Files
neovim/src/nvim/syntax.c

5705 lines
178 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// syntax.c: code for syntax highlighting
#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include "nvim/ascii.h"
#include "nvim/autocmd.h"
#include "nvim/buffer.h"
#include "nvim/buffer_defs.h"
#include "nvim/charset.h"
#include "nvim/drawscreen.h"
#include "nvim/eval.h"
#include "nvim/eval/typval_defs.h"
#include "nvim/eval/vars.h"
#include "nvim/ex_cmds_defs.h"
#include "nvim/ex_docmd.h"
#include "nvim/fold.h"
#include "nvim/garray.h"
#include "nvim/gettext.h"
#include "nvim/globals.h"
#include "nvim/hashtab.h"
#include "nvim/highlight_defs.h"
#include "nvim/highlight_group.h"
#include "nvim/indent_c.h"
#include "nvim/macros.h"
#include "nvim/mbyte.h"
#include "nvim/memline.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/option_defs.h"
#include "nvim/optionstr.h"
#include "nvim/os/input.h"
#include "nvim/path.h"
#include "nvim/pos.h"
#include "nvim/profile.h"
#include "nvim/regexp.h"
#include "nvim/runtime.h"
#include "nvim/strings.h"
#include "nvim/syntax.h"
#include "nvim/types.h"
#include "nvim/vim.h"
static bool did_syntax_onoff = false;
// different types of offsets that are possible
#define SPO_MS_OFF 0 // match start offset
#define SPO_ME_OFF 1 // match end offset
#define SPO_HS_OFF 2 // highl. start offset
#define SPO_HE_OFF 3 // highl. end offset
#define SPO_RS_OFF 4 // region start offset
#define SPO_RE_OFF 5 // region end offset
#define SPO_LC_OFF 6 // leading context offset
#define SPO_COUNT 7
static char e_illegal_arg[] = N_("E390: Illegal argument: %s");
// The patterns that are being searched for are stored in a syn_pattern.
// A match item consists of one pattern.
// A start/end item consists of n start patterns and m end patterns.
// A start/skip/end item consists of n start patterns, one skip pattern and m
// end patterns.
// For the latter two, the patterns are always consecutive: start-skip-end.
//
// A character offset can be given for the matched text (_m_start and _m_end)
// and for the actually highlighted text (_h_start and _h_end).
//
// Note that ordering of members is optimized to reduce padding.
typedef struct syn_pattern {
char sp_type; // see SPTYPE_ defines below
bool sp_syncing; // this item used for syncing
int16_t sp_syn_match_id; // highlight group ID of pattern
int16_t sp_off_flags; // see below
int sp_offsets[SPO_COUNT]; // offsets
int sp_flags; // see HL_ defines below
int sp_cchar; // conceal substitute character
int sp_ic; // ignore-case flag for sp_prog
int sp_sync_idx; // sync item index (syncing only)
int sp_line_id; // ID of last line where tried
int sp_startcol; // next match in sp_line_id line
int16_t *sp_cont_list; // cont. group IDs, if non-zero
int16_t *sp_next_list; // next group IDs, if non-zero
struct sp_syn sp_syn; // struct passed to in_id_list()
char *sp_pattern; // regexp to match, pattern
regprog_T *sp_prog; // regexp to match, program
syn_time_T sp_time;
} synpat_T;
typedef struct syn_cluster_S {
char_u *scl_name; // syntax cluster name
char *scl_name_u; // uppercase of scl_name
int16_t *scl_list; // IDs in this syntax cluster
} syn_cluster_T;
// For the current state we need to remember more than just the idx.
// When si_m_endpos.lnum is 0, the items other than si_idx are unknown.
// (The end positions have the column number of the next char)
typedef struct state_item {
int si_idx; // index of syntax pattern or
// KEYWORD_IDX
int si_id; // highlight group ID for keywords
int si_trans_id; // idem, transparency removed
int si_m_lnum; // lnum of the match
int si_m_startcol; // starting column of the match
lpos_T si_m_endpos; // just after end posn of the match
lpos_T si_h_startpos; // start position of the highlighting
lpos_T si_h_endpos; // end position of the highlighting
lpos_T si_eoe_pos; // end position of end pattern
int si_end_idx; // group ID for end pattern or zero
int si_ends; // if match ends before si_m_endpos
int si_attr; // attributes in this state
long si_flags; // HL_HAS_EOL flag in this state, and
// HL_SKIP* for si_next_list
int si_seqnr; // sequence number
int si_cchar; // substitution character for conceal
int16_t *si_cont_list; // list of contained groups
int16_t *si_next_list; // nextgroup IDs after this item ends
reg_extmatch_T *si_extmatch; // \z(...\) matches from start
// pattern
} stateitem_T;
// Struct to reduce the number of arguments to get_syn_options(), it's used
// very often.
typedef struct {
int flags; // flags for contained and transparent
bool keyword; // true for ":syn keyword"
int *sync_idx; // syntax item for "grouphere" argument, NULL
// if not allowed
bool has_cont_list; // true if "cont_list" can be used
int16_t *cont_list; // group IDs for "contains" argument
int16_t *cont_in_list; // group IDs for "containedin" argument
int16_t *next_list; // group IDs for "nextgroup" argument
} syn_opt_arg_T;
typedef struct {
proftime_T total;
int count;
int match;
proftime_T slowest;
proftime_T average;
int id;
char *pattern;
} time_entry_T;
struct name_list {
int flag;
char *name;
};
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "syntax.c.generated.h"
#endif
static char *(spo_name_tab[SPO_COUNT]) =
{ "ms=", "me=", "hs=", "he=", "rs=", "re=", "lc=" };
// The sp_off_flags are computed like this:
// offset from the start of the matched text: (1 << SPO_XX_OFF)
// offset from the end of the matched text: (1 << (SPO_XX_OFF + SPO_COUNT))
// When both are present, only one is used.
#define SPTYPE_MATCH 1 // match keyword with this group ID
#define SPTYPE_START 2 // match a regexp, start of item
#define SPTYPE_END 3 // match a regexp, end of item
#define SPTYPE_SKIP 4 // match a regexp, skip within item
#define SYN_ITEMS(buf) ((synpat_T *)((buf)->b_syn_patterns.ga_data))
#define NONE_IDX (-2) // value of sp_sync_idx for "NONE"
// Flags for b_syn_sync_flags:
#define SF_CCOMMENT 0x01 // sync on a C-style comment
#define SF_MATCH 0x02 // sync by matching a pattern
#define SYN_STATE_P(ssp) ((bufstate_T *)((ssp)->ga_data))
#define MAXKEYWLEN 80 // maximum length of a keyword
// The attributes of the syntax item that has been recognized.
static int current_attr = 0; // attr of current syntax word
static int current_id = 0; // ID of current char for syn_get_id()
static int current_trans_id = 0; // idem, transparency removed
static int current_flags = 0;
static int current_seqnr = 0;
static int current_sub_char = 0;
// Methods of combining two clusters
#define CLUSTER_REPLACE 1 // replace first list with second
#define CLUSTER_ADD 2 // add second list to first
#define CLUSTER_SUBTRACT 3 // subtract second list from first
#define SYN_CLSTR(buf) ((syn_cluster_T *)((buf)->b_syn_clusters.ga_data))
// Syntax group IDs have different types:
// 0 - 19999 normal syntax groups
// 20000 - 20999 ALLBUT indicator (current_syn_inc_tag added)
// 21000 - 21999 TOP indicator (current_syn_inc_tag added)
// 22000 - 22999 CONTAINED indicator (current_syn_inc_tag added)
// 23000 - 32767 cluster IDs (subtract SYNID_CLUSTER for the cluster ID)
#define SYNID_ALLBUT MAX_HL_ID // syntax group ID for contains=ALLBUT
#define SYNID_TOP 21000 // syntax group ID for contains=TOP
#define SYNID_CONTAINED 22000 // syntax group ID for contains=CONTAINED
#define SYNID_CLUSTER 23000 // first syntax group ID for clusters
#define MAX_SYN_INC_TAG 999 // maximum before the above overflow
#define MAX_CLUSTER_ID (32767 - SYNID_CLUSTER)
// Annoying Hack(TM): ":syn include" needs this pointer to pass to
// expand_filename(). Most of the other syntax commands don't need it, so
// instead of passing it to them, we stow it here.
static char **syn_cmdlinep;
// Another Annoying Hack(TM): To prevent rules from other ":syn include"'d
// files from leaking into ALLBUT lists, we assign a unique ID to the
// rules in each ":syn include"'d file.
static int current_syn_inc_tag = 0;
static int running_syn_inc_tag = 0;
// In a hashtable item "hi_key" points to "keyword" in a keyentry.
// This avoids adding a pointer to the hashtable item.
// KE2HIKEY() converts a var pointer to a hashitem key pointer.
// HIKEY2KE() converts a hashitem key pointer to a var pointer.
// HI2KE() converts a hashitem pointer to a var pointer.
static keyentry_T dumkey;
#define KE2HIKEY(kp) ((kp)->keyword)
#define HIKEY2KE(p) ((keyentry_T *)((p) - (dumkey.keyword - (char *)&dumkey)))
#define HI2KE(hi) HIKEY2KE((hi)->hi_key)
// -V:HI2KE:782
// To reduce the time spent in keepend(), remember at which level in the state
// stack the first item with "keepend" is present. When "-1", there is no
// "keepend" on the stack.
static int keepend_level = -1;
static char msg_no_items[] = N_("No Syntax items defined for this buffer");
// value of si_idx for keywords
#define KEYWORD_IDX (-1)
// valid of si_cont_list for containing all but contained groups
#define ID_LIST_ALL ((int16_t *)-1)
static int next_seqnr = 1; // value to use for si_seqnr
// The next possible match in the current line for any pattern is remembered,
// to avoid having to try for a match in each column.
