot \"%.*s\" egnahC",
sug.su_badlen, sug.su_badptr);
}
msg_puts(IObuff);
msg_clr_eos();
msg_putchar('\n');
msg_scroll = TRUE;
for (int i = 0; i < sug.su_ga.ga_len; ++i) {
stp = &SUG(sug.su_ga, i);
// The suggested word may replace only part of the bad word, add
// the not replaced part.
STRLCPY(wcopy, stp->st_word, MAXWLEN + 1);
if (sug.su_badlen > stp->st_orglen)
STRLCPY(wcopy + stp->st_wordlen,
sug.su_badptr + stp->st_orglen,
sug.su_badlen - stp->st_orglen + 1);
vim_snprintf((char *)IObuff, IOSIZE, "%2d", i + 1);
if (cmdmsg_rl)
rl_mirror(IObuff);
msg_puts(IObuff);
vim_snprintf((char *)IObuff, IOSIZE, " \"%s\"", wcopy);
msg_puts(IObuff);
// The word may replace more than "su_badlen".
if (sug.su_badlen < stp->st_orglen) {
vim_snprintf((char *)IObuff, IOSIZE, _(" < \"%.*s\""),
stp->st_orglen, sug.su_badptr);
msg_puts(IObuff);
}
if (p_verbose > 0) {
// Add the score.
if (sps_flags & (SPS_DOUBLE | SPS_BEST))
vim_snprintf((char *)IObuff, IOSIZE, " (%s%d - %d)",
stp->st_salscore ? "s " : "",
stp->st_score, stp->st_altscore);
else
vim_snprintf((char *)IObuff, IOSIZE, " (%d)",
stp->st_score);
if (cmdmsg_rl)
// Mirror the numbers, but keep the leading space.
rl_mirror(IObuff + 1);
msg_advance(30);
msg_puts(IObuff);
}
msg_putchar('\n');
}
cmdmsg_rl = FALSE;
msg_col = 0;
// Ask for choice.
selected = prompt_for_number(&mouse_used);
if (mouse_used)
selected -= lines_left;
lines_left = Rows; // avoid more prompt
// don't delay for 'smd' in normal_cmd()
msg_scroll = msg_scroll_save;
}
if (selected > 0 && selected <= sug.su_ga.ga_len && u_save_cursor() == OK) {
// Save the from and to text for :spellrepall.
stp = &SUG(sug.su_ga, selected - 1);
if (sug.su_badlen > stp->st_orglen) {
// Replacing less than "su_badlen", append the remainder to
// repl_to.
repl_from = vim_strnsave(sug.su_badptr, sug.su_badlen);
vim_snprintf((char *)IObuff, IOSIZE, "%s%.*s", stp->st_word,
sug.su_badlen - stp->st_orglen,
sug.su_badptr + stp->st_orglen);
repl_to = vim_strsave(IObuff);
} else {
// Replacing su_badlen or more, use the whole word.
repl_from = vim_strnsave(sug.su_badptr, stp->st_orglen);
repl_to = vim_strsave(stp->st_word);
}
// Replace the word.
p = xmalloc(STRLEN(line) - stp->st_orglen + stp->st_wordlen + 1);
c = (int)(sug.su_badptr - line);
memmove(p, line, c);
STRCPY(p + c, stp->st_word);
STRCAT(p, sug.su_badptr + stp->st_orglen);
ml_replace(curwin->w_cursor.lnum, p, FALSE);
curwin->w_cursor.col = c;
// For redo we use a change-word command.
ResetRedobuff();
AppendToRedobuff((char_u *)"ciw");
AppendToRedobuffLit(p + c,
stp->st_wordlen + sug.su_badlen - stp->st_orglen);
AppendCharToRedobuff(ESC);
// After this "p" may be invalid.
changed_bytes(curwin->w_cursor.lnum, c);
} else
curwin->w_cursor = prev_cursor;
spell_find_cleanup(&sug);
}
// Check if the word at line "lnum" column "col" is required to start with a
// capital. This uses 'spellcapcheck' of the current buffer.
static bool check_need_cap(linenr_T lnum, colnr_T col)
{
bool need_cap = false;
char_u *line;
char_u *line_copy = NULL;
char_u *p;
colnr_T endcol;
regmatch_T regmatch;
if (curwin->w_s->b_cap_prog == NULL)
return false;
line = get_cursor_line_ptr();
endcol = 0;
if ((int)(skipwhite(line) - line) >= (int)col) {
// At start of line, check if previous line is empty or sentence
// ends there.
if (lnum == 1)
need_cap = true;
else {
line = ml_get(lnum - 1);
if (*skipwhite(line) == NUL)
need_cap = true;
else {
// Append a space in place of the line break.
line_copy = concat_str(line, (char_u *)" ");
line = line_copy;
endcol = (colnr_T)STRLEN(line);
}
}
} else
endcol = col;
if (endcol > 0) {
// Check if sentence ends before the bad word.
regmatch.regprog = curwin->w_s->b_cap_prog;
regmatch.rm_ic = FALSE;
p = line + endcol;
for (;; ) {
mb_ptr_back(line, p);
if (p == line || spell_iswordp_nmw(p, curwin))
break;
if (vim_regexec(&regmatch, p, 0)
&& regmatch.endp[0] == line + endcol) {
need_cap = true;
break;
}
}
}
free(line_copy);
return need_cap;
}
// ":spellrepall"
void ex_spellrepall(exarg_T *eap)
{
pos_T pos = curwin->w_cursor;
char_u *frompat;
int addlen;
char_u *line;
char_u *p;
bool save_ws = p_ws;
linenr_T prev_lnum = 0;
if (repl_from == NULL || repl_to == NULL) {
EMSG(_("E752: No previous spell replacement"));
return;
}
addlen = (int)(STRLEN(repl_to) - STRLEN(repl_from));
frompat = xmalloc(STRLEN(repl_from) + 7);
sprintf((char *)frompat, "\\V\\<%s\\>", repl_from);
p_ws = false;
sub_nsubs = 0;
sub_nlines = 0;
curwin->w_cursor.lnum = 0;
while (!got_int) {
if (do_search(NULL, '/', frompat, 1L, SEARCH_KEEP, NULL) == 0
|| u_save_cursor() == FAIL)
break;
// Only replace when the right word isn't there yet. This happens
// when changing "etc" to "etc.".
line = get_cursor_line_ptr();
if (addlen <= 0 || STRNCMP(line + curwin->w_cursor.col,
repl_to, STRLEN(repl_to)) != 0) {
p = xmalloc(STRLEN(line) + addlen + 1);
memmove(p, line, curwin->w_cursor.col);
STRCPY(p + curwin->w_cursor.col, repl_to);
STRCAT(p, line + curwin->w_cursor.col + STRLEN(repl_from));
ml_replace(curwin->w_cursor.lnum, p, FALSE);
changed_bytes(curwin->w_cursor.lnum, curwin->w_cursor.col);
if (curwin->w_cursor.lnum != prev_lnum) {
++sub_nlines;
prev_lnum = curwin->w_cursor.lnum;
}
++sub_nsubs;
}
curwin->w_cursor.col += (colnr_T)STRLEN(repl_to);
}
p_ws = save_ws;
curwin->w_cursor = pos;
free(frompat);
if (sub_nsubs == 0)
EMSG2(_("E753: Not found: %s"), repl_from);
else
do_sub_msg(false);
}
// Find spell suggestions for "word". Return them in the growarray "*gap" as
// a list of allocated strings.
void
spell_suggest_list (
garray_T *gap,
char_u *word,
int maxcount, // maximum nr of suggestions
bool need_cap, // 'spellcapcheck' matched
bool interactive
)
{
suginfo_T sug;
suggest_T *stp;
char_u *wcopy;
spell_find_suggest(word, 0, &sug, maxcount, false, need_cap, interactive);
// Make room in "gap".
ga_init(gap, sizeof(char_u *), sug.su_ga.ga_len + 1);
ga_grow(gap, sug.su_ga.ga_len);
for (int i = 0; i < sug.su_ga.ga_len; ++i) {
stp = &SUG(sug.su_ga, i);
// The suggested word may replace only part of "word", add the not
// replaced part.
wcopy = xmalloc(stp->st_wordlen
+ STRLEN(sug.su_badptr + stp->st_orglen) + 1);
STRCPY(wcopy, stp->st_word);
STRCPY(wcopy + stp->st_wordlen, sug.su_badptr + stp->st_orglen);
((char_u **)gap->ga_data)[gap->ga_len++] = wcopy;
}
spell_find_cleanup(&sug);
}
// Find spell suggestions for the word at the start of "badptr".
// Return the suggestions in "su->su_ga".
// The maximum number of suggestions is "maxcount".
// Note: does use info for the current window.
// This is based on the mechanisms of Aspell, but completely reimplemented.
static void
spell_find_suggest (
char_u *badptr,
int badlen, // length of bad word or 0 if unknown
suginfo_T *su,
int maxcount,
bool banbadword, // don't include badword in suggestions
bool need_cap, // word should start with capital
bool interactive
)
{
hlf_T attr = HLF_COUNT;
char_u buf[MAXPATHL];
char_u *p;
bool do_combine = false;
char_u *sps_copy;
static bool expr_busy = false;
int c;
langp_T *lp;
// Set the info in "*su".
memset(su, 0, sizeof(suginfo_T));
ga_init(&su->su_ga, (int)sizeof(suggest_T), 10);
ga_init(&su->su_sga, (int)sizeof(suggest_T), 10);
if (*badptr == NUL)
return;
hash_init(&su->su_banned);
su->su_badptr = badptr;
if (badlen != 0)
su->su_badlen = badlen;
else
su->su_badlen = spell_check(curwin, su->su_badptr, &attr, NULL, false);
su->su_maxcount = maxcount;
su->su_maxscore = SCORE_MAXINIT;
if (su->su_badlen >= MAXWLEN)
su->su_badlen = MAXWLEN - 1; // just in case
STRLCPY(su->su_badword, su->su_badptr, su->su_badlen + 1);
(void)spell_casefold(su->su_badptr, su->su_badlen,
su->su_fbadword, MAXWLEN);
// get caps flags for bad word
su->su_badflags = badword_captype(su->su_badptr,
su->su_badptr + su->su_badlen);
if (need_cap)
su->su_badflags |= WF_ONECAP;
// Find the default language for sound folding. We simply use the first
// one in 'spelllang' that supports sound folding. That's good for when
// using multiple files for one language, it's not that bad when mixing
// languages (e.g., "pl,en").
for (int i = 0; i < curbuf->b_s.b_langp.ga_len; ++i) {
lp = LANGP_ENTRY(curbuf->b_s.b_langp, i);
if (lp->lp_sallang != NULL) {
su->su_sallang = lp->lp_sallang;
break;
}
}
// Soundfold the bad word with the default sound folding, so that we don't
// have to do this many times.
if (su->su_sallang != NULL)
spell_soundfold(su->su_sallang, su->su_fbadword, true,
su->su_sal_badword);
// If the word is not capitalised and spell_check() doesn't consider the
// word to be bad then it might need to be capitalised. Add a suggestion
// for that.
c = PTR2CHAR(su->su_badptr);
if (!SPELL_ISUPPER(c) && attr == HLF_COUNT) {
make_case_word(su->su_badword, buf, WF_ONECAP);
add_suggestion(su, &su->su_ga, buf, su->su_badlen, SCORE_ICASE,
0, true, su->su_sallang, false);
}
// Ban the bad word itself. It may appear in another region.
if (banbadword)
add_banned(su, su->su_badword);
// Make a copy of 'spellsuggest', because the expression may change it.
sps_copy = vim_strsave(p_sps);
// Loop over the items in 'spellsuggest'.
for (p = sps_copy; *p != NUL; ) {
copy_option_part(&p, buf, MAXPATHL, ",");
if (STRNCMP(buf, "expr:", 5) == 0) {
// Evaluate an expression. Skip this when called recursively,
// when using spellsuggest() in the expression.
if (!expr_busy) {
expr_busy = true;
spell_suggest_expr(su, buf + 5);
expr_busy = false;
}
} else if (STRNCMP(buf, "file:", 5) == 0)
// Use list of suggestions in a file.
spell_suggest_file(su, buf + 5);
else {
// Use internal method.
spell_suggest_intern(su, interactive);
if (sps_flags & SPS_DOUBLE)
do_combine = true;
}
}
free(sps_copy);
if (do_combine)
// Combine the two list of suggestions. This must be done last,
// because sorting changes the order again.
score_combine(su);
}
// Find suggestions by evaluating expression "expr".
static void spell_suggest_expr(suginfo_T *su, char_u *expr)
{
list_T *list;
listitem_T *li;
int score;
char_u *p;
// The work is split up in a few parts to avoid having to export
// suginfo_T.
// First evaluate the expression and get the resulting list.
list = eval_spell_expr(su->su_badword, expr);
if (list != NULL) {
// Loop over the items in the list.
for (li = list->lv_first; li != NULL; li = li->li_next)
if (li->li_tv.v_type == VAR_LIST) {
// Get the word and the score from the items.
score = get_spellword(li->li_tv.vval.v_list, &p);
if (score >= 0 && score <= su->su_maxscore)
add_suggestion(su, &su->su_ga, p, su->su_badlen,
score, 0, true, su->su_sallang, false);
}
list_unref(list);
}
// Remove bogus suggestions, sort and truncate at "maxcount".
check_suggestions(su, &su->su_ga);
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount);
}
// Find suggestions in file "fname". Used for "file:" in 'spellsuggest'.
static void spell_suggest_file(suginfo_T *su, char_u *fname)
{
FILE *fd;
char_u line[MAXWLEN * 2];
char_u *p;
int len;
char_u cword[MAXWLEN];
// Open the file.
fd = mch_fopen((char *)fname, "r");
if (fd == NULL) {
EMSG2(_(e_notopen), fname);
return;
}
// Read it line by line.
while (!vim_fgets(line, MAXWLEN * 2, fd) && !got_int) {
line_breakcheck();
p = vim_strchr(line, '/');
if (p == NULL)
continue; // No Tab found, just skip the line.
*p++ = NUL;
if (STRICMP(su->su_badword, line) == 0) {
// Match! Isolate the good word, until CR or NL.
for (len = 0; p[len] >= ' '; ++len)
;
p[len] = NUL;
// If the suggestion doesn't have specific case duplicate the case
// of the bad word.
if (captype(p, NULL) == 0) {
make_case_word(p, cword, su->su_badflags);
p = cword;
}
add_suggestion(su, &su->su_ga, p, su->su_badlen,
SCORE_FILE, 0, true, su->su_sallang, false);
}
}
fclose(fd);
// Remove bogus suggestions, sort and truncate at "maxcount".
check_suggestions(su, &su->su_ga);
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount);
}
// Find suggestions for the internal method indicated by "sps_flags".
static void spell_suggest_intern(suginfo_T *su, bool interactive)
{
// Load the .sug file(s) that are available and not done yet.
suggest_load_files();
// 1. Try special cases, such as repeating a word: "the the" -> "the".
//
// Set a maximum score to limit the combination of operations that is
// tried.
suggest_try_special(su);
// 2. Try inserting/deleting/swapping/changing a letter, use REP entries
// from the .aff file and inserting a space (split the word).
suggest_try_change(su);
// For the resulting top-scorers compute the sound-a-like score.
if (sps_flags & SPS_DOUBLE)
score_comp_sal(su);
// 3. Try finding sound-a-like words.
if ((sps_flags & SPS_FAST) == 0) {
if (sps_flags & SPS_BEST)
// Adjust the word score for the suggestions found so far for how
// they sounds like.
rescore_suggestions(su);
// While going through the soundfold tree "su_maxscore" is the score
// for the soundfold word, limits the changes that are being tried,
// and "su_sfmaxscore" the rescored score, which is set by
// cleanup_suggestions().
// First find words with a small edit distance, because this is much
// faster and often already finds the top-N suggestions. If we didn't
// find many suggestions try again with a higher edit distance.
// "sl_sounddone" is used to avoid doing the same word twice.
suggest_try_soundalike_prep();
su->su_maxscore = SCORE_SFMAX1;
su->su_sfmaxscore = SCORE_MAXINIT * 3;
suggest_try_soundalike(su);
if (su->su_ga.ga_len < SUG_CLEAN_COUNT(su)) {
// We didn't find enough matches, try again, allowing more
// changes to the soundfold word.
su->su_maxscore = SCORE_SFMAX2;
suggest_try_soundalike(su);
if (su->su_ga.ga_len < SUG_CLEAN_COUNT(su)) {
// Still didn't find enough matches, try again, allowing even
// more changes to the soundfold word.
su->su_maxscore = SCORE_SFMAX3;
suggest_try_soundalike(su);
}
}
su->su_maxscore = su->su_sfmaxscore;
suggest_try_soundalike_finish();
}
// When CTRL-C was hit while searching do show the results. Only clear
// got_int when using a command, not for spellsuggest().
os_breakcheck();
if (interactive && got_int) {
(void)vgetc();
got_int = FALSE;
}
if ((sps_flags & SPS_DOUBLE) == 0 && su->su_ga.ga_len != 0) {
if (sps_flags & SPS_BEST)
// Adjust the word score for how it sounds like.
rescore_suggestions(su);
// Remove bogus suggestions, sort and truncate at "maxcount".
check_suggestions(su, &su->su_ga);
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount);
}
}
// Load the .sug files for languages that have one and weren't loaded yet.
static void suggest_load_files(void)
{
langp_T *lp;
slang_T *slang;
char_u *dotp;
FILE *fd;
char_u buf[MAXWLEN];
int i;
time_t timestamp;
int wcount;
int wordnr;
garray_T ga;
int c;
// Do this for all languages that support sound folding.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (slang->sl_sugtime != 0 && !slang->sl_sugloaded) {
// Change ".spl" to ".sug" and open the file. When the file isn't
// found silently skip it. Do set "sl_sugloaded" so that we
// don't try again and again.
slang->sl_sugloaded = true;
dotp = vim_strrchr(slang->sl_fname, '.');
if (dotp == NULL || fnamecmp(dotp, ".spl") != 0)
continue;
STRCPY(dotp, ".sug");
fd = mch_fopen((char *)slang->sl_fname, "r");
if (fd == NULL)
goto nextone;
// <SUGHEADER>: <fileID> <versionnr> <timestamp>
for (i = 0; i < VIMSUGMAGICL; ++i)
buf[i] = getc(fd); // <fileID>
if (STRNCMP(buf, VIMSUGMAGIC, VIMSUGMAGICL) != 0) {
EMSG2(_("E778: This does not look like a .sug file: %s"),
slang->sl_fname);
goto nextone;
}
c = getc(fd); // <versionnr>
if (c < VIMSUGVERSION) {
EMSG2(_("E779: Old .sug file, needs to be updated: %s"),
slang->sl_fname);
goto nextone;
} else if (c > VIMSUGVERSION) {
EMSG2(_("E780: .sug file is for newer version of Vim: %s"),
slang->sl_fname);
goto nextone;
}
// Check the timestamp, it must be exactly the same as the one in
// the .spl file. Otherwise the word numbers won't match.
timestamp = get8ctime(fd); // <timestamp>
if (timestamp != slang->sl_sugtime) {
EMSG2(_("E781: .sug file doesn't match .spl file: %s"),
slang->sl_fname);
goto nextone;
}
// <SUGWORDTREE>: <wordtree>
// Read the trie with the soundfolded words.
if (spell_read_tree(fd, &slang->sl_sbyts, &slang->sl_sidxs,
false, 0) != 0) {
someerror:
EMSG2(_("E782: error while reading .sug file: %s"),
slang->sl_fname);
slang_clear_sug(slang);
goto nextone;
}
// <SUGTABLE>: <sugwcount> <sugline> ...
