Files
neovim/src/nvim/eval/typval.c
TJ DeVries 6360cf7ce8 lua: Add ability to pass tables with __call
vim-patch:8.2.1054: not so easy to pass a lua function to Vim
vim-patch:8.2.1084: Lua: registering function has useless code

I think I have also opened up the possibility for people to use these
callbacks elsewhere, since I've added a new struct that we should be
able to use.

Also, this should allow us to determine what the state of a list is in
Lua or a dictionary in Lua, since we now can track the luaref as we go.
2020-07-10 20:23:12 -04:00

3009 lines
83 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stdbool.h>
#include "nvim/lib/queue.h"
#include "nvim/eval/typval.h"
#include "nvim/eval/gc.h"
#include "nvim/eval/executor.h"
#include "nvim/eval/encode.h"
#include "nvim/eval/typval_encode.h"
#include "nvim/eval.h"
#include "nvim/eval/userfunc.h"
#include "nvim/lua/executor.h"
#include "nvim/types.h"
#include "nvim/assert.h"
#include "nvim/memory.h"
#include "nvim/globals.h"
#include "nvim/hashtab.h"
#include "nvim/vim.h"
#include "nvim/ascii.h"
#include "nvim/pos.h"
#include "nvim/charset.h"
#include "nvim/garray.h"
#include "nvim/gettext.h"
#include "nvim/macros.h"
#include "nvim/mbyte.h"
#include "nvim/message.h"
// TODO(ZyX-I): Move line_breakcheck out of misc1
#include "nvim/misc1.h" // For line_breakcheck
#include "nvim/os/fileio.h"
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "eval/typval.c.generated.h"
#endif
bool tv_in_free_unref_items = false;
// TODO(ZyX-I): Remove DICT_MAXNEST, make users be non-recursive instead
#define DICT_MAXNEST 100
const char *const tv_empty_string = "";
//{{{1 Lists
//{{{2 List log
#ifdef LOG_LIST_ACTIONS
ListLog *list_log_first = NULL;
ListLog *list_log_last = NULL;
/// Write list log to the given file
///
/// @param[in] fname File to write log to. Will be appended to if already
/// present.
void list_write_log(const char *const fname)
FUNC_ATTR_NONNULL_ALL
{
FileDescriptor fp;
const int fo_ret = file_open(&fp, fname, kFileCreate|kFileAppend, 0600);
if (fo_ret != 0) {
emsgf(_("E5142: Failed to open file %s: %s"), fname, os_strerror(fo_ret));
return;
}
for (ListLog *chunk = list_log_first; chunk != NULL;) {
for (size_t i = 0; i < chunk->size; i++) {
char buf[10 + 1 + ((16 + 3) * 3) + (8 + 2) + 2];
// act : hex " c:" len "[]" "\n\0"
const ListLogEntry entry = chunk->entries[i];
const size_t snp_len = (size_t)snprintf(
buf, sizeof(buf),
"%-10.10s: l:%016" PRIxPTR "[%08d] 1:%016" PRIxPTR " 2:%016" PRIxPTR
"\n",
entry.action, entry.l, entry.len, entry.li1, entry.li2);
assert(snp_len + 1 == sizeof(buf));
const ptrdiff_t fw_ret = file_write(&fp, buf, snp_len);
if (fw_ret != (ptrdiff_t)snp_len) {
assert(fw_ret < 0);
if (i) {
memmove(chunk->entries, chunk->entries + i,
sizeof(chunk->entries[0]) * (chunk->size - i));
chunk->size -= i;
}
emsgf(_("E5143: Failed to write to file %s: %s"),
fname, os_strerror((int)fw_ret));
return;
}
}
list_log_first = chunk->next;
xfree(chunk);
chunk = list_log_first;
}
const int fc_ret = file_close(&fp, true);
if (fc_ret != 0) {
emsgf(_("E5144: Failed to close file %s: %s"), fname, os_strerror(fc_ret));
}
}
#ifdef EXITFREE
/// Free list log
void list_free_log(void)
{
for (ListLog *chunk = list_log_first; chunk != NULL;) {
list_log_first = chunk->next;
xfree(chunk);
chunk = list_log_first;
}
}
#endif
#endif
//{{{2 List item
/// Allocate a list item
///
/// @warning Allocated item is not initialized, do not forget to initialize it
/// and specifically set lv_lock.
///
/// @return [allocated] new list item.
static listitem_T *tv_list_item_alloc(void)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_MALLOC
{
return xmalloc(sizeof(listitem_T));
}
/// Remove a list item from a List and free it
///
/// Also clears the value.
///
/// @param[out] l List to remove item from.
/// @param[in,out] item Item to remove.
///
/// @return Pointer to the list item just after removed one, NULL if removed
/// item was the last one.
listitem_T *tv_list_item_remove(list_T *const l, listitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
listitem_T *const next_item = TV_LIST_ITEM_NEXT(l, item);
tv_list_drop_items(l, item, item);
tv_clear(TV_LIST_ITEM_TV(item));
xfree(item);
return next_item;
}
//{{{2 List watchers
/// Add a watcher to a list
///
/// @param[out] l List to add watcher to.
/// @param[in] lw Watcher to add.
void tv_list_watch_add(list_T *const l, listwatch_T *const lw)
FUNC_ATTR_NONNULL_ALL
{
lw->lw_next = l->lv_watch;
l->lv_watch = lw;
}
/// Remove a watcher from a list
///
/// Does not give a warning if watcher was not found.
///
/// @param[out] l List to remove watcher from.
/// @param[in] lwrem Watcher to remove.
void tv_list_watch_remove(list_T *const l, listwatch_T *const lwrem)
FUNC_ATTR_NONNULL_ALL
{
listwatch_T **lwp = &l->lv_watch;
for (listwatch_T *lw = l->lv_watch; lw != NULL; lw = lw->lw_next) {
if (lw == lwrem) {
*lwp = lw->lw_next;
break;
}
lwp = &lw->lw_next;
}
}
/// Advance watchers to the next item
///
/// Used just before removing an item from a list.
///
/// @param[out] l List from which item is removed.
/// @param[in] item List item being removed.
void tv_list_watch_fix(list_T *const l, const listitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
for (listwatch_T *lw = l->lv_watch; lw != NULL; lw = lw->lw_next) {
if (lw->lw_item == item) {
lw->lw_item = item->li_next;
}
}
}
//{{{2 Alloc/free
/// Allocate an empty list
///
/// Caller should take care of the reference count.
///
/// @param[in] len Expected number of items to be populated before list
/// becomes accessible from VimL. It is still valid to
/// underpopulate a list, value only controls how many elements
/// will be allocated in advance. Currently does nothing.
/// @see ListLenSpecials.
///
/// @return [allocated] new list.
list_T *tv_list_alloc(const ptrdiff_t len)
FUNC_ATTR_NONNULL_RET
{
list_T *const list = xcalloc(1, sizeof(list_T));
// Prepend the list to the list of lists for garbage collection.
if (gc_first_list != NULL) {
gc_first_list->lv_used_prev = list;
}
list->lv_used_prev = NULL;
list->lv_used_next = gc_first_list;
gc_first_list = list;
list_log(list, NULL, (void *)(uintptr_t)len, "alloc");
return list;
}
/// Initialize a static list with 10 items
///
/// @param[out] sl Static list to initialize.
void tv_list_init_static10(staticList10_T *const sl)
FUNC_ATTR_NONNULL_ALL
{
#define SL_SIZE ARRAY_SIZE(sl->sl_items)
list_T *const l = &sl->sl_list;
memset(sl, 0, sizeof(staticList10_T));
l->lv_first = &sl->sl_items[0];
l->lv_last = &sl->sl_items[SL_SIZE - 1];
l->lv_refcount = DO_NOT_FREE_CNT;
tv_list_set_lock(l, VAR_FIXED);
sl->sl_list.lv_len = 10;
sl->sl_items[0].li_prev = NULL;
sl->sl_items[0].li_next = &sl->sl_items[1];
sl->sl_items[SL_SIZE - 1].li_prev = &sl->sl_items[SL_SIZE - 2];
sl->sl_items[SL_SIZE - 1].li_next = NULL;
for (size_t i = 1; i < SL_SIZE - 1; i++) {
listitem_T *const li = &sl->sl_items[i];
li->li_prev = li - 1;
li->li_next = li + 1;
}
list_log((const list_T *)sl, &sl->sl_items[0], &sl->sl_items[SL_SIZE - 1],
"s10init");
#undef SL_SIZE
}
/// Initialize static list with undefined number of elements
///
/// @param[out] l List to initialize.
void tv_list_init_static(list_T *const l)
FUNC_ATTR_NONNULL_ALL
{
memset(l, 0, sizeof(*l));
l->lv_refcount = DO_NOT_FREE_CNT;
list_log(l, NULL, NULL, "sinit");
}
/// Free items contained in a list
///
/// @param[in,out] l List to clear.
void tv_list_free_contents(list_T *const l)
FUNC_ATTR_NONNULL_ALL
{
list_log(l, NULL, NULL, "freecont");
for (listitem_T *item = l->lv_first; item != NULL; item = l->lv_first) {
// Remove the item before deleting it.
l->lv_first = item->li_next;
tv_clear(&item->li_tv);
xfree(item);
}
l->lv_len = 0;
l->lv_idx_item = NULL;
l->lv_last = NULL;
assert(l->lv_watch == NULL);
}
/// Free a list itself, ignoring items it contains
///
/// Ignores the reference count.
///
/// @param[in,out] l List to free.
void tv_list_free_list(list_T *const l)
FUNC_ATTR_NONNULL_ALL
{
// Remove the list from the list of lists for garbage collection.
if (l->lv_used_prev == NULL) {
gc_first_list = l->lv_used_next;
} else {
l->lv_used_prev->lv_used_next = l->lv_used_next;
}
if (l->lv_used_next != NULL) {
l->lv_used_next->lv_used_prev = l->lv_used_prev;
}
list_log(l, NULL, NULL, "freelist");
nlua_free_typval_list(l);
xfree(l);
}
/// Free a list, including all items it points to
///
/// Ignores the reference count. Does not do anything if
/// tv_in_free_unref_items is true.
///
/// @param[in,out] l List to free.
void tv_list_free(list_T *const l)
FUNC_ATTR_NONNULL_ALL
{
if (!tv_in_free_unref_items) {
tv_list_free_contents(l);
tv_list_free_list(l);
}
}
/// Unreference a list
///
/// Decrements the reference count and frees when it becomes zero or less.
///
/// @param[in,out] l List to unreference.
void tv_list_unref(list_T *const l)
{
if (l != NULL && --l->lv_refcount <= 0) {
tv_list_free(l);
}
}
//{{{2 Add/remove
/// Remove items "item" to "item2" from list "l"
///
/// @warning Does not free the listitem or the value!
///
/// @param[out] l List to remove from.
/// @param[in] item First item to remove.
