mirror of
https://github.com/neovim/neovim.git
synced 2025-09-07 11:58:17 +00:00

vim-patch:8.2.1054: not so easy to pass a lua function to Vim vim-patch:8.2.1084: Lua: registering function has useless code I think I have also opened up the possibility for people to use these callbacks elsewhere, since I've added a new struct that we should be able to use. Also, this should allow us to determine what the state of a list is in Lua or a dictionary in Lua, since we now can track the luaref as we go.
3009 lines
83 KiB
C
3009 lines
83 KiB
C
// This is an open source non-commercial project. Dear PVS-Studio, please check
|
||
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
|
||
|
||
#include <stdio.h>
|
||
#include <stddef.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
#include <stdbool.h>
|
||
|
||
#include "nvim/lib/queue.h"
|
||
#include "nvim/eval/typval.h"
|
||
#include "nvim/eval/gc.h"
|
||
#include "nvim/eval/executor.h"
|
||
#include "nvim/eval/encode.h"
|
||
#include "nvim/eval/typval_encode.h"
|
||
#include "nvim/eval.h"
|
||
#include "nvim/eval/userfunc.h"
|
||
#include "nvim/lua/executor.h"
|
||
#include "nvim/types.h"
|
||
#include "nvim/assert.h"
|
||
#include "nvim/memory.h"
|
||
#include "nvim/globals.h"
|
||
#include "nvim/hashtab.h"
|
||
#include "nvim/vim.h"
|
||
#include "nvim/ascii.h"
|
||
#include "nvim/pos.h"
|
||
#include "nvim/charset.h"
|
||
#include "nvim/garray.h"
|
||
#include "nvim/gettext.h"
|
||
#include "nvim/macros.h"
|
||
#include "nvim/mbyte.h"
|
||
#include "nvim/message.h"
|
||
// TODO(ZyX-I): Move line_breakcheck out of misc1
|
||
#include "nvim/misc1.h" // For line_breakcheck
|
||
#include "nvim/os/fileio.h"
|
||
|
||
#ifdef INCLUDE_GENERATED_DECLARATIONS
|
||
# include "eval/typval.c.generated.h"
|
||
#endif
|
||
|
||
bool tv_in_free_unref_items = false;
|
||
|
||
// TODO(ZyX-I): Remove DICT_MAXNEST, make users be non-recursive instead
|
||
|
||
#define DICT_MAXNEST 100
|
||
|
||
const char *const tv_empty_string = "";
|
||
|
||
//{{{1 Lists
|
||
//{{{2 List log
|
||
#ifdef LOG_LIST_ACTIONS
|
||
ListLog *list_log_first = NULL;
|
||
ListLog *list_log_last = NULL;
|
||
|
||
/// Write list log to the given file
|
||
///
|
||
/// @param[in] fname File to write log to. Will be appended to if already
|
||
/// present.
|
||
void list_write_log(const char *const fname)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
FileDescriptor fp;
|
||
const int fo_ret = file_open(&fp, fname, kFileCreate|kFileAppend, 0600);
|
||
if (fo_ret != 0) {
|
||
emsgf(_("E5142: Failed to open file %s: %s"), fname, os_strerror(fo_ret));
|
||
return;
|
||
}
|
||
for (ListLog *chunk = list_log_first; chunk != NULL;) {
|
||
for (size_t i = 0; i < chunk->size; i++) {
|
||
char buf[10 + 1 + ((16 + 3) * 3) + (8 + 2) + 2];
|
||
// act : hex " c:" len "[]" "\n\0"
|
||
const ListLogEntry entry = chunk->entries[i];
|
||
const size_t snp_len = (size_t)snprintf(
|
||
buf, sizeof(buf),
|
||
"%-10.10s: l:%016" PRIxPTR "[%08d] 1:%016" PRIxPTR " 2:%016" PRIxPTR
|
||
"\n",
|
||
entry.action, entry.l, entry.len, entry.li1, entry.li2);
|
||
assert(snp_len + 1 == sizeof(buf));
|
||
const ptrdiff_t fw_ret = file_write(&fp, buf, snp_len);
|
||
if (fw_ret != (ptrdiff_t)snp_len) {
|
||
assert(fw_ret < 0);
|
||
if (i) {
|
||
memmove(chunk->entries, chunk->entries + i,
|
||
sizeof(chunk->entries[0]) * (chunk->size - i));
|
||
chunk->size -= i;
|
||
}
|
||
emsgf(_("E5143: Failed to write to file %s: %s"),
|
||
fname, os_strerror((int)fw_ret));
|
||
return;
|
||
}
|
||
}
|
||
list_log_first = chunk->next;
|
||
xfree(chunk);
|
||
chunk = list_log_first;
|
||
}
|
||
const int fc_ret = file_close(&fp, true);
|
||
if (fc_ret != 0) {
|
||
emsgf(_("E5144: Failed to close file %s: %s"), fname, os_strerror(fc_ret));
|
||
}
|
||
}
|
||
|
||
#ifdef EXITFREE
|
||
/// Free list log
|
||
void list_free_log(void)
|
||
{
|
||
for (ListLog *chunk = list_log_first; chunk != NULL;) {
|
||
list_log_first = chunk->next;
|
||
xfree(chunk);
|
||
chunk = list_log_first;
|
||
}
|
||
}
|
||
#endif
|
||
#endif
|
||
//{{{2 List item
|
||
|
||
/// Allocate a list item
|
||
///
|
||
/// @warning Allocated item is not initialized, do not forget to initialize it
|
||
/// and specifically set lv_lock.
|
||
///
|
||
/// @return [allocated] new list item.
|
||
static listitem_T *tv_list_item_alloc(void)
|
||
FUNC_ATTR_NONNULL_RET FUNC_ATTR_MALLOC
|
||
{
|
||
return xmalloc(sizeof(listitem_T));
|
||
}
|
||
|
||
/// Remove a list item from a List and free it
|
||
///
|
||
/// Also clears the value.
|
||
///
|
||
/// @param[out] l List to remove item from.
|
||
/// @param[in,out] item Item to remove.
|
||
///
|
||
/// @return Pointer to the list item just after removed one, NULL if removed
|
||
/// item was the last one.
|
||
listitem_T *tv_list_item_remove(list_T *const l, listitem_T *const item)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
listitem_T *const next_item = TV_LIST_ITEM_NEXT(l, item);
|
||
tv_list_drop_items(l, item, item);
|
||
tv_clear(TV_LIST_ITEM_TV(item));
|
||
xfree(item);
|
||
return next_item;
|
||
}
|
||
|
||
//{{{2 List watchers
|
||
|
||
/// Add a watcher to a list
|
||
///
|
||
/// @param[out] l List to add watcher to.
|
||
/// @param[in] lw Watcher to add.
|
||
void tv_list_watch_add(list_T *const l, listwatch_T *const lw)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
lw->lw_next = l->lv_watch;
|
||
l->lv_watch = lw;
|
||
}
|
||
|
||
/// Remove a watcher from a list
|
||
///
|
||
/// Does not give a warning if watcher was not found.
|
||
///
|
||
/// @param[out] l List to remove watcher from.
|
||
/// @param[in] lwrem Watcher to remove.
|
||
void tv_list_watch_remove(list_T *const l, listwatch_T *const lwrem)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
listwatch_T **lwp = &l->lv_watch;
|
||
for (listwatch_T *lw = l->lv_watch; lw != NULL; lw = lw->lw_next) {
|
||
if (lw == lwrem) {
|
||
*lwp = lw->lw_next;
|
||
break;
|
||
}
|
||
lwp = &lw->lw_next;
|
||
}
|
||
}
|
||
|
||
/// Advance watchers to the next item
|
||
///
|
||
/// Used just before removing an item from a list.
|
||
///
|
||
/// @param[out] l List from which item is removed.
|
||
/// @param[in] item List item being removed.
|
||
void tv_list_watch_fix(list_T *const l, const listitem_T *const item)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
for (listwatch_T *lw = l->lv_watch; lw != NULL; lw = lw->lw_next) {
|
||
if (lw->lw_item == item) {
|
||
lw->lw_item = item->li_next;
|
||
}
|
||
}
|
||
}
|
||
|
||
//{{{2 Alloc/free
|
||
|
||
/// Allocate an empty list
|
||
///
|
||
/// Caller should take care of the reference count.
|
||
///
|
||
/// @param[in] len Expected number of items to be populated before list
|
||
/// becomes accessible from VimL. It is still valid to
|
||
/// underpopulate a list, value only controls how many elements
|
||
/// will be allocated in advance. Currently does nothing.
|
||
/// @see ListLenSpecials.
|
||
///
|
||
/// @return [allocated] new list.
|
||
list_T *tv_list_alloc(const ptrdiff_t len)
|
||
FUNC_ATTR_NONNULL_RET
|
||
{
|
||
list_T *const list = xcalloc(1, sizeof(list_T));
|
||
|
||
// Prepend the list to the list of lists for garbage collection.
|
||
if (gc_first_list != NULL) {
|
||
gc_first_list->lv_used_prev = list;
|
||
}
|
||
list->lv_used_prev = NULL;
|
||
list->lv_used_next = gc_first_list;
|
||
gc_first_list = list;
|
||
list_log(list, NULL, (void *)(uintptr_t)len, "alloc");
|
||
return list;
|
||
}
|
||
|
||
/// Initialize a static list with 10 items
|
||
///
|
||
/// @param[out] sl Static list to initialize.
|
||
void tv_list_init_static10(staticList10_T *const sl)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
#define SL_SIZE ARRAY_SIZE(sl->sl_items)
|
||
list_T *const l = &sl->sl_list;
|
||
|
||
memset(sl, 0, sizeof(staticList10_T));
|
||
l->lv_first = &sl->sl_items[0];
|
||
l->lv_last = &sl->sl_items[SL_SIZE - 1];
|
||
l->lv_refcount = DO_NOT_FREE_CNT;
|
||
tv_list_set_lock(l, VAR_FIXED);
|
||
sl->sl_list.lv_len = 10;
|
||
|
||
sl->sl_items[0].li_prev = NULL;
|
||
sl->sl_items[0].li_next = &sl->sl_items[1];
|
||
sl->sl_items[SL_SIZE - 1].li_prev = &sl->sl_items[SL_SIZE - 2];
|
||
sl->sl_items[SL_SIZE - 1].li_next = NULL;
|
||
|
||
for (size_t i = 1; i < SL_SIZE - 1; i++) {
|
||
listitem_T *const li = &sl->sl_items[i];
|
||
li->li_prev = li - 1;
|
||
li->li_next = li + 1;
|
||
}
|
||
list_log((const list_T *)sl, &sl->sl_items[0], &sl->sl_items[SL_SIZE - 1],
|
||
"s10init");
|
||
#undef SL_SIZE
|
||
}
|
||
|
||
/// Initialize static list with undefined number of elements
|
||
///
|
||
/// @param[out] l List to initialize.
|
||
void tv_list_init_static(list_T *const l)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
memset(l, 0, sizeof(*l));
|
||
l->lv_refcount = DO_NOT_FREE_CNT;
|
||
list_log(l, NULL, NULL, "sinit");
|
||
}
|
||
|
||
/// Free items contained in a list
|
||
///
|
||
/// @param[in,out] l List to clear.
|
||
void tv_list_free_contents(list_T *const l)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
list_log(l, NULL, NULL, "freecont");
|
||
for (listitem_T *item = l->lv_first; item != NULL; item = l->lv_first) {
|
||
// Remove the item before deleting it.
|
||
l->lv_first = item->li_next;
|
||
tv_clear(&item->li_tv);
|
||
xfree(item);
|
||
}
|
||
l->lv_len = 0;
|
||
l->lv_idx_item = NULL;
|
||
l->lv_last = NULL;
|
||
assert(l->lv_watch == NULL);
|
||
}
|
||
|
||
/// Free a list itself, ignoring items it contains
|
||
///
|
||
/// Ignores the reference count.
|
||
///
|
||
/// @param[in,out] l List to free.
|
||
void tv_list_free_list(list_T *const l)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
// Remove the list from the list of lists for garbage collection.
|
||
if (l->lv_used_prev == NULL) {
|
||
gc_first_list = l->lv_used_next;
|
||
} else {
|
||
l->lv_used_prev->lv_used_next = l->lv_used_next;
|
||
}
|
||
if (l->lv_used_next != NULL) {
|
||
l->lv_used_next->lv_used_prev = l->lv_used_prev;
|
||
}
|
||
list_log(l, NULL, NULL, "freelist");
|
||
|
||
nlua_free_typval_list(l);
|
||
xfree(l);
|
||
}
|
||
|
||
/// Free a list, including all items it points to
|
||
///
|
||
/// Ignores the reference count. Does not do anything if
|
||
/// tv_in_free_unref_items is true.
|
||
///
|
||
/// @param[in,out] l List to free.
|
||
void tv_list_free(list_T *const l)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
if (!tv_in_free_unref_items) {
|
||
tv_list_free_contents(l);
|
||
tv_list_free_list(l);
|
||
}
|
||
}
|
||
|
||
/// Unreference a list
|
||
///
|
||
/// Decrements the reference count and frees when it becomes zero or less.
|
||
///
|
||
/// @param[in,out] l List to unreference.
|
||
void tv_list_unref(list_T *const l)
|
||
{
|
||
if (l != NULL && --l->lv_refcount <= 0) {
|
||
tv_list_free(l);
|
||
}
|
||
}
|
||
|
||
//{{{2 Add/remove
|
||
|
||
/// Remove items "item" to "item2" from list "l"
|
||
///
|
||
/// @warning Does not free the listitem or the value!
|
||
///
|
||
/// @param[out] l List to remove from.
|
||
/// @param[in] item First item to remove.
|
||
/// @param[in] item2 Last item to remove.
|
||
void tv_list_drop_items(list_T *const l, listitem_T *const item,
|
||
listitem_T *const item2)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
list_log(l, item, item2, "drop");
|
||
// Notify watchers.