//
// Read the table with word numbers. We use a file buffer for
// this, because it's so much like a file with lines. Makes it
// possible to swap the info and save on memory use.
slang->sl_sugbuf = open_spellbuf();
// <sugwcount>
wcount = get4c(fd);
if (wcount < 0)
goto someerror;
// Read all the wordnr lists into the buffer, one NUL terminated
// list per line.
ga_init(&ga, 1, 100);
for (wordnr = 0; wordnr < wcount; ++wordnr) {
ga.ga_len = 0;
for (;; ) {
c = getc(fd); // <sugline>
if (c < 0) {
goto someerror;
}
GA_APPEND(char_u, &ga, c);
if (c == NUL)
break;
}
if (ml_append_buf(slang->sl_sugbuf, (linenr_T)wordnr,
ga.ga_data, ga.ga_len, TRUE) == FAIL)
goto someerror;
}
ga_clear(&ga);
// Need to put word counts in the word tries, so that we can find
// a word by its number.
tree_count_words(slang->sl_fbyts, slang->sl_fidxs);
tree_count_words(slang->sl_sbyts, slang->sl_sidxs);
nextone:
if (fd != NULL)
fclose(fd);
STRCPY(dotp, ".spl");
}
}
}
// Fill in the wordcount fields for a trie.
// Returns the total number of words.
static void tree_count_words(char_u *byts, idx_T *idxs)
{
int depth;
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
int c;
idx_T n;
int wordcount[MAXWLEN];
arridx[0] = 0;
curi[0] = 1;
wordcount[0] = 0;
depth = 0;
while (depth >= 0 && !got_int) {
if (curi[depth] > byts[arridx[depth]]) {
// Done all bytes at this node, go up one level.
idxs[arridx[depth]] = wordcount[depth];
if (depth > 0)
wordcount[depth - 1] += wordcount[depth];
--depth;
fast_breakcheck();
} else {
// Do one more byte at this node.
n = arridx[depth] + curi[depth];
++curi[depth];
c = byts[n];
if (c == 0) {
// End of word, count it.
++wordcount[depth];
// Skip over any other NUL bytes (same word with different
// flags).
while (byts[n + 1] == 0) {
++n;
++curi[depth];
}
} else {
// Normal char, go one level deeper to count the words.
++depth;
arridx[depth] = idxs[n];
curi[depth] = 1;
wordcount[depth] = 0;
}
}
}
}
// Free the info put in "*su" by spell_find_suggest().
static void spell_find_cleanup(suginfo_T *su)
{
// Free the suggestions.
for (int i = 0; i < su->su_ga.ga_len; ++i) {
free(SUG(su->su_ga, i).st_word);
}
ga_clear(&su->su_ga);
for (int i = 0; i < su->su_sga.ga_len; ++i) {
free(SUG(su->su_sga, i).st_word);
}
ga_clear(&su->su_sga);
// Free the banned words.
hash_clear_all(&su->su_banned, 0);
}
// Make a copy of "word", with the first letter upper or lower cased, to
// "wcopy[MAXWLEN]". "word" must not be empty.
// The result is NUL terminated.
static void
onecap_copy (
char_u *word,
char_u *wcopy,
bool upper // true: first letter made upper case
)
{
char_u *p;
int c;
int l;
p = word;
if (has_mbyte)
c = mb_cptr2char_adv(&p);
else
c = *p++;
if (upper)
c = SPELL_TOUPPER(c);
else
c = SPELL_TOFOLD(c);
if (has_mbyte)
l = mb_char2bytes(c, wcopy);
else {
l = 1;
wcopy[0] = c;
}
STRLCPY(wcopy + l, p, MAXWLEN - l);
}
// Make a copy of "word" with all the letters upper cased into
// "wcopy[MAXWLEN]". The result is NUL terminated.
static void allcap_copy(char_u *word, char_u *wcopy)
{
char_u *s;
char_u *d;
int c;
d = wcopy;
for (s = word; *s != NUL; ) {
if (has_mbyte)
c = mb_cptr2char_adv(&s);
else
c = *s++;
// We only change 0xdf to SS when we are certain latin1 is used. It
// would cause weird errors in other 8-bit encodings.
if (enc_latin1like && c == 0xdf) {
c = 'S';
if (d - wcopy >= MAXWLEN - 1)
break;
*d++ = c;
} else
c = SPELL_TOUPPER(c);
if (has_mbyte) {
if (d - wcopy >= MAXWLEN - MB_MAXBYTES)
break;
d += mb_char2bytes(c, d);
} else {
if (d - wcopy >= MAXWLEN - 1)
break;
*d++ = c;
}
}
*d = NUL;
}
// Try finding suggestions by recognizing specific situations.
static void suggest_try_special(suginfo_T *su)
{
char_u *p;
size_t len;
int c;
char_u word[MAXWLEN];
// Recognize a word that is repeated: "the the".
p = skiptowhite(su->su_fbadword);
len = p - su->su_fbadword;
p = skipwhite(p);
if (STRLEN(p) == len && STRNCMP(su->su_fbadword, p, len) == 0) {
// Include badflags: if the badword is onecap or allcap
// use that for the goodword too: "The the" -> "The".
c = su->su_fbadword[len];
su->su_fbadword[len] = NUL;
make_case_word(su->su_fbadword, word, su->su_badflags);
su->su_fbadword[len] = c;
// Give a soundalike score of 0, compute the score as if deleting one
// character.
add_suggestion(su, &su->su_ga, word, su->su_badlen,
RESCORE(SCORE_REP, 0), 0, true, su->su_sallang, false);
}
}
// Try finding suggestions by adding/removing/swapping letters.
static void suggest_try_change(suginfo_T *su)
{
char_u fword[MAXWLEN]; // copy of the bad word, case-folded
int n;
char_u *p;
langp_T *lp;
// We make a copy of the case-folded bad word, so that we can modify it
// to find matches (esp. REP items). Append some more text, changing
// chars after the bad word may help.
STRCPY(fword, su->su_fbadword);
n = (int)STRLEN(fword);
p = su->su_badptr + su->su_badlen;
(void)spell_casefold(p, (int)STRLEN(p), fword + n, MAXWLEN - n);
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
// If reloading a spell file fails it's still in the list but
// everything has been cleared.
if (lp->lp_slang->sl_fbyts == NULL)
continue;
// Try it for this language. Will add possible suggestions.
suggest_trie_walk(su, lp, fword, false);
}
}
// Check the maximum score, if we go over it we won't try this change.
#define TRY_DEEPER(su, stack, depth, add) \
(stack[depth].ts_score + (add) < su->su_maxscore)
// Try finding suggestions by adding/removing/swapping letters.
//
// This uses a state machine. At each node in the tree we try various
// operations. When trying if an operation works "depth" is increased and the
// stack[] is used to store info. This allows combinations, thus insert one
// character, replace one and delete another. The number of changes is
// limited by su->su_maxscore.
//
// After implementing this I noticed an article by Kemal Oflazer that
// describes something similar: "Error-tolerant Finite State Recognition with
// Applications to Morphological Analysis and Spelling Correction" (1996).
// The implementation in the article is simplified and requires a stack of
// unknown depth. The implementation here only needs a stack depth equal to
// the length of the word.
//
// This is also used for the sound-folded word, "soundfold" is true then.
// The mechanism is the same, but we find a match with a sound-folded word
// that comes from one or more original words. Each of these words may be
// added, this is done by add_sound_suggest().
// Don't use:
// the prefix tree or the keep-case tree
// "su->su_badlen"
// anything to do with upper and lower case
// anything to do with word or non-word characters ("spell_iswordp()")
// banned words
// word flags (rare, region, compounding)
// word splitting for now
// "similar_chars()"
// use "slang->sl_repsal" instead of "lp->lp_replang->sl_rep"
static void suggest_trie_walk(suginfo_T *su, langp_T *lp, char_u *fword, bool soundfold)
{
char_u tword[MAXWLEN]; // good word collected so far
trystate_T stack[MAXWLEN];
char_u preword[MAXWLEN * 3]; // word found with proper case;
// concatenation of prefix compound
// words and split word. NUL terminated
// when going deeper but not when coming
// back.
char_u compflags[MAXWLEN]; // compound flags, one for each word
trystate_T *sp;
int newscore;
int score;
char_u *byts, *fbyts, *pbyts;
idx_T *idxs, *fidxs, *pidxs;
int depth;
int c, c2, c3;
int n = 0;
int flags;
garray_T *gap;
idx_T arridx;
int len;
char_u *p;
fromto_T *ftp;
int fl = 0, tl;
int repextra = 0; // extra bytes in fword[] from REP item
slang_T *slang = lp->lp_slang;
int fword_ends;
bool goodword_ends;
#ifdef DEBUG_TRIEWALK
// Stores the name of the change made at each level.
char_u changename[MAXWLEN][80];
#endif
int breakcheckcount = 1000;
bool compound_ok;
// Go through the whole case-fold tree, try changes at each node.
// "tword[]" contains the word collected from nodes in the tree.
// "fword[]" the word we are trying to match with (initially the bad
// word).
depth = 0;
sp = &stack[0];
memset(sp, 0, sizeof(trystate_T));
sp->ts_curi = 1;
if (soundfold) {
// Going through the soundfold tree.
byts = fbyts = slang->sl_sbyts;
idxs = fidxs = slang->sl_sidxs;
pbyts = NULL;
pidxs = NULL;
sp->ts_prefixdepth = PFD_NOPREFIX;
sp->ts_state = STATE_START;
} else {
// When there are postponed prefixes we need to use these first. At
// the end of the prefix we continue in the case-fold tree.
fbyts = slang->sl_fbyts;
fidxs = slang->sl_fidxs;
pbyts = slang->sl_pbyts;
pidxs = slang->sl_pidxs;
if (pbyts != NULL) {
byts = pbyts;
idxs = pidxs;
sp->ts_prefixdepth = PFD_PREFIXTREE;
sp->ts_state = STATE_NOPREFIX; // try without prefix first
} else {
byts = fbyts;
idxs = fidxs;
sp->ts_prefixdepth = PFD_NOPREFIX;
sp->ts_state = STATE_START;
}
}
// Loop to find all suggestions. At each round we either:
// - For the current state try one operation, advance "ts_curi",
// increase "depth".
// - When a state is done go to the next, set "ts_state".
// - When all states are tried decrease "depth".
while (depth >= 0 && !got_int) {
sp = &stack[depth];
switch (sp->ts_state) {
case STATE_START:
case STATE_NOPREFIX:
// Start of node: Deal with NUL bytes, which means
// tword[] may end here.
arridx = sp->ts_arridx; // current node in the tree
len = byts[arridx]; // bytes in this node
arridx += sp->ts_curi; // index of current byte
if (sp->ts_prefixdepth == PFD_PREFIXTREE) {
// Skip over the NUL bytes, we use them later.
for (n = 0; n < len && byts[arridx + n] == 0; ++n)
;
sp->ts_curi += n;
// Always past NUL bytes now.
n = (int)sp->ts_state;
sp->ts_state = STATE_ENDNUL;
sp->ts_save_badflags = su->su_badflags;
// At end of a prefix or at start of prefixtree: check for
// following word.
if (byts[arridx] == 0 || n == (int)STATE_NOPREFIX) {
// Set su->su_badflags to the caps type at this position.
// Use the caps type until here for the prefix itself.
if (has_mbyte)
n = nofold_len(fword, sp->ts_fidx, su->su_badptr);
else
n = sp->ts_fidx;
flags = badword_captype(su->su_badptr, su->su_badptr + n);
su->su_badflags = badword_captype(su->su_badptr + n,
su->su_badptr + su->su_badlen);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "prefix");
#endif
go_deeper(stack, depth, 0);
++depth;
sp = &stack[depth];
sp->ts_prefixdepth = depth - 1;
byts = fbyts;
idxs = fidxs;
sp->ts_arridx = 0;
// Move the prefix to preword[] with the right case
// and make find_keepcap_word() works.
tword[sp->ts_twordlen] = NUL;
make_case_word(tword + sp->ts_splitoff,
preword + sp->ts_prewordlen, flags);
sp->ts_prewordlen = (char_u)STRLEN(preword);
sp->ts_splitoff = sp->ts_twordlen;
}
break;
}
if (sp->ts_curi > len || byts[arridx] != 0) {
// Past bytes in node and/or past NUL bytes.
sp->ts_state = STATE_ENDNUL;
sp->ts_save_badflags = su->su_badflags;
break;
}
// End of word in tree.
++sp->ts_curi; // eat one NUL byte
flags = (int)idxs[arridx];
// Skip words with the NOSUGGEST flag.
if (flags & WF_NOSUGGEST)
break;
fword_ends = (fword[sp->ts_fidx] == NUL
|| (soundfold
? vim_iswhite(fword[sp->ts_fidx])
: !spell_iswordp(fword + sp->ts_fidx, curwin)));
tword[sp->ts_twordlen] = NUL;
if (sp->ts_prefixdepth <= PFD_NOTSPECIAL
&& (sp->ts_flags & TSF_PREFIXOK) == 0) {
// There was a prefix before the word. Check that the prefix
// can be used with this word.
// Count the length of the NULs in the prefix. If there are
// none this must be the first try without a prefix.
n = stack[sp->ts_prefixdepth].ts_arridx;
len = pbyts[n++];
for (c = 0; c < len && pbyts[n + c] == 0; ++c)
;
if (c > 0) {
c = valid_word_prefix(c, n, flags,
tword + sp->ts_splitoff, slang, false);
if (c == 0)
break;
// Use the WF_RARE flag for a rare prefix.
if (c & WF_RAREPFX)
flags |= WF_RARE;
// Tricky: when checking for both prefix and compounding
// we run into the prefix flag first.
// Remember that it's OK, so that we accept the prefix
// when arriving at a compound flag.
sp->ts_flags |= TSF_PREFIXOK;
}
}
// Check NEEDCOMPOUND: can't use word without compounding. Do try
// appending another compound word below.
if (sp->ts_complen == sp->ts_compsplit && fword_ends
&& (flags & WF_NEEDCOMP))
goodword_ends = false;
else
goodword_ends = true;
p = NULL;
compound_ok = true;
if (sp->ts_complen > sp->ts_compsplit) {
if (slang->sl_nobreak) {
// There was a word before this word. When there was no
// change in this word (it was correct) add the first word
// as a suggestion. If this word was corrected too, we
// need to check if a correct word follows.
if (sp->ts_fidx - sp->ts_splitfidx
== sp->ts_twordlen - sp->ts_splitoff
&& STRNCMP(fword + sp->ts_splitfidx,
tword + sp->ts_splitoff,
sp->ts_fidx - sp->ts_splitfidx) == 0) {
preword[sp->ts_prewordlen] = NUL;
newscore = score_wordcount_adj(slang, sp->ts_score,
preword + sp->ts_prewordlen,
sp->ts_prewordlen > 0);
// Add the suggestion if the score isn't too bad.
if (newscore <= su->su_maxscore)
add_suggestion(su, &su->su_ga, preword,
sp->ts_splitfidx - repextra,
newscore, 0, false,
lp->lp_sallang, false);
break;
}
} else {
// There was a compound word before this word. If this
// word does not support compounding then give up
// (splitting is tried for the word without compound
// flag).
if (((unsigned)flags >> 24) == 0
|| sp->ts_twordlen - sp->ts_splitoff
< slang->sl_compminlen)
break;
// For multi-byte chars check character length against
// COMPOUNDMIN.
if (has_mbyte
&& slang->sl_compminlen > 0
&& mb_charlen(tword + sp->ts_splitoff)
< slang->sl_compminlen)
break;
compflags[sp->ts_complen] = ((unsigned)flags >> 24);
compflags[sp->ts_complen + 1] = NUL;
STRLCPY(preword + sp->ts_prewordlen,
tword + sp->ts_splitoff,
sp->ts_twordlen - sp->ts_splitoff + 1);
// Verify CHECKCOMPOUNDPATTERN rules.
if (match_checkcompoundpattern(preword, sp->ts_prewordlen,
&slang->sl_comppat))
compound_ok = false;
if (compound_ok) {
p = preword;
while (*skiptowhite(p) != NUL)
p = skipwhite(skiptowhite(p));
if (fword_ends && !can_compound(slang, p,
compflags + sp->ts_compsplit))
// Compound is not allowed. But it may still be
// possible if we add another (short) word.
compound_ok = false;
}
// Get pointer to last char of previous word.
p = preword + sp->ts_prewordlen;
mb_ptr_back(preword, p);
}
}
// Form the word with proper case in preword.