/// @param[in] item2 Last item to remove.
void tv_list_drop_items(list_T *const l, listitem_T *const item,
listitem_T *const item2)
FUNC_ATTR_NONNULL_ALL
{
list_log(l, item, item2, "drop");
// Notify watchers.
for (listitem_T *ip = item; ip != item2->li_next; ip = ip->li_next) {
l->lv_len--;
tv_list_watch_fix(l, ip);
}
if (item2->li_next == NULL) {
l->lv_last = item->li_prev;
} else {
item2->li_next->li_prev = item->li_prev;
}
if (item->li_prev == NULL) {
l->lv_first = item2->li_next;
} else {
item->li_prev->li_next = item2->li_next;
}
l->lv_idx_item = NULL;
list_log(l, l->lv_first, l->lv_last, "afterdrop");
}
/// Like tv_list_drop_items, but also frees all removed items
void tv_list_remove_items(list_T *const l, listitem_T *const item,
listitem_T *const item2)
FUNC_ATTR_NONNULL_ALL
{
list_log(l, item, item2, "remove");
tv_list_drop_items(l, item, item2);
for (listitem_T *li = item;;) {
tv_clear(TV_LIST_ITEM_TV(li));
listitem_T *const nli = li->li_next;
xfree(li);
if (li == item2) {
break;
}
li = nli;
}
}
/// Move items "item" to "item2" from list "l" to the end of the list "tgt_l"
///
/// @param[out] l List to move from.
/// @param[in] item First item to move.
/// @param[in] item2 Last item to move.
/// @param[out] tgt_l List to move to.
/// @param[in] cnt Number of items moved.
void tv_list_move_items(list_T *const l, listitem_T *const item,
listitem_T *const item2, list_T *const tgt_l,
const int cnt)
FUNC_ATTR_NONNULL_ALL
{
list_log(l, item, item2, "move");
tv_list_drop_items(l, item, item2);
item->li_prev = tgt_l->lv_last;
item2->li_next = NULL;
if (tgt_l->lv_last == NULL) {
tgt_l->lv_first = item;
} else {
tgt_l->lv_last->li_next = item;
}
tgt_l->lv_last = item2;
tgt_l->lv_len += cnt;
list_log(tgt_l, tgt_l->lv_first, tgt_l->lv_last, "movetgt");
}
/// Insert list item
///
/// @param[out] l List to insert to.
/// @param[in,out] ni Item to insert.
/// @param[in] item Item to insert before. If NULL, inserts at the end of the
/// list.
void tv_list_insert(list_T *const l, listitem_T *const ni,
listitem_T *const item)
FUNC_ATTR_NONNULL_ARG(1, 2)
{
if (item == NULL) {
// Append new item at end of list.
tv_list_append(l, ni);
} else {
// Insert new item before existing item.
ni->li_prev = item->li_prev;
ni->li_next = item;
if (item->li_prev == NULL) {
l->lv_first = ni;
l->lv_idx++;
} else {
item->li_prev->li_next = ni;
l->lv_idx_item = NULL;
}
item->li_prev = ni;
l->lv_len++;
list_log(l, ni, item, "insert");
}
}
/// Insert VimL value into a list
///
/// @param[out] l List to insert to.
/// @param[in,out] tv Value to insert. Is copied (@see tv_copy()) to an
/// allocated listitem_T and inserted.
/// @param[in] item Item to insert before. If NULL, inserts at the end of the
/// list.
void tv_list_insert_tv(list_T *const l, typval_T *const tv,
listitem_T *const item)
{
listitem_T *const ni = tv_list_item_alloc();
tv_copy(tv, &ni->li_tv);
tv_list_insert(l, ni, item);
}
/// Append item to the end of list
///
/// @param[out] l List to append to.
/// @param[in,out] item Item to append.
void tv_list_append(list_T *const l, listitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
list_log(l, item, NULL, "append");
if (l->lv_last == NULL) {
// empty list
l->lv_first = item;
l->lv_last = item;
item->li_prev = NULL;
} else {
l->lv_last->li_next = item;
item->li_prev = l->lv_last;
l->lv_last = item;
}
l->lv_len++;
item->li_next = NULL;
}
/// Append VimL value to the end of list
///
/// @param[out] l List to append to.
/// @param[in,out] tv Value to append. Is copied (@see tv_copy()) to an
/// allocated listitem_T.
void tv_list_append_tv(list_T *const l, typval_T *const tv)
FUNC_ATTR_NONNULL_ALL
{
listitem_T *const li = tv_list_item_alloc();
tv_copy(tv, TV_LIST_ITEM_TV(li));
tv_list_append(l, li);
}
/// Like tv_list_append_tv(), but tv is moved to a list
///
/// This means that it is no longer valid to use contents of the typval_T after
/// function exits.
void tv_list_append_owned_tv(list_T *const l, typval_T tv)
FUNC_ATTR_NONNULL_ALL
{
listitem_T *const li = tv_list_item_alloc();
*TV_LIST_ITEM_TV(li) = tv;
tv_list_append(l, li);
}
/// Append a list to a list as one item
///
/// @param[out] l List to append to.
/// @param[in,out] itemlist List to append. Reference count is increased.
void tv_list_append_list(list_T *const l, list_T *const itemlist)
FUNC_ATTR_NONNULL_ARG(1)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_LIST,
.v_lock = VAR_UNLOCKED,
.vval.v_list = itemlist,
});
tv_list_ref(itemlist);
}
/// Append a dictionary to a list
///
/// @param[out] l List to append to.
/// @param[in,out] dict Dictionary to append. Reference count is increased.
void tv_list_append_dict(list_T *const l, dict_T *const dict)
FUNC_ATTR_NONNULL_ARG(1)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_DICT,
.v_lock = VAR_UNLOCKED,
.vval.v_dict = dict,
});
if (dict != NULL) {
dict->dv_refcount++;
}
}
/// Make a copy of "str" and append it as an item to list "l"
///
/// @param[out] l List to append to.
/// @param[in] str String to append.
/// @param[in] len Length of the appended string. May be -1, in this
/// case string is considered to be usual zero-terminated
/// string or NULL “empty” string.
void tv_list_append_string(list_T *const l, const char *const str,
const ssize_t len)
FUNC_ATTR_NONNULL_ARG(1)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_STRING,
.v_lock = VAR_UNLOCKED,
.vval.v_string = (str == NULL
? NULL
: (len >= 0
? xmemdupz(str, (size_t)len)
: xstrdup(str))),
});
}
/// Append given string to the list
///
/// Unlike list_append_string this function does not copy the string.
///
/// @param[out] l List to append to.
/// @param[in] str String to append.
void tv_list_append_allocated_string(list_T *const l, char *const str)
FUNC_ATTR_NONNULL_ARG(1)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_STRING,
.v_lock = VAR_UNLOCKED,
.vval.v_string = (char_u *)str,
});
}
/// Append number to the list
///
/// @param[out] l List to append to.
/// @param[in] n Number to append. Will be recorded in the allocated
/// listitem_T.
void tv_list_append_number(list_T *const l, const varnumber_T n)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_NUMBER,
.v_lock = VAR_UNLOCKED,
.vval.v_number = n,
});
}
//{{{2 Operations on the whole list
/// Make a copy of list
///
/// @param[in] conv If non-NULL, then all internal strings will be converted.
/// Only used when `deep` is true.
/// @param[in] orig Original list to copy.
/// @param[in] deep If false, then shallow copy will be done.
/// @param[in] copyID See var_item_copy().
///
/// @return Copied list. May be NULL in case original list is NULL or some
/// failure happens. The refcount of the new list is set to 1.
list_T *tv_list_copy(const vimconv_T *const conv, list_T *const orig,
const bool deep, const int copyID)
FUNC_ATTR_WARN_UNUSED_RESULT
{
if (orig == NULL) {
return NULL;
}
list_T *copy = tv_list_alloc(tv_list_len(orig));
tv_list_ref(copy);
if (copyID != 0) {
// Do this before adding the items, because one of the items may
// refer back to this list.
orig->lv_copyID = copyID;
orig->lv_copylist = copy;
}
TV_LIST_ITER(orig, item, {
if (got_int) {
break;
}
listitem_T *const ni = tv_list_item_alloc();
if (deep) {
if (var_item_copy(conv, TV_LIST_ITEM_TV(item), TV_LIST_ITEM_TV(ni),
deep, copyID) == FAIL) {
xfree(ni);
goto tv_list_copy_error;
}
} else {
tv_copy(TV_LIST_ITEM_TV(item), TV_LIST_ITEM_TV(ni));
}
tv_list_append(copy, ni);
});
return copy;
tv_list_copy_error:
tv_list_unref(copy);
return NULL;
}
/// Extend first list with the second
///
/// @param[out] l1 List to extend.
/// @param[in] l2 List to extend with.
/// @param[in] bef If not NULL, extends before this item.
void tv_list_extend(list_T *const l1, list_T *const l2,
listitem_T *const bef)
FUNC_ATTR_NONNULL_ARG(1)
{
int todo = tv_list_len(l2);
listitem_T *const befbef = (bef == NULL ? NULL : bef->li_prev);
listitem_T *const saved_next = (befbef == NULL ? NULL : befbef->li_next);
// We also quit the loop when we have inserted the original item count of
// the list, avoid a hang when we extend a list with itself.
for (listitem_T *item = tv_list_first(l2)
; item != NULL && todo--
; item = (item == befbef ? saved_next : item->li_next)) {
tv_list_insert_tv(l1, TV_LIST_ITEM_TV(item), bef);
}
}
/// Concatenate lists into a new list
///
/// @param[in] l1 First list.
/// @param[in] l2 Second list.
/// @param[out] ret_tv Location where new list is saved.
///
/// @return OK or FAIL.
int tv_list_concat(list_T *const l1, list_T *const l2, typval_T *const tv)
FUNC_ATTR_WARN_UNUSED_RESULT
{
list_T *l;
tv->v_type = VAR_LIST;
if (l1 == NULL && l2 == NULL) {
l = NULL;
} else if (l1 == NULL) {
l = tv_list_copy(NULL, l2, false, 0);
} else {
l = tv_list_copy(NULL, l1, false, 0);
if (l != NULL && l2 != NULL) {
tv_list_extend(l, l2, NULL);
}
}
if (l == NULL && !(l1 == NULL && l2 == NULL)) {
return FAIL;
}
tv->vval.v_list = l;
return OK;
}
typedef struct {
char_u *s;
char_u *tofree;
} Join;
/// Join list into a string, helper function
///
/// @param[out] gap Garray where result will be saved.
/// @param[in] l List to join.
/// @param[in] sep Used separator.
/// @param[in] join_gap Garray to keep each list item string.
///
/// @return OK in case of success, FAIL otherwise.
static int list_join_inner(garray_T *const gap, list_T *const l,
const char *const sep, garray_T *const join_gap)
FUNC_ATTR_NONNULL_ALL
{
size_t sumlen = 0;
bool first = true;
// Stringify each item in the list.