// If next_match_idx == -1, not tried (in this line) yet.
// If next_match_col == MAXCOL, no match found in this line.
// (All end positions have the column of the char after the end)
static int next_match_col; // column for start of next match
static lpos_T next_match_m_endpos; // position for end of next match
static lpos_T next_match_h_startpos; // pos. for highl. start of next match
static lpos_T next_match_h_endpos; // pos. for highl. end of next match
static int next_match_idx; // index of matched item
static long next_match_flags; // flags for next match
static lpos_T next_match_eos_pos; // end of start pattn (start region)
static lpos_T next_match_eoe_pos; // pos. for end of end pattern
static int next_match_end_idx; // ID of group for end pattn or zero
static reg_extmatch_T *next_match_extmatch = NULL;
// A state stack is an array of integers or stateitem_T, stored in a
// garray_T. A state stack is invalid if its itemsize entry is zero.
#define INVALID_STATE(ssp) ((ssp)->ga_itemsize == 0)
#define VALID_STATE(ssp) ((ssp)->ga_itemsize != 0)
// The current state (within the line) of the recognition engine.
// When current_state.ga_itemsize is 0 the current state is invalid.
static win_T *syn_win; // current window for highlighting
static buf_T *syn_buf; // current buffer for highlighting
static synblock_T *syn_block; // current buffer for highlighting
static proftime_T *syn_tm; // timeout limit
static linenr_T current_lnum = 0; // lnum of current state
static colnr_T current_col = 0; // column of current state
static bool current_state_stored = false; // true if stored current state
// after setting current_finished
static bool current_finished = false; // current line has been finished
static garray_T current_state // current stack of state_items
= GA_EMPTY_INIT_VALUE;
static int16_t *current_next_list = NULL; // when non-zero, nextgroup list
static int current_next_flags = 0; // flags for current_next_list
static int current_line_id = 0; // unique number for current line
#define CUR_STATE(idx) ((stateitem_T *)(current_state.ga_data))[idx]
static bool syn_time_on = false;
#define IF_SYN_TIME(p) (p)
// Set the timeout used for syntax highlighting.
// Use NULL to reset, no timeout.
void syn_set_timeout(proftime_T *tm)
{
syn_tm = tm;
}
// Start the syntax recognition for a line. This function is normally called
// from the screen updating, once for each displayed line.
// The buffer is remembered in syn_buf, because get_syntax_attr() doesn't get
// it. Careful: curbuf and curwin are likely to point to another buffer and
// window.
void syntax_start(win_T *wp, linenr_T lnum)
{
synstate_T *p;
synstate_T *last_valid = NULL;
synstate_T *last_min_valid = NULL;
synstate_T *sp, *prev = NULL;
linenr_T parsed_lnum;
linenr_T first_stored;
int dist;
static varnumber_T changedtick = 0; // remember the last change ID
current_sub_char = NUL;
// After switching buffers, invalidate current_state.
// Also do this when a change was made, the current state may be invalid
// then.
if (syn_block != wp->w_s
|| syn_buf != wp->w_buffer
|| changedtick != buf_get_changedtick(syn_buf)) {
invalidate_current_state();
syn_buf = wp->w_buffer;
syn_block = wp->w_s;
}
changedtick = buf_get_changedtick(syn_buf);
syn_win = wp;
// Allocate syntax stack when needed.
syn_stack_alloc();
if (syn_block->b_sst_array == NULL) {
return; // out of memory
}
syn_block->b_sst_lasttick = display_tick;
// If the state of the end of the previous line is useful, store it.
if (VALID_STATE(&current_state)
&& current_lnum < lnum
&& current_lnum < syn_buf->b_ml.ml_line_count) {
(void)syn_finish_line(false);
if (!current_state_stored) {
current_lnum++;
(void)store_current_state();
}
// If the current_lnum is now the same as "lnum", keep the current
// state (this happens very often!). Otherwise invalidate
// current_state and figure it out below.
if (current_lnum != lnum) {
invalidate_current_state();
}
} else {
invalidate_current_state();
}
// Try to synchronize from a saved state in b_sst_array[].
// Only do this if lnum is not before and not to far beyond a saved state.
if (INVALID_STATE(&current_state) && syn_block->b_sst_array != NULL) {
// Find last valid saved state before start_lnum.
for (p = syn_block->b_sst_first; p != NULL; p = p->sst_next) {
if (p->sst_lnum > lnum) {
break;
}
if (p->sst_change_lnum == 0) {
last_valid = p;
if (p->sst_lnum >= lnum - syn_block->b_syn_sync_minlines) {
last_min_valid = p;
}
}
}
if (last_min_valid != NULL) {
load_current_state(last_min_valid);
}
}
// If "lnum" is before or far beyond a line with a saved state, need to
// re-synchronize.
if (INVALID_STATE(&current_state)) {
syn_sync(wp, lnum, last_valid);
if (current_lnum == 1) {
// First line is always valid, no matter "minlines".
first_stored = 1;
} else {
// Need to parse "minlines" lines before state can be considered
// valid to store.
first_stored = current_lnum + syn_block->b_syn_sync_minlines;
}
} else {
first_stored = current_lnum;
}
// Advance from the sync point or saved state until the current line.
// Save some entries for syncing with later on.
if (syn_block->b_sst_len <= Rows) {
dist = 999999;
} else {
dist = syn_buf->b_ml.ml_line_count / (syn_block->b_sst_len - Rows) + 1;
}
while (current_lnum < lnum) {
syn_start_line();
(void)syn_finish_line(false);
current_lnum++;
// If we parsed at least "minlines" lines or started at a valid
// state, the current state is considered valid.
if (current_lnum >= first_stored) {
// Check if the saved state entry is for the current line and is
// equal to the current state. If so, then validate all saved
// states that depended on a change before the parsed line.
if (prev == NULL) {
prev = syn_stack_find_entry(current_lnum - 1);
}
if (prev == NULL) {
sp = syn_block->b_sst_first;
} else {
sp = prev;
}
while (sp != NULL && sp->sst_lnum < current_lnum) {
sp = sp->sst_next;
}
if (sp != NULL
&& sp->sst_lnum == current_lnum
&& syn_stack_equal(sp)) {
parsed_lnum = current_lnum;
prev = sp;
while (sp != NULL && sp->sst_change_lnum <= parsed_lnum) {
if (sp->sst_lnum <= lnum) {
// valid state before desired line, use this one
prev = sp;
} else if (sp->sst_change_lnum == 0) {
// past saved states depending on change, break here.
break;
}
sp->sst_change_lnum = 0;
sp = sp->sst_next;
}
load_current_state(prev);
} else if (prev == NULL
// Store the state at this line when it's the first one, the line
// where we start parsing, or some distance from the previously
// saved state. But only when parsed at least 'minlines'.
|| current_lnum == lnum
|| current_lnum >= prev->sst_lnum + dist) {
prev = store_current_state();
}
}
// This can take a long time: break when CTRL-C pressed. The current
// state will be wrong then.
line_breakcheck();
if (got_int) {
current_lnum = lnum;
break;
}
}
syn_start_line();
}
// We cannot simply discard growarrays full of state_items or buf_states; we
// have to manually release their extmatch pointers first.
static void clear_syn_state(synstate_T *p)
{
if (p->sst_stacksize > SST_FIX_STATES) {
#define UNREF_BUFSTATE_EXTMATCH(bs) unref_extmatch((bs)->bs_extmatch)
GA_DEEP_CLEAR(&(p->sst_union.sst_ga), bufstate_T, UNREF_BUFSTATE_EXTMATCH);
} else {
for (int i = 0; i < p->sst_stacksize; i++) {
unref_extmatch(p->sst_union.sst_stack[i].bs_extmatch);
}
}
}
// Cleanup the current_state stack.
static void clear_current_state(void)
{
#define UNREF_STATEITEM_EXTMATCH(si) unref_extmatch((si)->si_extmatch)
GA_DEEP_CLEAR(&current_state, stateitem_T, UNREF_STATEITEM_EXTMATCH);
}
// Try to find a synchronisation point for line "lnum".
//
// This sets current_lnum and the current state. One of three methods is
// used:
// 1. Search backwards for the end of a C-comment.
// 2. Search backwards for given sync patterns.
// 3. Simply start on a given number of lines above "lnum".
static void syn_sync(win_T *wp, linenr_T start_lnum, synstate_T *last_valid)
{
buf_T *curbuf_save;
win_T *curwin_save;
pos_T cursor_save;
int idx;
linenr_T lnum;
linenr_T end_lnum;
linenr_T break_lnum;
bool had_sync_point;
stateitem_T *cur_si;
synpat_T *spp;
char *line;
int found_flags = 0;
int found_match_idx = 0;
linenr_T found_current_lnum = 0;
int found_current_col= 0;
lpos_T found_m_endpos;
colnr_T prev_current_col;
// Clear any current state that might be hanging around.
invalidate_current_state();
// Start at least "minlines" back. Default starting point for parsing is
// there.
// Start further back, to avoid that scrolling backwards will result in
// resyncing for every line. Now it resyncs only one out of N lines,
// where N is minlines * 1.5, or minlines * 2 if minlines is small.