// If there is a word from a previous split, append.
// For the soundfold tree don't change the case, simply append.
if (soundfold)
STRCPY(preword + sp->ts_prewordlen, tword + sp->ts_splitoff);
else if (flags & WF_KEEPCAP)
// Must find the word in the keep-case tree.
find_keepcap_word(slang, tword + sp->ts_splitoff,
preword + sp->ts_prewordlen);
else {
// Include badflags: If the badword is onecap or allcap
// use that for the goodword too. But if the badword is
// allcap and it's only one char long use onecap.
c = su->su_badflags;
if ((c & WF_ALLCAP)
&& su->su_badlen == (*mb_ptr2len)(su->su_badptr)
)
c = WF_ONECAP;
c |= flags;
// When appending a compound word after a word character don't
// use Onecap.
if (p != NULL && spell_iswordp_nmw(p, curwin))
c &= ~WF_ONECAP;
make_case_word(tword + sp->ts_splitoff,
preword + sp->ts_prewordlen, c);
}
if (!soundfold) {
// Don't use a banned word. It may appear again as a good
// word, thus remember it.
if (flags & WF_BANNED) {
add_banned(su, preword + sp->ts_prewordlen);
break;
}
if ((sp->ts_complen == sp->ts_compsplit
&& WAS_BANNED(su, preword + sp->ts_prewordlen))
|| WAS_BANNED(su, preword)) {
if (slang->sl_compprog == NULL)
break;
// the word so far was banned but we may try compounding
goodword_ends = false;
}
}
newscore = 0;
if (!soundfold) { // soundfold words don't have flags
if ((flags & WF_REGION)
&& (((unsigned)flags >> 16) & lp->lp_region) == 0)
newscore += SCORE_REGION;
if (flags & WF_RARE)
newscore += SCORE_RARE;
if (!spell_valid_case(su->su_badflags,
captype(preword + sp->ts_prewordlen, NULL)))
newscore += SCORE_ICASE;
}
// TODO: how about splitting in the soundfold tree?
if (fword_ends
&& goodword_ends
&& sp->ts_fidx >= sp->ts_fidxtry
&& compound_ok) {
// The badword also ends: add suggestions.
#ifdef DEBUG_TRIEWALK
if (soundfold && STRCMP(preword, "smwrd") == 0) {
int j;
// print the stack of changes that brought us here
smsg("------ %s -------", fword);
for (j = 0; j < depth; ++j)
smsg("%s", changename[j]);
}
#endif
if (soundfold) {
// For soundfolded words we need to find the original
// words, the edit distance and then add them.
add_sound_suggest(su, preword, sp->ts_score, lp);
} else if (sp->ts_fidx > 0) {
// Give a penalty when changing non-word char to word
// char, e.g., "thes," -> "these".
p = fword + sp->ts_fidx;
mb_ptr_back(fword, p);
if (!spell_iswordp(p, curwin)) {
p = preword + STRLEN(preword);
mb_ptr_back(preword, p);
if (spell_iswordp(p, curwin))
newscore += SCORE_NONWORD;
}
// Give a bonus to words seen before.
score = score_wordcount_adj(slang,
sp->ts_score + newscore,
preword + sp->ts_prewordlen,
sp->ts_prewordlen > 0);
// Add the suggestion if the score isn't too bad.
if (score <= su->su_maxscore) {
add_suggestion(su, &su->su_ga, preword,
sp->ts_fidx - repextra,
score, 0, false, lp->lp_sallang, false);
if (su->su_badflags & WF_MIXCAP) {
// We really don't know if the word should be
// upper or lower case, add both.
c = captype(preword, NULL);
if (c == 0 || c == WF_ALLCAP) {
make_case_word(tword + sp->ts_splitoff,
preword + sp->ts_prewordlen,
c == 0 ? WF_ALLCAP : 0);
add_suggestion(su, &su->su_ga, preword,
sp->ts_fidx - repextra,
score + SCORE_ICASE, 0, false,
lp->lp_sallang, false);
}
}
}
}
}
// Try word split and/or compounding.
if ((sp->ts_fidx >= sp->ts_fidxtry || fword_ends)
// Don't split halfway a character.
&& (!has_mbyte || sp->ts_tcharlen == 0)
) {
bool try_compound;
int try_split;
// If past the end of the bad word don't try a split.
// Otherwise try changing the next word. E.g., find
// suggestions for "the the" where the second "the" is
// different. It's done like a split.
// TODO: word split for soundfold words
try_split = (sp->ts_fidx - repextra < su->su_badlen)
&& !soundfold;
// Get here in several situations:
// 1. The word in the tree ends:
// If the word allows compounding try that. Otherwise try
// a split by inserting a space. For both check that a
// valid words starts at fword[sp->ts_fidx].
// For NOBREAK do like compounding to be able to check if
// the next word is valid.
// 2. The badword does end, but it was due to a change (e.g.,
// a swap). No need to split, but do check that the
// following word is valid.
// 3. The badword and the word in the tree end. It may still
// be possible to compound another (short) word.
try_compound = false;
if (!soundfold
&& slang->sl_compprog != NULL
&& ((unsigned)flags >> 24) != 0
&& sp->ts_twordlen - sp->ts_splitoff
>= slang->sl_compminlen
&& (!has_mbyte
|| slang->sl_compminlen == 0
|| mb_charlen(tword + sp->ts_splitoff)
>= slang->sl_compminlen)
&& (slang->sl_compsylmax < MAXWLEN
|| sp->ts_complen + 1 - sp->ts_compsplit
< slang->sl_compmax)
&& (can_be_compound(sp, slang,
compflags, ((unsigned)flags >> 24)))) {
try_compound = true;
compflags[sp->ts_complen] = ((unsigned)flags >> 24);
compflags[sp->ts_complen + 1] = NUL;
}
// For NOBREAK we never try splitting, it won't make any word
// valid.
if (slang->sl_nobreak)
try_compound = true;
// If we could add a compound word, and it's also possible to
// split at this point, do the split first and set
// TSF_DIDSPLIT to avoid doing it again.
else if (!fword_ends
&& try_compound
&& (sp->ts_flags & TSF_DIDSPLIT) == 0) {
try_compound = false;
sp->ts_flags |= TSF_DIDSPLIT;
--sp->ts_curi; // do the same NUL again
compflags[sp->ts_complen] = NUL;
} else
sp->ts_flags &= ~TSF_DIDSPLIT;
if (try_split || try_compound) {
if (!try_compound && (!fword_ends || !goodword_ends)) {
// If we're going to split need to check that the
// words so far are valid for compounding. If there
// is only one word it must not have the NEEDCOMPOUND
// flag.
if (sp->ts_complen == sp->ts_compsplit
&& (flags & WF_NEEDCOMP))
break;
p = preword;
while (*skiptowhite(p) != NUL)
p = skipwhite(skiptowhite(p));
if (sp->ts_complen > sp->ts_compsplit
&& !can_compound(slang, p,
compflags + sp->ts_compsplit))
break;
if (slang->sl_nosplitsugs)
newscore += SCORE_SPLIT_NO;
else
newscore += SCORE_SPLIT;
// Give a bonus to words seen before.
newscore = score_wordcount_adj(slang, newscore,
preword + sp->ts_prewordlen, true);
}
if (TRY_DEEPER(su, stack, depth, newscore)) {
go_deeper(stack, depth, newscore);
#ifdef DEBUG_TRIEWALK
if (!try_compound && !fword_ends)
sprintf(changename[depth], "%.*s-%s: split",
sp->ts_twordlen, tword, fword + sp->ts_fidx);
else
sprintf(changename[depth], "%.*s-%s: compound",
sp->ts_twordlen, tword, fword + sp->ts_fidx);
#endif
// Save things to be restored at STATE_SPLITUNDO.
sp->ts_save_badflags = su->su_badflags;
sp->ts_state = STATE_SPLITUNDO;
++depth;
sp = &stack[depth];
// Append a space to preword when splitting.
if (!try_compound && !fword_ends)
STRCAT(preword, " ");
sp->ts_prewordlen = (char_u)STRLEN(preword);
sp->ts_splitoff = sp->ts_twordlen;
sp->ts_splitfidx = sp->ts_fidx;
// If the badword has a non-word character at this
// position skip it. That means replacing the
// non-word character with a space. Always skip a
// character when the word ends. But only when the
// good word can end.
if (((!try_compound && !spell_iswordp_nmw(fword
+ sp->ts_fidx,
curwin))
|| fword_ends)
&& fword[sp->ts_fidx] != NUL
&& goodword_ends) {
int l;
if (has_mbyte)
l = MB_BYTE2LEN(fword[sp->ts_fidx]);
else
l = 1;
if (fword_ends) {
// Copy the skipped character to preword.
memmove(preword + sp->ts_prewordlen,
fword + sp->ts_fidx, l);
sp->ts_prewordlen += l;
preword[sp->ts_prewordlen] = NUL;
} else
sp->ts_score -= SCORE_SPLIT - SCORE_SUBST;
sp->ts_fidx += l;
}
// When compounding include compound flag in
// compflags[] (already set above). When splitting we
// may start compounding over again.
if (try_compound)
++sp->ts_complen;
else
sp->ts_compsplit = sp->ts_complen;
sp->ts_prefixdepth = PFD_NOPREFIX;
// set su->su_badflags to the caps type at this
// position
if (has_mbyte)
n = nofold_len(fword, sp->ts_fidx, su->su_badptr);
else
n = sp->ts_fidx;
su->su_badflags = badword_captype(su->su_badptr + n,
su->su_badptr + su->su_badlen);
// Restart at top of the tree.
sp->ts_arridx = 0;
// If there are postponed prefixes, try these too.
if (pbyts != NULL) {
byts = pbyts;
idxs = pidxs;
sp->ts_prefixdepth = PFD_PREFIXTREE;
sp->ts_state = STATE_NOPREFIX;
}
}
}
}
break;
case STATE_SPLITUNDO:
// Undo the changes done for word split or compound word.
su->su_badflags = sp->ts_save_badflags;
// Continue looking for NUL bytes.
sp->ts_state = STATE_START;
// In case we went into the prefix tree.
byts = fbyts;
idxs = fidxs;
break;
case STATE_ENDNUL:
// Past the NUL bytes in the node.
su->su_badflags = sp->ts_save_badflags;
if (fword[sp->ts_fidx] == NUL
&& sp->ts_tcharlen == 0
) {
// The badword ends, can't use STATE_PLAIN.
sp->ts_state = STATE_DEL;
break;
}
sp->ts_state = STATE_PLAIN;
// FALLTHROUGH
case STATE_PLAIN:
// Go over all possible bytes at this node, add each to tword[]
// and use child node. "ts_curi" is the index.
arridx = sp->ts_arridx;
if (sp->ts_curi > byts[arridx]) {
// Done all bytes at this node, do next state. When still at
// already changed bytes skip the other tricks.
if (sp->ts_fidx >= sp->ts_fidxtry)
sp->ts_state = STATE_DEL;
else
sp->ts_state = STATE_FINAL;
} else {
arridx += sp->ts_curi++;
c = byts[arridx];
// Normal byte, go one level deeper. If it's not equal to the
// byte in the bad word adjust the score. But don't even try
// when the byte was already changed. And don't try when we
// just deleted this byte, accepting it is always cheaper than
// delete + substitute.
if (c == fword[sp->ts_fidx]
|| (sp->ts_tcharlen > 0 && sp->ts_isdiff != DIFF_NONE)
)
newscore = 0;
else
newscore = SCORE_SUBST;
if ((newscore == 0
|| (sp->ts_fidx >= sp->ts_fidxtry
&& ((sp->ts_flags & TSF_DIDDEL) == 0
|| c != fword[sp->ts_delidx])))
&& TRY_DEEPER(su, stack, depth, newscore)) {
go_deeper(stack, depth, newscore);
#ifdef DEBUG_TRIEWALK
if (newscore > 0)
sprintf(changename[depth], "%.*s-%s: subst %c to %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
fword[sp->ts_fidx], c);
else
sprintf(changename[depth], "%.*s-%s: accept %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
fword[sp->ts_fidx]);
#endif
++depth;
sp = &stack[depth];
++sp->ts_fidx;
tword[sp->ts_twordlen++] = c;
sp->ts_arridx = idxs[arridx];
if (newscore == SCORE_SUBST)
sp->ts_isdiff = DIFF_YES;
if (has_mbyte) {
// Multi-byte characters are a bit complicated to
// handle: They differ when any of the bytes differ
// and then their length may also differ.
if (sp->ts_tcharlen == 0) {
// First byte.
sp->ts_tcharidx = 0;
sp->ts_tcharlen = MB_BYTE2LEN(c);
sp->ts_fcharstart = sp->ts_fidx - 1;
sp->ts_isdiff = (newscore != 0)
? DIFF_YES : DIFF_NONE;
} else if (sp->ts_isdiff == DIFF_INSERT)
// When inserting trail bytes don't advance in the
// bad word.
--sp->ts_fidx;
if (++sp->ts_tcharidx == sp->ts_tcharlen) {
// Last byte of character.
if (sp->ts_isdiff == DIFF_YES) {
// Correct ts_fidx for the byte length of the
// character (we didn't check that before).
sp->ts_fidx = sp->ts_fcharstart
+ MB_BYTE2LEN(
fword[sp->ts_fcharstart]);
// For changing a composing character adjust
// the score from SCORE_SUBST to
// SCORE_SUBCOMP.
if (enc_utf8
&& utf_iscomposing(
mb_ptr2char(tword
+ sp->ts_twordlen
- sp->ts_tcharlen))
&& utf_iscomposing(
mb_ptr2char(fword
+ sp->ts_fcharstart)))
sp->ts_score -=
SCORE_SUBST - SCORE_SUBCOMP;
// For a similar character adjust score from
// SCORE_SUBST to SCORE_SIMILAR.
else if (!soundfold
&& slang->sl_has_map
&& similar_chars(slang,
mb_ptr2char(tword
+ sp->ts_twordlen
- sp->ts_tcharlen),
mb_ptr2char(fword
+ sp->ts_fcharstart)))
sp->ts_score -=
SCORE_SUBST - SCORE_SIMILAR;
} else if (sp->ts_isdiff == DIFF_INSERT
&& sp->ts_twordlen > sp->ts_tcharlen) {
p = tword + sp->ts_twordlen - sp->ts_tcharlen;
c = mb_ptr2char(p);
if (enc_utf8 && utf_iscomposing(c)) {
// Inserting a composing char doesn't
// count that much.
sp->ts_score -= SCORE_INS - SCORE_INSCOMP;
} else {
// If the previous character was the same,
// thus doubling a character, give a bonus
// to the score. Also for the soundfold
// tree (might seem illogical but does
// give better scores).
mb_ptr_back(tword, p);
if (c == mb_ptr2char(p))
sp->ts_score -= SCORE_INS
- SCORE_INSDUP;
}
}
// Starting a new char, reset the length.
sp->ts_tcharlen = 0;
}
} else {
// If we found a similar char adjust the score.
// We do this after calling go_deeper() because
// it's slow.
if (newscore != 0
&& !soundfold
&& slang->sl_has_map
&& similar_chars(slang,
c, fword[sp->ts_fidx - 1]))
sp->ts_score -= SCORE_SUBST - SCORE_SIMILAR;
}
}
}
break;
case STATE_DEL:
// When past the first byte of a multi-byte char don't try
// delete/insert/swap a character.
if (has_mbyte && sp->ts_tcharlen > 0) {
sp->ts_state = STATE_FINAL;
break;
}
// Try skipping one character in the bad word (delete it).
sp->ts_state = STATE_INS_PREP;
sp->ts_curi = 1;
if (soundfold && sp->ts_fidx == 0 && fword[sp->ts_fidx] == '*')
// Deleting a vowel at the start of a word counts less, see
// soundalike_score().
newscore = 2 * SCORE_DEL / 3;
else
newscore = SCORE_DEL;
if (fword[sp->ts_fidx] != NUL
&& TRY_DEEPER(su, stack, depth, newscore)) {
go_deeper(stack, depth, newscore);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "%.*s-%s: delete %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
fword[sp->ts_fidx]);
#endif
++depth;
// Remember what character we deleted, so that we can avoid
// inserting it again.
stack[depth].ts_flags |= TSF_DIDDEL;
stack[depth].ts_delidx = sp->ts_fidx;
// Advance over the character in fword[]. Give a bonus to the
// score if the same character is following "nn" -> "n". It's
// a bit illogical for soundfold tree but it does give better
// results.
if (has_mbyte) {
c = mb_ptr2char(fword + sp->ts_fidx);
stack[depth].ts_fidx += MB_BYTE2LEN(fword[sp->ts_fidx]);
if (enc_utf8 && utf_iscomposing(c))
stack[depth].ts_score -= SCORE_DEL - SCORE_DELCOMP;
else if (c == mb_ptr2char(fword + stack[depth].ts_fidx))
stack[depth].ts_score -= SCORE_DEL - SCORE_DELDUP;
} else {
++stack[depth].ts_fidx;
if (fword[sp->ts_fidx] == fword[sp->ts_fidx + 1])
stack[depth].ts_score -= SCORE_DEL - SCORE_DELDUP;
}
break;
}
// FALLTHROUGH
case STATE_INS_PREP:
if (sp->ts_flags & TSF_DIDDEL) {
// If we just deleted a byte then inserting won't make sense,
// a substitute is always cheaper.
sp->ts_state = STATE_SWAP;
break;
}
// skip over NUL bytes
n = sp->ts_arridx;
for (;; ) {
if (sp->ts_curi > byts[n]) {
// Only NUL bytes at this node, go to next state.
sp->ts_state = STATE_SWAP;
break;
}
if (byts[n + sp->ts_curi] != NUL) {
// Found a byte to insert.
sp->ts_state = STATE_INS;
break;
}
++sp->ts_curi;
}
break;
// FALLTHROUGH
case STATE_INS:
// Insert one byte. Repeat this for each possible byte at this
// node.
n = sp->ts_arridx;
if (sp->ts_curi > byts[n]) {
// Done all bytes at this node, go to next state.
sp->ts_state = STATE_SWAP;
break;
}
// Do one more byte at this node, but:
// - Skip NUL bytes.