|
||
for (listitem_T *ip = item; ip != item2->li_next; ip = ip->li_next) {
|
||
l->lv_len--;
|
||
tv_list_watch_fix(l, ip);
|
||
}
|
||
|
||
if (item2->li_next == NULL) {
|
||
l->lv_last = item->li_prev;
|
||
} else {
|
||
item2->li_next->li_prev = item->li_prev;
|
||
}
|
||
if (item->li_prev == NULL) {
|
||
l->lv_first = item2->li_next;
|
||
} else {
|
||
item->li_prev->li_next = item2->li_next;
|
||
}
|
||
l->lv_idx_item = NULL;
|
||
list_log(l, l->lv_first, l->lv_last, "afterdrop");
|
||
}
|
||
|
||
/// Like tv_list_drop_items, but also frees all removed items
|
||
void tv_list_remove_items(list_T *const l, listitem_T *const item,
|
||
listitem_T *const item2)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
list_log(l, item, item2, "remove");
|
||
tv_list_drop_items(l, item, item2);
|
||
for (listitem_T *li = item;;) {
|
||
tv_clear(TV_LIST_ITEM_TV(li));
|
||
listitem_T *const nli = li->li_next;
|
||
xfree(li);
|
||
if (li == item2) {
|
||
break;
|
||
}
|
||
li = nli;
|
||
}
|
||
}
|
||
|
||
/// Move items "item" to "item2" from list "l" to the end of the list "tgt_l"
|
||
///
|
||
/// @param[out] l List to move from.
|
||
/// @param[in] item First item to move.
|
||
/// @param[in] item2 Last item to move.
|
||
/// @param[out] tgt_l List to move to.
|
||
/// @param[in] cnt Number of items moved.
|
||
void tv_list_move_items(list_T *const l, listitem_T *const item,
|
||
listitem_T *const item2, list_T *const tgt_l,
|
||
const int cnt)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
list_log(l, item, item2, "move");
|
||
tv_list_drop_items(l, item, item2);
|
||
item->li_prev = tgt_l->lv_last;
|
||
item2->li_next = NULL;
|
||
if (tgt_l->lv_last == NULL) {
|
||
tgt_l->lv_first = item;
|
||
} else {
|
||
tgt_l->lv_last->li_next = item;
|
||
}
|
||
tgt_l->lv_last = item2;
|
||
tgt_l->lv_len += cnt;
|
||
list_log(tgt_l, tgt_l->lv_first, tgt_l->lv_last, "movetgt");
|
||
}
|
||
|
||
/// Insert list item
|
||
///
|
||
/// @param[out] l List to insert to.
|
||
/// @param[in,out] ni Item to insert.
|
||
/// @param[in] item Item to insert before. If NULL, inserts at the end of the
|
||
/// list.
|
||
void tv_list_insert(list_T *const l, listitem_T *const ni,
|
||
listitem_T *const item)
|
||
FUNC_ATTR_NONNULL_ARG(1, 2)
|
||
{
|
||
if (item == NULL) {
|
||
// Append new item at end of list.
|
||
tv_list_append(l, ni);
|
||
} else {
|
||
// Insert new item before existing item.
|
||
ni->li_prev = item->li_prev;
|
||
ni->li_next = item;
|
||
if (item->li_prev == NULL) {
|
||
l->lv_first = ni;
|
||
l->lv_idx++;
|
||
} else {
|
||
item->li_prev->li_next = ni;
|
||
l->lv_idx_item = NULL;
|
||
}
|
||
item->li_prev = ni;
|
||
l->lv_len++;
|
||
list_log(l, ni, item, "insert");
|
||
}
|
||
}
|
||
|
||
/// Insert VimL value into a list
|
||
///
|
||
/// @param[out] l List to insert to.
|
||
/// @param[in,out] tv Value to insert. Is copied (@see tv_copy()) to an
|
||
/// allocated listitem_T and inserted.
|
||
/// @param[in] item Item to insert before. If NULL, inserts at the end of the
|
||
/// list.
|
||
void tv_list_insert_tv(list_T *const l, typval_T *const tv,
|
||
listitem_T *const item)
|
||
{
|
||
listitem_T *const ni = tv_list_item_alloc();
|
||
|
||
tv_copy(tv, &ni->li_tv);
|
||
tv_list_insert(l, ni, item);
|
||
}
|
||
|
||
/// Append item to the end of list
|
||
///
|
||
/// @param[out] l List to append to.
|
||
/// @param[in,out] item Item to append.
|
||
void tv_list_append(list_T *const l, listitem_T *const item)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
list_log(l, item, NULL, "append");
|
||
if (l->lv_last == NULL) {
|
||
// empty list
|
||
l->lv_first = item;
|
||
l->lv_last = item;
|
||
item->li_prev = NULL;
|
||
} else {
|
||
l->lv_last->li_next = item;
|
||
item->li_prev = l->lv_last;
|
||
l->lv_last = item;
|
||
}
|
||
l->lv_len++;
|
||
item->li_next = NULL;
|
||
}
|
||
|
||
/// Append VimL value to the end of list
|
||
///
|
||
/// @param[out] l List to append to.
|
||
/// @param[in,out] tv Value to append. Is copied (@see tv_copy()) to an
|
||
/// allocated listitem_T.
|
||
void tv_list_append_tv(list_T *const l, typval_T *const tv)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
listitem_T *const li = tv_list_item_alloc();
|
||
tv_copy(tv, TV_LIST_ITEM_TV(li));
|
||
tv_list_append(l, li);
|
||
}
|
||
|
||
/// Like tv_list_append_tv(), but tv is moved to a list
|
||
///
|
||
/// This means that it is no longer valid to use contents of the typval_T after
|
||
/// function exits.
|
||
void tv_list_append_owned_tv(list_T *const l, typval_T tv)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
listitem_T *const li = tv_list_item_alloc();
|
||
*TV_LIST_ITEM_TV(li) = tv;
|
||
tv_list_append(l, li);
|
||
}
|
||
|
||
/// Append a list to a list as one item
|
||
///
|
||
/// @param[out] l List to append to.
|
||
/// @param[in,out] itemlist List to append. Reference count is increased.
|
||
void tv_list_append_list(list_T *const l, list_T *const itemlist)
|
||
FUNC_ATTR_NONNULL_ARG(1)
|
||
{
|
||
tv_list_append_owned_tv(l, (typval_T) {
|
||
.v_type = VAR_LIST,
|
||
.v_lock = VAR_UNLOCKED,
|
||
.vval.v_list = itemlist,
|
||
});
|
||
tv_list_ref(itemlist);
|
||
}
|
||
|
||
/// Append a dictionary to a list
|
||
///
|
||
/// @param[out] l List to append to.
|
||
/// @param[in,out] dict Dictionary to append. Reference count is increased.
|
||
void tv_list_append_dict(list_T *const l, dict_T *const dict)
|
||
FUNC_ATTR_NONNULL_ARG(1)
|
||
{
|
||
tv_list_append_owned_tv(l, (typval_T) {
|
||
.v_type = VAR_DICT,
|
||
.v_lock = VAR_UNLOCKED,
|
||
.vval.v_dict = dict,
|
||
});
|
||
if (dict != NULL) {
|
||
dict->dv_refcount++;
|
||
}
|
||
}
|
||
|
||
/// Make a copy of "str" and append it as an item to list "l"
|
||
///
|
||
/// @param[out] l List to append to.
|
||
/// @param[in] str String to append.
|
||
/// @param[in] len Length of the appended string. May be -1, in this
|
||
/// case string is considered to be usual zero-terminated
|
||
/// string or NULL “empty” string.
|
||
void tv_list_append_string(list_T *const l, const char *const str,
|
||
const ssize_t len)
|
||
FUNC_ATTR_NONNULL_ARG(1)
|
||
{
|
||
tv_list_append_owned_tv(l, (typval_T) {
|
||
.v_type = VAR_STRING,
|
||
.v_lock = VAR_UNLOCKED,
|
||
.vval.v_string = (str == NULL
|
||
? NULL
|
||
: (len >= 0
|
||
? xmemdupz(str, (size_t)len)
|
||
: xstrdup(str))),
|
||
});
|
||
}
|
||
|
||
/// Append given string to the list
|
||
///
|
||
/// Unlike list_append_string this function does not copy the string.
|
||
///
|
||
/// @param[out] l List to append to.
|
||
/// @param[in] str String to append.
|
||
void tv_list_append_allocated_string(list_T *const l, char *const str)
|
||
FUNC_ATTR_NONNULL_ARG(1)
|
||
{
|
||
tv_list_append_owned_tv(l, (typval_T) {
|
||
.v_type = VAR_STRING,
|
||
.v_lock = VAR_UNLOCKED,
|
||
.vval.v_string = (char_u *)str,
|
||
});
|
||
}
|
||
|
||
/// Append number to the list
|
||
///
|
||
/// @param[out] l List to append to.
|
||
/// @param[in] n Number to append. Will be recorded in the allocated
|
||
/// listitem_T.
|
||
void tv_list_append_number(list_T *const l, const varnumber_T n)
|
||
{
|
||
tv_list_append_owned_tv(l, (typval_T) {
|
||
.v_type = VAR_NUMBER,
|
||
.v_lock = VAR_UNLOCKED,
|
||
.vval.v_number = n,
|
||
});
|
||
}
|
||
|
||
//{{{2 Operations on the whole list
|
||
|
||
/// Make a copy of list
|
||
///
|
||
/// @param[in] conv If non-NULL, then all internal strings will be converted.
|
||
/// Only used when `deep` is true.
|
||
/// @param[in] orig Original list to copy.
|
||
/// @param[in] deep If false, then shallow copy will be done.
|
||
/// @param[in] copyID See var_item_copy().
|
||
///
|
||
/// @return Copied list. May be NULL in case original list is NULL or some
|
||
/// failure happens. The refcount of the new list is set to 1.
|
||
list_T *tv_list_copy(const vimconv_T *const conv, list_T *const orig,
|
||
const bool deep, const int copyID)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
if (orig == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
list_T *copy = tv_list_alloc(tv_list_len(orig));
|
||
tv_list_ref(copy);
|
||
if (copyID != 0) {
|
||
// Do this before adding the items, because one of the items may
|
||
// refer back to this list.
|
||
orig->lv_copyID = copyID;
|
||
orig->lv_copylist = copy;
|
||
}
|
||
TV_LIST_ITER(orig, item, {
|
||
if (got_int) {
|
||
break;
|
||
}
|
||
listitem_T *const ni = tv_list_item_alloc();
|
||
if (deep) {
|
||
if (var_item_copy(conv, TV_LIST_ITEM_TV(item), TV_LIST_ITEM_TV(ni),
|
||
deep, copyID) == FAIL) {
|
||
xfree(ni);
|
||
goto tv_list_copy_error;
|
||
}
|
||
} else {
|
||
tv_copy(TV_LIST_ITEM_TV(item), TV_LIST_ITEM_TV(ni));
|
||
}
|
||
tv_list_append(copy, ni);
|
||
});
|
||
|
||
return copy;
|
||
|
||
tv_list_copy_error:
|
||
tv_list_unref(copy);
|
||
return NULL;
|
||
}
|
||
|
||
/// Extend first list with the second
|
||
///
|
||
/// @param[out] l1 List to extend.
|
||
/// @param[in] l2 List to extend with.
|
||
/// @param[in] bef If not NULL, extends before this item.
|
||
void tv_list_extend(list_T *const l1, list_T *const l2,
|
||
listitem_T *const bef)
|
||
FUNC_ATTR_NONNULL_ARG(1)
|
||
{
|
||
int todo = tv_list_len(l2);
|
||
listitem_T *const befbef = (bef == NULL ? NULL : bef->li_prev);
|
||
listitem_T *const saved_next = (befbef == NULL ? NULL : befbef->li_next);
|
||
// We also quit the loop when we have inserted the original item count of
|
||
// the list, avoid a hang when we extend a list with itself.
|
||
for (listitem_T *item = tv_list_first(l2)
|
||
; item != NULL && todo--
|
||
; item = (item == befbef ? saved_next : item->li_next)) {
|
||
tv_list_insert_tv(l1, TV_LIST_ITEM_TV(item), bef);
|
||
}
|
||
}
|
||
|
||
/// Concatenate lists into a new list
|
||
///
|
||
/// @param[in] l1 First list.
|
||
/// @param[in] l2 Second list.
|
||
/// @param[out] ret_tv Location where new list is saved.
|
||
///
|
||
/// @return OK or FAIL.
|
||
int tv_list_concat(list_T *const l1, list_T *const l2, typval_T *const tv)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
list_T *l;
|
||
|
||
tv->v_type = VAR_LIST;
|
||
|
||
if (l1 == NULL && l2 == NULL) {
|
||
l = NULL;
|
||
} else if (l1 == NULL) {
|
||
l = tv_list_copy(NULL, l2, false, 0);
|
||
} else {
|
||
l = tv_list_copy(NULL, l1, false, 0);
|
||
if (l != NULL && l2 != NULL) {
|
||
tv_list_extend(l, l2, NULL);
|
||
}
|
||
}
|
||
if (l == NULL && !(l1 == NULL && l2 == NULL)) {
|
||
return FAIL;
|
||
}
|
||
|
||
tv->vval.v_list = l;
|
||
return OK;
|
||
}
|
||
|
||
typedef struct {
|
||
char_u *s;
|
||
char_u *tofree;
|
||
} Join;
|
||
|
||
/// Join list into a string, helper function
|
||
///
|
||
/// @param[out] gap Garray where result will be saved.
|
||
/// @param[in] l List to join.
|
||
/// @param[in] sep Used separator.
|
||
/// @param[in] join_gap Garray to keep each list item string.
|
||
///
|
||
/// @return OK in case of success, FAIL otherwise.
|
||
static int list_join_inner(garray_T *const gap, list_T *const l,
|
||
const char *const sep, garray_T *const join_gap)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
size_t sumlen = 0;
|
||
bool first = true;
|
||
|
||
// Stringify each item in the list.
|
||
TV_LIST_ITER(l, item, {
|
||
if (got_int) {
|
||
break;
|
||
}
|
||
char *s;
|
||
size_t len;
|
||
s = encode_tv2echo(TV_LIST_ITEM_TV(item), &len);
|
||
if (s == NULL) {
|
||
return FAIL;
|
||
}
|
||
|
||
sumlen += len;
|
||
|
||
Join *const p = GA_APPEND_VIA_PTR(Join, join_gap);
|
||
p->tofree = p->s = (char_u *)s;
|
||
|
||
line_breakcheck();
|
||
});
|
||
|
||
// Allocate result buffer with its total size, avoid re-allocation and
|
||
// multiple copy operations. Add 2 for a tailing ']' and NUL.