// Watch out for overflow when minlines is MAXLNUM.
if (syn_block->b_syn_sync_minlines > start_lnum) {
start_lnum = 1;
} else {
if (syn_block->b_syn_sync_minlines == 1) {
lnum = 1;
} else if (syn_block->b_syn_sync_minlines < 10) {
lnum = syn_block->b_syn_sync_minlines * 2;
} else {
lnum = syn_block->b_syn_sync_minlines * 3 / 2;
}
if (syn_block->b_syn_sync_maxlines != 0
&& lnum > syn_block->b_syn_sync_maxlines) {
lnum = syn_block->b_syn_sync_maxlines;
}
if (lnum >= start_lnum) {
start_lnum = 1;
} else {
start_lnum -= lnum;
}
}
current_lnum = start_lnum;
// 1. Search backwards for the end of a C-style comment.
if (syn_block->b_syn_sync_flags & SF_CCOMMENT) {
// Need to make syn_buf the current buffer for a moment, to be able to
// use find_start_comment().
curwin_save = curwin;
curwin = wp;
curbuf_save = curbuf;
curbuf = syn_buf;
// Skip lines that end in a backslash.
for (; start_lnum > 1; start_lnum--) {
line = ml_get(start_lnum - 1);
if (*line == NUL || *(line + strlen(line) - 1) != '\\') {
break;
}
}
current_lnum = start_lnum;
// set cursor to start of search
cursor_save = wp->w_cursor;
wp->w_cursor.lnum = start_lnum;
wp->w_cursor.col = 0;
// If the line is inside a comment, need to find the syntax item that
// defines the comment.
// Restrict the search for the end of a comment to b_syn_sync_maxlines.
if (find_start_comment((int)syn_block->b_syn_sync_maxlines) != NULL) {
for (idx = syn_block->b_syn_patterns.ga_len; --idx >= 0;) {
if (SYN_ITEMS(syn_block)[idx].sp_syn.id
== syn_block->b_syn_sync_id
&& SYN_ITEMS(syn_block)[idx].sp_type == SPTYPE_START) {
validate_current_state();
push_current_state(idx);
update_si_attr(current_state.ga_len - 1);
break;
}
}
}
// restore cursor and buffer
wp->w_cursor = cursor_save;
curwin = curwin_save;
curbuf = curbuf_save;
} else if (syn_block->b_syn_sync_flags & SF_MATCH) {
// 2. Search backwards for given sync patterns.
if (syn_block->b_syn_sync_maxlines != 0
&& start_lnum > syn_block->b_syn_sync_maxlines) {
break_lnum = start_lnum - syn_block->b_syn_sync_maxlines;
} else {
break_lnum = 0;
}
found_m_endpos.lnum = 0;
found_m_endpos.col = 0;
end_lnum = start_lnum;
lnum = start_lnum;
while (--lnum > break_lnum) {
// This can take a long time: break when CTRL-C pressed.
line_breakcheck();
if (got_int) {
invalidate_current_state();
current_lnum = start_lnum;
break;
}
// Check if we have run into a valid saved state stack now.
if (last_valid != NULL && lnum == last_valid->sst_lnum) {
load_current_state(last_valid);
break;
}
// Check if the previous line has the line-continuation pattern.
if (lnum > 1 && syn_match_linecont(lnum - 1)) {
continue;
}
// Start with nothing on the state stack
validate_current_state();
for (current_lnum = lnum; current_lnum < end_lnum; current_lnum++) {
syn_start_line();
for (;;) {
had_sync_point = syn_finish_line(true);
// When a sync point has been found, remember where, and
// continue to look for another one, further on in the line.
if (had_sync_point && current_state.ga_len) {
cur_si = &CUR_STATE(current_state.ga_len - 1);
if (cur_si->si_m_endpos.lnum > start_lnum) {
// ignore match that goes to after where started
current_lnum = end_lnum;
break;
}
if (cur_si->si_idx < 0) {
// Cannot happen?
found_flags = 0;
found_match_idx = KEYWORD_IDX;
} else {
spp = &(SYN_ITEMS(syn_block)[cur_si->si_idx]);
found_flags = spp->sp_flags;
found_match_idx = spp->sp_sync_idx;
}
found_current_lnum = current_lnum;
found_current_col = current_col;
found_m_endpos = cur_si->si_m_endpos;
// Continue after the match (be aware of a zero-length
// match).
if (found_m_endpos.lnum > current_lnum) {
current_lnum = found_m_endpos.lnum;
current_col = found_m_endpos.col;
if (current_lnum >= end_lnum) {
break;
}
} else if (found_m_endpos.col > current_col) {
current_col = found_m_endpos.col;
} else {
current_col++;
}
// syn_current_attr() will have skipped the check for
// an item that ends here, need to do that now. Be
// careful not to go past the NUL.
prev_current_col = current_col;
if (syn_getcurline()[current_col] != NUL) {
current_col++;
}
check_state_ends();
current_col = prev_current_col;
} else {
break;
}
}
}
// If a sync point was encountered, break here.
if (found_flags) {
// Put the item that was specified by the sync point on the
// state stack. If there was no item specified, make the
// state stack empty.
clear_current_state();
if (found_match_idx >= 0) {
push_current_state(found_match_idx);
update_si_attr(current_state.ga_len - 1);
}
// When using "grouphere", continue from the sync point
// match, until the end of the line. Parsing starts at
// the next line.
// For "groupthere" the parsing starts at start_lnum.
if (found_flags & HL_SYNC_HERE) {
if (!GA_EMPTY(&current_state)) {
cur_si = &CUR_STATE(current_state.ga_len - 1);
cur_si->si_h_startpos.lnum = found_current_lnum;
cur_si->si_h_startpos.col = found_current_col;
update_si_end(cur_si, (int)current_col, true);
check_keepend();
}
current_col = found_m_endpos.col;
current_lnum = found_m_endpos.lnum;
(void)syn_finish_line(false);
current_lnum++;
} else {
current_lnum = start_lnum;
}
break;
}
end_lnum = lnum;
invalidate_current_state();
}
// Ran into start of the file or exceeded maximum number of lines
if (lnum <= break_lnum) {
invalidate_current_state();
current_lnum = break_lnum + 1;
}
}
validate_current_state();
}
static void save_chartab(char *chartab)
{
if (syn_block->b_syn_isk != empty_option) {
memmove(chartab, syn_buf->b_chartab, (size_t)32);
memmove(syn_buf->b_chartab, syn_win->w_s->b_syn_chartab, (size_t)32);
}
}
static void restore_chartab(char *chartab)
{
if (syn_win->w_s->b_syn_isk != empty_option) {
memmove(syn_buf->b_chartab, chartab, (size_t)32);
}
}
/// Return true if the line-continuation pattern matches in line "lnum".
static int syn_match_linecont(linenr_T lnum)
{
if (syn_block->b_syn_linecont_prog != NULL) {
regmmatch_T regmatch;
// chartab array for syn iskeyword
char buf_chartab[32];
save_chartab(buf_chartab);
regmatch.rmm_ic = syn_block->b_syn_linecont_ic;
regmatch.regprog = syn_block->b_syn_linecont_prog;
int r = syn_regexec(&regmatch, lnum, (colnr_T)0,
IF_SYN_TIME(&syn_block->b_syn_linecont_time));
syn_block->b_syn_linecont_prog = regmatch.regprog;
restore_chartab(buf_chartab);
return r;
}
return false;
}
// Prepare the current state for the start of a line.
static void syn_start_line(void)
{
current_finished = false;
current_col = 0;
// Need to update the end of a start/skip/end that continues from the
// previous line and regions that have "keepend".
if (!GA_EMPTY(&current_state)) {
syn_update_ends(true);
check_state_ends();
}
next_match_idx = -1;
current_line_id++;
next_seqnr = 1;
}
/// Check for items in the stack that need their end updated.
///
/// @param startofline if true the last item is always updated.
/// if false the item with "keepend" is forcefully updated.
static void syn_update_ends(bool startofline)
{
stateitem_T *cur_si;
if (startofline) {
// Check for a match carried over from a previous line with a
// contained region. The match ends as soon as the region ends.
for (int i = 0; i < current_state.ga_len; i++) {
cur_si = &CUR_STATE(i);
if (cur_si->si_idx >= 0
&& (SYN_ITEMS(syn_block)[cur_si->si_idx]).sp_type
== SPTYPE_MATCH
&& cur_si->si_m_endpos.lnum < current_lnum) {
cur_si->si_flags |= HL_MATCHCONT;
cur_si->si_m_endpos.lnum = 0;
cur_si->si_m_endpos.col = 0;
cur_si->si_h_endpos = cur_si->si_m_endpos;
cur_si->si_ends = true;
}
}
}
// Need to update the end of a start/skip/end that continues from the
// previous line. And regions that have "keepend", because they may
// influence contained items. If we've just removed "extend"
// (startofline == 0) then we should update ends of normal regions
// contained inside "keepend" because "extend" could have extended
// these "keepend" regions as well as contained normal regions.
// Then check for items ending in column 0.
int i = current_state.ga_len - 1;
if (keepend_level >= 0) {
for (; i > keepend_level; i--) {
if (CUR_STATE(i).si_flags & HL_EXTEND) {
break;
}
}
}
bool seen_keepend = false;
for (; i < current_state.ga_len; i++) {
cur_si = &CUR_STATE(i);
if ((cur_si->si_flags & HL_KEEPEND)
|| (seen_keepend && !startofline)
|| (i == current_state.ga_len - 1 && startofline)) {
cur_si->si_h_startpos.col = 0; // start highl. in col 0
cur_si->si_h_startpos.lnum = current_lnum;
if (!(cur_si->si_flags & HL_MATCHCONT)) {
update_si_end(cur_si, (int)current_col, !startofline);
}
if (!startofline && (cur_si->si_flags & HL_KEEPEND)) {
seen_keepend = true;
}
}
}
check_keepend();
}
/////////////////////////////////////////
// Handling of the state stack cache.
// EXPLANATION OF THE SYNTAX STATE STACK CACHE
//
// To speed up syntax highlighting, the state stack for the start of some
// lines is cached. These entries can be used to start parsing at that point.
//
// The stack is kept in b_sst_array[] for each buffer. There is a list of
// valid entries. b_sst_first points to the first one, then follow sst_next.
// The entries are sorted on line number. The first entry is often for line 2
// (line 1 always starts with an empty stack).
// There is also a list for free entries. This construction is used to avoid
// having to allocate and free memory blocks too often.