// - Skip the byte if it's equal to the byte in the word,
// accepting that byte is always better.
n += sp->ts_curi++;
c = byts[n];
if (soundfold && sp->ts_twordlen == 0 && c == '*')
// Inserting a vowel at the start of a word counts less,
// see soundalike_score().
newscore = 2 * SCORE_INS / 3;
else
newscore = SCORE_INS;
if (c != fword[sp->ts_fidx]
&& TRY_DEEPER(su, stack, depth, newscore)) {
go_deeper(stack, depth, newscore);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "%.*s-%s: insert %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
c);
#endif
++depth;
sp = &stack[depth];
tword[sp->ts_twordlen++] = c;
sp->ts_arridx = idxs[n];
if (has_mbyte) {
fl = MB_BYTE2LEN(c);
if (fl > 1) {
// There are following bytes for the same character.
// We must find all bytes before trying
// delete/insert/swap/etc.
sp->ts_tcharlen = fl;
sp->ts_tcharidx = 1;
sp->ts_isdiff = DIFF_INSERT;
}
} else
fl = 1;
if (fl == 1) {
// If the previous character was the same, thus doubling a
// character, give a bonus to the score. Also for
// soundfold words (illogical but does give a better
// score).
if (sp->ts_twordlen >= 2
&& tword[sp->ts_twordlen - 2] == c)
sp->ts_score -= SCORE_INS - SCORE_INSDUP;
}
}
break;
case STATE_SWAP:
// Swap two bytes in the bad word: "12" -> "21".
// We change "fword" here, it's changed back afterwards at
// STATE_UNSWAP.
p = fword + sp->ts_fidx;
c = *p;
if (c == NUL) {
// End of word, can't swap or replace.
sp->ts_state = STATE_FINAL;
break;
}
// Don't swap if the first character is not a word character.
// SWAP3 etc. also don't make sense then.
if (!soundfold && !spell_iswordp(p, curwin)) {
sp->ts_state = STATE_REP_INI;
break;
}
if (has_mbyte) {
n = mb_cptr2len(p);
c = mb_ptr2char(p);
if (p[n] == NUL)
c2 = NUL;
else if (!soundfold && !spell_iswordp(p + n, curwin))
c2 = c; // don't swap non-word char
else
c2 = mb_ptr2char(p + n);
} else {
if (p[1] == NUL)
c2 = NUL;
else if (!soundfold && !spell_iswordp(p + 1, curwin))
c2 = c; // don't swap non-word char
else
c2 = p[1];
}
// When the second character is NUL we can't swap.
if (c2 == NUL) {
sp->ts_state = STATE_REP_INI;
break;
}
// When characters are identical, swap won't do anything.
// Also get here if the second char is not a word character.
if (c == c2) {
sp->ts_state = STATE_SWAP3;
break;
}
if (c2 != NUL && TRY_DEEPER(su, stack, depth, SCORE_SWAP)) {
go_deeper(stack, depth, SCORE_SWAP);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "%.*s-%s: swap %c and %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
c, c2);
#endif
sp->ts_state = STATE_UNSWAP;
++depth;
if (has_mbyte) {
fl = mb_char2len(c2);
memmove(p, p + n, fl);
mb_char2bytes(c, p + fl);
stack[depth].ts_fidxtry = sp->ts_fidx + n + fl;
} else {
p[0] = c2;
p[1] = c;
stack[depth].ts_fidxtry = sp->ts_fidx + 2;
}
} else
// If this swap doesn't work then SWAP3 won't either.
sp->ts_state = STATE_REP_INI;
break;
case STATE_UNSWAP:
// Undo the STATE_SWAP swap: "21" -> "12".
p = fword + sp->ts_fidx;
if (has_mbyte) {
n = MB_BYTE2LEN(*p);
c = mb_ptr2char(p + n);
memmove(p + MB_BYTE2LEN(p[n]), p, n);
mb_char2bytes(c, p);
} else {
c = *p;
*p = p[1];
p[1] = c;
}
// FALLTHROUGH
case STATE_SWAP3:
// Swap two bytes, skipping one: "123" -> "321". We change
// "fword" here, it's changed back afterwards at STATE_UNSWAP3.
p = fword + sp->ts_fidx;
if (has_mbyte) {
n = mb_cptr2len(p);
c = mb_ptr2char(p);
fl = mb_cptr2len(p + n);
c2 = mb_ptr2char(p + n);
if (!soundfold && !spell_iswordp(p + n + fl, curwin))
c3 = c; // don't swap non-word char
else
c3 = mb_ptr2char(p + n + fl);
} else {
c = *p;
c2 = p[1];
if (!soundfold && !spell_iswordp(p + 2, curwin))
c3 = c; // don't swap non-word char
else
c3 = p[2];
}
// When characters are identical: "121" then SWAP3 result is
// identical, ROT3L result is same as SWAP: "211", ROT3L result is
// same as SWAP on next char: "112". Thus skip all swapping.
// Also skip when c3 is NUL.
// Also get here when the third character is not a word character.
// Second character may any char: "a.b" -> "b.a"
if (c == c3 || c3 == NUL) {
sp->ts_state = STATE_REP_INI;
break;
}
if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) {
go_deeper(stack, depth, SCORE_SWAP3);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "%.*s-%s: swap3 %c and %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
c, c3);
#endif
sp->ts_state = STATE_UNSWAP3;
++depth;
if (has_mbyte) {
tl = mb_char2len(c3);
memmove(p, p + n + fl, tl);
mb_char2bytes(c2, p + tl);
mb_char2bytes(c, p + fl + tl);
stack[depth].ts_fidxtry = sp->ts_fidx + n + fl + tl;
} else {
p[0] = p[2];
p[2] = c;
stack[depth].ts_fidxtry = sp->ts_fidx + 3;
}
} else
sp->ts_state = STATE_REP_INI;
break;
case STATE_UNSWAP3:
// Undo STATE_SWAP3: "321" -> "123"
p = fword + sp->ts_fidx;
if (has_mbyte) {
n = MB_BYTE2LEN(*p);
c2 = mb_ptr2char(p + n);
fl = MB_BYTE2LEN(p[n]);
c = mb_ptr2char(p + n + fl);
tl = MB_BYTE2LEN(p[n + fl]);
memmove(p + fl + tl, p, n);
mb_char2bytes(c, p);
mb_char2bytes(c2, p + tl);
p = p + tl;
} else {
c = *p;
*p = p[2];
p[2] = c;
++p;
}
if (!soundfold && !spell_iswordp(p, curwin)) {
// Middle char is not a word char, skip the rotate. First and
// third char were already checked at swap and swap3.
sp->ts_state = STATE_REP_INI;
break;
}
// Rotate three characters left: "123" -> "231". We change
// "fword" here, it's changed back afterwards at STATE_UNROT3L.
if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) {
go_deeper(stack, depth, SCORE_SWAP3);
#ifdef DEBUG_TRIEWALK
p = fword + sp->ts_fidx;
sprintf(changename[depth], "%.*s-%s: rotate left %c%c%c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
p[0], p[1], p[2]);
#endif
sp->ts_state = STATE_UNROT3L;
++depth;
p = fword + sp->ts_fidx;
if (has_mbyte) {
n = mb_cptr2len(p);
c = mb_ptr2char(p);
fl = mb_cptr2len(p + n);
fl += mb_cptr2len(p + n + fl);
memmove(p, p + n, fl);
mb_char2bytes(c, p + fl);
stack[depth].ts_fidxtry = sp->ts_fidx + n + fl;
} else {
c = *p;
*p = p[1];
p[1] = p[2];
p[2] = c;
stack[depth].ts_fidxtry = sp->ts_fidx + 3;
}
} else
sp->ts_state = STATE_REP_INI;
break;
case STATE_UNROT3L:
// Undo ROT3L: "231" -> "123"
p = fword + sp->ts_fidx;
if (has_mbyte) {
n = MB_BYTE2LEN(*p);
n += MB_BYTE2LEN(p[n]);
c = mb_ptr2char(p + n);
tl = MB_BYTE2LEN(p[n]);
memmove(p + tl, p, n);
mb_char2bytes(c, p);
} else {
c = p[2];
p[2] = p[1];
p[1] = *p;
*p = c;
}
// Rotate three bytes right: "123" -> "312". We change "fword"
// here, it's changed back afterwards at STATE_UNROT3R.
if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) {
go_deeper(stack, depth, SCORE_SWAP3);
#ifdef DEBUG_TRIEWALK
p = fword + sp->ts_fidx;
sprintf(changename[depth], "%.*s-%s: rotate right %c%c%c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
p[0], p[1], p[2]);
#endif
sp->ts_state = STATE_UNROT3R;
++depth;
p = fword + sp->ts_fidx;
if (has_mbyte) {
n = mb_cptr2len(p);
n += mb_cptr2len(p + n);
c = mb_ptr2char(p + n);
tl = mb_cptr2len(p + n);
memmove(p + tl, p, n);
mb_char2bytes(c, p);
stack[depth].ts_fidxtry = sp->ts_fidx + n + tl;
} else {
c = p[2];
p[2] = p[1];
p[1] = *p;
*p = c;
stack[depth].ts_fidxtry = sp->ts_fidx + 3;
}
} else
sp->ts_state = STATE_REP_INI;
break;
case STATE_UNROT3R:
// Undo ROT3R: "312" -> "123"
p = fword + sp->ts_fidx;
if (has_mbyte) {
c = mb_ptr2char(p);
tl = MB_BYTE2LEN(*p);
n = MB_BYTE2LEN(p[tl]);
n += MB_BYTE2LEN(p[tl + n]);
memmove(p, p + tl, n);
mb_char2bytes(c, p + n);
} else {
c = *p;
*p = p[1];
p[1] = p[2];
p[2] = c;
}
// FALLTHROUGH
case STATE_REP_INI:
// Check if matching with REP items from the .aff file would work.
// Quickly skip if:
// - there are no REP items and we are not in the soundfold trie
// - the score is going to be too high anyway
// - already applied a REP item or swapped here
if ((lp->lp_replang == NULL && !soundfold)
|| sp->ts_score + SCORE_REP >= su->su_maxscore
|| sp->ts_fidx < sp->ts_fidxtry) {
sp->ts_state = STATE_FINAL;
break;
}
// Use the first byte to quickly find the first entry that may
// match. If the index is -1 there is none.
if (soundfold)
sp->ts_curi = slang->sl_repsal_first[fword[sp->ts_fidx]];
else
sp->ts_curi = lp->lp_replang->sl_rep_first[fword[sp->ts_fidx]];
if (sp->ts_curi < 0) {
sp->ts_state = STATE_FINAL;
break;
}
sp->ts_state = STATE_REP;
// FALLTHROUGH
case STATE_REP:
// Try matching with REP items from the .aff file. For each match
// replace the characters and check if the resulting word is
// valid.
p = fword + sp->ts_fidx;
if (soundfold)
gap = &slang->sl_repsal;
else
gap = &lp->lp_replang->sl_rep;
while (sp->ts_curi < gap->ga_len) {
ftp = (fromto_T *)gap->ga_data + sp->ts_curi++;
if (*ftp->ft_from != *p) {
// past possible matching entries
sp->ts_curi = gap->ga_len;
break;
}
if (STRNCMP(ftp->ft_from, p, STRLEN(ftp->ft_from)) == 0
&& TRY_DEEPER(su, stack, depth, SCORE_REP)) {
go_deeper(stack, depth, SCORE_REP);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "%.*s-%s: replace %s with %s",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
ftp->ft_from, ftp->ft_to);
#endif
// Need to undo this afterwards.
sp->ts_state = STATE_REP_UNDO;
// Change the "from" to the "to" string.
++depth;
fl = (int)STRLEN(ftp->ft_from);
tl = (int)STRLEN(ftp->ft_to);
if (fl != tl) {
STRMOVE(p + tl, p + fl);
repextra += tl - fl;
}
memmove(p, ftp->ft_to, tl);
stack[depth].ts_fidxtry = sp->ts_fidx + tl;
stack[depth].ts_tcharlen = 0;
break;
}
}
if (sp->ts_curi >= gap->ga_len && sp->ts_state == STATE_REP)
// No (more) matches.
sp->ts_state = STATE_FINAL;
break;
case STATE_REP_UNDO:
// Undo a REP replacement and continue with the next one.
if (soundfold)
gap = &slang->sl_repsal;
else
gap = &lp->lp_replang->sl_rep;
ftp = (fromto_T *)gap->ga_data + sp->ts_curi - 1;
fl = (int)STRLEN(ftp->ft_from);
tl = (int)STRLEN(ftp->ft_to);
p = fword + sp->ts_fidx;
if (fl != tl) {
STRMOVE(p + fl, p + tl);
repextra -= tl - fl;
}
memmove(p, ftp->ft_from, fl);
sp->ts_state = STATE_REP;
break;
default:
// Did all possible states at this level, go up one level.
--depth;
if (depth >= 0 && stack[depth].ts_prefixdepth == PFD_PREFIXTREE) {
// Continue in or go back to the prefix tree.
byts = pbyts;
idxs = pidxs;
}
// Don't check for CTRL-C too often, it takes time.
if (--breakcheckcount == 0) {
os_breakcheck();
breakcheckcount = 1000;
}
}
}
}
// Go one level deeper in the tree.
static void go_deeper(trystate_T *stack, int depth, int score_add)
{
stack[depth + 1] = stack[depth];
stack[depth + 1].ts_state = STATE_START;
stack[depth + 1].ts_score = stack[depth].ts_score + score_add;
stack[depth + 1].ts_curi = 1; // start just after length byte
stack[depth + 1].ts_flags = 0;
}
// Case-folding may change the number of bytes: Count nr of chars in
// fword[flen] and return the byte length of that many chars in "word".
static int nofold_len(char_u *fword, int flen, char_u *word)
{
char_u *p;
int i = 0;
for (p = fword; p < fword + flen; mb_ptr_adv(p))
++i;
for (p = word; i > 0; mb_ptr_adv(p))
--i;
return (int)(p - word);
}
// "fword" is a good word with case folded. Find the matching keep-case
// words and put it in "kword".
// Theoretically there could be several keep-case words that result in the
// same case-folded word, but we only find one...
static void find_keepcap_word(slang_T *slang, char_u *fword, char_u *kword)
{
char_u uword[MAXWLEN]; // "fword" in upper-case
int depth;
idx_T tryidx;
// The following arrays are used at each depth in the tree.
idx_T arridx[MAXWLEN];
int round[MAXWLEN];
int fwordidx[MAXWLEN];
int uwordidx[MAXWLEN];
int kwordlen[MAXWLEN];
int flen, ulen;
int l;
int len;
int c;
idx_T lo, hi, m;
char_u *p;
char_u *byts = slang->sl_kbyts; // array with bytes of the words
idx_T *idxs = slang->sl_kidxs; // array with indexes
if (byts == NULL) {
// array is empty: "cannot happen"
*kword = NUL;
return;
}
// Make an all-cap version of "fword".
allcap_copy(fword, uword);
// Each character needs to be tried both case-folded and upper-case.
// All this gets very complicated if we keep in mind that changing case
// may change the byte length of a multi-byte character...
depth = 0;
arridx[0] = 0;
round[0] = 0;
fwordidx[0] = 0;
uwordidx[0] = 0;
kwordlen[0] = 0;
while (depth >= 0) {
if (fword[fwordidx[depth]] == NUL) {
// We are at the end of "fword". If the tree allows a word to end
// here we have found a match.
if (byts[arridx[depth] + 1] == 0) {
kword[kwordlen[depth]] = NUL;
return;
}
// kword is getting too long, continue one level up
--depth;
} else if (++round[depth] > 2) {
// tried both fold-case and upper-case character, continue one
// level up
--depth;
} else {
// round[depth] == 1: Try using the folded-case character.
// round[depth] == 2: Try using the upper-case character.
if (has_mbyte) {
flen = mb_cptr2len(fword + fwordidx[depth]);
ulen = mb_cptr2len(uword + uwordidx[depth]);
} else
ulen = flen = 1;
if (round[depth] == 1) {
p = fword + fwordidx[depth];
l = flen;
} else {
p = uword + uwordidx[depth];
l = ulen;
}
for (tryidx = arridx[depth]; l > 0; --l) {
// Perform a binary search in the list of accepted bytes.
len = byts[tryidx++];
c = *p++;
lo = tryidx;
hi = tryidx + len - 1;
while (lo < hi) {
m = (lo + hi) / 2;
if (byts[m] > c)
hi = m - 1;
else if (byts[m] < c)
lo = m + 1;
else {
lo = hi = m;
break;
}
}
// Stop if there is no matching byte.
if (hi < lo || byts[lo] != c)
break;
// Continue at the child (if there is one).
tryidx = idxs[lo];
}
if (l == 0) {
// Found the matching char. Copy it to "kword" and go a
// level deeper.
if (round[depth] == 1) {
STRNCPY(kword + kwordlen[depth], fword + fwordidx[depth],
flen);
kwordlen[depth + 1] = kwordlen[depth] + flen;
} else {
STRNCPY(kword + kwordlen[depth], uword + uwordidx[depth],
ulen);
kwordlen[depth + 1] = kwordlen[depth] + ulen;
}
fwordidx[depth + 1] = fwordidx[depth] + flen;
uwordidx[depth + 1] = uwordidx[depth] + ulen;
++depth;
arridx[depth] = tryidx;
round[depth] = 0;
}
}
}
// Didn't find it: "cannot happen".