|
||
if (join_gap->ga_len >= 2) {
|
||
sumlen += strlen(sep) * (size_t)(join_gap->ga_len - 1);
|
||
}
|
||
ga_grow(gap, (int)sumlen + 2);
|
||
|
||
for (int i = 0; i < join_gap->ga_len && !got_int; i++) {
|
||
if (first) {
|
||
first = false;
|
||
} else {
|
||
ga_concat(gap, (const char_u *)sep);
|
||
}
|
||
const Join *const p = ((const Join *)join_gap->ga_data) + i;
|
||
|
||
if (p->s != NULL) {
|
||
ga_concat(gap, p->s);
|
||
}
|
||
line_breakcheck();
|
||
}
|
||
|
||
return OK;
|
||
}
|
||
|
||
/// Join list into a string using given separator
|
||
///
|
||
/// @param[out] gap Garray where result will be saved.
|
||
/// @param[in] l Joined list.
|
||
/// @param[in] sep Separator.
|
||
///
|
||
/// @return OK in case of success, FAIL otherwise.
|
||
int tv_list_join(garray_T *const gap, list_T *const l, const char *const sep)
|
||
FUNC_ATTR_NONNULL_ARG(1)
|
||
{
|
||
if (!tv_list_len(l)) {
|
||
return OK;
|
||
}
|
||
|
||
garray_T join_ga;
|
||
int retval;
|
||
|
||
ga_init(&join_ga, (int)sizeof(Join), tv_list_len(l));
|
||
retval = list_join_inner(gap, l, sep, &join_ga);
|
||
|
||
#define FREE_JOIN_TOFREE(join) xfree((join)->tofree)
|
||
GA_DEEP_CLEAR(&join_ga, Join, FREE_JOIN_TOFREE);
|
||
#undef FREE_JOIN_TOFREE
|
||
|
||
return retval;
|
||
}
|
||
|
||
/// Chech whether two lists are equal
|
||
///
|
||
/// @param[in] l1 First list to compare.
|
||
/// @param[in] l2 Second list to compare.
|
||
/// @param[in] ic True if case is to be ignored.
|
||
/// @param[in] recursive True when used recursively.
|
||
///
|
||
/// @return True if lists are equal, false otherwise.
|
||
bool tv_list_equal(list_T *const l1, list_T *const l2, const bool ic,
|
||
const bool recursive)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
if (l1 == l2) {
|
||
return true;
|
||
}
|
||
if (l1 == NULL || l2 == NULL) {
|
||
return false;
|
||
}
|
||
if (tv_list_len(l1) != tv_list_len(l2)) {
|
||
return false;
|
||
}
|
||
|
||
listitem_T *item1 = tv_list_first(l1);
|
||
listitem_T *item2 = tv_list_first(l2);
|
||
for (; item1 != NULL && item2 != NULL
|
||
; (item1 = TV_LIST_ITEM_NEXT(l1, item1),
|
||
item2 = TV_LIST_ITEM_NEXT(l2, item2))) {
|
||
if (!tv_equal(TV_LIST_ITEM_TV(item1), TV_LIST_ITEM_TV(item2), ic,
|
||
recursive)) {
|
||
return false;
|
||
}
|
||
}
|
||
assert(item1 == NULL && item2 == NULL);
|
||
return true;
|
||
}
|
||
|
||
/// Reverse list in-place
|
||
///
|
||
/// @param[in,out] l List to reverse.
|
||
void tv_list_reverse(list_T *const l)
|
||
{
|
||
if (tv_list_len(l) <= 1) {
|
||
return;
|
||
}
|
||
list_log(l, NULL, NULL, "reverse");
|
||
#define SWAP(a, b) \
|
||
do { \
|
||
tmp = a; \
|
||
a = b; \
|
||
b = tmp; \
|
||
} while (0)
|
||
listitem_T *tmp;
|
||
|
||
SWAP(l->lv_first, l->lv_last);
|
||
for (listitem_T *li = l->lv_first; li != NULL; li = li->li_next) {
|
||
SWAP(li->li_next, li->li_prev);
|
||
}
|
||
#undef SWAP
|
||
|
||
l->lv_idx = l->lv_len - l->lv_idx - 1;
|
||
}
|
||
|
||
// FIXME Add unit tests for tv_list_item_sort().
|
||
|
||
/// Sort list using libc qsort
|
||
///
|
||
/// @param[in,out] l List to sort, will be sorted in-place.
|
||
/// @param ptrs Preallocated array of items to sort, must have at least
|
||
/// tv_list_len(l) entries. Should not be initialized.
|
||
/// @param[in] item_compare_func Function used to compare list items.
|
||
/// @param errp Location where information about whether error occurred is
|
||
/// saved by item_compare_func. If boolean there appears to be
|
||
/// true list will not be modified. Must be initialized to false
|
||
/// by the caller.
|
||
void tv_list_item_sort(list_T *const l, ListSortItem *const ptrs,
|
||
const ListSorter item_compare_func,
|
||
bool *errp)
|
||
FUNC_ATTR_NONNULL_ARG(3, 4)
|
||
{
|
||
const int len = tv_list_len(l);
|
||
if (len <= 1) {
|
||
return;
|
||
}
|
||
list_log(l, NULL, NULL, "sort");
|
||
int i = 0;
|
||
TV_LIST_ITER(l, li, {
|
||
ptrs[i].item = li;
|
||
ptrs[i].idx = i;
|
||
i++;
|
||
});
|
||
// Sort the array with item pointers.
|
||
qsort(ptrs, (size_t)len, sizeof(ListSortItem), item_compare_func);
|
||
if (!(*errp)) {
|
||
// Clear the list and append the items in the sorted order.
|
||
l->lv_first = NULL;
|
||
l->lv_last = NULL;
|
||
l->lv_idx_item = NULL;
|
||
l->lv_len = 0;
|
||
for (i = 0; i < len; i++) {
|
||
tv_list_append(l, ptrs[i].item);
|
||
}
|
||
}
|
||
}
|
||
|
||
//{{{2 Indexing/searching
|
||
|
||
/// Locate item with a given index in a list and return it
|
||
///
|
||
/// @param[in] l List to index.
|
||
/// @param[in] n Index. Negative index is counted from the end, -1 is the last
|
||
/// item.
|
||
///
|
||
/// @return Item at the given index or NULL if `n` is out of range.
|
||
listitem_T *tv_list_find(list_T *const l, int n)
|
||
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
STATIC_ASSERT(sizeof(n) == sizeof(l->lv_idx),
|
||
"n and lv_idx sizes do not match");
|
||
if (l == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
n = tv_list_uidx(l, n);
|
||
if (n == -1) {
|
||
return NULL;
|
||
}
|
||
|
||
int idx;
|
||
listitem_T *item;
|
||
|
||
// When there is a cached index may start search from there.
|
||
if (l->lv_idx_item != NULL) {
|
||
if (n < l->lv_idx / 2) {
|
||
// Closest to the start of the list.
|
||
item = l->lv_first;
|
||
idx = 0;
|
||
} else if (n > (l->lv_idx + l->lv_len) / 2) {
|
||
// Closest to the end of the list.
|
||
item = l->lv_last;
|
||
idx = l->lv_len - 1;
|
||
} else {
|
||
// Closest to the cached index.
|
||
item = l->lv_idx_item;
|
||
idx = l->lv_idx;
|
||
}
|
||
} else {
|
||
if (n < l->lv_len / 2) {
|
||
// Closest to the start of the list.
|
||
item = l->lv_first;
|
||
idx = 0;
|
||
} else {
|
||
// Closest to the end of the list.
|
||
item = l->lv_last;
|
||
idx = l->lv_len - 1;
|
||
}
|
||
}
|
||
|
||
while (n > idx) {
|
||
// Search forward.
|
||
item = item->li_next;
|
||
idx++;
|
||
}
|
||
while (n < idx) {
|
||
// Search backward.
|
||
item = item->li_prev;
|
||
idx--;
|
||
}
|
||
|
||
assert(idx == n);
|
||
// Cache the used index.
|
||
l->lv_idx = idx;
|
||
l->lv_idx_item = item;
|
||
list_log(l, l->lv_idx_item, (void *)(uintptr_t)l->lv_idx, "find");
|
||
|
||
return item;
|
||
}
|
||
|
||
/// Get list item l[n] as a number
|
||
///
|
||
/// @param[in] l List to index.
|
||
/// @param[in] n Index in a list.
|
||
/// @param[out] ret_error Location where 1 will be saved if index was not
|
||
/// found. May be NULL. If everything is OK,
|
||
/// `*ret_error` is not touched.
|
||
///
|
||
/// @return Integer value at the given index or -1.
|
||
varnumber_T tv_list_find_nr(list_T *const l, const int n, bool *const ret_error)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
const listitem_T *const li = tv_list_find(l, n);
|
||
if (li == NULL) {
|
||
if (ret_error != NULL) {
|
||
*ret_error = true;
|
||
}
|
||
return -1;
|
||
}
|
||
return tv_get_number_chk(TV_LIST_ITEM_TV(li), ret_error);
|
||
}
|
||
|
||
/// Get list item l[n] as a string
|
||
///
|
||
/// @param[in] l List to index.
|
||
/// @param[in] n Index in a list.
|
||
///
|
||
/// @return List item string value or NULL in case of error.
|
||
const char *tv_list_find_str(list_T *const l, const int n)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
const listitem_T *const li = tv_list_find(l, n);
|
||
if (li == NULL) {
|
||
EMSG2(_(e_listidx), (int64_t)n);
|
||
return NULL;
|
||
}
|
||
return tv_get_string(TV_LIST_ITEM_TV(li));
|
||
}
|
||
|
||
/// Locate item in a list and return its index
|
||
///
|
||
/// @param[in] l List to search.
|
||
/// @param[in] item Item to search for.
|
||
///
|
||
/// @return Index of an item or -1 if item is not in the list.
|
||
long tv_list_idx_of_item(const list_T *const l, const listitem_T *const item)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
|
||
{
|
||
if (l == NULL) {
|
||
return -1;
|
||
}
|
||
int idx = 0;
|
||
TV_LIST_ITER_CONST(l, li, {
|
||
if (li == item) {
|
||
return idx;
|
||
}
|
||
idx++;
|
||
});
|
||
return -1;
|
||
}
|
||
|
||
//{{{1 Dictionaries
|
||
//{{{2 Dictionary watchers
|
||
|
||
/// Perform all necessary cleanup for a `DictWatcher` instance
|
||
///
|
||
/// @param watcher Watcher to free.
|
||
static void tv_dict_watcher_free(DictWatcher *watcher)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
callback_free(&watcher->callback);
|
||
xfree(watcher->key_pattern);
|
||
xfree(watcher);
|
||
}
|
||
|
||
/// Add watcher to a dictionary
|
||
///
|
||
/// @param[in] dict Dictionary to add watcher to.
|
||
/// @param[in] key_pattern Pattern to watch for.
|
||
/// @param[in] key_pattern_len Key pattern length.
|
||
/// @param callback Function to be called on events.
|
||
void tv_dict_watcher_add(dict_T *const dict, const char *const key_pattern,
|
||
const size_t key_pattern_len, Callback callback)
|
||
FUNC_ATTR_NONNULL_ARG(2)
|
||
{
|
||
if (dict == NULL) {
|
||
return;
|
||
}
|
||
DictWatcher *const watcher = xmalloc(sizeof(DictWatcher));
|
||
watcher->key_pattern = xmemdupz(key_pattern, key_pattern_len);
|
||
watcher->key_pattern_len = key_pattern_len;
|
||
watcher->callback = callback;
|
||
watcher->busy = false;
|
||
QUEUE_INSERT_TAIL(&dict->watchers, &watcher->node);
|
||
}
|
||
|
||
/// Check whether two callbacks are equal
|
||
///
|
||
/// @param[in] cb1 First callback to check.
|
||
/// @param[in] cb2 Second callback to check.
|
||
///
|
||
/// @return True if they are equal, false otherwise.
|
||
bool tv_callback_equal(const Callback *cb1, const Callback *cb2)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
if (cb1->type != cb2->type) {
|
||
return false;
|
||
}
|
||
switch (cb1->type) {
|
||
case kCallbackFuncref: {
|
||
return STRCMP(cb1->data.funcref, cb2->data.funcref) == 0;
|
||
}
|
||
case kCallbackPartial: {
|
||
// FIXME: this is inconsistent with tv_equal but is needed for precision
|
||
// maybe change dictwatcheradd to return a watcher id instead?
|
||
return cb1->data.partial == cb2->data.partial;
|
||
}
|
||
case kCallbackNone: {
|
||
return true;
|
||
}
|
||
}
|
||
abort();
|
||
return false;
|
||
}
|
||
|
||
/// Unref/free callback
|
||
void callback_free(Callback *callback)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
switch (callback->type) {
|
||
case kCallbackFuncref: {
|
||
func_unref(callback->data.funcref);
|
||
xfree(callback->data.funcref);
|
||
break;
|
||
}
|
||
case kCallbackPartial: {
|
||
partial_unref(callback->data.partial);
|
||
break;
|
||
}
|
||
case kCallbackNone: {
|
||
break;
|
||
}
|
||
}
|
||
callback->type = kCallbackNone;
|
||
}
|
||
|
||
/// Remove watcher from a dictionary
|
||
///
|
||
/// @param dict Dictionary to remove watcher from.
|
||
/// @param[in] key_pattern Pattern to remove watcher for.
|
||
/// @param[in] key_pattern_len Pattern length.
|
||
/// @param callback Callback to remove watcher for.
|
||
///
|
||
/// @return True on success, false if relevant watcher was not found.
|
||
bool tv_dict_watcher_remove(dict_T *const dict, const char *const key_pattern,
|
||
const size_t key_pattern_len,
|
||
Callback callback)
|
||
FUNC_ATTR_NONNULL_ARG(2)
|
||
{
|
||
if (dict == NULL) {
|
||
return false;
|
||
}
|
||
|
||
QUEUE *w = NULL;
|
||
DictWatcher *watcher = NULL;
|
||
bool matched = false;
|
||
QUEUE_FOREACH(w, &dict->watchers) {
|
||
watcher = tv_dict_watcher_node_data(w);
|
||
if (tv_callback_equal(&watcher->callback, &callback)
|
||
&& watcher->key_pattern_len == key_pattern_len
|
||
&& memcmp(watcher->key_pattern, key_pattern, key_pattern_len) == 0) {
|
||
matched = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!matched) {
|
||
return false;
|
||
}
|
||
|
||
QUEUE_REMOVE(w);
|
||
tv_dict_watcher_free(watcher);
|
||
return true;
|
||
}
|
||
|
||
/// Test if `key` matches with with `watcher->key_pattern`
|
||
///
|
||
/// @param[in] watcher Watcher to check key pattern from.
|
||
/// @param[in] key Key to check.
|
||
///
|
||
/// @return true if key matches, false otherwise.