//
// When making changes to the buffer, this is logged in b_mod_*. When calling
// update_screen() to update the display, it will call
// syn_stack_apply_changes() for each displayed buffer to adjust the cached
// entries. The entries which are inside the changed area are removed,
// because they must be recomputed. Entries below the changed have their line
// number adjusted for deleted/inserted lines, and have their sst_change_lnum
// set to indicate that a check must be made if the changed lines would change
// the cached entry.
//
// When later displaying lines, an entry is stored for each line. Displayed
// lines are likely to be displayed again, in which case the state at the
// start of the line is needed.
// For not displayed lines, an entry is stored for every so many lines. These
// entries will be used e.g., when scrolling backwards. The distance between
// entries depends on the number of lines in the buffer. For small buffers
// the distance is fixed at SST_DIST, for large buffers there is a fixed
// number of entries SST_MAX_ENTRIES, and the distance is computed.
static void syn_stack_free_block(synblock_T *block)
{
synstate_T *p;
if (block->b_sst_array != NULL) {
for (p = block->b_sst_first; p != NULL; p = p->sst_next) {
clear_syn_state(p);
}
XFREE_CLEAR(block->b_sst_array);
block->b_sst_first = NULL;
block->b_sst_len = 0;
}
}
// Free b_sst_array[] for buffer "buf".
// Used when syntax items changed to force resyncing everywhere.
void syn_stack_free_all(synblock_T *block)
{
syn_stack_free_block(block);
// When using "syntax" fold method, must update all folds.
FOR_ALL_WINDOWS_IN_TAB(wp, curtab) {
if (wp->w_s == block && foldmethodIsSyntax(wp)) {
foldUpdateAll(wp);
}
}
}
// Allocate the syntax state stack for syn_buf when needed.
// If the number of entries in b_sst_array[] is much too big or a bit too
// small, reallocate it.
// Also used to allocate b_sst_array[] for the first time.
static void syn_stack_alloc(void)
{
synstate_T *to, *from;
synstate_T *sstp;
int len = syn_buf->b_ml.ml_line_count / SST_DIST + Rows * 2;
if (len < SST_MIN_ENTRIES) {
len = SST_MIN_ENTRIES;
} else if (len > SST_MAX_ENTRIES) {
len = SST_MAX_ENTRIES;
}
if (syn_block->b_sst_len > len * 2 || syn_block->b_sst_len < len) {
// Allocate 50% too much, to avoid reallocating too often.
len = syn_buf->b_ml.ml_line_count;
len = (len + len / 2) / SST_DIST + Rows * 2;
if (len < SST_MIN_ENTRIES) {
len = SST_MIN_ENTRIES;
} else if (len > SST_MAX_ENTRIES) {
len = SST_MAX_ENTRIES;
}
if (syn_block->b_sst_array != NULL) {
// When shrinking the array, cleanup the existing stack.
// Make sure that all valid entries fit in the new array.
while (syn_block->b_sst_len - syn_block->b_sst_freecount + 2 > len
&& syn_stack_cleanup()) {}
if (len < syn_block->b_sst_len - syn_block->b_sst_freecount + 2) {
len = syn_block->b_sst_len - syn_block->b_sst_freecount + 2;
}
}
assert(len >= 0);
sstp = xcalloc((size_t)len, sizeof(synstate_T));
to = sstp - 1;
if (syn_block->b_sst_array != NULL) {
// Move the states from the old array to the new one.
for (from = syn_block->b_sst_first; from != NULL;
from = from->sst_next) {
to++;
*to = *from;
to->sst_next = to + 1;
}
}
if (to != sstp - 1) {
to->sst_next = NULL;
syn_block->b_sst_first = sstp;
syn_block->b_sst_freecount = len - (int)(to - sstp) - 1;
} else {
syn_block->b_sst_first = NULL;
syn_block->b_sst_freecount = len;
}
// Create the list of free entries.
syn_block->b_sst_firstfree = to + 1;
while (++to < sstp + len) {
to->sst_next = to + 1;
}
(sstp + len - 1)->sst_next = NULL;
xfree(syn_block->b_sst_array);
syn_block->b_sst_array = sstp;
syn_block->b_sst_len = len;
}
}
// Check for changes in a buffer to affect stored syntax states. Uses the
// b_mod_* fields.
// Called from update_screen(), before screen is being updated, once for each
// displayed buffer.
void syn_stack_apply_changes(buf_T *buf)
{
syn_stack_apply_changes_block(&buf->b_s, buf);
FOR_ALL_WINDOWS_IN_TAB(wp, curtab) {
if ((wp->w_buffer == buf) && (wp->w_s != &buf->b_s)) {
syn_stack_apply_changes_block(wp->w_s, buf);
}
}
}
static void syn_stack_apply_changes_block(synblock_T *block, buf_T *buf)
{
synstate_T *p, *prev, *np;
linenr_T n;
prev = NULL;
for (p = block->b_sst_first; p != NULL;) {
if (p->sst_lnum + block->b_syn_sync_linebreaks > buf->b_mod_top) {
n = p->sst_lnum + buf->b_mod_xlines;
if (n <= buf->b_mod_bot) {
// this state is inside the changed area, remove it
np = p->sst_next;
if (prev == NULL) {
block->b_sst_first = np;
} else {
prev->sst_next = np;
}
syn_stack_free_entry(block, p);
p = np;
continue;
}
// This state is below the changed area. Remember the line
// that needs to be parsed before this entry can be made valid
// again.
if (p->sst_change_lnum != 0 && p->sst_change_lnum > buf->b_mod_top) {
if (p->sst_change_lnum + buf->b_mod_xlines > buf->b_mod_top) {
p->sst_change_lnum += buf->b_mod_xlines;
} else {
p->sst_change_lnum = buf->b_mod_top;
}
}
if (p->sst_change_lnum == 0
|| p->sst_change_lnum < buf->b_mod_bot) {
p->sst_change_lnum = buf->b_mod_bot;
}
p->sst_lnum = n;
}
prev = p;
p = p->sst_next;
}
}
/// Reduce the number of entries in the state stack for syn_buf.
///
/// @return true if at least one entry was freed.
static bool syn_stack_cleanup(void)
{
synstate_T *p, *prev;
disptick_T tick;
int dist;
bool retval = false;
if (syn_block->b_sst_first == NULL) {
return retval;
}
// Compute normal distance between non-displayed entries.
if (syn_block->b_sst_len <= Rows) {
dist = 999999;
} else {
dist = syn_buf->b_ml.ml_line_count / (syn_block->b_sst_len - Rows) + 1;
}
// Go through the list to find the "tick" for the oldest entry that can
// be removed. Set "above" when the "tick" for the oldest entry is above
// "b_sst_lasttick" (the display tick wraps around).
tick = syn_block->b_sst_lasttick;
bool above = false;
prev = syn_block->b_sst_first;
for (p = prev->sst_next; p != NULL; prev = p, p = p->sst_next) {
if (prev->sst_lnum + dist > p->sst_lnum) {
if (p->sst_tick > syn_block->b_sst_lasttick) {
if (!above || p->sst_tick < tick) {
tick = p->sst_tick;
}
above = true;
} else if (!above && p->sst_tick < tick) {
tick = p->sst_tick;
}
}
}
// Go through the list to make the entries for the oldest tick at an
// interval of several lines.
prev = syn_block->b_sst_first;
for (p = prev->sst_next; p != NULL; prev = p, p = p->sst_next) {
if (p->sst_tick == tick && prev->sst_lnum + dist > p->sst_lnum) {
// Move this entry from used list to free list
prev->sst_next = p->sst_next;
syn_stack_free_entry(syn_block, p);
p = prev;
retval = true;
}
}
return retval;
}
// Free the allocated memory for a syn_state item.
// Move the entry into the free list.
static void syn_stack_free_entry(synblock_T *block, synstate_T *p)
{
clear_syn_state(p);
p->sst_next = block->b_sst_firstfree;
block->b_sst_firstfree = p;
block->b_sst_freecount++;
}
// Find an entry in the list of state stacks at or before "lnum".
// Returns NULL when there is no entry or the first entry is after "lnum".
static synstate_T *syn_stack_find_entry(linenr_T lnum)
{
synstate_T *p, *prev;
prev = NULL;
for (p = syn_block->b_sst_first; p != NULL; prev = p, p = p->sst_next) {
if (p->sst_lnum == lnum) {
return p;
}
if (p->sst_lnum > lnum) {
break;
}
}
return prev;
}
// Try saving the current state in b_sst_array[].