*kword = NUL;
}
// Compute the sound-a-like score for suggestions in su->su_ga and add them to
// su->su_sga.
static void score_comp_sal(suginfo_T *su)
{
langp_T *lp;
char_u badsound[MAXWLEN];
int i;
suggest_T *stp;
suggest_T *sstp;
int score;
ga_grow(&su->su_sga, su->su_ga.ga_len);
// Use the sound-folding of the first language that supports it.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
// soundfold the bad word
spell_soundfold(lp->lp_slang, su->su_fbadword, true, badsound);
for (i = 0; i < su->su_ga.ga_len; ++i) {
stp = &SUG(su->su_ga, i);
// Case-fold the suggested word, sound-fold it and compute the
// sound-a-like score.
score = stp_sal_score(stp, su, lp->lp_slang, badsound);
if (score < SCORE_MAXMAX) {
// Add the suggestion.
sstp = &SUG(su->su_sga, su->su_sga.ga_len);
sstp->st_word = vim_strsave(stp->st_word);
sstp->st_wordlen = stp->st_wordlen;
sstp->st_score = score;
sstp->st_altscore = 0;
sstp->st_orglen = stp->st_orglen;
++su->su_sga.ga_len;
}
}
break;
}
}
}
// Combine the list of suggestions in su->su_ga and su->su_sga.
// They are entwined.
static void score_combine(suginfo_T *su)
{
garray_T ga;
garray_T *gap;
langp_T *lp;
suggest_T *stp;
char_u *p;
char_u badsound[MAXWLEN];
int round;
slang_T *slang = NULL;
// Add the alternate score to su_ga.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
// soundfold the bad word
slang = lp->lp_slang;
spell_soundfold(slang, su->su_fbadword, true, badsound);
for (int i = 0; i < su->su_ga.ga_len; ++i) {
stp = &SUG(su->su_ga, i);
stp->st_altscore = stp_sal_score(stp, su, slang, badsound);
if (stp->st_altscore == SCORE_MAXMAX)
stp->st_score = (stp->st_score * 3 + SCORE_BIG) / 4;
else
stp->st_score = (stp->st_score * 3
+ stp->st_altscore) / 4;
stp->st_salscore = false;
}
break;
}
}
if (slang == NULL) { // Using "double" without sound folding.
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore,
su->su_maxcount);
return;
}
// Add the alternate score to su_sga.
for (int i = 0; i < su->su_sga.ga_len; ++i) {
stp = &SUG(su->su_sga, i);
stp->st_altscore = spell_edit_score(slang,
su->su_badword, stp->st_word);
if (stp->st_score == SCORE_MAXMAX)
stp->st_score = (SCORE_BIG * 7 + stp->st_altscore) / 8;
else
stp->st_score = (stp->st_score * 7 + stp->st_altscore) / 8;
stp->st_salscore = true;
}
// Remove bad suggestions, sort the suggestions and truncate at "maxcount"
// for both lists.
check_suggestions(su, &su->su_ga);
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount);
check_suggestions(su, &su->su_sga);
(void)cleanup_suggestions(&su->su_sga, su->su_maxscore, su->su_maxcount);
ga_init(&ga, (int)sizeof(suginfo_T), 1);
ga_grow(&ga, su->su_ga.ga_len + su->su_sga.ga_len);
stp = &SUG(ga, 0);
for (int i = 0; i < su->su_ga.ga_len || i < su->su_sga.ga_len; ++i) {
// round 1: get a suggestion from su_ga
// round 2: get a suggestion from su_sga
for (round = 1; round <= 2; ++round) {
gap = round == 1 ? &su->su_ga : &su->su_sga;
if (i < gap->ga_len) {
// Don't add a word if it's already there.
p = SUG(*gap, i).st_word;
int j;
for (j = 0; j < ga.ga_len; ++j)
if (STRCMP(stp[j].st_word, p) == 0)
break;
if (j == ga.ga_len)
stp[ga.ga_len++] = SUG(*gap, i);
else
free(p);
}
}
}
ga_clear(&su->su_ga);
ga_clear(&su->su_sga);
// Truncate the list to the number of suggestions that will be displayed.
if (ga.ga_len > su->su_maxcount) {
for (int i = su->su_maxcount; i < ga.ga_len; ++i) {
free(stp[i].st_word);
}
ga.ga_len = su->su_maxcount;
}
su->su_ga = ga;
}
// For the goodword in "stp" compute the soundalike score compared to the
// badword.
static int
stp_sal_score (
suggest_T *stp,
suginfo_T *su,
slang_T *slang,
char_u *badsound // sound-folded badword
)
{
char_u *p;
char_u *pbad;
char_u *pgood;
char_u badsound2[MAXWLEN];
char_u fword[MAXWLEN];
char_u goodsound[MAXWLEN];
char_u goodword[MAXWLEN];
int lendiff;
lendiff = (int)(su->su_badlen - stp->st_orglen);
if (lendiff >= 0)
pbad = badsound;
else {
// soundfold the bad word with more characters following
(void)spell_casefold(su->su_badptr, stp->st_orglen, fword, MAXWLEN);
// When joining two words the sound often changes a lot. E.g., "t he"
// sounds like "t h" while "the" sounds like "@". Avoid that by
// removing the space. Don't do it when the good word also contains a
// space.
if (vim_iswhite(su->su_badptr[su->su_badlen])
&& *skiptowhite(stp->st_word) == NUL)
for (p = fword; *(p = skiptowhite(p)) != NUL; )
STRMOVE(p, p + 1);
spell_soundfold(slang, fword, true, badsound2);
pbad = badsound2;
}
if (lendiff > 0 && stp->st_wordlen + lendiff < MAXWLEN) {
// Add part of the bad word to the good word, so that we soundfold
// what replaces the bad word.
STRCPY(goodword, stp->st_word);
STRLCPY(goodword + stp->st_wordlen,
su->su_badptr + su->su_badlen - lendiff, lendiff + 1);
pgood = goodword;
} else
pgood = stp->st_word;
// Sound-fold the word and compute the score for the difference.
spell_soundfold(slang, pgood, false, goodsound);
return soundalike_score(goodsound, pbad);
}
static sftword_T dumsft;
#define HIKEY2SFT(p) ((sftword_T *)(p - (dumsft.sft_word - (char_u *)&dumsft)))
#define HI2SFT(hi) HIKEY2SFT((hi)->hi_key)
// Prepare for calling suggest_try_soundalike().
static void suggest_try_soundalike_prep(void)
{
langp_T *lp;
slang_T *slang;
// Do this for all languages that support sound folding and for which a
// .sug file has been loaded.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL)
// prepare the hashtable used by add_sound_suggest()
hash_init(&slang->sl_sounddone);
}
}
// Find suggestions by comparing the word in a sound-a-like form.
// Note: This doesn't support postponed prefixes.
static void suggest_try_soundalike(suginfo_T *su)
{
char_u salword[MAXWLEN];
langp_T *lp;
slang_T *slang;
// Do this for all languages that support sound folding and for which a
// .sug file has been loaded.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) {
// soundfold the bad word
spell_soundfold(slang, su->su_fbadword, true, salword);
// try all kinds of inserts/deletes/swaps/etc.
// TODO: also soundfold the next words, so that we can try joining
// and splitting
suggest_trie_walk(su, lp, salword, true);
}
}
}
// Finish up after calling suggest_try_soundalike().
static void suggest_try_soundalike_finish(void)
{
langp_T *lp;
slang_T *slang;
int todo;
hashitem_T *hi;
// Do this for all languages that support sound folding and for which a
// .sug file has been loaded.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) {
// Free the info about handled words.
todo = (int)slang->sl_sounddone.ht_used;
for (hi = slang->sl_sounddone.ht_array; todo > 0; ++hi)
if (!HASHITEM_EMPTY(hi)) {
free(HI2SFT(hi));
--todo;
}
// Clear the hashtable, it may also be used by another region.
hash_clear(&slang->sl_sounddone);
hash_init(&slang->sl_sounddone);
}
}
}
// A match with a soundfolded word is found. Add the good word(s) that
// produce this soundfolded word.
static void
add_sound_suggest (
suginfo_T *su,
char_u *goodword,
int score, // soundfold score
langp_T *lp
)
{
slang_T *slang = lp->lp_slang; // language for sound folding
int sfwordnr;
char_u *nrline;
int orgnr;
char_u theword[MAXWLEN];
int i;
int wlen;
char_u *byts;
idx_T *idxs;
int n;
int wordcount;
int wc;
int goodscore;
hash_T hash;
hashitem_T *hi;
sftword_T *sft;
int bc, gc;
int limit;
// It's very well possible that the same soundfold word is found several
// times with different scores. Since the following is quite slow only do
// the words that have a better score than before. Use a hashtable to
// remember the words that have been done.
hash = hash_hash(goodword);
hi = hash_lookup(&slang->sl_sounddone, goodword, hash);
if (HASHITEM_EMPTY(hi)) {
sft = xmalloc(sizeof(sftword_T) + STRLEN(goodword));
sft->sft_score = score;
STRCPY(sft->sft_word, goodword);
hash_add_item(&slang->sl_sounddone, hi, sft->sft_word, hash);
} else {
sft = HI2SFT(hi);
if (score >= sft->sft_score)
return;
sft->sft_score = score;
}
// Find the word nr in the soundfold tree.
sfwordnr = soundfold_find(slang, goodword);
if (sfwordnr < 0) {
EMSG2(_(e_intern2), "add_sound_suggest()");
return;
}
// Go over the list of good words that produce this soundfold word
nrline = ml_get_buf(slang->sl_sugbuf, (linenr_T)(sfwordnr + 1), FALSE);
orgnr = 0;
while (*nrline != NUL) {
// The wordnr was stored in a minimal nr of bytes as an offset to the
// previous wordnr.
orgnr += bytes2offset(&nrline);
byts = slang->sl_fbyts;
idxs = slang->sl_fidxs;
// Lookup the word "orgnr" one of the two tries.
n = 0;
wordcount = 0;
for (wlen = 0; wlen < MAXWLEN - 3; ++wlen) {
i = 1;
if (wordcount == orgnr && byts[n + 1] == NUL)
break; // found end of word
if (byts[n + 1] == NUL)
++wordcount;
// skip over the NUL bytes
for (; byts[n + i] == NUL; ++i)
if (i > byts[n]) { // safety check
STRCPY(theword + wlen, "BAD");
wlen += 3;
goto badword;
}
// One of the siblings must have the word.
for (; i < byts[n]; ++i) {
wc = idxs[idxs[n + i]]; // nr of words under this byte
if (wordcount + wc > orgnr)
break;
wordcount += wc;
}
theword[wlen] = byts[n + i];
n = idxs[n + i];
}
badword:
theword[wlen] = NUL;
// Go over the possible flags and regions.
for (; i <= byts[n] && byts[n + i] == NUL; ++i) {
char_u cword[MAXWLEN];
char_u *p;
int flags = (int)idxs[n + i];
// Skip words with the NOSUGGEST flag
if (flags & WF_NOSUGGEST)
continue;
if (flags & WF_KEEPCAP) {
// Must find the word in the keep-case tree.
find_keepcap_word(slang, theword, cword);
p = cword;
} else {
flags |= su->su_badflags;
if ((flags & WF_CAPMASK) != 0) {
// Need to fix case according to "flags".
make_case_word(theword, cword, flags);
p = cword;
} else
p = theword;
}
// Add the suggestion.
if (sps_flags & SPS_DOUBLE) {
// Add the suggestion if the score isn't too bad.
if (score <= su->su_maxscore)
add_suggestion(su, &su->su_sga, p, su->su_badlen,
score, 0, false, slang, false);
} else {
// Add a penalty for words in another region.
if ((flags & WF_REGION)
&& (((unsigned)flags >> 16) & lp->lp_region) == 0)
goodscore = SCORE_REGION;
else
goodscore = 0;
// Add a small penalty for changing the first letter from
// lower to upper case. Helps for "tath" -> "Kath", which is
// less common than "tath" -> "path". Don't do it when the
// letter is the same, that has already been counted.
gc = PTR2CHAR(p);
if (SPELL_ISUPPER(gc)) {
bc = PTR2CHAR(su->su_badword);
if (!SPELL_ISUPPER(bc)
&& SPELL_TOFOLD(bc) != SPELL_TOFOLD(gc))
goodscore += SCORE_ICASE / 2;
}
// Compute the score for the good word. This only does letter
// insert/delete/swap/replace. REP items are not considered,
// which may make the score a bit higher.
// Use a limit for the score to make it work faster. Use
// MAXSCORE(), because RESCORE() will change the score.
// If the limit is very high then the iterative method is
// inefficient, using an array is quicker.
limit = MAXSCORE(su->su_sfmaxscore - goodscore, score);
if (limit > SCORE_LIMITMAX)
goodscore += spell_edit_score(slang, su->su_badword, p);
else
goodscore += spell_edit_score_limit(slang, su->su_badword,
p, limit);
// When going over the limit don't bother to do the rest.
if (goodscore < SCORE_MAXMAX) {
// Give a bonus to words seen before.
goodscore = score_wordcount_adj(slang, goodscore, p, false);
// Add the suggestion if the score isn't too bad.
goodscore = RESCORE(goodscore, score);
if (goodscore <= su->su_sfmaxscore)
add_suggestion(su, &su->su_ga, p, su->su_badlen,
goodscore, score, true, slang, true);
}
}
}
// smsg("word %s (%d): %s (%d)", sftword, sftnr, theword, orgnr);
}
}
// Find word "word" in fold-case tree for "slang" and return the word number.
static int soundfold_find(slang_T *slang, char_u *word)
{
idx_T arridx = 0;
int len;
int wlen = 0;
int c;
char_u *ptr = word;
char_u *byts;
idx_T *idxs;
int wordnr = 0;
byts = slang->sl_sbyts;
idxs = slang->sl_sidxs;
for (;; ) {
// First byte is the number of possible bytes.
len = byts[arridx++];
// If the first possible byte is a zero the word could end here.
// If the word ends we found the word. If not skip the NUL bytes.
c = ptr[wlen];
if (byts[arridx] == NUL) {
if (c == NUL)
break;
// Skip over the zeros, there can be several.
while (len > 0 && byts[arridx] == NUL) {
++arridx;
--len;
}
if (len == 0)
return -1; // no children, word should have ended here
++wordnr;
}
// If the word ends we didn't find it.
if (c == NUL)
return -1;
// Perform a binary search in the list of accepted bytes.
if (c == TAB) // <Tab> is handled like <Space>
c = ' ';
while (byts[arridx] < c) {
// The word count is in the first idxs[] entry of the child.
wordnr += idxs[idxs[arridx]];
++arridx;
if (--len == 0) // end of the bytes, didn't find it
return -1;
}
if (byts[arridx] != c) // didn't find the byte
return -1;
// Continue at the child (if there is one).
arridx = idxs[arridx];
++wlen;
// One space in the good word may stand for several spaces in the
// checked word.
if (c == ' ')
while (ptr[wlen] == ' ' || ptr[wlen] == TAB)
++wlen;
}
return wordnr;
}
// Copy "fword" to "cword", fixing case according to "flags".
static void make_case_word(char_u *fword, char_u *cword, int flags)
{
if (flags & WF_ALLCAP)
// Make it all upper-case
allcap_copy(fword, cword);
else if (flags & WF_ONECAP)
// Make the first letter upper-case
onecap_copy(fword, cword, true);
else
// Use goodword as-is.
STRCPY(cword, fword);
}
// Use map string "map" for languages "lp".
static void set_map_str(slang_T *lp, char_u *map)
{
char_u *p;
int headc = 0;
int c;
int i;
if (*map == NUL) {
lp->sl_has_map = false;
return;
}
lp->sl_has_map = true;
// Init the array and hash tables empty.
for (i = 0; i < 256; ++i)
lp->sl_map_array[i] = 0;
hash_init(&lp->sl_map_hash);
// The similar characters are stored separated with slashes:
// "aaa/bbb/ccc/". Fill sl_map_array[c] with the character before c and
// before the same slash. For characters above 255 sl_map_hash is used.
for (p = map; *p != NUL; ) {
c = mb_cptr2char_adv(&p);
if (c == '/')
headc = 0;
else {
if (headc == 0)
headc = c;
// Characters above 255 don't fit in sl_map_array[], put them in
// the hash table. Each entry is the char, a NUL the headchar and
// a NUL.
if (c >= 256) {
int cl = mb_char2len(c);
int headcl = mb_char2len(headc);
char_u *b;
hash_T hash;
hashitem_T *hi;
b = xmalloc(cl + headcl + 2);
mb_char2bytes(c, b);
b[cl] = NUL;
mb_char2bytes(headc, b + cl + 1);
b[cl + 1 + headcl] = NUL;
hash = hash_hash(b);
hi = hash_lookup(&lp->sl_map_hash, b, hash);
if (HASHITEM_EMPTY(hi))
hash_add_item(&lp->sl_map_hash, hi, b, hash);
else {
// This should have been checked when generating the .spl
// file.
EMSG(_("E783: duplicate char in MAP entry"));
free(b);
}
} else
lp->sl_map_array[c] = headc;
}
}
}
// Returns true if "c1" and "c2" are similar characters according to the MAP
// lines in the .aff file.
static bool similar_chars(slang_T *slang, int c1, int c2)
{
int m1, m2;
char_u buf[MB_MAXBYTES + 1];
hashitem_T *hi;
if (c1 >= 256) {
buf[mb_char2bytes(c1, buf)] = 0;
hi = hash_find(&slang->sl_map_hash, buf);
if (HASHITEM_EMPTY(hi))
m1 = 0;
else
m1 = mb_ptr2char(hi->hi_key + STRLEN(hi->hi_key) + 1);
} else
m1 = slang->sl_map_array[c1];
if (m1 == 0)
return false;
if (c2 >= 256) {
buf[mb_char2bytes(c2, buf)] = 0;
hi = hash_find(&slang->sl_map_hash, buf);
if (HASHITEM_EMPTY(hi))
m2 = 0;
else
m2 = mb_ptr2char(hi->hi_key + STRLEN(hi->hi_key) + 1);
} else
m2 = slang->sl_map_array[c2];
return m1 == m2;
}
// Adds a suggestion to the list of suggestions.