|
||
static bool tv_dict_watcher_matches(DictWatcher *watcher, const char *const key)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
|
||
{
|
||
// For now only allow very simple globbing in key patterns: a '*' at the end
|
||
// of the string means it should match everything up to the '*' instead of the
|
||
// whole string.
|
||
const size_t len = watcher->key_pattern_len;
|
||
if (len && watcher->key_pattern[len - 1] == '*') {
|
||
return strncmp(key, watcher->key_pattern, len - 1) == 0;
|
||
} else {
|
||
return strcmp(key, watcher->key_pattern) == 0;
|
||
}
|
||
}
|
||
|
||
/// Send a change notification to all dictionary watchers that match given key
|
||
///
|
||
/// @param[in] dict Dictionary which was modified.
|
||
/// @param[in] key Key which was modified.
|
||
/// @param[in] newtv New key value.
|
||
/// @param[in] oldtv Old key value.
|
||
void tv_dict_watcher_notify(dict_T *const dict, const char *const key,
|
||
typval_T *const newtv, typval_T *const oldtv)
|
||
FUNC_ATTR_NONNULL_ARG(1, 2)
|
||
{
|
||
typval_T argv[3];
|
||
|
||
argv[0].v_type = VAR_DICT;
|
||
argv[0].v_lock = VAR_UNLOCKED;
|
||
argv[0].vval.v_dict = dict;
|
||
argv[1].v_type = VAR_STRING;
|
||
argv[1].v_lock = VAR_UNLOCKED;
|
||
argv[1].vval.v_string = (char_u *)xstrdup(key);
|
||
argv[2].v_type = VAR_DICT;
|
||
argv[2].v_lock = VAR_UNLOCKED;
|
||
argv[2].vval.v_dict = tv_dict_alloc();
|
||
argv[2].vval.v_dict->dv_refcount++;
|
||
|
||
if (newtv) {
|
||
dictitem_T *const v = tv_dict_item_alloc_len(S_LEN("new"));
|
||
tv_copy(newtv, &v->di_tv);
|
||
tv_dict_add(argv[2].vval.v_dict, v);
|
||
}
|
||
|
||
if (oldtv) {
|
||
dictitem_T *const v = tv_dict_item_alloc_len(S_LEN("old"));
|
||
tv_copy(oldtv, &v->di_tv);
|
||
tv_dict_add(argv[2].vval.v_dict, v);
|
||
}
|
||
|
||
typval_T rettv;
|
||
|
||
dict->dv_refcount++;
|
||
QUEUE *w;
|
||
QUEUE_FOREACH(w, &dict->watchers) {
|
||
DictWatcher *watcher = tv_dict_watcher_node_data(w);
|
||
if (!watcher->busy && tv_dict_watcher_matches(watcher, key)) {
|
||
rettv = TV_INITIAL_VALUE;
|
||
watcher->busy = true;
|
||
callback_call(&watcher->callback, 3, argv, &rettv);
|
||
watcher->busy = false;
|
||
tv_clear(&rettv);
|
||
}
|
||
}
|
||
tv_dict_unref(dict);
|
||
|
||
for (size_t i = 1; i < ARRAY_SIZE(argv); i++) {
|
||
tv_clear(argv + i);
|
||
}
|
||
}
|
||
|
||
//{{{2 Dictionary item
|
||
|
||
/// Allocate a dictionary item
|
||
///
|
||
/// @note that the type and value of the item (->di_tv) still needs to
|
||
/// be initialized.
|
||
///
|
||
/// @param[in] key Key, is copied to the new item.
|
||
/// @param[in] key_len Key length.
|
||
///
|
||
/// @return [allocated] new dictionary item.
|
||
dictitem_T *tv_dict_item_alloc_len(const char *const key, const size_t key_len)
|
||
FUNC_ATTR_NONNULL_RET FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
FUNC_ATTR_MALLOC
|
||
{
|
||
dictitem_T *const di = xmalloc(offsetof(dictitem_T, di_key) + key_len + 1);
|
||
memcpy(di->di_key, key, key_len);
|
||
di->di_key[key_len] = NUL;
|
||
di->di_flags = DI_FLAGS_ALLOC;
|
||
di->di_tv.v_lock = VAR_UNLOCKED;
|
||
return di;
|
||
}
|
||
|
||
/// Allocate a dictionary item
|
||
///
|
||
/// @note that the type and value of the item (->di_tv) still needs to
|
||
/// be initialized.
|
||
///
|
||
/// @param[in] key Key, is copied to the new item.
|
||
///
|
||
/// @return [allocated] new dictionary item.
|
||
dictitem_T *tv_dict_item_alloc(const char *const key)
|
||
FUNC_ATTR_NONNULL_RET FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
FUNC_ATTR_MALLOC
|
||
{
|
||
return tv_dict_item_alloc_len(key, strlen(key));
|
||
}
|
||
|
||
/// Free a dictionary item, also clearing the value
|
||
///
|
||
/// @param item Item to free.
|
||
void tv_dict_item_free(dictitem_T *const item)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
tv_clear(&item->di_tv);
|
||
if (item->di_flags & DI_FLAGS_ALLOC) {
|
||
xfree(item);
|
||
}
|
||
}
|
||
|
||
/// Make a copy of a dictionary item
|
||
///
|
||
/// @param[in] di Item to copy.
|
||
///
|
||
/// @return [allocated] new dictionary item.
|
||
dictitem_T *tv_dict_item_copy(dictitem_T *const di)
|
||
FUNC_ATTR_NONNULL_RET FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
dictitem_T *const new_di = tv_dict_item_alloc((const char *)di->di_key);
|
||
tv_copy(&di->di_tv, &new_di->di_tv);
|
||
return new_di;
|
||
}
|
||
|
||
/// Remove item from dictionary and free it
|
||
///
|
||
/// @param dict Dictionary to remove item from.
|
||
/// @param item Item to remove.
|
||
void tv_dict_item_remove(dict_T *const dict, dictitem_T *const item)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
hashitem_T *const hi = hash_find(&dict->dv_hashtab, item->di_key);
|
||
if (HASHITEM_EMPTY(hi)) {
|
||
emsgf(_(e_intern2), "tv_dict_item_remove()");
|
||
} else {
|
||
hash_remove(&dict->dv_hashtab, hi);
|
||
}
|
||
tv_dict_item_free(item);
|
||
}
|
||
|
||
//{{{2 Alloc/free
|
||
|
||
/// Allocate an empty dictionary
|
||
///
|
||
/// @return [allocated] new dictionary.
|
||
dict_T *tv_dict_alloc(void)
|
||
FUNC_ATTR_NONNULL_RET FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
dict_T *const d = xcalloc(1, sizeof(dict_T));
|
||
|
||
// Add the dict to the list of dicts for garbage collection.
|
||
if (gc_first_dict != NULL) {
|
||
gc_first_dict->dv_used_prev = d;
|
||
}
|
||
d->dv_used_next = gc_first_dict;
|
||
d->dv_used_prev = NULL;
|
||
gc_first_dict = d;
|
||
|
||
hash_init(&d->dv_hashtab);
|
||
d->dv_lock = VAR_UNLOCKED;
|
||
d->dv_scope = VAR_NO_SCOPE;
|
||
d->dv_refcount = 0;
|
||
d->dv_copyID = 0;
|
||
QUEUE_INIT(&d->watchers);
|
||
|
||
return d;
|
||
}
|
||
|
||
/// Free items contained in a dictionary
|
||
///
|
||
/// @param[in,out] d Dictionary to clear.
|
||
void tv_dict_free_contents(dict_T *const d)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
// Lock the hashtab, we don't want it to resize while freeing items.
|
||
hash_lock(&d->dv_hashtab);
|
||
assert(d->dv_hashtab.ht_locked > 0);
|
||
HASHTAB_ITER(&d->dv_hashtab, hi, {
|
||
// Remove the item before deleting it, just in case there is
|
||
// something recursive causing trouble.
|
||
dictitem_T *const di = TV_DICT_HI2DI(hi);
|
||
hash_remove(&d->dv_hashtab, hi);
|
||
tv_dict_item_free(di);
|
||
});
|
||
|
||
while (!QUEUE_EMPTY(&d->watchers)) {
|
||
QUEUE *w = QUEUE_HEAD(&d->watchers);
|
||
QUEUE_REMOVE(w);
|
||
DictWatcher *watcher = tv_dict_watcher_node_data(w);
|
||
tv_dict_watcher_free(watcher);
|
||
}
|
||
|
||
hash_clear(&d->dv_hashtab);
|
||
d->dv_hashtab.ht_locked--;
|
||
hash_init(&d->dv_hashtab);
|
||
}
|
||
|
||
/// Free a dictionary itself, ignoring items it contains
|
||
///
|
||
/// Ignores the reference count.
|
||
///
|
||
/// @param[in,out] d Dictionary to free.
|
||
void tv_dict_free_dict(dict_T *const d)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
// Remove the dict from the list of dicts for garbage collection.
|
||
if (d->dv_used_prev == NULL) {
|
||
gc_first_dict = d->dv_used_next;
|
||
} else {
|
||
d->dv_used_prev->dv_used_next = d->dv_used_next;
|
||
}
|
||
if (d->dv_used_next != NULL) {
|
||
d->dv_used_next->dv_used_prev = d->dv_used_prev;
|
||
}
|
||
|
||
nlua_free_typval_dict(d);
|
||
xfree(d);
|
||
}
|
||
|
||
/// Free a dictionary, including all items it contains
|
||
///
|
||
/// Ignores the reference count.
|
||
///
|
||
/// @param d Dictionary to free.
|
||
void tv_dict_free(dict_T *const d)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
if (!tv_in_free_unref_items) {
|
||
tv_dict_free_contents(d);
|
||
tv_dict_free_dict(d);
|
||
}
|
||
}
|
||
|
||
|
||
/// Unreference a dictionary
|
||
///
|
||
/// Decrements the reference count and frees dictionary when it becomes zero.
|
||
///
|
||
/// @param[in] d Dictionary to operate on.
|
||
void tv_dict_unref(dict_T *const d)
|
||
{
|
||
if (d != NULL && --d->dv_refcount <= 0) {
|
||
tv_dict_free(d);
|
||
}
|
||
}
|
||
|
||
//{{{2 Indexing/searching
|
||
|
||
/// Find item in dictionary
|
||
///
|
||
/// @param[in] d Dictionary to check.
|
||
/// @param[in] key Dictionary key.
|
||
/// @param[in] len Key length. If negative, then strlen(key) is used.
|
||
///
|
||
/// @return found item or NULL if nothing was found.
|
||
dictitem_T *tv_dict_find(const dict_T *const d, const char *const key,
|
||
const ptrdiff_t len)
|
||
FUNC_ATTR_NONNULL_ARG(2) FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
if (d == NULL) {
|
||
return NULL;
|
||
}
|
||
hashitem_T *const hi = (len < 0
|
||
? hash_find(&d->dv_hashtab, (const char_u *)key)
|
||
: hash_find_len(&d->dv_hashtab, key, (size_t)len));
|
||
if (HASHITEM_EMPTY(hi)) {
|
||
return NULL;
|
||
}
|
||
return TV_DICT_HI2DI(hi);
|
||
}
|
||
|
||
/// Get a typval item from a dictionary and copy it into "rettv".
|
||
///
|
||
/// @param[in] d Dictionary to check.
|
||
/// @param[in] key Dictionary key.
|
||
/// @param[in] rettv Return value.
|
||
/// @return OK in case of success or FAIL if nothing was found.
|
||
int tv_dict_get_tv(dict_T *d, const char *const key, typval_T *rettv)
|
||
{
|
||
dictitem_T *const di = tv_dict_find(d, key, -1);
|
||
if (di == NULL) {
|
||
return FAIL;
|
||
}
|
||
|
||
tv_copy(&di->di_tv, rettv);
|
||
return OK;
|
||
}
|
||
|
||
/// Get a number item from a dictionary
|
||
///
|
||
/// Returns 0 if the entry does not exist.
|
||
///
|
||
/// @param[in] d Dictionary to get item from.
|
||
/// @param[in] key Key to find in dictionary.
|
||
///
|
||
/// @return Dictionary item.
|
||
varnumber_T tv_dict_get_number(const dict_T *const d, const char *const key)
|
||
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
dictitem_T *const di = tv_dict_find(d, key, -1);
|
||
if (di == NULL) {
|
||
return 0;
|
||
}
|
||
return tv_get_number(&di->di_tv);
|
||
}
|
||
|
||
/// Get a string item from a dictionary
|
||
///
|
||
/// @param[in] d Dictionary to get item from.
|
||
/// @param[in] key Dictionary key.
|
||
/// @param[in] save If true, returned string will be placed in the allocated
|
||
/// memory.
|
||
///
|
||
/// @return NULL if key does not exist, empty string in case of type error,
|
||
/// string item value otherwise. If returned value is not NULL, it may
|
||
/// be allocated depending on `save` argument.
|
||
char *tv_dict_get_string(const dict_T *const d, const char *const key,
|
||
const bool save)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
static char numbuf[NUMBUFLEN];
|
||
const char *const s = tv_dict_get_string_buf(d, key, numbuf);
|
||
if (save && s != NULL) {
|
||
return xstrdup(s);
|
||
}
|
||
return (char *)s;
|
||
}
|
||
|
||
/// Get a string item from a dictionary
|
||
///
|
||
/// @param[in] d Dictionary to get item from.
|
||
/// @param[in] key Dictionary key.
|
||
/// @param[in] numbuf Buffer for non-string items converted to strings, at
|
||
/// least of #NUMBUFLEN length.
|
||
///
|
||
/// @return NULL if key does not exist, empty string in case of type error,
|
||
/// string item value otherwise.
|
||
const char *tv_dict_get_string_buf(const dict_T *const d, const char *const key,
|
||
char *const numbuf)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
const dictitem_T *const di = tv_dict_find(d, key, -1);
|
||
if (di == NULL) {
|
||
return NULL;
|
||
}
|
||
return tv_get_string_buf(&di->di_tv, numbuf);
|
||
}
|
||
|
||
/// Get a string item from a dictionary
|
||
///
|
||
/// @param[in] d Dictionary to get item from.
|
||
/// @param[in] key Dictionary key.
|
||
/// @param[in] key_len Key length.
|
||
/// @param[in] numbuf Buffer for non-string items converted to strings, at
|
||
/// least of #NUMBUFLEN length.
|
||
/// @param[in] def Default return when key does not exist.