// The current state must be valid for the start of the current_lnum line!
static synstate_T *store_current_state(void)
{
int i;
synstate_T *p;
bufstate_T *bp;
stateitem_T *cur_si;
synstate_T *sp = syn_stack_find_entry(current_lnum);
// If the current state contains a start or end pattern that continues
// from the previous line, we can't use it. Don't store it then.
for (i = current_state.ga_len - 1; i >= 0; i--) {
cur_si = &CUR_STATE(i);
if (cur_si->si_h_startpos.lnum >= current_lnum
|| cur_si->si_m_endpos.lnum >= current_lnum
|| cur_si->si_h_endpos.lnum >= current_lnum
|| (cur_si->si_end_idx
&& cur_si->si_eoe_pos.lnum >= current_lnum)) {
break;
}
}
if (i >= 0) {
if (sp != NULL) {
// find "sp" in the list and remove it
if (syn_block->b_sst_first == sp) {
// it's the first entry
syn_block->b_sst_first = sp->sst_next;
} else {
// find the entry just before this one to adjust sst_next
for (p = syn_block->b_sst_first; p != NULL; p = p->sst_next) {
if (p->sst_next == sp) {
break;
}
}
if (p != NULL) { // just in case
p->sst_next = sp->sst_next;
}
}
syn_stack_free_entry(syn_block, sp);
sp = NULL;
}
} else if (sp == NULL || sp->sst_lnum != current_lnum) {
// Add a new entry
// If no free items, cleanup the array first.
if (syn_block->b_sst_freecount == 0) {
(void)syn_stack_cleanup();
// "sp" may have been moved to the freelist now
sp = syn_stack_find_entry(current_lnum);
}
// Still no free items? Must be a strange problem...
if (syn_block->b_sst_freecount == 0) {
sp = NULL;
} else {
// Take the first item from the free list and put it in the used
// list, after *sp
p = syn_block->b_sst_firstfree;
syn_block->b_sst_firstfree = p->sst_next;
syn_block->b_sst_freecount--;
if (sp == NULL) {
// Insert in front of the list
p->sst_next = syn_block->b_sst_first;
syn_block->b_sst_first = p;
} else {
// insert in list after *sp
p->sst_next = sp->sst_next;
sp->sst_next = p;
}
sp = p;
sp->sst_stacksize = 0;
sp->sst_lnum = current_lnum;
}
}
if (sp != NULL) {
// When overwriting an existing state stack, clear it first
clear_syn_state(sp);
sp->sst_stacksize = current_state.ga_len;
if (current_state.ga_len > SST_FIX_STATES) {
// Need to clear it, might be something remaining from when the
// length was less than SST_FIX_STATES.
ga_init(&sp->sst_union.sst_ga, (int)sizeof(bufstate_T), 1);
ga_grow(&sp->sst_union.sst_ga, current_state.ga_len);
sp->sst_union.sst_ga.ga_len = current_state.ga_len;
bp = SYN_STATE_P(&(sp->sst_union.sst_ga));
} else {
bp = sp->sst_union.sst_stack;
}
for (i = 0; i < sp->sst_stacksize; i++) {
bp[i].bs_idx = CUR_STATE(i).si_idx;
bp[i].bs_flags = (int)CUR_STATE(i).si_flags;
bp[i].bs_seqnr = CUR_STATE(i).si_seqnr;
bp[i].bs_cchar = CUR_STATE(i).si_cchar;
bp[i].bs_extmatch = ref_extmatch(CUR_STATE(i).si_extmatch);
}
sp->sst_next_flags = current_next_flags;
sp->sst_next_list = current_next_list;
sp->sst_tick = display_tick;
sp->sst_change_lnum = 0;
}
current_state_stored = true;
return sp;
}
// Copy a state stack from "from" in b_sst_array[] to current_state;
static void load_current_state(synstate_T *from)
{
int i;
bufstate_T *bp;
clear_current_state();
validate_current_state();
keepend_level = -1;
if (from->sst_stacksize) {
ga_grow(&current_state, from->sst_stacksize);
if (from->sst_stacksize > SST_FIX_STATES) {
bp = SYN_STATE_P(&(from->sst_union.sst_ga));
} else {
bp = from->sst_union.sst_stack;
}
for (i = 0; i < from->sst_stacksize; i++) {
CUR_STATE(i).si_idx = bp[i].bs_idx;
CUR_STATE(i).si_flags = bp[i].bs_flags;
CUR_STATE(i).si_seqnr = bp[i].bs_seqnr;
CUR_STATE(i).si_cchar = bp[i].bs_cchar;
CUR_STATE(i).si_extmatch = ref_extmatch(bp[i].bs_extmatch);
if (keepend_level < 0 && (CUR_STATE(i).si_flags & HL_KEEPEND)) {
keepend_level = i;
}
CUR_STATE(i).si_ends = false;
CUR_STATE(i).si_m_lnum = 0;
if (CUR_STATE(i).si_idx >= 0) {
CUR_STATE(i).si_next_list =
(SYN_ITEMS(syn_block)[CUR_STATE(i).si_idx]).sp_next_list;
} else {
CUR_STATE(i).si_next_list = NULL;
}
update_si_attr(i);
}
current_state.ga_len = from->sst_stacksize;
}
current_next_list = from->sst_next_list;
current_next_flags = from->sst_next_flags;
current_lnum = from->sst_lnum;
}
/// Compare saved state stack "*sp" with the current state.
///
/// @return true when they are equal.
static bool syn_stack_equal(synstate_T *sp)
{
bufstate_T *bp;
reg_extmatch_T *six, *bsx;
// First a quick check if the stacks have the same size end nextlist.
if (sp->sst_stacksize != current_state.ga_len
|| sp->sst_next_list != current_next_list) {
return false;
}
// Need to compare all states on both stacks.
if (sp->sst_stacksize > SST_FIX_STATES) {
bp = SYN_STATE_P(&(sp->sst_union.sst_ga));
} else {
bp = sp->sst_union.sst_stack;
}
int i;
for (i = current_state.ga_len; --i >= 0;) {
// If the item has another index the state is different.
if (bp[i].bs_idx != CUR_STATE(i).si_idx) {
break;
}
if (bp[i].bs_extmatch == CUR_STATE(i).si_extmatch) {
continue;
}
// When the extmatch pointers are different, the strings in them can
// still be the same. Check if the extmatch references are equal.
bsx = bp[i].bs_extmatch;
six = CUR_STATE(i).si_extmatch;
// If one of the extmatch pointers is NULL the states are different.
if (bsx == NULL || six == NULL) {
break;
}
int j;
for (j = 0; j < NSUBEXP; j++) {
// Check each referenced match string. They must all be equal.
if (bsx->matches[j] != six->matches[j]) {
// If the pointer is different it can still be the same text.
// Compare the strings, ignore case when the start item has the
// sp_ic flag set.
if (bsx->matches[j] == NULL || six->matches[j] == NULL) {
break;
}
if (mb_strcmp_ic((SYN_ITEMS(syn_block)[CUR_STATE(i).si_idx]).sp_ic,
(const char *)bsx->matches[j],
(const char *)six->matches[j]) != 0) {
break;
}
}
}
if (j != NSUBEXP) {
break;
}
}
return i < 0 ? true : false;
}
// We stop parsing syntax above line "lnum". If the stored state at or below
// this line depended on a change before it, it now depends on the line below
// the last parsed line.
// The window looks like this:
// line which changed
// displayed line
// displayed line
// lnum -> line below window
void syntax_end_parsing(win_T *wp, linenr_T lnum)
{
synstate_T *sp;
if (syn_block != wp->w_s) {
return; // not the right window
}
sp = syn_stack_find_entry(lnum);
if (sp != NULL && sp->sst_lnum < lnum) {
sp = sp->sst_next;
}
if (sp != NULL && sp->sst_change_lnum != 0) {
sp->sst_change_lnum = lnum;
}
}
// End of handling of the state stack.
// **************************************
static void invalidate_current_state(void)
{
clear_current_state();
current_state.ga_itemsize = 0; // mark current_state invalid
current_next_list = NULL;
keepend_level = -1;
}
static void validate_current_state(void)
{
current_state.ga_itemsize = sizeof(stateitem_T);
ga_set_growsize(&current_state, 3);
}
/// This will only be called just after get_syntax_attr() for the previous
/// line, to check if the next line needs to be redrawn too.
///
/// @return true if the syntax at start of lnum changed since last time.
bool syntax_check_changed(linenr_T lnum)
{
bool retval = true;
synstate_T *sp;
// Check the state stack when:
// - lnum is just below the previously syntaxed line.
// - lnum is not before the lines with saved states.
// - lnum is not past the lines with saved states.
// - lnum is at or before the last changed line.
if (VALID_STATE(&current_state) && lnum == current_lnum + 1) {
sp = syn_stack_find_entry(lnum);
if (sp != NULL && sp->sst_lnum == lnum) {
// finish the previous line (needed when not all of the line was
// drawn)
(void)syn_finish_line(false);
// Compare the current state with the previously saved state of
// the line.
if (syn_stack_equal(sp)) {
retval = false;
}
// Store the current state in b_sst_array[] for later use.
current_lnum++;
(void)store_current_state();
}
}
return retval;
}
/// Finish the current line.
/// This doesn't return any attributes, it only gets the state at the end of
/// the line. It can start anywhere in the line, as long as the current state
/// is valid.
///
/// @param syncing called for syncing
static bool syn_finish_line(const bool syncing)
{
while (!current_finished) {
(void)syn_current_attr(syncing, false, NULL, false);
// When syncing, and found some item, need to check the item.
if (syncing && current_state.ga_len) {
// Check for match with sync item.
const stateitem_T *const cur_si = &CUR_STATE(current_state.ga_len - 1);
if (cur_si->si_idx >= 0
&& (SYN_ITEMS(syn_block)[cur_si->si_idx].sp_flags
& (HL_SYNC_HERE|HL_SYNC_THERE))) {
return true;
}
// syn_current_attr() will have skipped the check for an item
// that ends here, need to do that now. Be careful not to go
// past the NUL.
const colnr_T prev_current_col = current_col;
if (syn_getcurline()[current_col] != NUL) {
current_col++;
}
check_state_ends();
current_col = prev_current_col;
}
current_col++;
}
return false;
}
/// Gets highlight attributes for next character.
/// Must first call syntax_start() once for the line.
/// "col" is normally 0 for the first use in a line, and increments by one each
/// time. It's allowed to skip characters and to stop before the end of the
/// line. But only a "col" after a previously used column is allowed.
/// When "can_spell" is not NULL set it to true when spell-checking should be
/// done.
///
/// @param keep_state keep state of char at "col"
///
/// @return highlight attributes for next character.
int get_syntax_attr(const colnr_T col, bool *const can_spell, const bool keep_state)
{
int attr = 0;
if (can_spell != NULL) {
// Default: Only do spelling when there is no @Spell cluster or when
// ":syn spell toplevel" was used.