// For a suggestion that is already in the list the lowest score is remembered.
static void
add_suggestion (
suginfo_T *su,
garray_T *gap, // either su_ga or su_sga
char_u *goodword,
int badlenarg, // len of bad word replaced with "goodword"
int score,
int altscore,
bool had_bonus, // value for st_had_bonus
slang_T *slang, // language for sound folding
bool maxsf // su_maxscore applies to soundfold score,
// su_sfmaxscore to the total score.
)
{
int goodlen; // len of goodword changed
int badlen; // len of bad word changed
suggest_T *stp;
suggest_T new_sug;
int i;
char_u *pgood, *pbad;
// Minimize "badlen" for consistency. Avoids that changing "the the" to
// "thee the" is added next to changing the first "the" the "thee".
pgood = goodword + STRLEN(goodword);
pbad = su->su_badptr + badlenarg;
for (;; ) {
goodlen = (int)(pgood - goodword);
badlen = (int)(pbad - su->su_badptr);
if (goodlen <= 0 || badlen <= 0)
break;
mb_ptr_back(goodword, pgood);
mb_ptr_back(su->su_badptr, pbad);
if (has_mbyte) {
if (mb_ptr2char(pgood) != mb_ptr2char(pbad))
break;
} else if (*pgood != *pbad)
break;
}
if (badlen == 0 && goodlen == 0)
// goodword doesn't change anything; may happen for "the the" changing
// the first "the" to itself.
return;
if (GA_EMPTY(gap))
i = -1;
else {
// Check if the word is already there. Also check the length that is
// being replaced "thes," -> "these" is a different suggestion from
// "thes" -> "these".
stp = &SUG(*gap, 0);
for (i = gap->ga_len; --i >= 0; ++stp) {
if (stp->st_wordlen == goodlen
&& stp->st_orglen == badlen
&& STRNCMP(stp->st_word, goodword, goodlen) == 0) {
// Found it. Remember the word with the lowest score.
if (stp->st_slang == NULL)
stp->st_slang = slang;
new_sug.st_score = score;
new_sug.st_altscore = altscore;
new_sug.st_had_bonus = had_bonus;
if (stp->st_had_bonus != had_bonus) {
// Only one of the two had the soundalike score computed.
// Need to do that for the other one now, otherwise the
// scores can't be compared. This happens because
// suggest_try_change() doesn't compute the soundalike
// word to keep it fast, while some special methods set
// the soundalike score to zero.
if (had_bonus)
rescore_one(su, stp);
else {
new_sug.st_word = stp->st_word;
new_sug.st_wordlen = stp->st_wordlen;
new_sug.st_slang = stp->st_slang;
new_sug.st_orglen = badlen;
rescore_one(su, &new_sug);
}
}
if (stp->st_score > new_sug.st_score) {
stp->st_score = new_sug.st_score;
stp->st_altscore = new_sug.st_altscore;
stp->st_had_bonus = new_sug.st_had_bonus;
}
break;
}
}
}
if (i < 0) {
// Add a suggestion.
stp = GA_APPEND_VIA_PTR(suggest_T, gap);
stp->st_word = vim_strnsave(goodword, goodlen);
stp->st_wordlen = goodlen;
stp->st_score = score;
stp->st_altscore = altscore;
stp->st_had_bonus = had_bonus;
stp->st_orglen = badlen;
stp->st_slang = slang;
// If we have too many suggestions now, sort the list and keep
// the best suggestions.
if (gap->ga_len > SUG_MAX_COUNT(su)) {
if (maxsf)
su->su_sfmaxscore = cleanup_suggestions(gap,
su->su_sfmaxscore, SUG_CLEAN_COUNT(su));
else
su->su_maxscore = cleanup_suggestions(gap,
su->su_maxscore, SUG_CLEAN_COUNT(su));
}
}
}
// Suggestions may in fact be flagged as errors. Esp. for banned words and
// for split words, such as "the the". Remove these from the list here.
static void
check_suggestions (
suginfo_T *su,
garray_T *gap // either su_ga or su_sga
)
{
suggest_T *stp;
char_u longword[MAXWLEN + 1];
int len;
hlf_T attr;
stp = &SUG(*gap, 0);
for (int i = gap->ga_len - 1; i >= 0; --i) {
// Need to append what follows to check for "the the".
STRLCPY(longword, stp[i].st_word, MAXWLEN + 1);
len = stp[i].st_wordlen;
STRLCPY(longword + len, su->su_badptr + stp[i].st_orglen,
MAXWLEN - len + 1);
attr = HLF_COUNT;
(void)spell_check(curwin, longword, &attr, NULL, false);
if (attr != HLF_COUNT) {
// Remove this entry.
free(stp[i].st_word);
--gap->ga_len;
if (i < gap->ga_len)
memmove(stp + i, stp + i + 1,
sizeof(suggest_T) * (gap->ga_len - i));
}
}
}
// Add a word to be banned.
static void add_banned(suginfo_T *su, char_u *word)
{
char_u *s;
hash_T hash;
hashitem_T *hi;
hash = hash_hash(word);
hi = hash_lookup(&su->su_banned, word, hash);
if (HASHITEM_EMPTY(hi)) {
s = vim_strsave(word);
hash_add_item(&su->su_banned, hi, s, hash);
}
}
// Recompute the score for all suggestions if sound-folding is possible. This
// is slow, thus only done for the final results.
static void rescore_suggestions(suginfo_T *su)
{
if (su->su_sallang != NULL) {
for (int i = 0; i < su->su_ga.ga_len; ++i) {
rescore_one(su, &SUG(su->su_ga, i));
}
}
}
// Recompute the score for one suggestion if sound-folding is possible.
static void rescore_one(suginfo_T *su, suggest_T *stp)
{
slang_T *slang = stp->st_slang;
char_u sal_badword[MAXWLEN];
char_u *p;
// Only rescore suggestions that have no sal score yet and do have a
// language.
if (slang != NULL && !GA_EMPTY(&slang->sl_sal) && !stp->st_had_bonus) {
if (slang == su->su_sallang)
p = su->su_sal_badword;
else {
spell_soundfold(slang, su->su_fbadword, true, sal_badword);
p = sal_badword;
}
stp->st_altscore = stp_sal_score(stp, su, slang, p);
if (stp->st_altscore == SCORE_MAXMAX)
stp->st_altscore = SCORE_BIG;
stp->st_score = RESCORE(stp->st_score, stp->st_altscore);
stp->st_had_bonus = true;
}
}
// Function given to qsort() to sort the suggestions on st_score.
// First on "st_score", then "st_altscore" then alphabetically.
static int sug_compare(const void *s1, const void *s2)
{
suggest_T *p1 = (suggest_T *)s1;
suggest_T *p2 = (suggest_T *)s2;
int n = p1->st_score - p2->st_score;
if (n == 0) {
n = p1->st_altscore - p2->st_altscore;
if (n == 0)
n = STRICMP(p1->st_word, p2->st_word);
}
return n;
}
// Cleanup the suggestions:
// - Sort on score.
// - Remove words that won't be displayed.
// Returns the maximum score in the list or "maxscore" unmodified.
static int
cleanup_suggestions (
garray_T *gap,
int maxscore,
int keep // nr of suggestions to keep
)
{
suggest_T *stp = &SUG(*gap, 0);
// Sort the list.
qsort(gap->ga_data, (size_t)gap->ga_len, sizeof(suggest_T), sug_compare);
// Truncate the list to the number of suggestions that will be displayed.
if (gap->ga_len > keep) {
for (int i = keep; i < gap->ga_len; ++i) {
free(stp[i].st_word);
}
gap->ga_len = keep;
return stp[keep - 1].st_score;
}
return maxscore;
}
// Soundfold a string, for soundfold().
// Result is in allocated memory, NULL for an error.
char_u *eval_soundfold(char_u *word)
{
langp_T *lp;
char_u sound[MAXWLEN];
if (curwin->w_p_spell && *curwin->w_s->b_p_spl != NUL) {
// Use the sound-folding of the first language that supports it.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
// soundfold the word
spell_soundfold(lp->lp_slang, word, false, sound);
return vim_strsave(sound);
}
}
}
// No language with sound folding, return word as-is.
return vim_strsave(word);
}
// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]".
//
// There are many ways to turn a word into a sound-a-like representation. The
// oldest is Soundex (1918!). A nice overview can be found in "Approximate
// swedish name matching - survey and test of different algorithms" by Klas
// Erikson.
//
// We support two methods:
// 1. SOFOFROM/SOFOTO do a simple character mapping.
// 2. SAL items define a more advanced sound-folding (and much slower).
static void
spell_soundfold (
slang_T *slang,
char_u *inword,
bool folded, // "inword" is already case-folded
char_u *res
)
{
char_u fword[MAXWLEN];
char_u *word;
if (slang->sl_sofo)
// SOFOFROM and SOFOTO used
spell_soundfold_sofo(slang, inword, res);
else {
// SAL items used. Requires the word to be case-folded.
if (folded)
word = inword;
else {
(void)spell_casefold(inword, (int)STRLEN(inword), fword, MAXWLEN);
word = fword;
}
if (has_mbyte)
spell_soundfold_wsal(slang, word, res);
else
spell_soundfold_sal(slang, word, res);
}
}
// Perform sound folding of "inword" into "res" according to SOFOFROM and
// SOFOTO lines.
static void spell_soundfold_sofo(slang_T *slang, char_u *inword, char_u *res)
{
char_u *s;
int ri = 0;
int c;
if (has_mbyte) {
int prevc = 0;
int *ip;
// The sl_sal_first[] table contains the translation for chars up to
// 255, sl_sal the rest.
for (s = inword; *s != NUL; ) {
c = mb_cptr2char_adv(&s);
if (enc_utf8 ? utf_class(c) == 0 : vim_iswhite(c))
c = ' ';
else if (c < 256)
c = slang->sl_sal_first[c];
else {
ip = ((int **)slang->sl_sal.ga_data)[c & 0xff];
if (ip == NULL) // empty list, can't match
c = NUL;
else
for (;; ) { // find "c" in the list
if (*ip == 0) { // not found
c = NUL;
break;
}
if (*ip == c) { // match!
c = ip[1];
break;
}
ip += 2;
}
}
if (c != NUL && c != prevc) {
ri += mb_char2bytes(c, res + ri);
if (ri + MB_MAXBYTES > MAXWLEN)
break;
prevc = c;
}
}
} else {
// The sl_sal_first[] table contains the translation.
for (s = inword; (c = *s) != NUL; ++s) {
if (vim_iswhite(c))
c = ' ';
else
c = slang->sl_sal_first[c];
if (c != NUL && (ri == 0 || res[ri - 1] != c))
res[ri++] = c;
}
}
res[ri] = NUL;
}
static void spell_soundfold_sal(slang_T *slang, char_u *inword, char_u *res)
{
salitem_T *smp;
char_u word[MAXWLEN];
char_u *s = inword;
char_u *t;
char_u *pf;
int i, j, z;
int reslen;
int n, k = 0;
int z0;
int k0;
int n0;
int c;
int pri;
int p0 = -333;
int c0;
// Remove accents, if wanted. We actually remove all non-word characters.
// But keep white space. We need a copy, the word may be changed here.
if (slang->sl_rem_accents) {
t = word;
while (*s != NUL) {
if (vim_iswhite(*s)) {
*t++ = ' ';
s = skipwhite(s);
} else {
if (spell_iswordp_nmw(s, curwin))
*t++ = *s;
++s;
}
}
*t = NUL;
} else
STRLCPY(word, s, MAXWLEN);
smp = (salitem_T *)slang->sl_sal.ga_data;
// This comes from Aspell phonet.cpp. Converted from C++ to C.
// Changed to keep spaces.
i = reslen = z = 0;
while ((c = word[i]) != NUL) {
// Start with the first rule that has the character in the word.
n = slang->sl_sal_first[c];
z0 = 0;
if (n >= 0) {
// check all rules for the same letter
for (; (s = smp[n].sm_lead)[0] == c; ++n) {
// Quickly skip entries that don't match the word. Most
// entries are less then three chars, optimize for that.
k = smp[n].sm_leadlen;
if (k > 1) {
if (word[i + 1] != s[1])
continue;
if (k > 2) {
for (j = 2; j < k; ++j)
if (word[i + j] != s[j])
break;
if (j < k)
continue;
}
}
if ((pf = smp[n].sm_oneof) != NULL) {
// Check for match with one of the chars in "sm_oneof".
while (*pf != NUL && *pf != word[i + k])
++pf;
if (*pf == NUL)
continue;
++k;
}
s = smp[n].sm_rules;
pri = 5; // default priority
p0 = *s;
k0 = k;
while (*s == '-' && k > 1) {
k--;
s++;
}
if (*s == '<')
s++;
if (VIM_ISDIGIT(*s)) {
// determine priority
pri = *s - '0';
s++;
}
if (*s == '^' && *(s + 1) == '^')
s++;
if (*s == NUL
|| (*s == '^'
&& (i == 0 || !(word[i - 1] == ' '
|| spell_iswordp(word + i - 1, curwin)))
&& (*(s + 1) != '$'
|| (!spell_iswordp(word + i + k0, curwin))))
|| (*s == '$' && i > 0
&& spell_iswordp(word + i - 1, curwin)
&& (!spell_iswordp(word + i + k0, curwin)))) {
// search for followup rules, if:
// followup and k > 1 and NO '-' in searchstring
c0 = word[i + k - 1];
n0 = slang->sl_sal_first[c0];
if (slang->sl_followup && k > 1 && n0 >= 0
&& p0 != '-' && word[i + k] != NUL) {
// test follow-up rule for "word[i + k]"
for (; (s = smp[n0].sm_lead)[0] == c0; ++n0) {
// Quickly skip entries that don't match the word.
k0 = smp[n0].sm_leadlen;
if (k0 > 1) {
if (word[i + k] != s[1])
continue;
if (k0 > 2) {
pf = word + i + k + 1;
for (j = 2; j < k0; ++j)
if (*pf++ != s[j])
break;
if (j < k0)
continue;
}
}
k0 += k - 1;
if ((pf = smp[n0].sm_oneof) != NULL) {
// Check for match with one of the chars in
// "sm_oneof".
while (*pf != NUL && *pf != word[i + k0])
++pf;
if (*pf == NUL)
continue;
++k0;
}
p0 = 5;
s = smp[n0].sm_rules;
while (*s == '-') {
// "k0" gets NOT reduced because
// "if (k0 == k)"
s++;
}
if (*s == '<')
s++;
if (VIM_ISDIGIT(*s)) {
p0 = *s - '0';
s++;
}
if (*s == NUL
// *s == '^' cuts
|| (*s == '$'
&& !spell_iswordp(word + i + k0,
curwin))) {
if (k0 == k)
// this is just a piece of the string
continue;
if (p0 < pri)
// priority too low
continue;
// rule fits; stop search
break;
}
}
if (p0 >= pri && smp[n0].sm_lead[0] == c0)
continue;
}
// replace string
s = smp[n].sm_to;
if (s == NULL)
s = (char_u *)"";
pf = smp[n].sm_rules;
p0 = (vim_strchr(pf, '<') != NULL) ? 1 : 0;
if (p0 == 1 && z == 0) {
// rule with '<' is used
if (reslen > 0 && *s != NUL && (res[reslen - 1] == c
|| res[reslen - 1] == *s))
reslen--;
z0 = 1;
z = 1;
k0 = 0;
while (*s != NUL && word[i + k0] != NUL) {
word[i + k0] = *s;
k0++;
s++;
}
if (k > k0)
STRMOVE(word + i + k0, word + i + k);
// new "actual letter"
c = word[i];
} else {
// no '<' rule used
i += k - 1;
z = 0;
while (*s != NUL && s[1] != NUL && reslen < MAXWLEN) {
if (reslen == 0 || res[reslen - 1] != *s)
res[reslen++] = *s;
s++;
}
// new "actual letter"
c = *s;
if (strstr((char *)pf, "^^") != NULL) {
if (c != NUL)
res[reslen++] = c;
STRMOVE(word, word + i + 1);
i = 0;
z0 = 1;
}
}
break;
}
}
} else if (vim_iswhite(c)) {
c = ' ';
k = 1;
}
if (z0 == 0) {
if (k && !p0 && reslen < MAXWLEN && c != NUL
&& (!slang->sl_collapse || reslen == 0
|| res[reslen - 1] != c))
// condense only double letters
res[reslen++] = c;
i++;
z = 0;
k = 0;
}
}
res[reslen] = NUL;
}
// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]".
// Multi-byte version of spell_soundfold().
static void spell_soundfold_wsal(slang_T *slang, char_u *inword, char_u *res)
{
salitem_T *smp = (salitem_T *)slang->sl_sal.ga_data;
int word[MAXWLEN];
int wres[MAXWLEN];
int l;
char_u *s;
int *ws;
char_u *t;
int *pf;
int i, j, z;
int reslen;
int n, k = 0;
int z0;
int k0;
int n0;
int c;
int pri;
int p0 = -333;
int c0;
bool did_white = false;
int wordlen;
// Convert the multi-byte string to a wide-character string.
// Remove accents, if wanted. We actually remove all non-word characters.
// But keep white space.
wordlen = 0;
for (s = inword; *s != NUL; ) {
t = s;
c = mb_cptr2char_adv(&s);
if (slang->sl_rem_accents) {
if (enc_utf8 ? utf_class(c) == 0 : vim_iswhite(c)) {
if (did_white)
continue;
c = ' ';
did_white = true;
} else {
did_white = false;
if (!spell_iswordp_nmw(t, curwin))
continue;
}
}
word[wordlen++] = c;
}
word[wordlen] = NUL;
// This algorithm comes from Aspell phonet.cpp.
// Converted from C++ to C. Added support for multi-byte chars.
// Changed to keep spaces.
i = reslen = z = 0;
while ((c = word[i]) != NUL) {
// Start with the first rule that has the character in the word.
n = slang->sl_sal_first[c & 0xff];
z0 = 0;
if (n >= 0) {
// Check all rules for the same index byte.