|
||
///
|
||
/// @return `def` when key does not exist,
|
||
/// NULL in case of type error,
|
||
/// string item value in case of success.
|
||
const char *tv_dict_get_string_buf_chk(const dict_T *const d,
|
||
const char *const key,
|
||
const ptrdiff_t key_len,
|
||
char *const numbuf,
|
||
const char *const def)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
const dictitem_T *const di = tv_dict_find(d, key, key_len);
|
||
if (di == NULL) {
|
||
return def;
|
||
}
|
||
return tv_get_string_buf_chk(&di->di_tv, numbuf);
|
||
}
|
||
|
||
/// Get a function from a dictionary
|
||
///
|
||
/// @param[in] d Dictionary to get callback from.
|
||
/// @param[in] key Dictionary key.
|
||
/// @param[in] key_len Key length, may be -1 to use strlen().
|
||
/// @param[out] result The address where a pointer to the wanted callback
|
||
/// will be left.
|
||
///
|
||
/// @return true/false on success/failure.
|
||
bool tv_dict_get_callback(dict_T *const d,
|
||
const char *const key, const ptrdiff_t key_len,
|
||
Callback *const result)
|
||
FUNC_ATTR_NONNULL_ARG(2, 4) FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
result->type = kCallbackNone;
|
||
|
||
dictitem_T *const di = tv_dict_find(d, key, key_len);
|
||
|
||
if (di == NULL) {
|
||
return true;
|
||
}
|
||
|
||
if (!tv_is_func(di->di_tv) && di->di_tv.v_type != VAR_STRING) {
|
||
EMSG(_("E6000: Argument is not a function or function name"));
|
||
return false;
|
||
}
|
||
|
||
typval_T tv;
|
||
tv_copy(&di->di_tv, &tv);
|
||
set_selfdict(&tv, d);
|
||
const bool res = callback_from_typval(result, &tv);
|
||
tv_clear(&tv);
|
||
return res;
|
||
}
|
||
|
||
//{{{2 dict_add*
|
||
|
||
/// Add item to dictionary
|
||
///
|
||
/// @param[out] d Dictionary to add to.
|
||
/// @param[in] item Item to add.
|
||
///
|
||
/// @return FAIL if key already exists.
|
||
int tv_dict_add(dict_T *const d, dictitem_T *const item)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
return hash_add(&d->dv_hashtab, item->di_key);
|
||
}
|
||
|
||
/// Add a list entry to dictionary
|
||
///
|
||
/// @param[out] d Dictionary to add entry to.
|
||
/// @param[in] key Key to add.
|
||
/// @param[in] key_len Key length.
|
||
/// @param list List to add. Will have reference count incremented.
|
||
///
|
||
/// @return OK in case of success, FAIL when key already exists.
|
||
int tv_dict_add_list(dict_T *const d, const char *const key,
|
||
const size_t key_len, list_T *const list)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
|
||
|
||
item->di_tv.v_type = VAR_LIST;
|
||
item->di_tv.vval.v_list = list;
|
||
tv_list_ref(list);
|
||
if (tv_dict_add(d, item) == FAIL) {
|
||
tv_dict_item_free(item);
|
||
return FAIL;
|
||
}
|
||
return OK;
|
||
}
|
||
|
||
/// Add a typval entry to dictionary.
|
||
///
|
||
/// @param[out] d Dictionary to add entry to.
|
||
/// @param[in] key Key to add.
|
||
/// @param[in] key_len Key length.
|
||
///
|
||
/// @return FAIL if out of memory or key already exists.
|
||
int tv_dict_add_tv(dict_T *d, const char *key, const size_t key_len,
|
||
typval_T *tv)
|
||
{
|
||
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
|
||
|
||
tv_copy(tv, &item->di_tv);
|
||
if (tv_dict_add(d, item) == FAIL) {
|
||
tv_dict_item_free(item);
|
||
return FAIL;
|
||
}
|
||
return OK;
|
||
}
|
||
|
||
/// Add a dictionary entry to dictionary
|
||
///
|
||
/// @param[out] d Dictionary to add entry to.
|
||
/// @param[in] key Key to add.
|
||
/// @param[in] key_len Key length.
|
||
/// @param dict Dictionary to add. Will have reference count incremented.
|
||
///
|
||
/// @return OK in case of success, FAIL when key already exists.
|
||
int tv_dict_add_dict(dict_T *const d, const char *const key,
|
||
const size_t key_len, dict_T *const dict)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
|
||
|
||
item->di_tv.v_type = VAR_DICT;
|
||
item->di_tv.vval.v_dict = dict;
|
||
dict->dv_refcount++;
|
||
if (tv_dict_add(d, item) == FAIL) {
|
||
tv_dict_item_free(item);
|
||
return FAIL;
|
||
}
|
||
return OK;
|
||
}
|
||
|
||
/// Add a number entry to dictionary
|
||
///
|
||
/// @param[out] d Dictionary to add entry to.
|
||
/// @param[in] key Key to add.
|
||
/// @param[in] key_len Key length.
|
||
/// @param[in] nr Number to add.
|
||
///
|
||
/// @return OK in case of success, FAIL when key already exists.
|
||
int tv_dict_add_nr(dict_T *const d, const char *const key,
|
||
const size_t key_len, const varnumber_T nr)
|
||
{
|
||
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
|
||
|
||
item->di_tv.v_type = VAR_NUMBER;
|
||
item->di_tv.vval.v_number = nr;
|
||
if (tv_dict_add(d, item) == FAIL) {
|
||
tv_dict_item_free(item);
|
||
return FAIL;
|
||
}
|
||
return OK;
|
||
}
|
||
|
||
/// Add a floating point number entry to dictionary
|
||
///
|
||
/// @param[out] d Dictionary to add entry to.
|
||
/// @param[in] key Key to add.
|
||
/// @param[in] key_len Key length.
|
||
/// @param[in] nr Floating point number to add.
|
||
///
|
||
/// @return OK in case of success, FAIL when key already exists.
|
||
int tv_dict_add_float(dict_T *const d, const char *const key,
|
||
const size_t key_len, const float_T nr)
|
||
{
|
||
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
|
||
|
||
item->di_tv.v_type = VAR_FLOAT;
|
||
item->di_tv.vval.v_float = nr;
|
||
if (tv_dict_add(d, item) == FAIL) {
|
||
tv_dict_item_free(item);
|
||
return FAIL;
|
||
}
|
||
return OK;
|
||
}
|
||
|
||
/// Add a boolean entry to dictionary
|
||
///
|
||
/// @param[out] d Dictionary to add entry to.
|
||
/// @param[in] key Key to add.
|
||
/// @param[in] key_len Key length.
|
||
/// @param[in] val BoolVarValue to add.
|
||
///
|
||
/// @return OK in case of success, FAIL when key already exists.
|
||
int tv_dict_add_bool(dict_T *const d, const char *const key,
|
||
const size_t key_len, BoolVarValue val)
|
||
{
|
||
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
|
||
|
||
item->di_tv.v_type = VAR_BOOL;
|
||
item->di_tv.vval.v_bool = val;
|
||
if (tv_dict_add(d, item) == FAIL) {
|
||
tv_dict_item_free(item);
|
||
return FAIL;
|
||
}
|
||
return OK;
|
||
}
|
||
|
||
/// Add a string entry to dictionary
|
||
///
|
||
/// @see tv_dict_add_allocated_str
|
||
int tv_dict_add_str(dict_T *const d,
|
||
const char *const key, const size_t key_len,
|
||
const char *const val)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
return tv_dict_add_allocated_str(d, key, key_len, xstrdup(val));
|
||
}
|
||
|
||
/// Add a string entry to dictionary
|
||
///
|
||
/// @param[out] d Dictionary to add entry to.
|
||
/// @param[in] key Key to add.
|
||
/// @param[in] key_len Key length.
|
||
/// @param[in] val String to add. NULL adds empty string.
|
||
/// @param[in] len Use this many bytes from `val`, or -1 for whole string.
|
||
///
|
||
/// @return OK in case of success, FAIL when key already exists.
|
||
int tv_dict_add_str_len(dict_T *const d,
|
||
const char *const key, const size_t key_len,
|
||
char *const val, int len)
|
||
FUNC_ATTR_NONNULL_ARG(1, 2)
|
||
{
|
||
char *s = val ? val : "";
|
||
if (val != NULL) {
|
||
s = (len < 0) ? xstrdup(val) : xstrndup(val, (size_t)len);
|
||
}
|
||
return tv_dict_add_allocated_str(d, key, key_len, s);
|
||
}
|
||
|
||
/// Add a string entry to dictionary
|
||
///
|
||
/// Unlike tv_dict_add_str() saves val to the new dictionary item in place of
|
||
/// creating a new copy.
|
||
///
|
||
/// @warning String will be freed even in case addition fails.
|
||
///
|
||
/// @param[out] d Dictionary to add entry to.
|
||
/// @param[in] key Key to add.
|
||
/// @param[in] key_len Key length.
|
||
/// @param[in] val String to add.
|
||
///
|
||
/// @return OK in case of success, FAIL when key already exists.
|
||
int tv_dict_add_allocated_str(dict_T *const d,
|
||
const char *const key, const size_t key_len,
|
||
char *const val)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
|
||
|
||
item->di_tv.v_type = VAR_STRING;
|
||
item->di_tv.vval.v_string = (char_u *)val;
|
||
if (tv_dict_add(d, item) == FAIL) {
|
||
tv_dict_item_free(item);
|
||
return FAIL;
|
||
}
|
||
return OK;
|
||
}
|
||
|
||
//{{{2 Operations on the whole dict
|
||
|
||
/// Clear all the keys of a Dictionary. "d" remains a valid empty Dictionary.
|
||
///
|
||
/// @param d The Dictionary to clear
|
||
void tv_dict_clear(dict_T *const d)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
hash_lock(&d->dv_hashtab);
|
||
assert(d->dv_hashtab.ht_locked > 0);
|
||
|
||
HASHTAB_ITER(&d->dv_hashtab, hi, {
|
||
tv_dict_item_free(TV_DICT_HI2DI(hi));
|
||
hash_remove(&d->dv_hashtab, hi);
|
||
});
|
||
|
||
hash_unlock(&d->dv_hashtab);
|
||
}
|
||
|
||
/// Extend dictionary with items from another dictionary
|
||
///
|
||
/// @param d1 Dictionary to extend.
|
||
/// @param[in] d2 Dictionary to extend with.
|
||
/// @param[in] action "error", "force", "keep":
|
||
///
|
||
/// e*, including "error": duplicate key gives an error.
|
||
/// f*, including "force": duplicate d2 keys override d1.
|
||
/// other, including "keep": duplicate d2 keys ignored.
|
||
void tv_dict_extend(dict_T *const d1, dict_T *const d2,
|
||
const char *const action)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
const bool watched = tv_dict_is_watched(d1);
|
||
const char *const arg_errmsg = _("extend() argument");
|
||
const size_t arg_errmsg_len = strlen(arg_errmsg);
|
||
|
||
TV_DICT_ITER(d2, di2, {
|
||
dictitem_T *const di1 = tv_dict_find(d1, (const char *)di2->di_key, -1);
|
||
if (d1->dv_scope != VAR_NO_SCOPE) {
|
||
// Disallow replacing a builtin function in l: and g:.
|
||
// Check the key to be valid when adding to any scope.
|
||
if (d1->dv_scope == VAR_DEF_SCOPE
|
||
&& tv_is_func(di2->di_tv)
|
||
&& !var_check_func_name((const char *)di2->di_key, di1 == NULL)) {
|
||
break;
|
||
}
|
||
if (!valid_varname((const char *)di2->di_key)) {
|
||
break;
|
||
}
|
||
}
|
||
if (di1 == NULL) {
|
||
dictitem_T *const new_di = tv_dict_item_copy(di2);
|
||
if (tv_dict_add(d1, new_di) == FAIL) {
|
||
tv_dict_item_free(new_di);
|
||
} else if (watched) {
|
||
tv_dict_watcher_notify(d1, (const char *)new_di->di_key, &new_di->di_tv,
|
||
NULL);
|
||
}
|
||
} else if (*action == 'e') {
|
||
emsgf(_("E737: Key already exists: %s"), di2->di_key);
|
||
break;
|
||
} else if (*action == 'f' && di2 != di1) {
|
||
typval_T oldtv;
|
||
|
||
if (tv_check_lock(di1->di_tv.v_lock, arg_errmsg, arg_errmsg_len)
|
||
|| var_check_ro(di1->di_flags, arg_errmsg, arg_errmsg_len)) {
|
||
break;
|
||
}
|
||
|
||
if (watched) {
|
||
tv_copy(&di1->di_tv, &oldtv);
|
||
}
|
||
|
||
tv_clear(&di1->di_tv);
|
||
tv_copy(&di2->di_tv, &di1->di_tv);
|
||
|
||
if (watched) {
|
||
tv_dict_watcher_notify(d1, (const char *)di1->di_key, &di1->di_tv,
|
||
&oldtv);
|
||
tv_clear(&oldtv);
|
||
}
|
||
}
|
||
});
|
||
}
|
||
|
||
/// Compare two dictionaries
|
||
///
|
||
/// @param[in] d1 First dictionary.
|
||
/// @param[in] d2 Second dictionary.
|
||
/// @param[in] ic True if case is to be ignored.
|
||
/// @param[in] recursive True when used recursively.
|
||
bool tv_dict_equal(dict_T *const d1, dict_T *const d2,
|
||
const bool ic, const bool recursive)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
if (d1 == d2) {
|
||
return true;
|
||
}
|
||
if (d1 == NULL || d2 == NULL) {
|
||
return false;
|
||
}
|
||
if (tv_dict_len(d1) != tv_dict_len(d2)) {
|
||
return false;
|
||
}
|
||
|
||
TV_DICT_ITER(d1, di1, {
|
||
dictitem_T *const di2 = tv_dict_find(d2, (const char *)di1->di_key, -1);
|
||
if (di2 == NULL) {
|
||
return false;
|
||
}
|
||
if (!tv_equal(&di1->di_tv, &di2->di_tv, ic, recursive)) {
|
||
return false;
|
||
}
|
||
});
|
||
return true;
|
||
}
|
||
|
||
/// Make a copy of dictionary
|
||
///
|
||
/// @param[in] conv If non-NULL, then all internal strings will be converted.
|
||
/// @param[in] orig Original dictionary to copy.
|
||
/// @param[in] deep If false, then shallow copy will be done.
|
||
/// @param[in] copyID See var_item_copy().