*can_spell = syn_block->b_syn_spell == SYNSPL_DEFAULT
? (syn_block->b_spell_cluster_id == 0)
: (syn_block->b_syn_spell == SYNSPL_TOP);
}
// check for out of memory situation
if (syn_block->b_sst_array == NULL) {
return 0;
}
// After 'synmaxcol' the attribute is always zero.
if (syn_buf->b_p_smc > 0 && col >= (colnr_T)syn_buf->b_p_smc) {
clear_current_state();
current_id = 0;
current_trans_id = 0;
current_flags = 0;
current_seqnr = 0;
return 0;
}
// Make sure current_state is valid
if (INVALID_STATE(&current_state)) {
validate_current_state();
}
// Skip from the current column to "col", get the attributes for "col".
while (current_col <= col) {
attr = syn_current_attr(false, true, can_spell,
current_col == col ? keep_state : false);
current_col++;
}
return attr;
}
/// Get syntax attributes for current_lnum, current_col.
///
/// @param syncing When true: called for syncing
/// @param displaying result will be displayed
/// @param can_spell return: do spell checking
/// @param keep_state keep syntax stack afterwards
static int syn_current_attr(const bool syncing, const bool displaying, bool *const can_spell,
const bool keep_state)
{
lpos_T endpos; // was: char_u *endp;
lpos_T hl_startpos; // was: int hl_startcol;
lpos_T hl_endpos;
lpos_T eos_pos; // end-of-start match (start region)
lpos_T eoe_pos; // end-of-end pattern
int end_idx; // group ID for end pattern
stateitem_T *cur_si, *sip = NULL;
int startcol;
int endcol;
long flags;
int cchar;
int16_t *next_list;
bool found_match; // found usable match
static bool try_next_column = false; // must try in next col
regmmatch_T regmatch;
lpos_T pos;
reg_extmatch_T *cur_extmatch = NULL;
char buf_chartab[32]; // chartab array for syn iskeyword
char *line; // current line. NOTE: becomes invalid after
// looking for a pattern match!
// variables for zero-width matches that have a "nextgroup" argument
bool keep_next_list;
bool zero_width_next_list = false;
garray_T zero_width_next_ga;
// No character, no attributes! Past end of line?
// Do try matching with an empty line (could be the start of a region).
line = syn_getcurline();
if (line[current_col] == NUL && current_col != 0) {
// If we found a match after the last column, use it.
if (next_match_idx >= 0 && next_match_col >= (int)current_col
&& next_match_col != MAXCOL) {
(void)push_next_match();
}
current_finished = true;
current_state_stored = false;
return 0;
}
// if the current or next character is NUL, we will finish the line now
if (line[current_col] == NUL || line[current_col + 1] == NUL) {
current_finished = true;
current_state_stored = false;
}
// When in the previous column there was a match but it could not be used
// (empty match or already matched in this column) need to try again in
// the next column.
if (try_next_column) {
next_match_idx = -1;
try_next_column = false;
}
// Only check for keywords when not syncing and there are some.
const bool do_keywords = !syncing
&& (syn_block->b_keywtab.ht_used > 0
|| syn_block->b_keywtab_ic.ht_used > 0);
// Init the list of zero-width matches with a nextlist. This is used to
// avoid matching the same item in the same position twice.
ga_init(&zero_width_next_ga, (int)sizeof(int), 10);
// use syntax iskeyword option
save_chartab(buf_chartab);
// Repeat matching keywords and patterns, to find contained items at the
// same column. This stops when there are no extra matches at the current
// column.
do {
found_match = false;
keep_next_list = false;
int syn_id = 0;
// 1. Check for a current state.
// Only when there is no current state, or if the current state may
// contain other things, we need to check for keywords and patterns.
// Always need to check for contained items if some item has the
// "containedin" argument (takes extra time!).
if (current_state.ga_len) {
cur_si = &CUR_STATE(current_state.ga_len - 1);
} else {
cur_si = NULL;
}
if (syn_block->b_syn_containedin || cur_si == NULL
|| cur_si->si_cont_list != NULL) {
// 2. Check for keywords, if on a keyword char after a non-keyword
// char. Don't do this when syncing.
if (do_keywords) {
line = syn_getcurline();
const char *cur_pos = line + current_col;
if (vim_iswordp_buf(cur_pos, syn_buf)
&& (current_col == 0
|| !vim_iswordp_buf(cur_pos - 1 -
utf_head_off(line, cur_pos - 1),
syn_buf))) {
syn_id = check_keyword_id(line, (int)current_col, &endcol, &flags,
&next_list, cur_si, &cchar);
if (syn_id != 0) {
push_current_state(KEYWORD_IDX);
{
cur_si = &CUR_STATE(current_state.ga_len - 1);
cur_si->si_m_startcol = current_col;
cur_si->si_h_startpos.lnum = current_lnum;
cur_si->si_h_startpos.col = 0; // starts right away
cur_si->si_m_endpos.lnum = current_lnum;
cur_si->si_m_endpos.col = endcol;
cur_si->si_h_endpos.lnum = current_lnum;
cur_si->si_h_endpos.col = endcol;
cur_si->si_ends = true;
cur_si->si_end_idx = 0;
cur_si->si_flags = flags;
cur_si->si_seqnr = next_seqnr++;
cur_si->si_cchar = cchar;
if (current_state.ga_len > 1) {
cur_si->si_flags |=
CUR_STATE(current_state.ga_len - 2).si_flags
& HL_CONCEAL;
}
cur_si->si_id = syn_id;
cur_si->si_trans_id = syn_id;
if (flags & HL_TRANSP) {
if (current_state.ga_len < 2) {
cur_si->si_attr = 0;
cur_si->si_trans_id = 0;
} else {
cur_si->si_attr = CUR_STATE(current_state.ga_len - 2).si_attr;
cur_si->si_trans_id = CUR_STATE(current_state.ga_len - 2).si_trans_id;
}
} else {
cur_si->si_attr = syn_id2attr(syn_id);
}
cur_si->si_cont_list = NULL;
cur_si->si_next_list = next_list;
check_keepend();
}
}
}
}
// 3. Check for patterns (only if no keyword found).
if (syn_id == 0 && syn_block->b_syn_patterns.ga_len) {
// If we didn't check for a match yet, or we are past it, check
// for any match with a pattern.
if (next_match_idx < 0 || next_match_col < (int)current_col) {
// Check all relevant patterns for a match at this
// position. This is complicated, because matching with a
// pattern takes quite a bit of time, thus we want to
// avoid doing it when it's not needed.
next_match_idx = 0; // no match in this line yet
next_match_col = MAXCOL;
for (int idx = syn_block->b_syn_patterns.ga_len; --idx >= 0;) {
synpat_T *const spp = &(SYN_ITEMS(syn_block)[idx]);
if (spp->sp_syncing == syncing
&& (displaying || !(spp->sp_flags & HL_DISPLAY))
&& (spp->sp_type == SPTYPE_MATCH
|| spp->sp_type == SPTYPE_START)
&& (current_next_list != NULL
? in_id_list(NULL, current_next_list, &spp->sp_syn, 0)
: (cur_si == NULL
? !(spp->sp_flags & HL_CONTAINED)
: in_id_list(cur_si,
cur_si->si_cont_list, &spp->sp_syn,
spp->sp_flags & HL_CONTAINED)))) {
// If we already tried matching in this line, and
// there isn't a match before next_match_col, skip
// this item.
if (spp->sp_line_id == current_line_id
&& spp->sp_startcol >= next_match_col) {
continue;
}
spp->sp_line_id = current_line_id;
colnr_T lc_col = current_col - spp->sp_offsets[SPO_LC_OFF];
if (lc_col < 0) {
lc_col = 0;
}
regmatch.rmm_ic = spp->sp_ic;
regmatch.regprog = spp->sp_prog;
int r = syn_regexec(&regmatch, current_lnum, lc_col,
IF_SYN_TIME(&spp->sp_time));
spp->sp_prog = regmatch.regprog;
if (!r) {
// no match in this line, try another one
spp->sp_startcol = MAXCOL;
continue;
}
// Compute the first column of the match.
syn_add_start_off(&pos, &regmatch,
spp, SPO_MS_OFF, -1);
if (pos.lnum > current_lnum) {
// must have used end of match in a next line,
// we can't handle that
spp->sp_startcol = MAXCOL;
continue;
}
startcol = pos.col;
// remember the next column where this pattern
// matches in the current line
spp->sp_startcol = startcol;
// If a previously found match starts at a lower
// column number, don't use this one.
if (startcol >= next_match_col) {
continue;
}
// If we matched this pattern at this position
// before, skip it. Must retry in the next
// column, because it may match from there.
if (did_match_already(idx, &zero_width_next_ga)) {
try_next_column = true;
continue;
}
endpos.lnum = regmatch.endpos[0].lnum;
endpos.col = regmatch.endpos[0].col;
// Compute the highlight start.
syn_add_start_off(&hl_startpos, &regmatch,
spp, SPO_HS_OFF, -1);
// Compute the region start.