// If c is 0x300 need extra check for the end of the array, as
// (c & 0xff) is NUL.
for (; ((ws = smp[n].sm_lead_w)[0] & 0xff) == (c & 0xff)
&& ws[0] != NUL; ++n) {
// Quickly skip entries that don't match the word. Most
// entries are less then three chars, optimize for that.
if (c != ws[0])
continue;
k = smp[n].sm_leadlen;
if (k > 1) {
if (word[i + 1] != ws[1])
continue;
if (k > 2) {
for (j = 2; j < k; ++j)
if (word[i + j] != ws[j])
break;
if (j < k)
continue;
}
}
if ((pf = smp[n].sm_oneof_w) != NULL) {
// Check for match with one of the chars in "sm_oneof".
while (*pf != NUL && *pf != word[i + k])
++pf;
if (*pf == NUL)
continue;
++k;
}
s = smp[n].sm_rules;
pri = 5; // default priority
p0 = *s;
k0 = k;
while (*s == '-' && k > 1) {
k--;
s++;
}
if (*s == '<')
s++;
if (VIM_ISDIGIT(*s)) {
// determine priority
pri = *s - '0';
s++;
}
if (*s == '^' && *(s + 1) == '^')
s++;
if (*s == NUL
|| (*s == '^'
&& (i == 0 || !(word[i - 1] == ' '
|| spell_iswordp_w(word + i - 1, curwin)))
&& (*(s + 1) != '$'
|| (!spell_iswordp_w(word + i + k0, curwin))))
|| (*s == '$' && i > 0
&& spell_iswordp_w(word + i - 1, curwin)
&& (!spell_iswordp_w(word + i + k0, curwin)))) {
// search for followup rules, if:
// followup and k > 1 and NO '-' in searchstring
c0 = word[i + k - 1];
n0 = slang->sl_sal_first[c0 & 0xff];
if (slang->sl_followup && k > 1 && n0 >= 0
&& p0 != '-' && word[i + k] != NUL) {
// Test follow-up rule for "word[i + k]"; loop over
// all entries with the same index byte.
for (; ((ws = smp[n0].sm_lead_w)[0] & 0xff)
== (c0 & 0xff); ++n0) {
// Quickly skip entries that don't match the word.
if (c0 != ws[0])
continue;
k0 = smp[n0].sm_leadlen;
if (k0 > 1) {
if (word[i + k] != ws[1])
continue;
if (k0 > 2) {
pf = word + i + k + 1;
for (j = 2; j < k0; ++j)
if (*pf++ != ws[j])
break;
if (j < k0)
continue;
}
}
k0 += k - 1;
if ((pf = smp[n0].sm_oneof_w) != NULL) {
// Check for match with one of the chars in
// "sm_oneof".
while (*pf != NUL && *pf != word[i + k0])
++pf;
if (*pf == NUL)
continue;
++k0;
}
p0 = 5;
s = smp[n0].sm_rules;
while (*s == '-') {
// "k0" gets NOT reduced because
// "if (k0 == k)"
s++;
}
if (*s == '<')
s++;
if (VIM_ISDIGIT(*s)) {
p0 = *s - '0';
s++;
}
if (*s == NUL
// *s == '^' cuts
|| (*s == '$'
&& !spell_iswordp_w(word + i + k0,
curwin))) {
if (k0 == k)
// this is just a piece of the string
continue;
if (p0 < pri)
// priority too low
continue;
// rule fits; stop search
break;
}
}
if (p0 >= pri && (smp[n0].sm_lead_w[0] & 0xff)
== (c0 & 0xff))
continue;
}
// replace string
ws = smp[n].sm_to_w;
s = smp[n].sm_rules;
p0 = (vim_strchr(s, '<') != NULL) ? 1 : 0;
if (p0 == 1 && z == 0) {
// rule with '<' is used
if (reslen > 0 && ws != NULL && *ws != NUL
&& (wres[reslen - 1] == c
|| wres[reslen - 1] == *ws))
reslen--;
z0 = 1;
z = 1;
k0 = 0;
if (ws != NULL)
while (*ws != NUL && word[i + k0] != NUL) {
word[i + k0] = *ws;
k0++;
ws++;
}
if (k > k0)
memmove(word + i + k0, word + i + k,
sizeof(int) * (wordlen - (i + k) + 1));
// new "actual letter"
c = word[i];
} else {
// no '<' rule used
i += k - 1;
z = 0;
if (ws != NULL)
while (*ws != NUL && ws[1] != NUL
&& reslen < MAXWLEN) {
if (reslen == 0 || wres[reslen - 1] != *ws)
wres[reslen++] = *ws;
ws++;
}
// new "actual letter"
if (ws == NULL)
c = NUL;
else
c = *ws;
if (strstr((char *)s, "^^") != NULL) {
if (c != NUL)
wres[reslen++] = c;
memmove(word, word + i + 1,
sizeof(int) * (wordlen - (i + 1) + 1));
i = 0;
z0 = 1;
}
}
break;
}
}
} else if (vim_iswhite(c)) {
c = ' ';
k = 1;
}
if (z0 == 0) {
if (k && !p0 && reslen < MAXWLEN && c != NUL
&& (!slang->sl_collapse || reslen == 0
|| wres[reslen - 1] != c))
// condense only double letters
wres[reslen++] = c;
i++;
z = 0;
k = 0;
}
}
// Convert wide characters in "wres" to a multi-byte string in "res".
l = 0;
for (n = 0; n < reslen; ++n) {
l += mb_char2bytes(wres[n], res + l);
if (l + MB_MAXBYTES > MAXWLEN)
break;
}
res[l] = NUL;
}
// Compute a score for two sound-a-like words.
// This permits up to two inserts/deletes/swaps/etc. to keep things fast.
// Instead of a generic loop we write out the code. That keeps it fast by
// avoiding checks that will not be possible.
static int
soundalike_score (
char_u *goodstart, // sound-folded good word
char_u *badstart // sound-folded bad word
)
{
char_u *goodsound = goodstart;
char_u *badsound = badstart;
int goodlen;
int badlen;
int n;
char_u *pl, *ps;
char_u *pl2, *ps2;
int score = 0;
// Adding/inserting "*" at the start (word starts with vowel) shouldn't be
// counted so much, vowels halfway the word aren't counted at all.
if ((*badsound == '*' || *goodsound == '*') && *badsound != *goodsound) {
if ((badsound[0] == NUL && goodsound[1] == NUL)
|| (goodsound[0] == NUL && badsound[1] == NUL))
// changing word with vowel to word without a sound
return SCORE_DEL;
if (badsound[0] == NUL || goodsound[0] == NUL)
// more than two changes
return SCORE_MAXMAX;
if (badsound[1] == goodsound[1]
|| (badsound[1] != NUL
&& goodsound[1] != NUL
&& badsound[2] == goodsound[2])) {
// handle like a substitute
} else {
score = 2 * SCORE_DEL / 3;
if (*badsound == '*')
++badsound;
else
++goodsound;
}
}
goodlen = (int)STRLEN(goodsound);
badlen = (int)STRLEN(badsound);
// Return quickly if the lengths are too different to be fixed by two
// changes.
n = goodlen - badlen;
if (n < -2 || n > 2)
return SCORE_MAXMAX;
if (n > 0) {
pl = goodsound; // goodsound is longest
ps = badsound;
} else {
pl = badsound; // badsound is longest
ps = goodsound;
}
// Skip over the identical part.
while (*pl == *ps && *pl != NUL) {
++pl;
++ps;
}
switch (n) {
case -2:
case 2:
// Must delete two characters from "pl".
++pl; // first delete
while (*pl == *ps) {
++pl;
++ps;
}
// strings must be equal after second delete
if (STRCMP(pl + 1, ps) == 0)
return score + SCORE_DEL * 2;
// Failed to compare.
break;
case -1:
case 1:
// Minimal one delete from "pl" required.
// 1: delete
pl2 = pl + 1;
ps2 = ps;
while (*pl2 == *ps2) {
if (*pl2 == NUL) // reached the end
return score + SCORE_DEL;
++pl2;
++ps2;
}
// 2: delete then swap, then rest must be equal
if (pl2[0] == ps2[1] && pl2[1] == ps2[0]
&& STRCMP(pl2 + 2, ps2 + 2) == 0)
return score + SCORE_DEL + SCORE_SWAP;
// 3: delete then substitute, then the rest must be equal
if (STRCMP(pl2 + 1, ps2 + 1) == 0)
return score + SCORE_DEL + SCORE_SUBST;
// 4: first swap then delete
if (pl[0] == ps[1] && pl[1] == ps[0]) {
pl2 = pl + 2; // swap, skip two chars
ps2 = ps + 2;
while (*pl2 == *ps2) {
++pl2;
++ps2;
}
// delete a char and then strings must be equal
if (STRCMP(pl2 + 1, ps2) == 0)
return score + SCORE_SWAP + SCORE_DEL;
}
// 5: first substitute then delete
pl2 = pl + 1; // substitute, skip one char
ps2 = ps + 1;
while (*pl2 == *ps2) {
++pl2;
++ps2;
}
// delete a char and then strings must be equal
if (STRCMP(pl2 + 1, ps2) == 0)
return score + SCORE_SUBST + SCORE_DEL;
// Failed to compare.
break;
case 0:
// Lengths are equal, thus changes must result in same length: An
// insert is only possible in combination with a delete.
// 1: check if for identical strings
if (*pl == NUL)
return score;
// 2: swap
if (pl[0] == ps[1] && pl[1] == ps[0]) {
pl2 = pl + 2; // swap, skip two chars
ps2 = ps + 2;
while (*pl2 == *ps2) {
if (*pl2 == NUL) // reached the end
return score + SCORE_SWAP;
++pl2;
++ps2;
}
// 3: swap and swap again
if (pl2[0] == ps2[1] && pl2[1] == ps2[0]
&& STRCMP(pl2 + 2, ps2 + 2) == 0)
return score + SCORE_SWAP + SCORE_SWAP;
// 4: swap and substitute
if (STRCMP(pl2 + 1, ps2 + 1) == 0)
return score + SCORE_SWAP + SCORE_SUBST;
}
// 5: substitute
pl2 = pl + 1;
ps2 = ps + 1;
while (*pl2 == *ps2) {
if (*pl2 == NUL) // reached the end
return score + SCORE_SUBST;
++pl2;
++ps2;
}
// 6: substitute and swap
if (pl2[0] == ps2[1] && pl2[1] == ps2[0]
&& STRCMP(pl2 + 2, ps2 + 2) == 0)
return score + SCORE_SUBST + SCORE_SWAP;
// 7: substitute and substitute
if (STRCMP(pl2 + 1, ps2 + 1) == 0)
return score + SCORE_SUBST + SCORE_SUBST;
// 8: insert then delete
pl2 = pl;
ps2 = ps + 1;
while (*pl2 == *ps2) {
++pl2;
++ps2;
}
if (STRCMP(pl2 + 1, ps2) == 0)
return score + SCORE_INS + SCORE_DEL;
// 9: delete then insert
pl2 = pl + 1;
ps2 = ps;
while (*pl2 == *ps2) {
++pl2;
++ps2;
}
if (STRCMP(pl2, ps2 + 1) == 0)
return score + SCORE_INS + SCORE_DEL;
// Failed to compare.
break;
}
return SCORE_MAXMAX;
}
// Compute the "edit distance" to turn "badword" into "goodword". The less
// deletes/inserts/substitutes/swaps are required the lower the score.
//
// The algorithm is described by Du and Chang, 1992.
// The implementation of the algorithm comes from Aspell editdist.cpp,
// edit_distance(). It has been converted from C++ to C and modified to
// support multi-byte characters.
static int spell_edit_score(slang_T *slang, char_u *badword, char_u *goodword)
{
int *cnt;
int badlen, goodlen; // lengths including NUL
int j, i;
int t;
int bc, gc;
int pbc, pgc;
char_u *p;
int wbadword[MAXWLEN];
int wgoodword[MAXWLEN];
const int l_has_mbyte = has_mbyte;
if (l_has_mbyte) {
// Get the characters from the multi-byte strings and put them in an
// int array for easy access.
for (p = badword, badlen = 0; *p != NUL; )
wbadword[badlen++] = mb_cptr2char_adv(&p);
wbadword[badlen++] = 0;
for (p = goodword, goodlen = 0; *p != NUL; )
wgoodword[goodlen++] = mb_cptr2char_adv(&p);
wgoodword[goodlen++] = 0;
} else {
badlen = (int)STRLEN(badword) + 1;
goodlen = (int)STRLEN(goodword) + 1;
}
// We use "cnt" as an array: CNT(badword_idx, goodword_idx).
#define CNT(a, b) cnt[(a) + (b) * (badlen + 1)]
cnt = xmalloc(sizeof(int) * (badlen + 1) * (goodlen + 1));
CNT(0, 0) = 0;
for (j = 1; j <= goodlen; ++j)
CNT(0, j) = CNT(0, j - 1) + SCORE_INS;
for (i = 1; i <= badlen; ++i) {
CNT(i, 0) = CNT(i - 1, 0) + SCORE_DEL;
for (j = 1; j <= goodlen; ++j) {
if (l_has_mbyte) {
bc = wbadword[i - 1];
gc = wgoodword[j - 1];
} else {
bc = badword[i - 1];
gc = goodword[j - 1];
}
if (bc == gc)
CNT(i, j) = CNT(i - 1, j - 1);
else {
// Use a better score when there is only a case difference.
if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc))
CNT(i, j) = SCORE_ICASE + CNT(i - 1, j - 1);
else {
// For a similar character use SCORE_SIMILAR.
if (slang != NULL
&& slang->sl_has_map
&& similar_chars(slang, gc, bc))
CNT(i, j) = SCORE_SIMILAR + CNT(i - 1, j - 1);
else
CNT(i, j) = SCORE_SUBST + CNT(i - 1, j - 1);
}
if (i > 1 && j > 1) {
if (l_has_mbyte) {
pbc = wbadword[i - 2];
pgc = wgoodword[j - 2];
} else {
pbc = badword[i - 2];
pgc = goodword[j - 2];
}
if (bc == pgc && pbc == gc) {
t = SCORE_SWAP + CNT(i - 2, j - 2);
if (t < CNT(i, j))
CNT(i, j) = t;
}
}
t = SCORE_DEL + CNT(i - 1, j);
if (t < CNT(i, j))
CNT(i, j) = t;
t = SCORE_INS + CNT(i, j - 1);
if (t < CNT(i, j))
CNT(i, j) = t;
}
}
}
i = CNT(badlen - 1, goodlen - 1);
free(cnt);
return i;
}
// Like spell_edit_score(), but with a limit on the score to make it faster.
// May return SCORE_MAXMAX when the score is higher than "limit".
//
// This uses a stack for the edits still to be tried.
// The idea comes from Aspell leditdist.cpp. Rewritten in C and added support
// for multi-byte characters.
static int spell_edit_score_limit(slang_T *slang, char_u *badword, char_u *goodword, int limit)
{
limitscore_T stack[10]; // allow for over 3 * 2 edits
int stackidx;
int bi, gi;
int bi2, gi2;
int bc, gc;
int score;
int score_off;
int minscore;
int round;
// Multi-byte characters require a bit more work, use a different function
// to avoid testing "has_mbyte" quite often.
if (has_mbyte)
return spell_edit_score_limit_w(slang, badword, goodword, limit);
// The idea is to go from start to end over the words. So long as
// characters are equal just continue, this always gives the lowest score.
// When there is a difference try several alternatives. Each alternative
// increases "score" for the edit distance. Some of the alternatives are
// pushed unto a stack and tried later, some are tried right away. At the
// end of the word the score for one alternative is known. The lowest
// possible score is stored in "minscore".
stackidx = 0;
bi = 0;
gi = 0;
score = 0;
minscore = limit + 1;
for (;; ) {
// Skip over an equal part, score remains the same.
for (;; ) {
bc = badword[bi];
gc = goodword[gi];
if (bc != gc) // stop at a char that's different
break;
if (bc == NUL) { // both words end
if (score < minscore)
minscore = score;
goto pop; // do next alternative
}
++bi;
++gi;
}
if (gc == NUL) { // goodword ends, delete badword chars
do {
if ((score += SCORE_DEL) >= minscore)
goto pop; // do next alternative
} while (badword[++bi] != NUL);
minscore = score;
} else if (bc == NUL) { // badword ends, insert badword chars
do {
if ((score += SCORE_INS) >= minscore)
goto pop; // do next alternative
} while (goodword[++gi] != NUL);
minscore = score;
} else { // both words continue
// If not close to the limit, perform a change. Only try changes
// that may lead to a lower score than "minscore".
// round 0: try deleting a char from badword
// round 1: try inserting a char in badword
for (round = 0; round <= 1; ++round) {
score_off = score + (round == 0 ? SCORE_DEL : SCORE_INS);
if (score_off < minscore) {
if (score_off + SCORE_EDIT_MIN >= minscore) {
// Near the limit, rest of the words must match. We
// can check that right now, no need to push an item
// onto the stack.
bi2 = bi + 1 - round;
gi2 = gi + round;
while (goodword[gi2] == badword[bi2]) {
if (goodword[gi2] == NUL) {
minscore = score_off;
break;
}
++bi2;
++gi2;
}
} else {
// try deleting/inserting a character later
stack[stackidx].badi = bi + 1 - round;
stack[stackidx].goodi = gi + round;
stack[stackidx].score = score_off;
++stackidx;
}
}
}
if (score + SCORE_SWAP < minscore) {
// If swapping two characters makes a match then the
// substitution is more expensive, thus there is no need to
// try both.
if (gc == badword[bi + 1] && bc == goodword[gi + 1]) {
// Swap two characters, that is: skip them.
gi += 2;
bi += 2;
score += SCORE_SWAP;
continue;
}
}
// Substitute one character for another which is the same
// thing as deleting a character from both goodword and badword.
// Use a better score when there is only a case difference.
if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc))
score += SCORE_ICASE;
else {
// For a similar character use SCORE_SIMILAR.
if (slang != NULL
&& slang->sl_has_map
&& similar_chars(slang, gc, bc))
score += SCORE_SIMILAR;
else
score += SCORE_SUBST;
}
if (score < minscore) {
// Do the substitution.