TV_LIST_ITER(l, item, {
if (got_int) {
break;
}
char *s;
size_t len;
s = encode_tv2echo(TV_LIST_ITEM_TV(item), &len);
if (s == NULL) {
return FAIL;
}
sumlen += len;
Join *const p = GA_APPEND_VIA_PTR(Join, join_gap);
p->tofree = p->s = (char_u *)s;
line_breakcheck();
});
// Allocate result buffer with its total size, avoid re-allocation and
// multiple copy operations. Add 2 for a tailing ']' and NUL.
if (join_gap->ga_len >= 2) {
sumlen += strlen(sep) * (size_t)(join_gap->ga_len - 1);
}
ga_grow(gap, (int)sumlen + 2);
for (int i = 0; i < join_gap->ga_len && !got_int; i++) {
if (first) {
first = false;
} else {
ga_concat(gap, (const char_u *)sep);
}
const Join *const p = ((const Join *)join_gap->ga_data) + i;
if (p->s != NULL) {
ga_concat(gap, p->s);
}
line_breakcheck();
}
return OK;
}
/// Join list into a string using given separator
///
/// @param[out] gap Garray where result will be saved.
/// @param[in] l Joined list.
/// @param[in] sep Separator.
///
/// @return OK in case of success, FAIL otherwise.
int tv_list_join(garray_T *const gap, list_T *const l, const char *const sep)
FUNC_ATTR_NONNULL_ARG(1)
{
if (!tv_list_len(l)) {
return OK;
}
garray_T join_ga;
int retval;
ga_init(&join_ga, (int)sizeof(Join), tv_list_len(l));
retval = list_join_inner(gap, l, sep, &join_ga);
#define FREE_JOIN_TOFREE(join) xfree((join)->tofree)
GA_DEEP_CLEAR(&join_ga, Join, FREE_JOIN_TOFREE);
#undef FREE_JOIN_TOFREE
return retval;
}
/// Chech whether two lists are equal
///
/// @param[in] l1 First list to compare.
/// @param[in] l2 Second list to compare.
/// @param[in] ic True if case is to be ignored.
/// @param[in] recursive True when used recursively.
///
/// @return True if lists are equal, false otherwise.
bool tv_list_equal(list_T *const l1, list_T *const l2, const bool ic,
const bool recursive)
FUNC_ATTR_WARN_UNUSED_RESULT
{
if (l1 == l2) {
return true;
}
if (l1 == NULL || l2 == NULL) {
return false;
}
if (tv_list_len(l1) != tv_list_len(l2)) {
return false;
}
listitem_T *item1 = tv_list_first(l1);
listitem_T *item2 = tv_list_first(l2);
for (; item1 != NULL && item2 != NULL
; (item1 = TV_LIST_ITEM_NEXT(l1, item1),
item2 = TV_LIST_ITEM_NEXT(l2, item2))) {
if (!tv_equal(TV_LIST_ITEM_TV(item1), TV_LIST_ITEM_TV(item2), ic,
recursive)) {
return false;
}
}
assert(item1 == NULL && item2 == NULL);
return true;
}
/// Reverse list in-place
///
/// @param[in,out] l List to reverse.
void tv_list_reverse(list_T *const l)
{
if (tv_list_len(l) <= 1) {
return;
}
list_log(l, NULL, NULL, "reverse");
#define SWAP(a, b) \
do { \
tmp = a; \
a = b; \
b = tmp; \
} while (0)
listitem_T *tmp;
SWAP(l->lv_first, l->lv_last);
for (listitem_T *li = l->lv_first; li != NULL; li = li->li_next) {
SWAP(li->li_next, li->li_prev);
}
#undef SWAP
l->lv_idx = l->lv_len - l->lv_idx - 1;
}
// FIXME Add unit tests for tv_list_item_sort().
/// Sort list using libc qsort
///
/// @param[in,out] l List to sort, will be sorted in-place.
/// @param ptrs Preallocated array of items to sort, must have at least
/// tv_list_len(l) entries. Should not be initialized.
/// @param[in] item_compare_func Function used to compare list items.
/// @param errp Location where information about whether error occurred is
/// saved by item_compare_func. If boolean there appears to be
/// true list will not be modified. Must be initialized to false
/// by the caller.
void tv_list_item_sort(list_T *const l, ListSortItem *const ptrs,
const ListSorter item_compare_func,
bool *errp)
FUNC_ATTR_NONNULL_ARG(3, 4)
{
const int len = tv_list_len(l);
if (len <= 1) {
return;
}
list_log(l, NULL, NULL, "sort");
int i = 0;
TV_LIST_ITER(l, li, {
ptrs[i].item = li;
ptrs[i].idx = i;
i++;
});
// Sort the array with item pointers.
qsort(ptrs, (size_t)len, sizeof(ListSortItem), item_compare_func);
if (!(*errp)) {
// Clear the list and append the items in the sorted order.
l->lv_first = NULL;
l->lv_last = NULL;
l->lv_idx_item = NULL;
l->lv_len = 0;
for (i = 0; i < len; i++) {
tv_list_append(l, ptrs[i].item);
}
}
}
//{{{2 Indexing/searching
/// Locate item with a given index in a list and return it
///
/// @param[in] l List to index.
/// @param[in] n Index. Negative index is counted from the end, -1 is the last
/// item.
///
/// @return Item at the given index or NULL if `n` is out of range.
listitem_T *tv_list_find(list_T *const l, int n)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
STATIC_ASSERT(sizeof(n) == sizeof(l->lv_idx),
"n and lv_idx sizes do not match");
if (l == NULL) {
return NULL;
}
n = tv_list_uidx(l, n);
if (n == -1) {
return NULL;
}
int idx;
listitem_T *item;
// When there is a cached index may start search from there.
if (l->lv_idx_item != NULL) {
if (n < l->lv_idx / 2) {
// Closest to the start of the list.
item = l->lv_first;
idx = 0;
} else if (n > (l->lv_idx + l->lv_len) / 2) {
// Closest to the end of the list.
item = l->lv_last;
idx = l->lv_len - 1;
} else {
// Closest to the cached index.
item = l->lv_idx_item;
idx = l->lv_idx;
}
} else {
if (n < l->lv_len / 2) {
// Closest to the start of the list.
item = l->lv_first;
idx = 0;
} else {
// Closest to the end of the list.
item = l->lv_last;
idx = l->lv_len - 1;
}
}
while (n > idx) {
// Search forward.
item = item->li_next;
idx++;
}
while (n < idx) {
// Search backward.
item = item->li_prev;
idx--;
}
assert(idx == n);
// Cache the used index.
l->lv_idx = idx;
l->lv_idx_item = item;
list_log(l, l->lv_idx_item, (void *)(uintptr_t)l->lv_idx, "find");
return item;
}
/// Get list item l[n] as a number
///
/// @param[in] l List to index.
/// @param[in] n Index in a list.
/// @param[out] ret_error Location where 1 will be saved if index was not
/// found. May be NULL. If everything is OK,
/// `*ret_error` is not touched.
///
/// @return Integer value at the given index or -1.
varnumber_T tv_list_find_nr(list_T *const l, const int n, bool *const ret_error)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const listitem_T *const li = tv_list_find(l, n);
if (li == NULL) {
if (ret_error != NULL) {
*ret_error = true;
}
return -1;
}
return tv_get_number_chk(TV_LIST_ITEM_TV(li), ret_error);
}
/// Get list item l[n] as a string
///
/// @param[in] l List to index.
/// @param[in] n Index in a list.
///
/// @return List item string value or NULL in case of error.
const char *tv_list_find_str(list_T *const l, const int n)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const listitem_T *const li = tv_list_find(l, n);
if (li == NULL) {
EMSG2(_(e_listidx), (int64_t)n);
return NULL;
}
return tv_get_string(TV_LIST_ITEM_TV(li));
}
/// Locate item in a list and return its index
///
/// @param[in] l List to search.
/// @param[in] item Item to search for.
///
/// @return Index of an item or -1 if item is not in the list.
long tv_list_idx_of_item(const list_T *const l, const listitem_T *const item)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (l == NULL) {
return -1;
}
int idx = 0;
TV_LIST_ITER_CONST(l, li, {
if (li == item) {
return idx;
}
idx++;
});
return -1;
}
//{{{1 Dictionaries
//{{{2 Dictionary watchers
/// Perform all necessary cleanup for a `DictWatcher` instance
///
/// @param watcher Watcher to free.
static void tv_dict_watcher_free(DictWatcher *watcher)
FUNC_ATTR_NONNULL_ALL
{
callback_free(&watcher->callback);
xfree(watcher->key_pattern);
xfree(watcher);
}
/// Add watcher to a dictionary
///
/// @param[in] dict Dictionary to add watcher to.
/// @param[in] key_pattern Pattern to watch for.
/// @param[in] key_pattern_len Key pattern length.
/// @param callback Function to be called on events.
void tv_dict_watcher_add(dict_T *const dict, const char *const key_pattern,
const size_t key_pattern_len, Callback callback)
FUNC_ATTR_NONNULL_ARG(2)
{
if (dict == NULL) {
return;
}
DictWatcher *const watcher = xmalloc(sizeof(DictWatcher));
watcher->key_pattern = xmemdupz(key_pattern, key_pattern_len);
watcher->key_pattern_len = key_pattern_len;
watcher->callback = callback;
watcher->busy = false;
QUEUE_INSERT_TAIL(&dict->watchers, &watcher->node);
}
/// Check whether two callbacks are equal
///
/// @param[in] cb1 First callback to check.
/// @param[in] cb2 Second callback to check.
///
/// @return True if they are equal, false otherwise.
bool tv_callback_equal(const Callback *cb1, const Callback *cb2)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
if (cb1->type != cb2->type) {
return false;
}
switch (cb1->type) {
case kCallbackFuncref: {
return STRCMP(cb1->data.funcref, cb2->data.funcref) == 0;
}
case kCallbackPartial: {
// FIXME: this is inconsistent with tv_equal but is needed for precision
// maybe change dictwatcheradd to return a watcher id instead?
return cb1->data.partial == cb2->data.partial;
}
case kCallbackNone: {
return true;
}
}
abort();
return false;
}
/// Unref/free callback
void callback_free(Callback *callback)
FUNC_ATTR_NONNULL_ALL
{
switch (callback->type) {
case kCallbackFuncref: {
func_unref(callback->data.funcref);
xfree(callback->data.funcref);
break;
}
case kCallbackPartial: {
partial_unref(callback->data.partial);
break;
}
case kCallbackNone: {
break;
}
}
callback->type = kCallbackNone;
}
/// Remove watcher from a dictionary
///
/// @param dict Dictionary to remove watcher from.
/// @param[in] key_pattern Pattern to remove watcher for.
/// @param[in] key_pattern_len Pattern length.
/// @param callback Callback to remove watcher for.