|
||
///
|
||
/// @return Copied dictionary. May be NULL in case original dictionary is NULL
|
||
/// or some failure happens. The refcount of the new dictionary is set
|
||
/// to 1.
|
||
dict_T *tv_dict_copy(const vimconv_T *const conv,
|
||
dict_T *const orig,
|
||
const bool deep,
|
||
const int copyID)
|
||
{
|
||
if (orig == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
dict_T *copy = tv_dict_alloc();
|
||
if (copyID != 0) {
|
||
orig->dv_copyID = copyID;
|
||
orig->dv_copydict = copy;
|
||
}
|
||
TV_DICT_ITER(orig, di, {
|
||
if (got_int) {
|
||
break;
|
||
}
|
||
dictitem_T *new_di;
|
||
if (conv == NULL || conv->vc_type == CONV_NONE) {
|
||
new_di = tv_dict_item_alloc((const char *)di->di_key);
|
||
} else {
|
||
size_t len = STRLEN(di->di_key);
|
||
char *const key = (char *)string_convert(conv, di->di_key, &len);
|
||
if (key == NULL) {
|
||
new_di = tv_dict_item_alloc_len((const char *)di->di_key, len);
|
||
} else {
|
||
new_di = tv_dict_item_alloc_len(key, len);
|
||
xfree(key);
|
||
}
|
||
}
|
||
if (deep) {
|
||
if (var_item_copy(conv, &di->di_tv, &new_di->di_tv, deep,
|
||
copyID) == FAIL) {
|
||
xfree(new_di);
|
||
break;
|
||
}
|
||
} else {
|
||
tv_copy(&di->di_tv, &new_di->di_tv);
|
||
}
|
||
if (tv_dict_add(copy, new_di) == FAIL) {
|
||
tv_dict_item_free(new_di);
|
||
break;
|
||
}
|
||
});
|
||
|
||
copy->dv_refcount++;
|
||
if (got_int) {
|
||
tv_dict_unref(copy);
|
||
copy = NULL;
|
||
}
|
||
|
||
return copy;
|
||
}
|
||
|
||
/// Set all existing keys in "dict" as read-only.
|
||
///
|
||
/// This does not protect against adding new keys to the Dictionary.
|
||
///
|
||
/// @param dict The dict whose keys should be frozen.
|
||
void tv_dict_set_keys_readonly(dict_T *const dict)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
TV_DICT_ITER(dict, di, {
|
||
di->di_flags |= DI_FLAGS_RO | DI_FLAGS_FIX;
|
||
});
|
||
}
|
||
|
||
//{{{1 Generic typval operations
|
||
//{{{2 Init/alloc/clear
|
||
//{{{3 Alloc
|
||
|
||
/// Allocate an empty list for a return value
|
||
///
|
||
/// Also sets reference count.
|
||
///
|
||
/// @param[out] ret_tv Structure where list is saved.
|
||
/// @param[in] len Expected number of items to be populated before list
|
||
/// becomes accessible from VimL. It is still valid to
|
||
/// underpopulate a list, value only controls how many elements
|
||
/// will be allocated in advance. @see ListLenSpecials.
|
||
///
|
||
/// @return [allocated] pointer to the created list.
|
||
list_T *tv_list_alloc_ret(typval_T *const ret_tv, const ptrdiff_t len)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
list_T *const l = tv_list_alloc(len);
|
||
tv_list_set_ret(ret_tv, l);
|
||
ret_tv->v_lock = VAR_UNLOCKED;
|
||
return l;
|
||
}
|
||
|
||
/// Allocate an empty dictionary for a return value
|
||
///
|
||
/// Also sets reference count.
|
||
///
|
||
/// @param[out] ret_tv Structure where dictionary is saved.
|
||
void tv_dict_alloc_ret(typval_T *const ret_tv)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
dict_T *const d = tv_dict_alloc();
|
||
tv_dict_set_ret(ret_tv, d);
|
||
ret_tv->v_lock = VAR_UNLOCKED;
|
||
}
|
||
|
||
//{{{3 Clear
|
||
#define TYPVAL_ENCODE_ALLOW_SPECIALS false
|
||
|
||
#define TYPVAL_ENCODE_CONV_NIL(tv) \
|
||
do { \
|
||
tv->vval.v_special = kSpecialVarNull; \
|
||
tv->v_lock = VAR_UNLOCKED; \
|
||
} while (0)
|
||
|
||
#define TYPVAL_ENCODE_CONV_BOOL(tv, num) \
|
||
do { \
|
||
tv->vval.v_bool = kBoolVarFalse; \
|
||
tv->v_lock = VAR_UNLOCKED; \
|
||
} while (0)
|
||
|
||
#define TYPVAL_ENCODE_CONV_NUMBER(tv, num) \
|
||
do { \
|
||
(void)num; \
|
||
tv->vval.v_number = 0; \
|
||
tv->v_lock = VAR_UNLOCKED; \
|
||
} while (0)
|
||
|
||
#define TYPVAL_ENCODE_CONV_UNSIGNED_NUMBER(tv, num)
|
||
|
||
#define TYPVAL_ENCODE_CONV_FLOAT(tv, flt) \
|
||
do { \
|
||
tv->vval.v_float = 0; \
|
||
tv->v_lock = VAR_UNLOCKED; \
|
||
} while (0)
|
||
|
||
#define TYPVAL_ENCODE_CONV_STRING(tv, buf, len) \
|
||
do { \
|
||
xfree(buf); \
|
||
tv->vval.v_string = NULL; \
|
||
tv->v_lock = VAR_UNLOCKED; \
|
||
} while (0)
|
||
|
||
#define TYPVAL_ENCODE_CONV_STR_STRING(tv, buf, len)
|
||
|
||
#define TYPVAL_ENCODE_CONV_EXT_STRING(tv, buf, len, type)
|
||
|
||
static inline int _nothing_conv_func_start(typval_T *const tv,
|
||
char_u *const fun)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_NONNULL_ARG(1)
|
||
{
|
||
tv->v_lock = VAR_UNLOCKED;
|
||
if (tv->v_type == VAR_PARTIAL) {
|
||
partial_T *const pt_ = tv->vval.v_partial;
|
||
if (pt_ != NULL && pt_->pt_refcount > 1) {
|
||
pt_->pt_refcount--;
|
||
tv->vval.v_partial = NULL;
|
||
return OK;
|
||
}
|
||
} else {
|
||
func_unref(fun);
|
||
if ((const char *)fun != tv_empty_string) {
|
||
xfree(fun);
|
||
}
|
||
tv->vval.v_string = NULL;
|
||
}
|
||
return NOTDONE;
|
||
}
|
||
#define TYPVAL_ENCODE_CONV_FUNC_START(tv, fun) \
|
||
do { \
|
||
if (_nothing_conv_func_start(tv, fun) != NOTDONE) { \
|
||
return OK; \
|
||
} \
|
||
} while (0)
|
||
|
||
#define TYPVAL_ENCODE_CONV_FUNC_BEFORE_ARGS(tv, len)
|
||
#define TYPVAL_ENCODE_CONV_FUNC_BEFORE_SELF(tv, len)
|
||
|
||
static inline void _nothing_conv_func_end(typval_T *const tv, const int copyID)
|
||
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
if (tv->v_type == VAR_PARTIAL) {
|
||
partial_T *const pt = tv->vval.v_partial;
|
||
if (pt == NULL) {
|
||
return;
|
||
}
|
||
// Dictionary should already be freed by the time.
|
||
// If it was not freed then it is a part of the reference cycle.
|
||
assert(pt->pt_dict == NULL || pt->pt_dict->dv_copyID == copyID);
|
||
pt->pt_dict = NULL;
|
||
// As well as all arguments.
|
||
pt->pt_argc = 0;
|
||
assert(pt->pt_refcount <= 1);
|
||
partial_unref(pt);
|
||
tv->vval.v_partial = NULL;
|
||
assert(tv->v_lock == VAR_UNLOCKED);
|
||
}
|
||
}
|
||
#define TYPVAL_ENCODE_CONV_FUNC_END(tv) _nothing_conv_func_end(tv, copyID)
|
||
|
||
#define TYPVAL_ENCODE_CONV_EMPTY_LIST(tv) \
|
||
do { \
|
||
tv_list_unref(tv->vval.v_list); \
|
||
tv->vval.v_list = NULL; \
|
||
tv->v_lock = VAR_UNLOCKED; \
|
||
} while (0)
|
||
|
||
static inline void _nothing_conv_empty_dict(typval_T *const tv,
|
||
dict_T **const dictp)
|
||
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_NONNULL_ARG(2)
|
||
{
|
||
tv_dict_unref(*dictp);
|
||
*dictp = NULL;
|
||
if (tv != NULL) {
|
||
tv->v_lock = VAR_UNLOCKED;
|
||
}
|
||
}
|
||
#define TYPVAL_ENCODE_CONV_EMPTY_DICT(tv, dict) \
|
||
do { \
|
||
assert((void *)&dict != (void *)&TYPVAL_ENCODE_NODICT_VAR); \
|
||
_nothing_conv_empty_dict(tv, ((dict_T **)&dict)); \
|
||
} while (0)
|
||
|
||
static inline int _nothing_conv_real_list_after_start(
|
||
typval_T *const tv, MPConvStackVal *const mpsv)
|
||
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
assert(tv != NULL);
|
||
tv->v_lock = VAR_UNLOCKED;
|
||
if (tv->vval.v_list->lv_refcount > 1) {
|
||
tv->vval.v_list->lv_refcount--;
|
||
tv->vval.v_list = NULL;
|
||
mpsv->data.l.li = NULL;
|
||
return OK;
|
||
}
|
||
return NOTDONE;
|
||
}
|
||
#define TYPVAL_ENCODE_CONV_LIST_START(tv, len)
|
||
|
||
#define TYPVAL_ENCODE_CONV_REAL_LIST_AFTER_START(tv, mpsv) \
|
||
do { \
|
||
if (_nothing_conv_real_list_after_start(tv, &mpsv) != NOTDONE) { \
|
||
goto typval_encode_stop_converting_one_item; \
|
||
} \
|
||
} while (0)
|
||
|
||
#define TYPVAL_ENCODE_CONV_LIST_BETWEEN_ITEMS(tv)
|
||
|
||
static inline void _nothing_conv_list_end(typval_T *const tv)
|
||
FUNC_ATTR_ALWAYS_INLINE
|
||
{
|
||
if (tv == NULL) {
|
||
return;
|
||
}
|
||
assert(tv->v_type == VAR_LIST);
|
||
list_T *const list = tv->vval.v_list;
|
||
tv_list_unref(list);
|
||
tv->vval.v_list = NULL;
|
||
}
|
||
#define TYPVAL_ENCODE_CONV_LIST_END(tv) _nothing_conv_list_end(tv)
|
||
|
||
static inline int _nothing_conv_real_dict_after_start(
|
||
typval_T *const tv, dict_T **const dictp, const void *const nodictvar,
|
||
MPConvStackVal *const mpsv)
|
||
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
if (tv != NULL) {
|
||
tv->v_lock = VAR_UNLOCKED;
|
||
}
|
||
if ((const void *)dictp != nodictvar && (*dictp)->dv_refcount > 1) {
|
||
(*dictp)->dv_refcount--;
|
||
*dictp = NULL;
|
||
mpsv->data.d.todo = 0;
|
||
return OK;
|
||
}
|
||
return NOTDONE;
|
||
}
|
||
#define TYPVAL_ENCODE_CONV_DICT_START(tv, dict, len)
|
||
|
||
#define TYPVAL_ENCODE_CONV_REAL_DICT_AFTER_START(tv, dict, mpsv) \
|
||
do { \
|
||
if (_nothing_conv_real_dict_after_start( \
|
||
tv, (dict_T **)&dict, (void *)&TYPVAL_ENCODE_NODICT_VAR, \
|
||
&mpsv) != NOTDONE) { \
|
||
goto typval_encode_stop_converting_one_item; \
|
||
} \
|
||
} while (0)
|
||
|
||
#define TYPVAL_ENCODE_SPECIAL_DICT_KEY_CHECK(tv, dict)
|
||
#define TYPVAL_ENCODE_CONV_DICT_AFTER_KEY(tv, dict)
|
||
#define TYPVAL_ENCODE_CONV_DICT_BETWEEN_ITEMS(tv, dict)
|
||
|
||
static inline void _nothing_conv_dict_end(typval_T *const tv,
|
||
dict_T **const dictp,
|
||
const void *const nodictvar)
|
||
FUNC_ATTR_ALWAYS_INLINE
|
||
{
|
||
if ((const void *)dictp != nodictvar) {
|
||
tv_dict_unref(*dictp);
|
||
*dictp = NULL;
|
||
}
|
||
}
|
||
#define TYPVAL_ENCODE_CONV_DICT_END(tv, dict) \
|
||
_nothing_conv_dict_end(tv, (dict_T **)&dict, \
|
||
(void *)&TYPVAL_ENCODE_NODICT_VAR)
|
||
|
||
#define TYPVAL_ENCODE_CONV_RECURSE(val, conv_type)
|
||
|
||
#define TYPVAL_ENCODE_SCOPE static
|
||
#define TYPVAL_ENCODE_NAME nothing
|
||
#define TYPVAL_ENCODE_FIRST_ARG_TYPE const void *const
|
||
#define TYPVAL_ENCODE_FIRST_ARG_NAME ignored
|
||
#define TYPVAL_ENCODE_TRANSLATE_OBJECT_NAME
|
||
#include "nvim/eval/typval_encode.c.h"
|
||
#undef TYPVAL_ENCODE_SCOPE
|
||
#undef TYPVAL_ENCODE_NAME
|
||
#undef TYPVAL_ENCODE_FIRST_ARG_TYPE
|
||
#undef TYPVAL_ENCODE_FIRST_ARG_NAME
|
||
#undef TYPVAL_ENCODE_TRANSLATE_OBJECT_NAME
|
||
|
||
#undef TYPVAL_ENCODE_ALLOW_SPECIALS
|
||
#undef TYPVAL_ENCODE_CONV_NIL
|
||
#undef TYPVAL_ENCODE_CONV_BOOL
|
||
#undef TYPVAL_ENCODE_CONV_NUMBER
|
||
#undef TYPVAL_ENCODE_CONV_UNSIGNED_NUMBER
|
||
#undef TYPVAL_ENCODE_CONV_FLOAT
|
||
#undef TYPVAL_ENCODE_CONV_STRING
|
||
#undef TYPVAL_ENCODE_CONV_STR_STRING
|
||
#undef TYPVAL_ENCODE_CONV_EXT_STRING
|
||
#undef TYPVAL_ENCODE_CONV_FUNC_START
|
||
#undef TYPVAL_ENCODE_CONV_FUNC_BEFORE_ARGS
|
||
#undef TYPVAL_ENCODE_CONV_FUNC_BEFORE_SELF
|
||
#undef TYPVAL_ENCODE_CONV_FUNC_END
|
||
#undef TYPVAL_ENCODE_CONV_EMPTY_LIST
|
||
#undef TYPVAL_ENCODE_CONV_EMPTY_DICT
|
||
#undef TYPVAL_ENCODE_CONV_LIST_START
|
||
#undef TYPVAL_ENCODE_CONV_REAL_LIST_AFTER_START
|
||
#undef TYPVAL_ENCODE_CONV_LIST_BETWEEN_ITEMS
|
||
#undef TYPVAL_ENCODE_CONV_LIST_END
|
||
#undef TYPVAL_ENCODE_CONV_DICT_START
|
||
#undef TYPVAL_ENCODE_CONV_REAL_DICT_AFTER_START
|
||
#undef TYPVAL_ENCODE_SPECIAL_DICT_KEY_CHECK
|
||
#undef TYPVAL_ENCODE_CONV_DICT_AFTER_KEY
|
||
#undef TYPVAL_ENCODE_CONV_DICT_BETWEEN_ITEMS
|
||
#undef TYPVAL_ENCODE_CONV_DICT_END
|
||
#undef TYPVAL_ENCODE_CONV_RECURSE
|
||
|
||
/// Free memory for a variable value and set the value to NULL or 0
|
||
///
|
||
/// @param[in,out] tv Value to free.