++gi;
++bi;
continue;
}
}
pop:
// Get here to try the next alternative, pop it from the stack.
if (stackidx == 0) // stack is empty, finished
break;
// pop an item from the stack
--stackidx;
gi = stack[stackidx].goodi;
bi = stack[stackidx].badi;
score = stack[stackidx].score;
}
// When the score goes over "limit" it may actually be much higher.
// Return a very large number to avoid going below the limit when giving a
// bonus.
if (minscore > limit)
return SCORE_MAXMAX;
return minscore;
}
// Multi-byte version of spell_edit_score_limit().
// Keep it in sync with the above!
static int spell_edit_score_limit_w(slang_T *slang, char_u *badword, char_u *goodword, int limit)
{
limitscore_T stack[10]; // allow for over 3 * 2 edits
int stackidx;
int bi, gi;
int bi2, gi2;
int bc, gc;
int score;
int score_off;
int minscore;
int round;
char_u *p;
int wbadword[MAXWLEN];
int wgoodword[MAXWLEN];
// Get the characters from the multi-byte strings and put them in an
// int array for easy access.
bi = 0;
for (p = badword; *p != NUL; )
wbadword[bi++] = mb_cptr2char_adv(&p);
wbadword[bi++] = 0;
gi = 0;
for (p = goodword; *p != NUL; )
wgoodword[gi++] = mb_cptr2char_adv(&p);
wgoodword[gi++] = 0;
// The idea is to go from start to end over the words. So long as
// characters are equal just continue, this always gives the lowest score.
// When there is a difference try several alternatives. Each alternative
// increases "score" for the edit distance. Some of the alternatives are
// pushed unto a stack and tried later, some are tried right away. At the
// end of the word the score for one alternative is known. The lowest
// possible score is stored in "minscore".
stackidx = 0;
bi = 0;
gi = 0;
score = 0;
minscore = limit + 1;
for (;; ) {
// Skip over an equal part, score remains the same.
for (;; ) {
bc = wbadword[bi];
gc = wgoodword[gi];
if (bc != gc) // stop at a char that's different
break;
if (bc == NUL) { // both words end
if (score < minscore)
minscore = score;
goto pop; // do next alternative
}
++bi;
++gi;
}
if (gc == NUL) { // goodword ends, delete badword chars
do {
if ((score += SCORE_DEL) >= minscore)
goto pop; // do next alternative
} while (wbadword[++bi] != NUL);
minscore = score;
} else if (bc == NUL) { // badword ends, insert badword chars
do {
if ((score += SCORE_INS) >= minscore)
goto pop; // do next alternative
} while (wgoodword[++gi] != NUL);
minscore = score;
} else { // both words continue
// If not close to the limit, perform a change. Only try changes
// that may lead to a lower score than "minscore".
// round 0: try deleting a char from badword
// round 1: try inserting a char in badword
for (round = 0; round <= 1; ++round) {
score_off = score + (round == 0 ? SCORE_DEL : SCORE_INS);
if (score_off < minscore) {
if (score_off + SCORE_EDIT_MIN >= minscore) {
// Near the limit, rest of the words must match. We
// can check that right now, no need to push an item
// onto the stack.
bi2 = bi + 1 - round;
gi2 = gi + round;
while (wgoodword[gi2] == wbadword[bi2]) {
if (wgoodword[gi2] == NUL) {
minscore = score_off;
break;
}
++bi2;
++gi2;
}
} else {
// try deleting a character from badword later
stack[stackidx].badi = bi + 1 - round;
stack[stackidx].goodi = gi + round;
stack[stackidx].score = score_off;
++stackidx;
}
}
}
if (score + SCORE_SWAP < minscore) {
// If swapping two characters makes a match then the
// substitution is more expensive, thus there is no need to
// try both.
if (gc == wbadword[bi + 1] && bc == wgoodword[gi + 1]) {
// Swap two characters, that is: skip them.
gi += 2;
bi += 2;
score += SCORE_SWAP;
continue;
}
}
// Substitute one character for another which is the same
// thing as deleting a character from both goodword and badword.
// Use a better score when there is only a case difference.
if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc))
score += SCORE_ICASE;
else {
// For a similar character use SCORE_SIMILAR.
if (slang != NULL
&& slang->sl_has_map
&& similar_chars(slang, gc, bc))
score += SCORE_SIMILAR;
else
score += SCORE_SUBST;
}
if (score < minscore) {
// Do the substitution.
++gi;
++bi;
continue;
}
}
pop:
// Get here to try the next alternative, pop it from the stack.
if (stackidx == 0) // stack is empty, finished
break;
// pop an item from the stack
--stackidx;
gi = stack[stackidx].goodi;
bi = stack[stackidx].badi;
score = stack[stackidx].score;
}
// When the score goes over "limit" it may actually be much higher.
// Return a very large number to avoid going below the limit when giving a
// bonus.
if (minscore > limit)
return SCORE_MAXMAX;
return minscore;
}
// ":spellinfo"
void ex_spellinfo(exarg_T *eap)
{
langp_T *lp;
char_u *p;
if (no_spell_checking(curwin))
return;
msg_start();
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len && !got_int; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
msg_puts((char_u *)"file: ");
msg_puts(lp->lp_slang->sl_fname);
msg_putchar('\n');
p = lp->lp_slang->sl_info;
if (p != NULL) {
msg_puts(p);
msg_putchar('\n');
}
}
msg_end();
}
#define DUMPFLAG_KEEPCASE 1 // round 2: keep-case tree
#define DUMPFLAG_COUNT 2 // include word count
#define DUMPFLAG_ICASE 4 // ignore case when finding matches
#define DUMPFLAG_ONECAP 8 // pattern starts with capital
#define DUMPFLAG_ALLCAP 16 // pattern is all capitals
// ":spelldump"
void ex_spelldump(exarg_T *eap)
{
char_u *spl;
long dummy;
if (no_spell_checking(curwin))
return;
get_option_value((char_u*)"spl", &dummy, &spl, OPT_LOCAL);
// Create a new empty buffer in a new window.
do_cmdline_cmd((char_u *)"new");
// enable spelling locally in the new window
set_option_value((char_u*)"spell", TRUE, (char_u*)"", OPT_LOCAL);
set_option_value((char_u*)"spl", dummy, spl, OPT_LOCAL);
free(spl);
if (!bufempty() || !buf_valid(curbuf))
return;
spell_dump_compl(NULL, 0, NULL, eap->forceit ? DUMPFLAG_COUNT : 0);
// Delete the empty line that we started with.
if (curbuf->b_ml.ml_line_count > 1)
ml_delete(curbuf->b_ml.ml_line_count, FALSE);
redraw_later(NOT_VALID);
}
// Go through all possible words and:
// 1. When "pat" is NULL: dump a list of all words in the current buffer.
// "ic" and "dir" are not used.
// 2. When "pat" is not NULL: add matching words to insert mode completion.
void
spell_dump_compl (
char_u *pat, // leading part of the word
int ic, // ignore case
int *dir, // direction for adding matches
int dumpflags_arg // DUMPFLAG_*
)
{
langp_T *lp;
slang_T *slang;
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
char_u word[MAXWLEN];
int c;
char_u *byts;
idx_T *idxs;
linenr_T lnum = 0;
int round;
int depth;
int n;
int flags;
char_u *region_names = NULL; // region names being used
bool do_region = true; // dump region names and numbers
char_u *p;
int dumpflags = dumpflags_arg;
int patlen;
// When ignoring case or when the pattern starts with capital pass this on
// to dump_word().
if (pat != NULL) {
if (ic)
dumpflags |= DUMPFLAG_ICASE;
else {
n = captype(pat, NULL);
if (n == WF_ONECAP)
dumpflags |= DUMPFLAG_ONECAP;
else if (n == WF_ALLCAP
&& (int)STRLEN(pat) > mb_ptr2len(pat)
)
dumpflags |= DUMPFLAG_ALLCAP;
}
}
// Find out if we can support regions: All languages must support the same
// regions or none at all.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
p = lp->lp_slang->sl_regions;
if (p[0] != 0) {
if (region_names == NULL) // first language with regions
region_names = p;
else if (STRCMP(region_names, p) != 0) {
do_region = false; // region names are different
break;
}
}
}
if (do_region && region_names != NULL) {
if (pat == NULL) {
vim_snprintf((char *)IObuff, IOSIZE, "/regions=%s", region_names);
ml_append(lnum++, IObuff, (colnr_T)0, FALSE);
}
} else
do_region = false;
// Loop over all files loaded for the entries in 'spelllang'.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (slang->sl_fbyts == NULL) // reloading failed
continue;
if (pat == NULL) {
vim_snprintf((char *)IObuff, IOSIZE, "# file: %s", slang->sl_fname);
ml_append(lnum++, IObuff, (colnr_T)0, FALSE);
}
// When matching with a pattern and there are no prefixes only use
// parts of the tree that match "pat".
if (pat != NULL && slang->sl_pbyts == NULL)
patlen = (int)STRLEN(pat);
else
patlen = -1;
// round 1: case-folded tree
// round 2: keep-case tree
for (round = 1; round <= 2; ++round) {
if (round == 1) {
dumpflags &= ~DUMPFLAG_KEEPCASE;
byts = slang->sl_fbyts;
idxs = slang->sl_fidxs;
} else {
dumpflags |= DUMPFLAG_KEEPCASE;
byts = slang->sl_kbyts;
idxs = slang->sl_kidxs;
}
if (byts == NULL)
continue; // array is empty
depth = 0;
arridx[0] = 0;
curi[0] = 1;
while (depth >= 0 && !got_int
&& (pat == NULL || !compl_interrupted)) {
if (curi[depth] > byts[arridx[depth]]) {
// Done all bytes at this node, go up one level.
--depth;
line_breakcheck();
ins_compl_check_keys(50);
} else {
// Do one more byte at this node.
n = arridx[depth] + curi[depth];
++curi[depth];
c = byts[n];
if (c == 0) {
// End of word, deal with the word.
// Don't use keep-case words in the fold-case tree,
// they will appear in the keep-case tree.
// Only use the word when the region matches.
flags = (int)idxs[n];
if ((round == 2 || (flags & WF_KEEPCAP) == 0)
&& (flags & WF_NEEDCOMP) == 0
&& (do_region
|| (flags & WF_REGION) == 0
|| (((unsigned)flags >> 16)
& lp->lp_region) != 0)) {
word[depth] = NUL;
if (!do_region)
flags &= ~WF_REGION;
// Dump the basic word if there is no prefix or
// when it's the first one.
c = (unsigned)flags >> 24;
if (c == 0 || curi[depth] == 2) {
dump_word(slang, word, pat, dir,
dumpflags, flags, lnum);
if (pat == NULL)
++lnum;
}
// Apply the prefix, if there is one.
if (c != 0)
lnum = dump_prefixes(slang, word, pat, dir,
dumpflags, flags, lnum);
}
} else {
// Normal char, go one level deeper.
word[depth++] = c;
arridx[depth] = idxs[n];
curi[depth] = 1;
// Check if this characters matches with the pattern.
// If not skip the whole tree below it.
// Always ignore case here, dump_word() will check
// proper case later. This isn't exactly right when
// length changes for multi-byte characters with
// ignore case...
if (depth <= patlen
&& MB_STRNICMP(word, pat, depth) != 0)
--depth;
}
}
}
}
}
}
// Dumps one word: apply case modifications and append a line to the buffer.
// When "lnum" is zero add insert mode completion.
static void dump_word(slang_T *slang, char_u *word, char_u *pat, int *dir, int dumpflags, int wordflags, linenr_T lnum)
{
bool keepcap = false;
char_u *p;
char_u *tw;
char_u cword[MAXWLEN];
char_u badword[MAXWLEN + 10];
int i;
int flags = wordflags;
if (dumpflags & DUMPFLAG_ONECAP)
flags |= WF_ONECAP;
if (dumpflags & DUMPFLAG_ALLCAP)
flags |= WF_ALLCAP;
if ((dumpflags & DUMPFLAG_KEEPCASE) == 0 && (flags & WF_CAPMASK) != 0) {
// Need to fix case according to "flags".
make_case_word(word, cword, flags);
p = cword;
} else {
p = word;
if ((dumpflags & DUMPFLAG_KEEPCASE)
&& ((captype(word, NULL) & WF_KEEPCAP) == 0
|| (flags & WF_FIXCAP) != 0))
keepcap = true;
}
tw = p;
if (pat == NULL) {
// Add flags and regions after a slash.
if ((flags & (WF_BANNED | WF_RARE | WF_REGION)) || keepcap) {
STRCPY(badword, p);
STRCAT(badword, "/");
if (keepcap)
STRCAT(badword, "=");
if (flags & WF_BANNED)
STRCAT(badword, "!");
else if (flags & WF_RARE)
STRCAT(badword, "?");
if (flags & WF_REGION)
for (i = 0; i < 7; ++i)
if (flags & (0x10000 << i))
sprintf((char *)badword + STRLEN(badword), "%d", i + 1);
p = badword;
}
if (dumpflags & DUMPFLAG_COUNT) {
hashitem_T *hi;
// Include the word count for ":spelldump!".
hi = hash_find(&slang->sl_wordcount, tw);
if (!HASHITEM_EMPTY(hi)) {
vim_snprintf((char *)IObuff, IOSIZE, "%s\t%d",
tw, HI2WC(hi)->wc_count);
p = IObuff;
}
}
ml_append(lnum, p, (colnr_T)0, FALSE);
} else if (((dumpflags & DUMPFLAG_ICASE)
? MB_STRNICMP(p, pat, STRLEN(pat)) == 0
: STRNCMP(p, pat, STRLEN(pat)) == 0)
&& ins_compl_add_infercase(p, (int)STRLEN(p),
p_ic, NULL, *dir, 0) == OK)
// if dir was BACKWARD then honor it just once
*dir = FORWARD;
}
// For ":spelldump": Find matching prefixes for "word". Prepend each to
// "word" and append a line to the buffer.
// When "lnum" is zero add insert mode completion.
// Return the updated line number.
static linenr_T
dump_prefixes (
slang_T *slang,
char_u *word, // case-folded word
char_u *pat,
int *dir,
int dumpflags,
int flags, // flags with prefix ID
linenr_T startlnum
)
{
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
char_u prefix[MAXWLEN];
char_u word_up[MAXWLEN];
bool has_word_up = false;
int c;
char_u *byts;
idx_T *idxs;
linenr_T lnum = startlnum;
int depth;
int n;
int len;
int i;
// If the word starts with a lower-case letter make the word with an
// upper-case letter in word_up[].
c = PTR2CHAR(word);
if (SPELL_TOUPPER(c) != c) {
onecap_copy(word, word_up, true);
has_word_up = true;
}
byts = slang->sl_pbyts;
idxs = slang->sl_pidxs;
if (byts != NULL) { // array not is empty
// Loop over all prefixes, building them byte-by-byte in prefix[].
// When at the end of a prefix check that it supports "flags".
depth = 0;
arridx[0] = 0;
curi[0] = 1;
while (depth >= 0 && !got_int) {
n = arridx[depth];
len = byts[n];
if (curi[depth] > len) {
// Done all bytes at this node, go up one level.
--depth;
line_breakcheck();
} else {
// Do one more byte at this node.
n += curi[depth];
++curi[depth];
c = byts[n];
if (c == 0) {
// End of prefix, find out how many IDs there are.
for (i = 1; i < len; ++i)
if (byts[n + i] != 0)
break;
curi[depth] += i - 1;
c = valid_word_prefix(i, n, flags, word, slang, false);
if (c != 0) {
STRLCPY(prefix + depth, word, MAXWLEN - depth);
dump_word(slang, prefix, pat, dir, dumpflags,
(c & WF_RAREPFX) ? (flags | WF_RARE)
: flags, lnum);
if (lnum != 0)
++lnum;
}
// Check for prefix that matches the word when the
// first letter is upper-case, but only if the prefix has
// a condition.
if (has_word_up) {
c = valid_word_prefix(i, n, flags, word_up, slang,
true);
if (c != 0) {
STRLCPY(prefix + depth, word_up, MAXWLEN - depth);
dump_word(slang, prefix, pat, dir, dumpflags,
(c & WF_RAREPFX) ? (flags | WF_RARE)
: flags, lnum);
if (lnum != 0)
++lnum;
}
}
} else {
// Normal char, go one level deeper.
prefix[depth++] = c;
arridx[depth] = idxs[n];
curi[depth] = 1;
}
}
}
}
return lnum;
}
// Move "p" to the end of word "start".
// Uses the spell-checking word characters.
char_u *spell_to_word_end(char_u *start, win_T *win)
{
char_u *p = start;
while (*p != NUL && spell_iswordp(p, win))
mb_ptr_adv(p);
return p;
}
// For Insert mode completion CTRL-X s:
// Find start of the word in front of column "startcol".
// We don't check if it is badly spelled, with completion we can only change
// the word in front of the cursor.
// Returns the column number of the word.
int spell_word_start(int startcol)
{
char_u *line;
char_u *p;
int col = 0;
if (no_spell_checking(curwin))
return startcol;
// Find a word character before "startcol".
line = get_cursor_line_ptr();
for (p = line + startcol; p > line; ) {
mb_ptr_back(line, p);
if (spell_iswordp_nmw(p, curwin))
break;
}
// Go back to start of the word.
while (p > line) {
col = (int)(p - line);
mb_ptr_back(line, p);
if (!spell_iswordp(p, curwin))
break;
col = 0;
}
return col;
}
// Need to check for 'spellcapcheck' now, the word is removed before
// expand_spelling() is called. Therefore the ugly global variable.
static bool spell_expand_need_cap;
void spell_expand_check_cap(colnr_T col)
{
spell_expand_need_cap = check_need_cap(curwin->w_cursor.lnum, col);
}
// Get list of spelling suggestions.
// Used for Insert mode completion CTRL-X ?.
// Returns the number of matches. The matches are in "matchp[]", array of
// allocated strings.
int expand_spelling(linenr_T lnum, char_u *pat, char_u ***matchp)
{
garray_T ga;
spell_suggest_list(&ga, pat, 100, spell_expand_need_cap, true);
*matchp = ga.ga_data;
return ga.ga_len;
}