///
/// @return True on success, false if relevant watcher was not found.
bool tv_dict_watcher_remove(dict_T *const dict, const char *const key_pattern,
const size_t key_pattern_len,
Callback callback)
FUNC_ATTR_NONNULL_ARG(2)
{
if (dict == NULL) {
return false;
}
QUEUE *w = NULL;
DictWatcher *watcher = NULL;
bool matched = false;
QUEUE_FOREACH(w, &dict->watchers) {
watcher = tv_dict_watcher_node_data(w);
if (tv_callback_equal(&watcher->callback, &callback)
&& watcher->key_pattern_len == key_pattern_len
&& memcmp(watcher->key_pattern, key_pattern, key_pattern_len) == 0) {
matched = true;
break;
}
}
if (!matched) {
return false;
}
QUEUE_REMOVE(w);
tv_dict_watcher_free(watcher);
return true;
}
/// Test if `key` matches with with `watcher->key_pattern`
///
/// @param[in] watcher Watcher to check key pattern from.
/// @param[in] key Key to check.
///
/// @return true if key matches, false otherwise.
static bool tv_dict_watcher_matches(DictWatcher *watcher, const char *const key)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
// For now only allow very simple globbing in key patterns: a '*' at the end
// of the string means it should match everything up to the '*' instead of the
// whole string.
const size_t len = watcher->key_pattern_len;
if (len && watcher->key_pattern[len - 1] == '*') {
return strncmp(key, watcher->key_pattern, len - 1) == 0;
} else {
return strcmp(key, watcher->key_pattern) == 0;
}
}
/// Send a change notification to all dictionary watchers that match given key
///
/// @param[in] dict Dictionary which was modified.
/// @param[in] key Key which was modified.
/// @param[in] newtv New key value.
/// @param[in] oldtv Old key value.
void tv_dict_watcher_notify(dict_T *const dict, const char *const key,
typval_T *const newtv, typval_T *const oldtv)
FUNC_ATTR_NONNULL_ARG(1, 2)
{
typval_T argv[3];
argv[0].v_type = VAR_DICT;
argv[0].v_lock = VAR_UNLOCKED;
argv[0].vval.v_dict = dict;
argv[1].v_type = VAR_STRING;
argv[1].v_lock = VAR_UNLOCKED;
argv[1].vval.v_string = (char_u *)xstrdup(key);
argv[2].v_type = VAR_DICT;
argv[2].v_lock = VAR_UNLOCKED;
argv[2].vval.v_dict = tv_dict_alloc();
argv[2].vval.v_dict->dv_refcount++;
if (newtv) {
dictitem_T *const v = tv_dict_item_alloc_len(S_LEN("new"));
tv_copy(newtv, &v->di_tv);
tv_dict_add(argv[2].vval.v_dict, v);
}
if (oldtv) {
dictitem_T *const v = tv_dict_item_alloc_len(S_LEN("old"));
tv_copy(oldtv, &v->di_tv);
tv_dict_add(argv[2].vval.v_dict, v);
}
typval_T rettv;
dict->dv_refcount++;
QUEUE *w;
QUEUE_FOREACH(w, &dict->watchers) {
DictWatcher *watcher = tv_dict_watcher_node_data(w);
if (!watcher->busy && tv_dict_watcher_matches(watcher, key)) {
rettv = TV_INITIAL_VALUE;
watcher->busy = true;
callback_call(&watcher->callback, 3, argv, &rettv);
watcher->busy = false;
tv_clear(&rettv);
}
}
tv_dict_unref(dict);
for (size_t i = 1; i < ARRAY_SIZE(argv); i++) {
tv_clear(argv + i);
}
}
//{{{2 Dictionary item
/// Allocate a dictionary item
///
/// @note that the type and value of the item (->di_tv) still needs to
/// be initialized.
///
/// @param[in] key Key, is copied to the new item.
/// @param[in] key_len Key length.
///
/// @return [allocated] new dictionary item.
dictitem_T *tv_dict_item_alloc_len(const char *const key, const size_t key_len)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
FUNC_ATTR_MALLOC
{
dictitem_T *const di = xmalloc(offsetof(dictitem_T, di_key) + key_len + 1);
memcpy(di->di_key, key, key_len);
di->di_key[key_len] = NUL;
di->di_flags = DI_FLAGS_ALLOC;
di->di_tv.v_lock = VAR_UNLOCKED;
return di;
}
/// Allocate a dictionary item
///
/// @note that the type and value of the item (->di_tv) still needs to
/// be initialized.
///
/// @param[in] key Key, is copied to the new item.
///
/// @return [allocated] new dictionary item.
dictitem_T *tv_dict_item_alloc(const char *const key)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
FUNC_ATTR_MALLOC
{
return tv_dict_item_alloc_len(key, strlen(key));
}
/// Free a dictionary item, also clearing the value
///
/// @param item Item to free.
void tv_dict_item_free(dictitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
tv_clear(&item->di_tv);
if (item->di_flags & DI_FLAGS_ALLOC) {
xfree(item);
}
}
/// Make a copy of a dictionary item
///
/// @param[in] di Item to copy.
///
/// @return [allocated] new dictionary item.
dictitem_T *tv_dict_item_copy(dictitem_T *const di)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
dictitem_T *const new_di = tv_dict_item_alloc((const char *)di->di_key);
tv_copy(&di->di_tv, &new_di->di_tv);
return new_di;
}
/// Remove item from dictionary and free it
///
/// @param dict Dictionary to remove item from.
/// @param item Item to remove.
void tv_dict_item_remove(dict_T *const dict, dictitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
hashitem_T *const hi = hash_find(&dict->dv_hashtab, item->di_key);
if (HASHITEM_EMPTY(hi)) {
emsgf(_(e_intern2), "tv_dict_item_remove()");
} else {
hash_remove(&dict->dv_hashtab, hi);
}
tv_dict_item_free(item);
}
//{{{2 Alloc/free
/// Allocate an empty dictionary
///
/// @return [allocated] new dictionary.
dict_T *tv_dict_alloc(void)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_WARN_UNUSED_RESULT
{
dict_T *const d = xcalloc(1, sizeof(dict_T));
// Add the dict to the list of dicts for garbage collection.
if (gc_first_dict != NULL) {
gc_first_dict->dv_used_prev = d;
}
d->dv_used_next = gc_first_dict;
d->dv_used_prev = NULL;
gc_first_dict = d;
hash_init(&d->dv_hashtab);
d->dv_lock = VAR_UNLOCKED;
d->dv_scope = VAR_NO_SCOPE;
d->dv_refcount = 0;
d->dv_copyID = 0;
QUEUE_INIT(&d->watchers);
return d;
}
/// Free items contained in a dictionary
///
/// @param[in,out] d Dictionary to clear.
void tv_dict_free_contents(dict_T *const d)
FUNC_ATTR_NONNULL_ALL
{
// Lock the hashtab, we don't want it to resize while freeing items.
hash_lock(&d->dv_hashtab);
assert(d->dv_hashtab.ht_locked > 0);
HASHTAB_ITER(&d->dv_hashtab, hi, {
// Remove the item before deleting it, just in case there is
// something recursive causing trouble.
dictitem_T *const di = TV_DICT_HI2DI(hi);
hash_remove(&d->dv_hashtab, hi);
tv_dict_item_free(di);
});
while (!QUEUE_EMPTY(&d->watchers)) {
QUEUE *w = QUEUE_HEAD(&d->watchers);
QUEUE_REMOVE(w);
DictWatcher *watcher = tv_dict_watcher_node_data(w);
tv_dict_watcher_free(watcher);
}
hash_clear(&d->dv_hashtab);
d->dv_hashtab.ht_locked--;
hash_init(&d->dv_hashtab);
}
/// Free a dictionary itself, ignoring items it contains
///
/// Ignores the reference count.
///
/// @param[in,out] d Dictionary to free.
void tv_dict_free_dict(dict_T *const d)
FUNC_ATTR_NONNULL_ALL
{
// Remove the dict from the list of dicts for garbage collection.
if (d->dv_used_prev == NULL) {
gc_first_dict = d->dv_used_next;
} else {
d->dv_used_prev->dv_used_next = d->dv_used_next;
}
if (d->dv_used_next != NULL) {
d->dv_used_next->dv_used_prev = d->dv_used_prev;
}
nlua_free_typval_dict(d);
xfree(d);
}
/// Free a dictionary, including all items it contains
///
/// Ignores the reference count.
///
/// @param d Dictionary to free.
void tv_dict_free(dict_T *const d)
FUNC_ATTR_NONNULL_ALL
{
if (!tv_in_free_unref_items) {
tv_dict_free_contents(d);
tv_dict_free_dict(d);
}
}
/// Unreference a dictionary
///
/// Decrements the reference count and frees dictionary when it becomes zero.
///
/// @param[in] d Dictionary to operate on.
void tv_dict_unref(dict_T *const d)
{
if (d != NULL && --d->dv_refcount <= 0) {
tv_dict_free(d);
}
}
//{{{2 Indexing/searching
/// Find item in dictionary
///
/// @param[in] d Dictionary to check.
/// @param[in] key Dictionary key.
/// @param[in] len Key length. If negative, then strlen(key) is used.
///
/// @return found item or NULL if nothing was found.
dictitem_T *tv_dict_find(const dict_T *const d, const char *const key,
const ptrdiff_t len)
FUNC_ATTR_NONNULL_ARG(2) FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
if (d == NULL) {
return NULL;
}
hashitem_T *const hi = (len < 0
? hash_find(&d->dv_hashtab, (const char_u *)key)
: hash_find_len(&d->dv_hashtab, key, (size_t)len));
if (HASHITEM_EMPTY(hi)) {
return NULL;
}
return TV_DICT_HI2DI(hi);
}
/// Get a typval item from a dictionary and copy it into "rettv".
///
/// @param[in] d Dictionary to check.
/// @param[in] key Dictionary key.
/// @param[in] rettv Return value.
/// @return OK in case of success or FAIL if nothing was found.
int tv_dict_get_tv(dict_T *d, const char *const key, typval_T *rettv)
{
dictitem_T *const di = tv_dict_find(d, key, -1);
if (di == NULL) {
return FAIL;
}
tv_copy(&di->di_tv, rettv);
return OK;
}
/// Get a number item from a dictionary
///
/// Returns 0 if the entry does not exist.
///
/// @param[in] d Dictionary to get item from.
/// @param[in] key Key to find in dictionary.
///
/// @return Dictionary item.
varnumber_T tv_dict_get_number(const dict_T *const d, const char *const key)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
dictitem_T *const di = tv_dict_find(d, key, -1);
if (di == NULL) {
return 0;
}
return tv_get_number(&di->di_tv);
}
/// Get a string item from a dictionary
///
/// @param[in] d Dictionary to get item from.
/// @param[in] key Dictionary key.
/// @param[in] save If true, returned string will be placed in the allocated
/// memory.