|
||
void tv_clear(typval_T *const tv)
|
||
{
|
||
if (tv != NULL && tv->v_type != VAR_UNKNOWN) {
|
||
// WARNING: do not translate the string here, gettext is slow and function
|
||
// is used *very* often. At the current state encode_vim_to_nothing() does
|
||
// not error out and does not use the argument anywhere.
|
||
//
|
||
// If situation changes and this argument will be used, translate it in the
|
||
// place where it is used.
|
||
const int evn_ret = encode_vim_to_nothing(NULL, tv, "tv_clear() argument");
|
||
(void)evn_ret;
|
||
assert(evn_ret == OK);
|
||
}
|
||
}
|
||
|
||
//{{{3 Free
|
||
|
||
/// Free allocated VimL object and value stored inside
|
||
///
|
||
/// @param tv Object to free.
|
||
void tv_free(typval_T *tv)
|
||
{
|
||
if (tv != NULL) {
|
||
switch (tv->v_type) {
|
||
case VAR_PARTIAL: {
|
||
partial_unref(tv->vval.v_partial);
|
||
break;
|
||
}
|
||
case VAR_FUNC: {
|
||
func_unref(tv->vval.v_string);
|
||
FALLTHROUGH;
|
||
}
|
||
case VAR_STRING: {
|
||
xfree(tv->vval.v_string);
|
||
break;
|
||
}
|
||
case VAR_LIST: {
|
||
tv_list_unref(tv->vval.v_list);
|
||
break;
|
||
}
|
||
case VAR_DICT: {
|
||
tv_dict_unref(tv->vval.v_dict);
|
||
break;
|
||
}
|
||
case VAR_BOOL:
|
||
case VAR_SPECIAL:
|
||
case VAR_NUMBER:
|
||
case VAR_FLOAT:
|
||
case VAR_UNKNOWN: {
|
||
break;
|
||
}
|
||
}
|
||
xfree(tv);
|
||
}
|
||
}
|
||
|
||
//{{{3 Copy
|
||
|
||
/// Copy typval from one location to another
|
||
///
|
||
/// When needed allocates string or increases reference count. Does not make
|
||
/// a copy of a container, but copies its reference!
|
||
///
|
||
/// It is OK for `from` and `to` to point to the same location; this is used to
|
||
/// make a copy later.
|
||
///
|
||
/// @param[in] from Location to copy from.
|
||
/// @param[out] to Location to copy to.
|
||
void tv_copy(const typval_T *const from, typval_T *const to)
|
||
{
|
||
to->v_type = from->v_type;
|
||
to->v_lock = VAR_UNLOCKED;
|
||
memmove(&to->vval, &from->vval, sizeof(to->vval));
|
||
switch (from->v_type) {
|
||
case VAR_NUMBER:
|
||
case VAR_FLOAT:
|
||
case VAR_BOOL:
|
||
case VAR_SPECIAL: {
|
||
break;
|
||
}
|
||
case VAR_STRING:
|
||
case VAR_FUNC: {
|
||
if (from->vval.v_string != NULL) {
|
||
to->vval.v_string = vim_strsave(from->vval.v_string);
|
||
if (from->v_type == VAR_FUNC) {
|
||
func_ref(to->vval.v_string);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case VAR_PARTIAL: {
|
||
if (to->vval.v_partial != NULL) {
|
||
to->vval.v_partial->pt_refcount++;
|
||
}
|
||
break;
|
||
}
|
||
case VAR_LIST: {
|
||
tv_list_ref(to->vval.v_list);
|
||
break;
|
||
}
|
||
case VAR_DICT: {
|
||
if (from->vval.v_dict != NULL) {
|
||
to->vval.v_dict->dv_refcount++;
|
||
}
|
||
break;
|
||
}
|
||
case VAR_UNKNOWN: {
|
||
emsgf(_(e_intern2), "tv_copy(UNKNOWN)");
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
//{{{2 Locks
|
||
|
||
/// Lock or unlock an item
|
||
///
|
||
/// @param[out] tv Item to (un)lock.
|
||
/// @param[in] deep Levels to (un)lock, -1 to (un)lock everything.
|
||
/// @param[in] lock True if it is needed to lock an item, false to unlock.
|
||
void tv_item_lock(typval_T *const tv, const int deep, const bool lock)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
// TODO(ZyX-I): Make this not recursive
|
||
static int recurse = 0;
|
||
|
||
if (recurse >= DICT_MAXNEST) {
|
||
EMSG(_("E743: variable nested too deep for (un)lock"));
|
||
return;
|
||
}
|
||
if (deep == 0) {
|
||
return;
|
||
}
|
||
recurse++;
|
||
|
||
// lock/unlock the item itself
|
||
#define CHANGE_LOCK(lock, var) \
|
||
do { \
|
||
var = ((VarLockStatus[]) { \
|
||
[VAR_UNLOCKED] = (lock ? VAR_LOCKED : VAR_UNLOCKED), \
|
||
[VAR_LOCKED] = (lock ? VAR_LOCKED : VAR_UNLOCKED), \
|
||
[VAR_FIXED] = VAR_FIXED, \
|
||
})[var]; \
|
||
} while (0)
|
||
CHANGE_LOCK(lock, tv->v_lock);
|
||
|
||
switch (tv->v_type) {
|
||
case VAR_LIST: {
|
||
list_T *const l = tv->vval.v_list;
|
||
if (l != NULL) {
|
||
CHANGE_LOCK(lock, l->lv_lock);
|
||
if (deep < 0 || deep > 1) {
|
||
// Recursive: lock/unlock the items the List contains.
|
||
TV_LIST_ITER(l, li, {
|
||
tv_item_lock(TV_LIST_ITEM_TV(li), deep - 1, lock);
|
||
});
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case VAR_DICT: {
|
||
dict_T *const d = tv->vval.v_dict;
|
||
if (d != NULL) {
|
||
CHANGE_LOCK(lock, d->dv_lock);
|
||
if (deep < 0 || deep > 1) {
|
||
// recursive: lock/unlock the items the List contains
|
||
TV_DICT_ITER(d, di, {
|
||
tv_item_lock(&di->di_tv, deep - 1, lock);
|
||
});
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case VAR_NUMBER:
|
||
case VAR_FLOAT:
|
||
case VAR_STRING:
|
||
case VAR_FUNC:
|
||
case VAR_PARTIAL:
|
||
case VAR_BOOL:
|
||
case VAR_SPECIAL: {
|
||
break;
|
||
}
|
||
case VAR_UNKNOWN: {
|
||
assert(false);
|
||
}
|
||
}
|
||
#undef CHANGE_LOCK
|
||
recurse--;
|
||
}
|
||
|
||
/// Check whether VimL value is locked itself or refers to a locked container
|
||
///
|
||
/// @warning Fixed container is not the same as locked.
|
||
///
|
||
/// @param[in] tv Value to check.
|
||
///
|
||
/// @return True if value is locked, false otherwise.
|
||
bool tv_islocked(const typval_T *const tv)
|
||
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
return ((tv->v_lock == VAR_LOCKED)
|
||
|| (tv->v_type == VAR_LIST
|
||
&& (tv_list_locked(tv->vval.v_list) == VAR_LOCKED))
|
||
|| (tv->v_type == VAR_DICT
|
||
&& tv->vval.v_dict != NULL
|
||
&& (tv->vval.v_dict->dv_lock == VAR_LOCKED)));
|
||
}
|
||
|
||
/// Return true if typval is locked
|
||
///
|
||
/// Also gives an error message when typval is locked.
|
||
///
|
||
/// @param[in] lock Lock status.
|
||
/// @param[in] name Variable name, used in the error message.
|
||
/// @param[in] name_len Variable name length. Use #TV_TRANSLATE to translate
|
||
/// variable name and compute the length. Use #TV_CSTRING
|
||
/// to compute the length with strlen() without
|
||
/// translating.
|
||
///
|
||
/// Both #TV_… values are used for optimization purposes:
|
||
/// variable name with its length is needed only in case
|
||
/// of error, when no error occurs computing them is
|
||
/// a waste of CPU resources. This especially applies to
|
||
/// gettext.
|
||
///
|
||
/// @return true if variable is locked, false otherwise.
|
||
bool tv_check_lock(const VarLockStatus lock, const char *name,
|
||
size_t name_len)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
const char *error_message = NULL;
|
||
switch (lock) {
|
||
case VAR_UNLOCKED: {
|
||
return false;
|
||
}
|
||
case VAR_LOCKED: {
|
||
error_message = N_("E741: Value is locked: %.*s");
|
||
break;
|
||
}
|
||
case VAR_FIXED: {
|
||
error_message = N_("E742: Cannot change value of %.*s");
|
||
break;
|
||
}
|
||
}
|
||
assert(error_message != NULL);
|
||
|
||
if (name == NULL) {
|
||
name = _("Unknown");
|
||
name_len = strlen(name);
|
||
} else if (name_len == TV_TRANSLATE) {
|
||
name = _(name);
|
||
name_len = strlen(name);
|
||
} else if (name_len == TV_CSTRING) {
|
||
name_len = strlen(name);
|
||
}
|
||
|
||
emsgf(_(error_message), (int)name_len, name);
|
||
|
||
return true;
|
||
}
|
||
|
||
//{{{2 Comparison
|
||
|
||
static int tv_equal_recurse_limit;
|
||
|
||
/// Compare two VimL values
|
||
///
|
||
/// Like "==", but strings and numbers are different, as well as floats and
|
||
/// numbers.
|
||
///
|
||
/// @warning Too nested structures may be considered equal even if they are not.
|
||
///
|
||
/// @param[in] tv1 First value to compare.
|
||
/// @param[in] tv2 Second value to compare.
|
||
/// @param[in] ic True if case is to be ignored.
|
||
/// @param[in] recursive True when used recursively.
|
||
///
|
||
/// @return true if values are equal.
|
||
bool tv_equal(typval_T *const tv1, typval_T *const tv2, const bool ic,
|
||
const bool recursive)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
// TODO(ZyX-I): Make this not recursive
|
||
static int recursive_cnt = 0; // Catch recursive loops.
|
||
|
||
if (!(tv_is_func(*tv1) && tv_is_func(*tv2)) && tv1->v_type != tv2->v_type) {
|
||
return false;
|
||
}
|
||
|
||
// Catch lists and dicts that have an endless loop by limiting
|
||
// recursiveness to a limit. We guess they are equal then.
|
||
// A fixed limit has the problem of still taking an awful long time.
|
||
// Reduce the limit every time running into it. That should work fine for
|
||
// deeply linked structures that are not recursively linked and catch
|
||
// recursiveness quickly.
|
||
if (!recursive) {
|
||
tv_equal_recurse_limit = 1000;
|
||
}
|
||
if (recursive_cnt >= tv_equal_recurse_limit) {
|
||
tv_equal_recurse_limit--;
|
||
return true;
|
||
}
|
||
|
||
switch (tv1->v_type) {
|
||
case VAR_LIST: {
|
||
recursive_cnt++;
|
||
const bool r = tv_list_equal(tv1->vval.v_list, tv2->vval.v_list, ic,
|
||
true);
|
||
recursive_cnt--;
|
||
return r;
|
||
}
|
||
case VAR_DICT: {
|
||
recursive_cnt++;
|
||
const bool r = tv_dict_equal(tv1->vval.v_dict, tv2->vval.v_dict, ic,
|
||
true);
|
||
recursive_cnt--;
|
||
return r;
|
||
}
|
||
case VAR_PARTIAL:
|
||
case VAR_FUNC: {
|
||
if ((tv1->v_type == VAR_PARTIAL && tv1->vval.v_partial == NULL)
|
||
|| (tv2->v_type == VAR_PARTIAL && tv2->vval.v_partial == NULL)) {
|
||
return false;
|
||
}
|
||
recursive_cnt++;
|
||
const bool r = func_equal(tv1, tv2, ic);
|
||
recursive_cnt--;
|
||
return r;
|
||
}
|
||
case VAR_NUMBER: {
|
||
return tv1->vval.v_number == tv2->vval.v_number;
|
||
}
|
||
case VAR_FLOAT: {
|
||
return tv1->vval.v_float == tv2->vval.v_float;
|
||
}
|
||
case VAR_STRING: {
|
||
char buf1[NUMBUFLEN];
|
||
char buf2[NUMBUFLEN];
|
||
const char *s1 = tv_get_string_buf(tv1, buf1);
|
||
const char *s2 = tv_get_string_buf(tv2, buf2);
|
||
return mb_strcmp_ic((bool)ic, s1, s2) == 0;
|
||
}
|
||
case VAR_BOOL: {
|
||
return tv1->vval.v_bool == tv2->vval.v_bool;
|
||
}
|
||
case VAR_SPECIAL: {
|
||
return tv1->vval.v_special == tv2->vval.v_special;
|
||
}
|
||
case VAR_UNKNOWN: {
|
||
// VAR_UNKNOWN can be the result of an invalid expression, let’s say it
|
||
// does not equal anything, not even self.