// Default is to use the end of the match.
syn_add_end_off(&eos_pos, &regmatch,
spp, SPO_RS_OFF, 0);
// Grab the external submatches before they get
// overwritten. Reference count doesn't change.
unref_extmatch(cur_extmatch);
cur_extmatch = re_extmatch_out;
re_extmatch_out = NULL;
flags = 0;
eoe_pos.lnum = 0; // avoid warning
eoe_pos.col = 0;
end_idx = 0;
hl_endpos.lnum = 0;
// For a "oneline" the end must be found in the
// same line too. Search for it after the end of
// the match with the start pattern. Set the
// resulting end positions at the same time.
if (spp->sp_type == SPTYPE_START
&& (spp->sp_flags & HL_ONELINE)) {
lpos_T startpos;
startpos = endpos;
find_endpos(idx, &startpos, &endpos, &hl_endpos,
&flags, &eoe_pos, &end_idx, cur_extmatch);
if (endpos.lnum == 0) {
continue; // not found
}
} else if (spp->sp_type == SPTYPE_MATCH) {
// For a "match" the size must be > 0 after the
// end offset needs has been added. Except when
// syncing.
syn_add_end_off(&hl_endpos, &regmatch, spp,
SPO_HE_OFF, 0);
syn_add_end_off(&endpos, &regmatch, spp,
SPO_ME_OFF, 0);
if (endpos.lnum == current_lnum
&& (int)endpos.col + syncing < startcol) {
// If an empty string is matched, may need
// to try matching again at next column.
if (regmatch.startpos[0].col == regmatch.endpos[0].col) {
try_next_column = true;
}
continue;
}
}
// keep the best match so far in next_match_*
// Highlighting must start after startpos and end
// before endpos.
if (hl_startpos.lnum == current_lnum
&& (int)hl_startpos.col < startcol) {
hl_startpos.col = startcol;
}
limit_pos_zero(&hl_endpos, &endpos);
next_match_idx = idx;
next_match_col = startcol;
next_match_m_endpos = endpos;
next_match_h_endpos = hl_endpos;
next_match_h_startpos = hl_startpos;
next_match_flags = flags;
next_match_eos_pos = eos_pos;
next_match_eoe_pos = eoe_pos;
next_match_end_idx = end_idx;
unref_extmatch(next_match_extmatch);
next_match_extmatch = cur_extmatch;
cur_extmatch = NULL;
}
}
}
// If we found a match at the current column, use it.
if (next_match_idx >= 0 && next_match_col == (int)current_col) {
synpat_T *lspp;
// When a zero-width item matched which has a nextgroup,
// don't push the item but set nextgroup.
lspp = &(SYN_ITEMS(syn_block)[next_match_idx]);
if (next_match_m_endpos.lnum == current_lnum
&& next_match_m_endpos.col == current_col
&& lspp->sp_next_list != NULL) {
current_next_list = lspp->sp_next_list;
current_next_flags = lspp->sp_flags;
keep_next_list = true;
zero_width_next_list = true;
// Add the index to a list, so that we can check
// later that we don't match it again (and cause an
// endless loop).
GA_APPEND(int, &zero_width_next_ga, next_match_idx);
next_match_idx = -1;
} else {
cur_si = push_next_match();
}
found_match = true;
}
}
}
// Handle searching for nextgroup match.
if (current_next_list != NULL && !keep_next_list) {
// If a nextgroup was not found, continue looking for one if:
// - this is an empty line and the "skipempty" option was given
// - we are on white space and the "skipwhite" option was given
if (!found_match) {
line = syn_getcurline();
if (((current_next_flags & HL_SKIPWHITE)
&& ascii_iswhite(line[current_col]))
|| ((current_next_flags & HL_SKIPEMPTY)
&& *line == NUL)) {
break;
}
}
// If a nextgroup was found: Use it, and continue looking for
// contained matches.
// If a nextgroup was not found: Continue looking for a normal
// match.
// When did set current_next_list for a zero-width item and no
// match was found don't loop (would get stuck).
current_next_list = NULL;
next_match_idx = -1;
if (!zero_width_next_list) {
found_match = true;
}
}
} while (found_match);
restore_chartab(buf_chartab);
// Use attributes from the current state, if within its highlighting.
// If not, use attributes from the current-but-one state, etc.
current_attr = 0;
current_id = 0;
current_trans_id = 0;
current_flags = 0;
current_seqnr = 0;
if (cur_si != NULL) {
for (int idx = current_state.ga_len - 1; idx >= 0; idx--) {
sip = &CUR_STATE(idx);
if ((current_lnum > sip->si_h_startpos.lnum
|| (current_lnum == sip->si_h_startpos.lnum
&& current_col >= sip->si_h_startpos.col))
&& (sip->si_h_endpos.lnum == 0
|| current_lnum < sip->si_h_endpos.lnum
|| (current_lnum == sip->si_h_endpos.lnum
&& current_col < sip->si_h_endpos.col))) {
current_attr = sip->si_attr;
current_id = sip->si_id;
current_trans_id = sip->si_trans_id;
current_flags = (int)sip->si_flags;
current_seqnr = sip->si_seqnr;
current_sub_char = sip->si_cchar;
break;
}
}
if (can_spell != NULL) {
struct sp_syn sps;
// set "can_spell" to true if spell checking is supposed to be
// done in the current item.
if (syn_block->b_spell_cluster_id == 0) {
// There is no @Spell cluster: Do spelling for items without
// @NoSpell cluster.
if (syn_block->b_nospell_cluster_id == 0
|| current_trans_id == 0) {
*can_spell = (syn_block->b_syn_spell != SYNSPL_NOTOP);
} else {
sps.inc_tag = 0;
sps.id = (int16_t)syn_block->b_nospell_cluster_id;
sps.cont_in_list = NULL;
*can_spell = !in_id_list(sip, sip->si_cont_list, &sps, 0);
}
} else {
// The @Spell cluster is defined: Do spelling in items with
// the @Spell cluster. But not when @NoSpell is also there.
// At the toplevel only spell check when ":syn spell toplevel"
// was used.
if (current_trans_id == 0) {
*can_spell = (syn_block->b_syn_spell == SYNSPL_TOP);
} else {
sps.inc_tag = 0;
sps.id = (int16_t)syn_block->b_spell_cluster_id;
sps.cont_in_list = NULL;
*can_spell = in_id_list(sip, sip->si_cont_list, &sps, 0);
if (syn_block->b_nospell_cluster_id != 0) {
sps.id = (int16_t)syn_block->b_nospell_cluster_id;
if (in_id_list(sip, sip->si_cont_list, &sps, 0)) {
*can_spell = false;
}
}
}
}
}
// Check for end of current state (and the states before it) at the
// next column. Don't do this for syncing, because we would miss a
// single character match.
// First check if the current state ends at the current column. It
// may be for an empty match and a containing item might end in the
// current column.
if (!syncing && !keep_state) {
check_state_ends();
if (!GA_EMPTY(&current_state)
&& syn_getcurline()[current_col] != NUL) {
current_col++;
check_state_ends();
current_col--;
}
}
} else if (can_spell != NULL) {
// Default: Only do spelling when there is no @Spell cluster or when
// ":syn spell toplevel" was used.
*can_spell = syn_block->b_syn_spell == SYNSPL_DEFAULT
? (syn_block->b_spell_cluster_id == 0)
: (syn_block->b_syn_spell == SYNSPL_TOP);
}
// nextgroup ends at end of line, unless "skipnl" or "skipempty" present
if (current_next_list != NULL
&& (line = syn_getcurline())[current_col] != NUL
&& line[current_col + 1] == NUL
&& !(current_next_flags & (HL_SKIPNL | HL_SKIPEMPTY))) {
current_next_list = NULL;
}
if (!GA_EMPTY(&zero_width_next_ga)) {
ga_clear(&zero_width_next_ga);
}
// No longer need external matches. But keep next_match_extmatch.
unref_extmatch(re_extmatch_out);
re_extmatch_out = NULL;
unref_extmatch(cur_extmatch);
return current_attr;
}
/// @return true if we already matched pattern "idx" at the current column.
static bool did_match_already(int idx, garray_T *gap)
{
for (int i = current_state.ga_len; --i >= 0;) {
if (CUR_STATE(i).si_m_startcol == (int)current_col
&& CUR_STATE(i).si_m_lnum == (int)current_lnum
&& CUR_STATE(i).si_idx == idx) {
return true;
}
}
// Zero-width matches with a nextgroup argument are not put on the syntax
// stack, and can only be matched once anyway.
for (int i = gap->ga_len; --i >= 0;) {
if (((int *)(gap->ga_data))[i] == idx) {
return true;
}
}
return false;
}
// Push the next match onto the stack.
static stateitem_T *push_next_match(void)
{
stateitem_T *cur_si;
synpat_T *spp;
int save_flags;
spp = &(SYN_ITEMS(syn_block)[next_match_idx]);
// Push the item in current_state stack;
push_current_state(next_match_idx);
{
// If it's a start-skip-end type that crosses lines, figure out how
// much it continues in this line. Otherwise just fill in the length.
cur_si = &CUR_STATE(current_state.ga_len - 1);
cur_si->si_h_startpos = next_match_h_startpos;
cur_si->si_m_startcol = current_col;
cur_si->si_m_lnum = current_lnum;
cur_si->si_flags = spp->sp_flags;
cur_si->si_seqnr = next_seqnr++;
cur_si->si_cchar = spp->sp_cchar;
if (current_state.ga_len > 1) {
cur_si->si_flags |=
CUR_STATE(current_state.ga_len - 2).si_flags & HL_CONCEAL;
}
cur_si->si_next_list = spp->sp_next_list;
cur_si->si_extmatch = ref_extmatch(next_match_extmatch);
if (spp->sp_type == SPTYPE_START && !(spp->sp_flags & HL_ONELINE)) {
// Try to find the end pattern in the current line
update_si_end(cur_si, (int)(next_match_m_endpos.col), true);
check_keepend();
} else {
cur_si->si_m_endpos = next_match_m_endpos;
cur_si->si_h_endpos = next_match_h_endpos;
cur_si->si_ends = true;
cur_si->si_flags |= next_match_flags;
cur_si->si_eoe_pos = next_match_eoe_pos;
cur_si->si_end_idx = next_match_end_idx;
}
if (keepend_level < 0 && (cur_si->si_flags & HL_KEEPEND)) {
keepend_level = current_state.ga_len - 1;
}
check_keepend();
update_si_attr(current_state.ga_len - 1);
save_flags = cur_si->si_flags & (HL_CONCEAL | HL_CONCEALENDS);
// If the start pattern has another highlight group, push another item
// on the stack for the start pattern.
if (spp->sp_type == SPTYPE_START && spp->sp_syn_match_id != 0) {
push_current_state(next_match_idx);
cur_si = &CUR_STATE(current_state.ga_len - 1);
cur_si->si_h_startpos = next_match_h_startpos;
cur_si->si_m_startcol = current_col;
cur_si->si_m_lnum = current_lnum;
cur_si->si_m_endpos = next_match_eos_pos;
cur_si->si_h_endpos = next_match_eos_pos;
cur_si->si_ends = true;
cur_si->si_end_idx = 0;
cur_si->si_flags = HL_MATCH;
cur_si->si_seqnr = next_seqnr++;
cur_si->si_flags |= save_flags;
if (cur_si->si_flags & HL_CONCEALENDS) {
cur_si->si_flags |= HL_CONCEAL;
}
cur_si->si_next_list = NULL;
check_keepend();
update_si_attr(current_state.ga_len - 1);
}
}
next_match_idx = -1; // try other match next time
return cur_si;
}
// Check for end of current state (and the states before it).
static void check_state_ends(void)
{
stateitem_T *cur_si;
int had_extend;
cur_si = &CUR_STATE(current_state.ga_len - 1);
for (;;) {
if (cur_si->si_ends
&& (cur_si->si_m_endpos.lnum < current_lnum
|| (cur_si->si_m_endpos.lnum == current_lnum
&& cur_si->si_m_endpos.col <= current_col))) {
// If there is an end pattern group ID, highlight the end pattern
// now. No need to pop the current item from the stack.