///
/// @return NULL if key does not exist, empty string in case of type error,
/// string item value otherwise. If returned value is not NULL, it may
/// be allocated depending on `save` argument.
char *tv_dict_get_string(const dict_T *const d, const char *const key,
const bool save)
FUNC_ATTR_WARN_UNUSED_RESULT
{
static char numbuf[NUMBUFLEN];
const char *const s = tv_dict_get_string_buf(d, key, numbuf);
if (save && s != NULL) {
return xstrdup(s);
}
return (char *)s;
}
/// Get a string item from a dictionary
///
/// @param[in] d Dictionary to get item from.
/// @param[in] key Dictionary key.
/// @param[in] numbuf Buffer for non-string items converted to strings, at
/// least of #NUMBUFLEN length.
///
/// @return NULL if key does not exist, empty string in case of type error,
/// string item value otherwise.
const char *tv_dict_get_string_buf(const dict_T *const d, const char *const key,
char *const numbuf)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const dictitem_T *const di = tv_dict_find(d, key, -1);
if (di == NULL) {
return NULL;
}
return tv_get_string_buf(&di->di_tv, numbuf);
}
/// Get a string item from a dictionary
///
/// @param[in] d Dictionary to get item from.
/// @param[in] key Dictionary key.
/// @param[in] key_len Key length.
/// @param[in] numbuf Buffer for non-string items converted to strings, at
/// least of #NUMBUFLEN length.
/// @param[in] def Default return when key does not exist.
///
/// @return `def` when key does not exist,
/// NULL in case of type error,
/// string item value in case of success.
const char *tv_dict_get_string_buf_chk(const dict_T *const d,
const char *const key,
const ptrdiff_t key_len,
char *const numbuf,
const char *const def)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const dictitem_T *const di = tv_dict_find(d, key, key_len);
if (di == NULL) {
return def;
}
return tv_get_string_buf_chk(&di->di_tv, numbuf);
}
/// Get a function from a dictionary
///
/// @param[in] d Dictionary to get callback from.
/// @param[in] key Dictionary key.
/// @param[in] key_len Key length, may be -1 to use strlen().
/// @param[out] result The address where a pointer to the wanted callback
/// will be left.
///
/// @return true/false on success/failure.
bool tv_dict_get_callback(dict_T *const d,
const char *const key, const ptrdiff_t key_len,
Callback *const result)
FUNC_ATTR_NONNULL_ARG(2, 4) FUNC_ATTR_WARN_UNUSED_RESULT
{
result->type = kCallbackNone;
dictitem_T *const di = tv_dict_find(d, key, key_len);
if (di == NULL) {
return true;
}
if (!tv_is_func(di->di_tv) && di->di_tv.v_type != VAR_STRING) {
EMSG(_("E6000: Argument is not a function or function name"));
return false;
}
typval_T tv;
tv_copy(&di->di_tv, &tv);
set_selfdict(&tv, d);
const bool res = callback_from_typval(result, &tv);
tv_clear(&tv);
return res;
}
//{{{2 dict_add*
/// Add item to dictionary
///
/// @param[out] d Dictionary to add to.
/// @param[in] item Item to add.
///
/// @return FAIL if key already exists.
int tv_dict_add(dict_T *const d, dictitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
return hash_add(&d->dv_hashtab, item->di_key);
}
/// Add a list entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param list List to add. Will have reference count incremented.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_list(dict_T *const d, const char *const key,
const size_t key_len, list_T *const list)
FUNC_ATTR_NONNULL_ALL
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_LIST;
item->di_tv.vval.v_list = list;
tv_list_ref(list);
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a typval entry to dictionary.
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
///
/// @return FAIL if out of memory or key already exists.
int tv_dict_add_tv(dict_T *d, const char *key, const size_t key_len,
typval_T *tv)
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
tv_copy(tv, &item->di_tv);
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a dictionary entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param dict Dictionary to add. Will have reference count incremented.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_dict(dict_T *const d, const char *const key,
const size_t key_len, dict_T *const dict)
FUNC_ATTR_NONNULL_ALL
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_DICT;
item->di_tv.vval.v_dict = dict;
dict->dv_refcount++;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a number entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] nr Number to add.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_nr(dict_T *const d, const char *const key,
const size_t key_len, const varnumber_T nr)
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_NUMBER;
item->di_tv.vval.v_number = nr;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a floating point number entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] nr Floating point number to add.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_float(dict_T *const d, const char *const key,
const size_t key_len, const float_T nr)
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_FLOAT;
item->di_tv.vval.v_float = nr;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a boolean entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] val BoolVarValue to add.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_bool(dict_T *const d, const char *const key,
const size_t key_len, BoolVarValue val)
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_BOOL;
item->di_tv.vval.v_bool = val;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a string entry to dictionary
///
/// @see tv_dict_add_allocated_str
int tv_dict_add_str(dict_T *const d,
const char *const key, const size_t key_len,
const char *const val)
FUNC_ATTR_NONNULL_ALL
{
return tv_dict_add_allocated_str(d, key, key_len, xstrdup(val));
}
/// Add a string entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] val String to add. NULL adds empty string.
/// @param[in] len Use this many bytes from `val`, or -1 for whole string.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_str_len(dict_T *const d,
const char *const key, const size_t key_len,
char *const val, int len)
FUNC_ATTR_NONNULL_ARG(1, 2)
{
char *s = val ? val : "";
if (val != NULL) {
s = (len < 0) ? xstrdup(val) : xstrndup(val, (size_t)len);
}
return tv_dict_add_allocated_str(d, key, key_len, s);
}
/// Add a string entry to dictionary
///
/// Unlike tv_dict_add_str() saves val to the new dictionary item in place of
/// creating a new copy.
///
/// @warning String will be freed even in case addition fails.
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] val String to add.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_allocated_str(dict_T *const d,
const char *const key, const size_t key_len,
char *const val)
FUNC_ATTR_NONNULL_ALL
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_STRING;
item->di_tv.vval.v_string = (char_u *)val;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
//{{{2 Operations on the whole dict
/// Clear all the keys of a Dictionary. "d" remains a valid empty Dictionary.
///
/// @param d The Dictionary to clear
void tv_dict_clear(dict_T *const d)
FUNC_ATTR_NONNULL_ALL
{
hash_lock(&d->dv_hashtab);
assert(d->dv_hashtab.ht_locked > 0);
HASHTAB_ITER(&d->dv_hashtab, hi, {
tv_dict_item_free(TV_DICT_HI2DI(hi));
hash_remove(&d->dv_hashtab, hi);
});
hash_unlock(&d->dv_hashtab);
}
/// Extend dictionary with items from another dictionary
///
/// @param d1 Dictionary to extend.
/// @param[in] d2 Dictionary to extend with.
/// @param[in] action "error", "force", "keep":
///
/// e*, including "error": duplicate key gives an error.
/// f*, including "force": duplicate d2 keys override d1.
/// other, including "keep": duplicate d2 keys ignored.
void tv_dict_extend(dict_T *const d1, dict_T *const d2,
const char *const action)
FUNC_ATTR_NONNULL_ALL
{
const bool watched = tv_dict_is_watched(d1);
const char *const arg_errmsg = _("extend() argument");
const size_t arg_errmsg_len = strlen(arg_errmsg);
TV_DICT_ITER(d2, di2, {
dictitem_T *const di1 = tv_dict_find(d1, (const char *)di2->di_key, -1);
if (d1->dv_scope != VAR_NO_SCOPE) {
// Disallow replacing a builtin function in l: and g:.
// Check the key to be valid when adding to any scope.
if (d1->dv_scope == VAR_DEF_SCOPE
&& tv_is_func(di2->di_tv)
&& !var_check_func_name((const char *)di2->di_key, di1 == NULL)) {
break;
}
if (!valid_varname((const char *)di2->di_key)) {
break;
}
}
if (di1 == NULL) {
dictitem_T *const new_di = tv_dict_item_copy(di2);
if (tv_dict_add(d1, new_di) == FAIL) {
tv_dict_item_free(new_di);
} else if (watched) {
tv_dict_watcher_notify(d1, (const char *)new_di->di_key, &new_di->di_tv,
NULL);
}
} else if (*action == 'e') {
emsgf(_("E737: Key already exists: %s"), di2->di_key);
break;
} else if (*action == 'f' && di2 != di1) {
typval_T oldtv;
if (tv_check_lock(di1->di_tv.v_lock, arg_errmsg, arg_errmsg_len)
|| var_check_ro(di1->di_flags, arg_errmsg, arg_errmsg_len)) {
break;
}
if (watched) {
tv_copy(&di1->di_tv, &oldtv);
}
tv_clear(&di1->di_tv);
tv_copy(&di2->di_tv, &di1->di_tv);
if (watched) {
tv_dict_watcher_notify(d1, (const char *)di1->di_key, &di1->di_tv,
&oldtv);
tv_clear(&oldtv);
}
}
});
}
/// Compare two dictionaries
///
/// @param[in] d1 First dictionary.
/// @param[in] d2 Second dictionary.
/// @param[in] ic True if case is to be ignored.
/// @param[in] recursive True when used recursively.
bool tv_dict_equal(dict_T *const d1, dict_T *const d2,
const bool ic, const bool recursive)
FUNC_ATTR_WARN_UNUSED_RESULT
{
if (d1 == d2) {
return true;
}
if (d1 == NULL || d2 == NULL) {
return false;
}
if (tv_dict_len(d1) != tv_dict_len(d2)) {
return false;
}
TV_DICT_ITER(d1, di1, {
dictitem_T *const di2 = tv_dict_find(d2, (const char *)di1->di_key, -1);
if (di2 == NULL) {
return false;
}
if (!tv_equal(&di1->di_tv, &di2->di_tv, ic, recursive)) {
return false;
}
});
return true;
}
/// Make a copy of dictionary
///
/// @param[in] conv If non-NULL, then all internal strings will be converted.
/// @param[in] orig Original dictionary to copy.
/// @param[in] deep If false, then shallow copy will be done.
/// @param[in] copyID See var_item_copy().
///
/// @return Copied dictionary. May be NULL in case original dictionary is NULL
/// or some failure happens. The refcount of the new dictionary is set
/// to 1.
dict_T *tv_dict_copy(const vimconv_T *const conv,
dict_T *const orig,
const bool deep,
const int copyID)
{
if (orig == NULL) {
return NULL;
}
dict_T *copy = tv_dict_alloc();
if (copyID != 0) {
orig->dv_copyID = copyID;
orig->dv_copydict = copy;
}
TV_DICT_ITER(orig, di, {
if (got_int) {
break;
}
dictitem_T *new_di;
if (conv == NULL || conv->vc_type == CONV_NONE) {
new_di = tv_dict_item_alloc((const char *)di->di_key);
} else {
size_t len = STRLEN(di->di_key);
char *const key = (char *)string_convert(conv, di->di_key, &len);
if (key == NULL) {
new_di = tv_dict_item_alloc_len((const char *)di->di_key, len);
} else {
new_di = tv_dict_item_alloc_len(key, len);
xfree(key);
}
}
if (deep) {
if (var_item_copy(conv, &di->di_tv, &new_di->di_tv, deep,
copyID) == FAIL) {
xfree(new_di);
break;
}
} else {
tv_copy(&di->di_tv, &new_di->di_tv);
}
if (tv_dict_add(copy, new_di) == FAIL) {
tv_dict_item_free(new_di);
break;
}
});
copy->dv_refcount++;
if (got_int) {
tv_dict_unref(copy);
copy = NULL;
}
return copy;
}
/// Set all existing keys in "dict" as read-only.