|
||
return false;
|
||
}
|
||
}
|
||
|
||
assert(false);
|
||
return false;
|
||
}
|
||
|
||
//{{{2 Type checks
|
||
|
||
/// Check that given value is a number or string
|
||
///
|
||
/// Error messages are compatible with tv_get_number() previously used for the
|
||
/// same purpose in buf*() functions. Special values are not accepted (previous
|
||
/// behaviour: silently fail to find buffer).
|
||
///
|
||
/// @param[in] tv Value to check.
|
||
///
|
||
/// @return true if everything is OK, false otherwise.
|
||
bool tv_check_str_or_nr(const typval_T *const tv)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
switch (tv->v_type) {
|
||
case VAR_NUMBER:
|
||
case VAR_STRING: {
|
||
return true;
|
||
}
|
||
case VAR_FLOAT: {
|
||
EMSG(_("E805: Expected a Number or a String, Float found"));
|
||
return false;
|
||
}
|
||
case VAR_PARTIAL:
|
||
case VAR_FUNC: {
|
||
EMSG(_("E703: Expected a Number or a String, Funcref found"));
|
||
return false;
|
||
}
|
||
case VAR_LIST: {
|
||
EMSG(_("E745: Expected a Number or a String, List found"));
|
||
return false;
|
||
}
|
||
case VAR_DICT: {
|
||
EMSG(_("E728: Expected a Number or a String, Dictionary found"));
|
||
return false;
|
||
}
|
||
case VAR_BOOL: {
|
||
EMSG(_("E5299: Expected a Number or a String, Boolean found"));
|
||
return false;
|
||
}
|
||
case VAR_SPECIAL: {
|
||
EMSG(_("E5300: Expected a Number or a String"));
|
||
return false;
|
||
}
|
||
case VAR_UNKNOWN: {
|
||
EMSG2(_(e_intern2), "tv_check_str_or_nr(UNKNOWN)");
|
||
return false;
|
||
}
|
||
}
|
||
assert(false);
|
||
return false;
|
||
}
|
||
|
||
#define FUNC_ERROR "E703: Using a Funcref as a Number"
|
||
|
||
static const char *const num_errors[] = {
|
||
[VAR_PARTIAL]=N_(FUNC_ERROR),
|
||
[VAR_FUNC]=N_(FUNC_ERROR),
|
||
[VAR_LIST]=N_("E745: Using a List as a Number"),
|
||
[VAR_DICT]=N_("E728: Using a Dictionary as a Number"),
|
||
[VAR_FLOAT]=N_("E805: Using a Float as a Number"),
|
||
[VAR_UNKNOWN]=N_("E685: using an invalid value as a Number"),
|
||
};
|
||
|
||
#undef FUNC_ERROR
|
||
|
||
/// Check that given value is a number or can be converted to it
|
||
///
|
||
/// Error messages are compatible with tv_get_number_chk() previously used for
|
||
/// the same purpose.
|
||
///
|
||
/// @param[in] tv Value to check.
|
||
///
|
||
/// @return true if everything is OK, false otherwise.
|
||
bool tv_check_num(const typval_T *const tv)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
switch (tv->v_type) {
|
||
case VAR_NUMBER:
|
||
case VAR_BOOL:
|
||
case VAR_SPECIAL:
|
||
case VAR_STRING: {
|
||
return true;
|
||
}
|
||
case VAR_FUNC:
|
||
case VAR_PARTIAL:
|
||
case VAR_LIST:
|
||
case VAR_DICT:
|
||
case VAR_FLOAT:
|
||
case VAR_UNKNOWN: {
|
||
EMSG(_(num_errors[tv->v_type]));
|
||
return false;
|
||
}
|
||
}
|
||
assert(false);
|
||
return false;
|
||
}
|
||
|
||
#define FUNC_ERROR "E729: using Funcref as a String"
|
||
|
||
static const char *const str_errors[] = {
|
||
[VAR_PARTIAL]=N_(FUNC_ERROR),
|
||
[VAR_FUNC]=N_(FUNC_ERROR),
|
||
[VAR_LIST]=N_("E730: using List as a String"),
|
||
[VAR_DICT]=N_("E731: using Dictionary as a String"),
|
||
[VAR_FLOAT]=((const char *)e_float_as_string),
|
||
[VAR_UNKNOWN]=N_("E908: using an invalid value as a String"),
|
||
};
|
||
|
||
#undef FUNC_ERROR
|
||
|
||
/// Check that given value is a VimL String or can be "cast" to it.
|
||
///
|
||
/// Error messages are compatible with tv_get_string_chk() previously used for
|
||
/// the same purpose.
|
||
///
|
||
/// @param[in] tv Value to check.
|
||
///
|
||
/// @return true if everything is OK, false otherwise.
|
||
bool tv_check_str(const typval_T *const tv)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
switch (tv->v_type) {
|
||
case VAR_NUMBER:
|
||
case VAR_BOOL:
|
||
case VAR_SPECIAL:
|
||
case VAR_STRING: {
|
||
return true;
|
||
}
|
||
case VAR_PARTIAL:
|
||
case VAR_FUNC:
|
||
case VAR_LIST:
|
||
case VAR_DICT:
|
||
case VAR_FLOAT:
|
||
case VAR_UNKNOWN: {
|
||
EMSG(_(str_errors[tv->v_type]));
|
||
return false;
|
||
}
|
||
}
|
||
assert(false);
|
||
return false;
|
||
}
|
||
|
||
//{{{2 Get
|
||
|
||
/// Get the number value of a VimL object
|
||
///
|
||
/// @note Use tv_get_number_chk() if you need to determine whether there was an
|
||
/// error.
|
||
///
|
||
/// @param[in] tv Object to get value from.
|
||
///
|
||
/// @return Number value: vim_str2nr() output for VAR_STRING objects, value
|
||
/// for VAR_NUMBER objects, -1 for other types.
|
||
varnumber_T tv_get_number(const typval_T *const tv)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
bool error = false;
|
||
return tv_get_number_chk(tv, &error);
|
||
}
|
||
|
||
/// Get the number value of a VimL object
|
||
///
|
||
/// @param[in] tv Object to get value from.
|
||
/// @param[out] ret_error If type error occurred then `true` will be written
|
||
/// to this location. Otherwise it is not touched.
|
||
///
|
||
/// @note Needs to be initialized to `false` to be
|
||
/// useful.
|
||
///
|
||
/// @return Number value: vim_str2nr() output for VAR_STRING objects, value
|
||
/// for VAR_NUMBER objects, -1 (ret_error == NULL) or 0 (otherwise) for
|
||
/// other types.
|
||
varnumber_T tv_get_number_chk(const typval_T *const tv, bool *const ret_error)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ARG(1)
|
||
{
|
||
switch (tv->v_type) {
|
||
case VAR_FUNC:
|
||
case VAR_PARTIAL:
|
||
case VAR_LIST:
|
||
case VAR_DICT:
|
||
case VAR_FLOAT: {
|
||
EMSG(_(num_errors[tv->v_type]));
|
||
break;
|
||
}
|
||
case VAR_NUMBER: {
|
||
return tv->vval.v_number;
|
||
}
|
||
case VAR_STRING: {
|
||
varnumber_T n = 0;
|
||
if (tv->vval.v_string != NULL) {
|
||
vim_str2nr(tv->vval.v_string, NULL, NULL, STR2NR_ALL, &n, NULL, 0);
|
||
}
|
||
return n;
|
||
}
|
||
case VAR_BOOL: {
|
||
return tv->vval.v_bool == kBoolVarTrue ? 1 : 0;
|
||
}
|
||
case VAR_SPECIAL: {
|
||
return 0;
|
||
}
|
||
case VAR_UNKNOWN: {
|
||
emsgf(_(e_intern2), "tv_get_number(UNKNOWN)");
|
||
break;
|
||
}
|
||
}
|
||
if (ret_error != NULL) {
|
||
*ret_error = true;
|
||
}
|
||
return (ret_error == NULL ? -1 : 0);
|
||
}
|
||
|
||
/// Get the line number from VimL object
|
||
///
|
||
/// @param[in] tv Object to get value from. Is expected to be a number or
|
||
/// a special string like ".", "$", … (works with current buffer
|
||
/// only).
|
||
///
|
||
/// @return Line number or -1 or 0.
|
||
linenr_T tv_get_lnum(const typval_T *const tv)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
linenr_T lnum = (linenr_T)tv_get_number_chk(tv, NULL);
|
||
if (lnum == 0) { // No valid number, try using same function as line() does.
|
||
int fnum;
|
||
pos_T *const fp = var2fpos(tv, true, &fnum);
|
||
if (fp != NULL) {
|
||
lnum = fp->lnum;
|
||
}
|
||
}
|
||
return lnum;
|
||
}
|
||
|
||
/// Get the floating-point value of a VimL object
|
||
///
|
||
/// Raises an error if object is not number or floating-point.
|
||
///
|
||
/// @param[in] tv Object to get value of.
|
||
///
|
||
/// @return Floating-point value of the variable or zero.
|
||
float_T tv_get_float(const typval_T *const tv)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
switch (tv->v_type) {
|
||
case VAR_NUMBER: {
|
||
return (float_T)(tv->vval.v_number);
|
||
}
|
||
case VAR_FLOAT: {
|
||
return tv->vval.v_float;
|
||
}
|
||
case VAR_PARTIAL:
|
||
case VAR_FUNC: {
|
||
EMSG(_("E891: Using a Funcref as a Float"));
|
||
break;
|
||
}
|
||
case VAR_STRING: {
|
||
EMSG(_("E892: Using a String as a Float"));
|
||
break;
|
||
}
|
||
case VAR_LIST: {
|
||
EMSG(_("E893: Using a List as a Float"));
|
||
break;
|
||
}
|
||
case VAR_DICT: {
|
||
EMSG(_("E894: Using a Dictionary as a Float"));
|
||
break;
|
||
}
|
||
case VAR_BOOL: {
|
||
EMSG(_("E362: Using a boolean value as a Float"));
|
||
break;
|
||
}
|
||
case VAR_SPECIAL: {
|
||
EMSG(_("E907: Using a special value as a Float"));
|
||
break;
|
||
}
|
||
case VAR_UNKNOWN: {
|
||
emsgf(_(e_intern2), "tv_get_float(UNKNOWN)");
|
||
break;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/// Get the string value of a "stringish" VimL object.
|
||
///
|
||
/// @param[in] tv Object to get value of.
|
||
/// @param buf Buffer used to hold numbers and special variables converted to
|
||
/// string. When function encounters one of these stringified value
|
||
/// will be written to buf and buf will be returned.
|
||
///
|
||
/// Buffer must have NUMBUFLEN size.
|
||
///
|
||
/// @return Object value if it is VAR_STRING object, number converted to
|
||
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or NULL.
|
||
const char *tv_get_string_buf_chk(const typval_T *const tv, char *const buf)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
switch (tv->v_type) {
|
||
case VAR_NUMBER: {
|
||
snprintf(buf, NUMBUFLEN, "%" PRIdVARNUMBER, tv->vval.v_number); // -V576
|
||
return buf;
|
||
}
|
||
case VAR_STRING: {
|
||
if (tv->vval.v_string != NULL) {
|
||
return (const char *)tv->vval.v_string;
|
||
}
|
||
return "";
|
||
}
|
||
case VAR_BOOL: {
|
||
STRCPY(buf, encode_bool_var_names[tv->vval.v_bool]);
|
||
return buf;
|
||
}
|
||
case VAR_SPECIAL: {
|
||
STRCPY(buf, encode_special_var_names[tv->vval.v_special]);
|
||
return buf;
|
||
}
|
||
case VAR_PARTIAL:
|
||
case VAR_FUNC:
|
||
case VAR_LIST:
|
||
case VAR_DICT:
|
||
case VAR_FLOAT:
|
||
case VAR_UNKNOWN: {
|
||
EMSG(_(str_errors[tv->v_type]));
|
||
return false;
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/// Get the string value of a "stringish" VimL object.
|
||
///
|
||
/// @warning For number and special values it uses a single, static buffer. It
|
||
/// may be used only once, next call to tv_get_string may reuse it. Use
|
||
/// tv_get_string_buf() if you need to use tv_get_string() output after
|
||
/// calling it again.
|
||
///
|
||
/// @param[in] tv Object to get value of.
|
||
///
|
||
/// @return Object value if it is VAR_STRING object, number converted to
|
||
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or NULL.
|
||
const char *tv_get_string_chk(const typval_T *const tv)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
static char mybuf[NUMBUFLEN];
|
||
|
||
return tv_get_string_buf_chk(tv, mybuf);
|
||
}
|
||
|
||
/// Get the string value of a "stringish" VimL object.
|
||
///
|
||
/// @warning For number and special values it uses a single, static buffer. It
|
||
/// may be used only once, next call to tv_get_string may reuse it. Use
|
||
/// tv_get_string_buf() if you need to use tv_get_string() output after
|
||
/// calling it again.
|
||
///
|
||
/// @note tv_get_string_chk() and tv_get_string_buf_chk() are similar, but
|
||
/// return NULL on error.
|
||
///
|
||
/// @param[in] tv Object to get value of.
|
||
///
|
||
/// @return Object value if it is VAR_STRING object, number converted to
|
||
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or empty
|
||
/// string.
|
||
const char *tv_get_string(const typval_T *const tv)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_NONNULL_RET FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
static char mybuf[NUMBUFLEN];
|
||
return tv_get_string_buf((typval_T *)tv, mybuf);
|
||
}
|
||
|
||
/// Get the string value of a "stringish" VimL object.
|
||
///
|
||
/// @note tv_get_string_chk() and tv_get_string_buf_chk() are similar, but
|
||
/// return NULL on error.
|
||
///
|
||
/// @param[in] tv Object to get value of.
|
||
/// @param buf Buffer used to hold numbers and special variables converted to
|
||
/// string. When function encounters one of these stringified value
|
||
/// will be written to buf and buf will be returned.
|
||
///
|
||
/// Buffer must have NUMBUFLEN size.
|
||
///
|
||
/// @return Object value if it is VAR_STRING object, number converted to
|
||
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or empty
|
||
/// string.
|
||
const char *tv_get_string_buf(const typval_T *const tv, char *const buf)
|
||
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_NONNULL_RET FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
const char *const res = (const char *)tv_get_string_buf_chk(tv, buf);
|
||
|
||
return res != NULL ? res : "";
|
||
}
|