///
/// This does not protect against adding new keys to the Dictionary.
///
/// @param dict The dict whose keys should be frozen.
void tv_dict_set_keys_readonly(dict_T *const dict)
FUNC_ATTR_NONNULL_ALL
{
TV_DICT_ITER(dict, di, {
di->di_flags |= DI_FLAGS_RO | DI_FLAGS_FIX;
});
}
//{{{1 Generic typval operations
//{{{2 Init/alloc/clear
//{{{3 Alloc
/// Allocate an empty list for a return value
///
/// Also sets reference count.
///
/// @param[out] ret_tv Structure where list is saved.
/// @param[in] len Expected number of items to be populated before list
/// becomes accessible from VimL. It is still valid to
/// underpopulate a list, value only controls how many elements
/// will be allocated in advance. @see ListLenSpecials.
///
/// @return [allocated] pointer to the created list.
list_T *tv_list_alloc_ret(typval_T *const ret_tv, const ptrdiff_t len)
FUNC_ATTR_NONNULL_ALL
{
list_T *const l = tv_list_alloc(len);
tv_list_set_ret(ret_tv, l);
ret_tv->v_lock = VAR_UNLOCKED;
return l;
}
/// Allocate an empty dictionary for a return value
///
/// Also sets reference count.
///
/// @param[out] ret_tv Structure where dictionary is saved.
void tv_dict_alloc_ret(typval_T *const ret_tv)
FUNC_ATTR_NONNULL_ALL
{
dict_T *const d = tv_dict_alloc();
tv_dict_set_ret(ret_tv, d);
ret_tv->v_lock = VAR_UNLOCKED;
}
//{{{3 Clear
#define TYPVAL_ENCODE_ALLOW_SPECIALS false
#define TYPVAL_ENCODE_CONV_NIL(tv) \
do { \
tv->vval.v_special = kSpecialVarNull; \
tv->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_BOOL(tv, num) \
do { \
tv->vval.v_bool = kBoolVarFalse; \
tv->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_NUMBER(tv, num) \
do { \
(void)num; \
tv->vval.v_number = 0; \
tv->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_UNSIGNED_NUMBER(tv, num)
#define TYPVAL_ENCODE_CONV_FLOAT(tv, flt) \
do { \
tv->vval.v_float = 0; \
tv->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_STRING(tv, buf, len) \
do { \
xfree(buf); \
tv->vval.v_string = NULL; \
tv->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_STR_STRING(tv, buf, len)
#define TYPVAL_ENCODE_CONV_EXT_STRING(tv, buf, len, type)
static inline int _nothing_conv_func_start(typval_T *const tv,
char_u *const fun)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_NONNULL_ARG(1)
{
tv->v_lock = VAR_UNLOCKED;
if (tv->v_type == VAR_PARTIAL) {
partial_T *const pt_ = tv->vval.v_partial;
if (pt_ != NULL && pt_->pt_refcount > 1) {
pt_->pt_refcount--;
tv->vval.v_partial = NULL;
return OK;
}
} else {
func_unref(fun);
if ((const char *)fun != tv_empty_string) {
xfree(fun);
}
tv->vval.v_string = NULL;
}
return NOTDONE;
}
#define TYPVAL_ENCODE_CONV_FUNC_START(tv, fun) \
do { \
if (_nothing_conv_func_start(tv, fun) != NOTDONE) { \
return OK; \
} \
} while (0)
#define TYPVAL_ENCODE_CONV_FUNC_BEFORE_ARGS(tv, len)
#define TYPVAL_ENCODE_CONV_FUNC_BEFORE_SELF(tv, len)
static inline void _nothing_conv_func_end(typval_T *const tv, const int copyID)
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_NONNULL_ALL
{
if (tv->v_type == VAR_PARTIAL) {
partial_T *const pt = tv->vval.v_partial;
if (pt == NULL) {
return;
}
// Dictionary should already be freed by the time.
// If it was not freed then it is a part of the reference cycle.
assert(pt->pt_dict == NULL || pt->pt_dict->dv_copyID == copyID);
pt->pt_dict = NULL;
// As well as all arguments.
pt->pt_argc = 0;
assert(pt->pt_refcount <= 1);
partial_unref(pt);
tv->vval.v_partial = NULL;
assert(tv->v_lock == VAR_UNLOCKED);
}
}
#define TYPVAL_ENCODE_CONV_FUNC_END(tv) _nothing_conv_func_end(tv, copyID)
#define TYPVAL_ENCODE_CONV_EMPTY_LIST(tv) \
do { \
tv_list_unref(tv->vval.v_list); \
tv->vval.v_list = NULL; \
tv->v_lock = VAR_UNLOCKED; \
} while (0)
static inline void _nothing_conv_empty_dict(typval_T *const tv,
dict_T **const dictp)
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_NONNULL_ARG(2)
{
tv_dict_unref(*dictp);
*dictp = NULL;
if (tv != NULL) {
tv->v_lock = VAR_UNLOCKED;
}
}
#define TYPVAL_ENCODE_CONV_EMPTY_DICT(tv, dict) \
do { \
assert((void *)&dict != (void *)&TYPVAL_ENCODE_NODICT_VAR); \
_nothing_conv_empty_dict(tv, ((dict_T **)&dict)); \
} while (0)
static inline int _nothing_conv_real_list_after_start(
typval_T *const tv, MPConvStackVal *const mpsv)
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_WARN_UNUSED_RESULT
{
assert(tv != NULL);
tv->v_lock = VAR_UNLOCKED;
if (tv->vval.v_list->lv_refcount > 1) {
tv->vval.v_list->lv_refcount--;
tv->vval.v_list = NULL;
mpsv->data.l.li = NULL;
return OK;
}
return NOTDONE;
}
#define TYPVAL_ENCODE_CONV_LIST_START(tv, len)
#define TYPVAL_ENCODE_CONV_REAL_LIST_AFTER_START(tv, mpsv) \
do { \
if (_nothing_conv_real_list_after_start(tv, &mpsv) != NOTDONE) { \
goto typval_encode_stop_converting_one_item; \
} \
} while (0)
#define TYPVAL_ENCODE_CONV_LIST_BETWEEN_ITEMS(tv)
static inline void _nothing_conv_list_end(typval_T *const tv)
FUNC_ATTR_ALWAYS_INLINE
{
if (tv == NULL) {
return;
}
assert(tv->v_type == VAR_LIST);
list_T *const list = tv->vval.v_list;
tv_list_unref(list);
tv->vval.v_list = NULL;
}
#define TYPVAL_ENCODE_CONV_LIST_END(tv) _nothing_conv_list_end(tv)
static inline int _nothing_conv_real_dict_after_start(
typval_T *const tv, dict_T **const dictp, const void *const nodictvar,
MPConvStackVal *const mpsv)
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_WARN_UNUSED_RESULT
{
if (tv != NULL) {
tv->v_lock = VAR_UNLOCKED;
}
if ((const void *)dictp != nodictvar && (*dictp)->dv_refcount > 1) {
(*dictp)->dv_refcount--;
*dictp = NULL;
mpsv->data.d.todo = 0;
return OK;
}
return NOTDONE;
}
#define TYPVAL_ENCODE_CONV_DICT_START(tv, dict, len)
#define TYPVAL_ENCODE_CONV_REAL_DICT_AFTER_START(tv, dict, mpsv) \
do { \
if (_nothing_conv_real_dict_after_start( \
tv, (dict_T **)&dict, (void *)&TYPVAL_ENCODE_NODICT_VAR, \
&mpsv) != NOTDONE) { \
goto typval_encode_stop_converting_one_item; \
} \
} while (0)
#define TYPVAL_ENCODE_SPECIAL_DICT_KEY_CHECK(tv, dict)
#define TYPVAL_ENCODE_CONV_DICT_AFTER_KEY(tv, dict)
#define TYPVAL_ENCODE_CONV_DICT_BETWEEN_ITEMS(tv, dict)
static inline void _nothing_conv_dict_end(typval_T *const tv,
dict_T **const dictp,
const void *const nodictvar)
FUNC_ATTR_ALWAYS_INLINE
{
if ((const void *)dictp != nodictvar) {
tv_dict_unref(*dictp);
*dictp = NULL;
}
}
#define TYPVAL_ENCODE_CONV_DICT_END(tv, dict) \
_nothing_conv_dict_end(tv, (dict_T **)&dict, \
(void *)&TYPVAL_ENCODE_NODICT_VAR)
#define TYPVAL_ENCODE_CONV_RECURSE(val, conv_type)
#define TYPVAL_ENCODE_SCOPE static
#define TYPVAL_ENCODE_NAME nothing
#define TYPVAL_ENCODE_FIRST_ARG_TYPE const void *const
#define TYPVAL_ENCODE_FIRST_ARG_NAME ignored
#define TYPVAL_ENCODE_TRANSLATE_OBJECT_NAME
#include "nvim/eval/typval_encode.c.h"
#undef TYPVAL_ENCODE_SCOPE
#undef TYPVAL_ENCODE_NAME
#undef TYPVAL_ENCODE_FIRST_ARG_TYPE
#undef TYPVAL_ENCODE_FIRST_ARG_NAME
#undef TYPVAL_ENCODE_TRANSLATE_OBJECT_NAME
#undef TYPVAL_ENCODE_ALLOW_SPECIALS
#undef TYPVAL_ENCODE_CONV_NIL
#undef TYPVAL_ENCODE_CONV_BOOL
#undef TYPVAL_ENCODE_CONV_NUMBER
#undef TYPVAL_ENCODE_CONV_UNSIGNED_NUMBER
#undef TYPVAL_ENCODE_CONV_FLOAT
#undef TYPVAL_ENCODE_CONV_STRING
#undef TYPVAL_ENCODE_CONV_STR_STRING
#undef TYPVAL_ENCODE_CONV_EXT_STRING
#undef TYPVAL_ENCODE_CONV_FUNC_START
#undef TYPVAL_ENCODE_CONV_FUNC_BEFORE_ARGS
#undef TYPVAL_ENCODE_CONV_FUNC_BEFORE_SELF
#undef TYPVAL_ENCODE_CONV_FUNC_END
#undef TYPVAL_ENCODE_CONV_EMPTY_LIST
#undef TYPVAL_ENCODE_CONV_EMPTY_DICT
#undef TYPVAL_ENCODE_CONV_LIST_START
#undef TYPVAL_ENCODE_CONV_REAL_LIST_AFTER_START
#undef TYPVAL_ENCODE_CONV_LIST_BETWEEN_ITEMS
#undef TYPVAL_ENCODE_CONV_LIST_END
#undef TYPVAL_ENCODE_CONV_DICT_START
#undef TYPVAL_ENCODE_CONV_REAL_DICT_AFTER_START
#undef TYPVAL_ENCODE_SPECIAL_DICT_KEY_CHECK
#undef TYPVAL_ENCODE_CONV_DICT_AFTER_KEY
#undef TYPVAL_ENCODE_CONV_DICT_BETWEEN_ITEMS
#undef TYPVAL_ENCODE_CONV_DICT_END
#undef TYPVAL_ENCODE_CONV_RECURSE
/// Free memory for a variable value and set the value to NULL or 0
///
/// @param[in,out] tv Value to free.
void tv_clear(typval_T *const tv)
{
if (tv != NULL && tv->v_type != VAR_UNKNOWN) {
// WARNING: do not translate the string here, gettext is slow and function
// is used *very* often. At the current state encode_vim_to_nothing() does
// not error out and does not use the argument anywhere.
//
// If situation changes and this argument will be used, translate it in the
// place where it is used.
const int evn_ret = encode_vim_to_nothing(NULL, tv, "tv_clear() argument");
(void)evn_ret;
assert(evn_ret == OK);
}
}
//{{{3 Free
/// Free allocated VimL object and value stored inside
///
/// @param tv Object to free.
void tv_free(typval_T *tv)
{
if (tv != NULL) {
switch (tv->v_type) {
case VAR_PARTIAL: {
partial_unref(tv->vval.v_partial);
break;
}
case VAR_FUNC: {
func_unref(tv->vval.v_string);
FALLTHROUGH;
}
case VAR_STRING: {
xfree(tv->vval.v_string);
break;
}
case VAR_LIST: {
tv_list_unref(tv->vval.v_list);
break;
}
case VAR_DICT: {
tv_dict_unref(tv->vval.v_dict);
break;
}
case VAR_BOOL:
case VAR_SPECIAL:
case VAR_NUMBER:
case VAR_FLOAT:
case VAR_UNKNOWN: {
break;
}
}
xfree(tv);
}
}
//{{{3 Copy
/// Copy typval from one location to another
///
/// When needed allocates string or increases reference count. Does not make
/// a copy of a container, but copies its reference!
///
/// It is OK for `from` and `to` to point to the same location; this is used to
/// make a copy later.
///
/// @param[in] from Location to copy from.
/// @param[out] to Location to copy to.
void tv_copy(const typval_T *const from, typval_T *const to)
{
to->v_type = from->v_type;
to->v_lock = VAR_UNLOCKED;
memmove(&to->vval, &from->vval, sizeof(to->vval));
switch (from->v_type) {
case VAR_NUMBER:
case VAR_FLOAT:
case VAR_BOOL:
case VAR_SPECIAL: {
break;
}
case VAR_STRING:
case VAR_FUNC: {
if (from->vval.v_string != NULL) {
to->vval.v_string = vim_strsave(from->vval.v_string);
if (from->v_type == VAR_FUNC) {
func_ref(to->vval.v_string);
}
}
break;
}
case VAR_PARTIAL: {
if (to->vval.v_partial != NULL) {
to->vval.v_partial->pt_refcount++;
}
break;
}
case VAR_LIST: {
tv_list_ref(to->vval.v_list);
break;
}
case VAR_DICT: {
if (from->vval.v_dict != NULL) {
to->vval.v_dict->dv_refcount++;
}
break;
}
case VAR_UNKNOWN: {
emsgf(_(e_intern2), "tv_copy(UNKNOWN)");
break;
}
}
}
//{{{2 Locks
/// Lock or unlock an item
///
/// @param[out] tv Item to (un)lock.
/// @param[in] deep Levels to (un)lock, -1 to (un)lock everything.
/// @param[in] lock True if it is needed to lock an item, false to unlock.
void tv_item_lock(typval_T *const tv, const int deep, const bool lock)
FUNC_ATTR_NONNULL_ALL
{
// TODO(ZyX-I): Make this not recursive
static int recurse = 0;
if (recurse >= DICT_MAXNEST) {
EMSG(_("E743: variable nested too deep for (un)lock"));
return;
}
if (deep == 0) {
return;
}
recurse++;
// lock/unlock the item itself
#define CHANGE_LOCK(lock, var) \
do { \
var = ((VarLockStatus[]) { \
[VAR_UNLOCKED] = (lock ? VAR_LOCKED : VAR_UNLOCKED), \
[VAR_LOCKED] = (lock ? VAR_LOCKED : VAR_UNLOCKED), \
[VAR_FIXED] = VAR_FIXED, \
})[var]; \
} while (0)
CHANGE_LOCK(lock, tv->v_lock);
switch (tv->v_type) {
case VAR_LIST: {
list_T *const l = tv->vval.v_list;
if (l != NULL) {
CHANGE_LOCK(lock, l->lv_lock);
if (deep < 0 || deep > 1) {
// Recursive: lock/unlock the items the List contains.
TV_LIST_ITER(l, li, {
tv_item_lock(TV_LIST_ITEM_TV(li), deep - 1, lock);
});
}
}
break;
}
case VAR_DICT: {
dict_T *const d = tv->vval.v_dict;
if (d != NULL) {
CHANGE_LOCK(lock, d->dv_lock);
if (deep < 0 || deep > 1) {
// recursive: lock/unlock the items the List contains
TV_DICT_ITER(d, di, {
tv_item_lock(&di->di_tv, deep - 1, lock);
});
}
}
break;
}
case VAR_NUMBER:
case VAR_FLOAT:
case VAR_STRING:
case VAR_FUNC:
case VAR_PARTIAL:
case VAR_BOOL:
case VAR_SPECIAL: {
break;
}
case VAR_UNKNOWN: {
assert(false);
}
}
#undef CHANGE_LOCK
recurse--;
}
/// Check whether VimL value is locked itself or refers to a locked container
///
/// @warning Fixed container is not the same as locked.
///
/// @param[in] tv Value to check.
///
/// @return True if value is locked, false otherwise.
bool tv_islocked(const typval_T *const tv)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
return ((tv->v_lock == VAR_LOCKED)
|| (tv->v_type == VAR_LIST
&& (tv_list_locked(tv->vval.v_list) == VAR_LOCKED))
|| (tv->v_type == VAR_DICT
&& tv->vval.v_dict != NULL
&& (tv->vval.v_dict->dv_lock == VAR_LOCKED)));
}
/// Return true if typval is locked
///
/// Also gives an error message when typval is locked.
///
/// @param[in] lock Lock status.
/// @param[in] name Variable name, used in the error message.
/// @param[in] name_len Variable name length. Use #TV_TRANSLATE to translate
/// variable name and compute the length. Use #TV_CSTRING
/// to compute the length with strlen() without
/// translating.
///
/// Both #TV_… values are used for optimization purposes:
/// variable name with its length is needed only in case
/// of error, when no error occurs computing them is
/// a waste of CPU resources. This especially applies to
/// gettext.
///
/// @return true if variable is locked, false otherwise.
bool tv_check_lock(const VarLockStatus lock, const char *name,
size_t name_len)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const char *error_message = NULL;
switch (lock) {
case VAR_UNLOCKED: {
return false;
}
case VAR_LOCKED: {
error_message = N_("E741: Value is locked: %.*s");
break;
}
case VAR_FIXED: {
error_message = N_("E742: Cannot change value of %.*s");
break;
}
}
assert(error_message != NULL);
if (name == NULL) {
name = _("Unknown");
name_len = strlen(name);
} else if (name_len == TV_TRANSLATE) {
name = _(name);
name_len = strlen(name);
} else if (name_len == TV_CSTRING) {
name_len = strlen(name);
}
emsgf(_(error_message), (int)name_len, name);
return true;
}
//{{{2 Comparison
static int tv_equal_recurse_limit;
/// Compare two VimL values
///
/// Like "==", but strings and numbers are different, as well as floats and
/// numbers.
///
/// @warning Too nested structures may be considered equal even if they are not.
///
/// @param[in] tv1 First value to compare.
/// @param[in] tv2 Second value to compare.
/// @param[in] ic True if case is to be ignored.
/// @param[in] recursive True when used recursively.
///
/// @return true if values are equal.
bool tv_equal(typval_T *const tv1, typval_T *const tv2, const bool ic,
const bool recursive)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
// TODO(ZyX-I): Make this not recursive
static int recursive_cnt = 0; // Catch recursive loops.
if (!(tv_is_func(*tv1) && tv_is_func(*tv2)) && tv1->v_type != tv2->v_type) {
return false;
}
// Catch lists and dicts that have an endless loop by limiting
// recursiveness to a limit. We guess they are equal then.
// A fixed limit has the problem of still taking an awful long time.
// Reduce the limit every time running into it. That should work fine for
// deeply linked structures that are not recursively linked and catch
// recursiveness quickly.
if (!recursive) {
tv_equal_recurse_limit = 1000;
}
if (recursive_cnt >= tv_equal_recurse_limit) {
tv_equal_recurse_limit--;
return true;
}
switch (tv1->v_type) {
case VAR_LIST: {
recursive_cnt++;
const bool r = tv_list_equal(tv1->vval.v_list, tv2->vval.v_list, ic,
true);
recursive_cnt--;
return r;
}
case VAR_DICT: {
recursive_cnt++;
const bool r = tv_dict_equal(tv1->vval.v_dict, tv2->vval.v_dict, ic,
true);
recursive_cnt--;
return r;
}
case VAR_PARTIAL:
case VAR_FUNC: {
if ((tv1->v_type == VAR_PARTIAL && tv1->vval.v_partial == NULL)
|| (tv2->v_type == VAR_PARTIAL && tv2->vval.v_partial == NULL)) {
return false;
}
recursive_cnt++;
const bool r = func_equal(tv1, tv2, ic);
recursive_cnt--;
return r;
}
case VAR_NUMBER: {
return tv1->vval.v_number == tv2->vval.v_number;
}
case VAR_FLOAT: {
return tv1->vval.v_float == tv2->vval.v_float;
}
case VAR_STRING: {
char buf1[NUMBUFLEN];
char buf2[NUMBUFLEN];
const char *s1 = tv_get_string_buf(tv1, buf1);
const char *s2 = tv_get_string_buf(tv2, buf2);
return mb_strcmp_ic((bool)ic, s1, s2) == 0;
}
case VAR_BOOL: {
return tv1->vval.v_bool == tv2->vval.v_bool;
}
case VAR_SPECIAL: {
return tv1->vval.v_special == tv2->vval.v_special;
}
case VAR_UNKNOWN: {
// VAR_UNKNOWN can be the result of an invalid expression, lets say it
// does not equal anything, not even self.
return false;
}
}
assert(false);
return false;
}
//{{{2 Type checks
/// Check that given value is a number or string
///
/// Error messages are compatible with tv_get_number() previously used for the
/// same purpose in buf*() functions. Special values are not accepted (previous
/// behaviour: silently fail to find buffer).
///
/// @param[in] tv Value to check.
///
/// @return true if everything is OK, false otherwise.
bool tv_check_str_or_nr(const typval_T *const tv)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
switch (tv->v_type) {
case VAR_NUMBER:
case VAR_STRING: {
return true;
}
case VAR_FLOAT: {
EMSG(_("E805: Expected a Number or a String, Float found"));
return false;
}
case VAR_PARTIAL:
case VAR_FUNC: {
EMSG(_("E703: Expected a Number or a String, Funcref found"));
return false;
}
case VAR_LIST: {
EMSG(_("E745: Expected a Number or a String, List found"));
return false;
}
case VAR_DICT: {
EMSG(_("E728: Expected a Number or a String, Dictionary found"));
return false;
}
case VAR_BOOL: {
EMSG(_("E5299: Expected a Number or a String, Boolean found"));
return false;
}
case VAR_SPECIAL: {
EMSG(_("E5300: Expected a Number or a String"));
return false;
}
case VAR_UNKNOWN: {
EMSG2(_(e_intern2), "tv_check_str_or_nr(UNKNOWN)");
return false;
}
}
assert(false);
return false;
}
#define FUNC_ERROR "E703: Using a Funcref as a Number"
static const char *const num_errors[] = {
[VAR_PARTIAL]=N_(FUNC_ERROR),
[VAR_FUNC]=N_(FUNC_ERROR),
[VAR_LIST]=N_("E745: Using a List as a Number"),
[VAR_DICT]=N_("E728: Using a Dictionary as a Number"),
[VAR_FLOAT]=N_("E805: Using a Float as a Number"),
[VAR_UNKNOWN]=N_("E685: using an invalid value as a Number"),
};
#undef FUNC_ERROR
/// Check that given value is a number or can be converted to it
///
/// Error messages are compatible with tv_get_number_chk() previously used for
/// the same purpose.
///
/// @param[in] tv Value to check.
///
/// @return true if everything is OK, false otherwise.
bool tv_check_num(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
switch (tv->v_type) {
case VAR_NUMBER:
case VAR_BOOL:
case VAR_SPECIAL:
case VAR_STRING: {
return true;
}
case VAR_FUNC:
case VAR_PARTIAL:
case VAR_LIST:
case VAR_DICT:
case VAR_FLOAT:
case VAR_UNKNOWN: {
EMSG(_(num_errors[tv->v_type]));
return false;
}
}
assert(false);
return false;
}
#define FUNC_ERROR "E729: using Funcref as a String"
static const char *const str_errors[] = {
[VAR_PARTIAL]=N_(FUNC_ERROR),
[VAR_FUNC]=N_(FUNC_ERROR),
[VAR_LIST]=N_("E730: using List as a String"),
[VAR_DICT]=N_("E731: using Dictionary as a String"),
[VAR_FLOAT]=((const char *)e_float_as_string),
[VAR_UNKNOWN]=N_("E908: using an invalid value as a String"),
};
#undef FUNC_ERROR
/// Check that given value is a VimL String or can be "cast" to it.
///
/// Error messages are compatible with tv_get_string_chk() previously used for
/// the same purpose.
///
/// @param[in] tv Value to check.
///
/// @return true if everything is OK, false otherwise.
bool tv_check_str(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
switch (tv->v_type) {
case VAR_NUMBER:
case VAR_BOOL:
case VAR_SPECIAL:
case VAR_STRING: {
return true;
}
case VAR_PARTIAL:
case VAR_FUNC:
case VAR_LIST:
case VAR_DICT:
case VAR_FLOAT:
case VAR_UNKNOWN: {
EMSG(_(str_errors[tv->v_type]));
return false;
}
}
assert(false);
return false;
}
//{{{2 Get
/// Get the number value of a VimL object
///
/// @note Use tv_get_number_chk() if you need to determine whether there was an
/// error.
///
/// @param[in] tv Object to get value from.
///
/// @return Number value: vim_str2nr() output for VAR_STRING objects, value
/// for VAR_NUMBER objects, -1 for other types.
varnumber_T tv_get_number(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
bool error = false;
return tv_get_number_chk(tv, &error);
}
/// Get the number value of a VimL object
///
/// @param[in] tv Object to get value from.
/// @param[out] ret_error If type error occurred then `true` will be written
/// to this location. Otherwise it is not touched.
///
/// @note Needs to be initialized to `false` to be
/// useful.
///
/// @return Number value: vim_str2nr() output for VAR_STRING objects, value
/// for VAR_NUMBER objects, -1 (ret_error == NULL) or 0 (otherwise) for
/// other types.
varnumber_T tv_get_number_chk(const typval_T *const tv, bool *const ret_error)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ARG(1)
{
switch (tv->v_type) {
case VAR_FUNC:
case VAR_PARTIAL:
case VAR_LIST:
case VAR_DICT:
case VAR_FLOAT: {
EMSG(_(num_errors[tv->v_type]));
break;
}
case VAR_NUMBER: {
return tv->vval.v_number;
}
case VAR_STRING: {
varnumber_T n = 0;
if (tv->vval.v_string != NULL) {
vim_str2nr(tv->vval.v_string, NULL, NULL, STR2NR_ALL, &n, NULL, 0);
}
return n;
}
case VAR_BOOL: {
return tv->vval.v_bool == kBoolVarTrue ? 1 : 0;
}
case VAR_SPECIAL: {
return 0;
}
case VAR_UNKNOWN: {
emsgf(_(e_intern2), "tv_get_number(UNKNOWN)");
break;
}
}
if (ret_error != NULL) {
*ret_error = true;
}
return (ret_error == NULL ? -1 : 0);
}
/// Get the line number from VimL object
///
/// @param[in] tv Object to get value from. Is expected to be a number or
/// a special string like ".", "$", … (works with current buffer
/// only).
///
/// @return Line number or -1 or 0.
linenr_T tv_get_lnum(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
linenr_T lnum = (linenr_T)tv_get_number_chk(tv, NULL);
if (lnum == 0) { // No valid number, try using same function as line() does.
int fnum;
pos_T *const fp = var2fpos(tv, true, &fnum);
if (fp != NULL) {
lnum = fp->lnum;
}
}
return lnum;
}
/// Get the floating-point value of a VimL object
///
/// Raises an error if object is not number or floating-point.
///
/// @param[in] tv Object to get value of.
///
/// @return Floating-point value of the variable or zero.
float_T tv_get_float(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
switch (tv->v_type) {
case VAR_NUMBER: {
return (float_T)(tv->vval.v_number);
}
case VAR_FLOAT: {
return tv->vval.v_float;
}
case VAR_PARTIAL:
case VAR_FUNC: {
EMSG(_("E891: Using a Funcref as a Float"));
break;
}
case VAR_STRING: {
EMSG(_("E892: Using a String as a Float"));
break;
}
case VAR_LIST: {
EMSG(_("E893: Using a List as a Float"));
break;
}
case VAR_DICT: {
EMSG(_("E894: Using a Dictionary as a Float"));
break;
}
case VAR_BOOL: {
EMSG(_("E362: Using a boolean value as a Float"));
break;
}
case VAR_SPECIAL: {
EMSG(_("E907: Using a special value as a Float"));
break;
}
case VAR_UNKNOWN: {
emsgf(_(e_intern2), "tv_get_float(UNKNOWN)");
break;
}
}
return 0;
}
/// Get the string value of a "stringish" VimL object.
///
/// @param[in] tv Object to get value of.
/// @param buf Buffer used to hold numbers and special variables converted to
/// string. When function encounters one of these stringified value
/// will be written to buf and buf will be returned.
///
/// Buffer must have NUMBUFLEN size.
///
/// @return Object value if it is VAR_STRING object, number converted to
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or NULL.
const char *tv_get_string_buf_chk(const typval_T *const tv, char *const buf)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
switch (tv->v_type) {
case VAR_NUMBER: {
snprintf(buf, NUMBUFLEN, "%" PRIdVARNUMBER, tv->vval.v_number); // -V576
return buf;
}
case VAR_STRING: {
if (tv->vval.v_string != NULL) {
return (const char *)tv->vval.v_string;
}
return "";
}
case VAR_BOOL: {
STRCPY(buf, encode_bool_var_names[tv->vval.v_bool]);
return buf;
}
case VAR_SPECIAL: {
STRCPY(buf, encode_special_var_names[tv->vval.v_special]);
return buf;
}
case VAR_PARTIAL:
case VAR_FUNC:
case VAR_LIST:
case VAR_DICT:
case VAR_FLOAT:
case VAR_UNKNOWN: {
EMSG(_(str_errors[tv->v_type]));
return false;
}
}
return NULL;
}
/// Get the string value of a "stringish" VimL object.
///
/// @warning For number and special values it uses a single, static buffer. It
/// may be used only once, next call to tv_get_string may reuse it. Use
/// tv_get_string_buf() if you need to use tv_get_string() output after
/// calling it again.
///
/// @param[in] tv Object to get value of.
///
/// @return Object value if it is VAR_STRING object, number converted to
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or NULL.
const char *tv_get_string_chk(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
static char mybuf[NUMBUFLEN];
return tv_get_string_buf_chk(tv, mybuf);
}
/// Get the string value of a "stringish" VimL object.
///
/// @warning For number and special values it uses a single, static buffer. It
/// may be used only once, next call to tv_get_string may reuse it. Use
/// tv_get_string_buf() if you need to use tv_get_string() output after
/// calling it again.
///
/// @note tv_get_string_chk() and tv_get_string_buf_chk() are similar, but
/// return NULL on error.
///
/// @param[in] tv Object to get value of.
///
/// @return Object value if it is VAR_STRING object, number converted to
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or empty
/// string.
const char *tv_get_string(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_NONNULL_RET FUNC_ATTR_WARN_UNUSED_RESULT
{
static char mybuf[NUMBUFLEN];
return tv_get_string_buf((typval_T *)tv, mybuf);
}
/// Get the string value of a "stringish" VimL object.
///
/// @note tv_get_string_chk() and tv_get_string_buf_chk() are similar, but
/// return NULL on error.
///
/// @param[in] tv Object to get value of.
/// @param buf Buffer used to hold numbers and special variables converted to
/// string. When function encounters one of these stringified value
/// will be written to buf and buf will be returned.
///
/// Buffer must have NUMBUFLEN size.
///
/// @return Object value if it is VAR_STRING object, number converted to
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or empty
/// string.
const char *tv_get_string_buf(const typval_T *const tv, char *const buf)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_NONNULL_RET FUNC_ATTR_WARN_UNUSED_RESULT
{
const char *const res = (const char *)tv_get_string_buf_chk(tv, buf);
return res != NULL ? res : "";
}