// Only do this if the end pattern continues beyond the current
// position.
if (cur_si->si_end_idx
&& (cur_si->si_eoe_pos.lnum > current_lnum
|| (cur_si->si_eoe_pos.lnum == current_lnum
&& cur_si->si_eoe_pos.col > current_col))) {
cur_si->si_idx = cur_si->si_end_idx;
cur_si->si_end_idx = 0;
cur_si->si_m_endpos = cur_si->si_eoe_pos;
cur_si->si_h_endpos = cur_si->si_eoe_pos;
cur_si->si_flags |= HL_MATCH;
cur_si->si_seqnr = next_seqnr++;
if (cur_si->si_flags & HL_CONCEALENDS) {
cur_si->si_flags |= HL_CONCEAL;
}
update_si_attr(current_state.ga_len - 1);
// nextgroup= should not match in the end pattern
current_next_list = NULL;
// what matches next may be different now, clear it
next_match_idx = 0;
next_match_col = MAXCOL;
break;
}
// handle next_list, unless at end of line and no "skipnl" or
// "skipempty"
current_next_list = cur_si->si_next_list;
current_next_flags = (int)cur_si->si_flags;
if (!(current_next_flags & (HL_SKIPNL | HL_SKIPEMPTY))
&& syn_getcurline()[current_col] == NUL) {
current_next_list = NULL;
}
// When the ended item has "extend", another item with
// "keepend" now needs to check for its end.
had_extend = (cur_si->si_flags & HL_EXTEND);
pop_current_state();
if (GA_EMPTY(&current_state)) {
break;
}
if (had_extend && keepend_level >= 0) {
syn_update_ends(false);
if (GA_EMPTY(&current_state)) {
break;
}
}
cur_si = &CUR_STATE(current_state.ga_len - 1);
// Only for a region the search for the end continues after
// the end of the contained item. If the contained match
// included the end-of-line, break here, the region continues.
// Don't do this when:
// - "keepend" is used for the contained item
// - not at the end of the line (could be end="x$"me=e-1).
// - "excludenl" is used (HL_HAS_EOL won't be set)
if (cur_si->si_idx >= 0
&& SYN_ITEMS(syn_block)[cur_si->si_idx].sp_type == SPTYPE_START
&& !(cur_si->si_flags & (HL_MATCH | HL_KEEPEND))) {
update_si_end(cur_si, (int)current_col, true);
check_keepend();
if ((current_next_flags & HL_HAS_EOL)
&& keepend_level < 0
&& syn_getcurline()[current_col] == NUL) {
break;
}
}
} else {
break;
}
}
}
// Update an entry in the current_state stack for a match or region. This
// fills in si_attr, si_next_list and si_cont_list.
static void update_si_attr(int idx)
{
stateitem_T *sip = &CUR_STATE(idx);
synpat_T *spp;
// This should not happen...
if (sip->si_idx < 0) {
return;
}
spp = &(SYN_ITEMS(syn_block)[sip->si_idx]);
if (sip->si_flags & HL_MATCH) {
sip->si_id = spp->sp_syn_match_id;
} else {
sip->si_id = spp->sp_syn.id;
}
sip->si_attr = syn_id2attr(sip->si_id);
sip->si_trans_id = sip->si_id;
if (sip->si_flags & HL_MATCH) {
sip->si_cont_list = NULL;
} else {
sip->si_cont_list = spp->sp_cont_list;
}
// For transparent items, take attr from outer item.
// Also take cont_list, if there is none.
// Don't do this for the matchgroup of a start or end pattern.
if ((spp->sp_flags & HL_TRANSP) && !(sip->si_flags & HL_MATCH)) {
if (idx == 0) {
sip->si_attr = 0;
sip->si_trans_id = 0;
if (sip->si_cont_list == NULL) {
sip->si_cont_list = ID_LIST_ALL;
}
} else {
sip->si_attr = CUR_STATE(idx - 1).si_attr;
sip->si_trans_id = CUR_STATE(idx - 1).si_trans_id;
if (sip->si_cont_list == NULL) {
sip->si_flags |= HL_TRANS_CONT;
sip->si_cont_list = CUR_STATE(idx - 1).si_cont_list;
}
}
}
}
// Check the current stack for patterns with "keepend" flag.
// Propagate the match-end to contained items, until a "skipend" item is found.
static void check_keepend(void)
{
int i;
lpos_T maxpos;
lpos_T maxpos_h;
stateitem_T *sip;
// This check can consume a lot of time; only do it from the level where
// there really is a keepend.
if (keepend_level < 0) {
return;
}
// Find the last index of an "extend" item. "keepend" items before that
// won't do anything. If there is no "extend" item "i" will be
// "keepend_level" and all "keepend" items will work normally.
for (i = current_state.ga_len - 1; i > keepend_level; i--) {
if (CUR_STATE(i).si_flags & HL_EXTEND) {
break;
}
}
maxpos.lnum = 0;
maxpos.col = 0;
maxpos_h.lnum = 0;
maxpos_h.col = 0;
for (; i < current_state.ga_len; i++) {
sip = &CUR_STATE(i);
if (maxpos.lnum != 0) {
limit_pos_zero(&sip->si_m_endpos, &maxpos);
limit_pos_zero(&sip->si_h_endpos, &maxpos_h);
limit_pos_zero(&sip->si_eoe_pos, &maxpos);
sip->si_ends = true;
}
if (sip->si_ends && (sip->si_flags & HL_KEEPEND)) {
if (maxpos.lnum == 0
|| maxpos.lnum > sip->si_m_endpos.lnum
|| (maxpos.lnum == sip->si_m_endpos.lnum
&& maxpos.col > sip->si_m_endpos.col)) {
maxpos = sip->si_m_endpos;
}
if (maxpos_h.lnum == 0
|| maxpos_h.lnum > sip->si_h_endpos.lnum
|| (maxpos_h.lnum == sip->si_h_endpos.lnum
&& maxpos_h.col > sip->si_h_endpos.col)) {
maxpos_h = sip->si_h_endpos;
}
}
}
}
/// Update an entry in the current_state stack for a start-skip-end pattern.
/// This finds the end of the current item, if it's in the current line.
///
/// @param startcol where to start searching for the end
/// @param force when true overrule a previous end
///
/// @return the flags for the matched END.
static void update_si_end(stateitem_T *sip, int startcol, bool force)
{
lpos_T hl_endpos;
lpos_T end_endpos;
// return quickly for a keyword
if (sip->si_idx < 0) {
return;
}
// Don't update when it's already done. Can be a match of an end pattern
// that started in a previous line. Watch out: can also be a "keepend"
// from a containing item.
if (!force && sip->si_m_endpos.lnum >= current_lnum) {
return;
}
// We need to find the end of the region. It may continue in the next
// line.
int end_idx = 0;
lpos_T startpos = {
.lnum = current_lnum,
.col = startcol,
};
lpos_T endpos = { 0 };
find_endpos(sip->si_idx, &startpos, &endpos, &hl_endpos,
&(sip->si_flags), &end_endpos, &end_idx, sip->si_extmatch);
if (endpos.lnum == 0) {
// No end pattern matched.
if (SYN_ITEMS(syn_block)[sip->si_idx].sp_flags & HL_ONELINE) {
// a "oneline" never continues in the next line
sip->si_ends = true;
sip->si_m_endpos.lnum = current_lnum;
sip->si_m_endpos.col = (colnr_T)strlen(syn_getcurline());
} else {
// continues in the next line
sip->si_ends = false;
sip->si_m_endpos.lnum = 0;
}
sip->si_h_endpos = sip->si_m_endpos;
} else {
// match within this line
sip->si_m_endpos = endpos;
sip->si_h_endpos = hl_endpos;
sip->si_eoe_pos = end_endpos;
sip->si_ends = true;
sip->si_end_idx = end_idx;
}
}
// Add a new state to the current state stack.
// It is cleared and the index set to "idx".
static void push_current_state(int idx)
{
stateitem_T *p = GA_APPEND_VIA_PTR(stateitem_T, &current_state);
CLEAR_POINTER(p);
p->si_idx = idx;
}
// Remove a state from the current_state stack.
static void pop_current_state(void)
{
if (!GA_EMPTY(&current_state)) {
unref_extmatch(CUR_STATE(current_state.ga_len - 1).si_extmatch);
current_state.ga_len--;
}
// after the end of a pattern, try matching a keyword or pattern
next_match_idx = -1;
// if first state with "keepend" is popped, reset keepend_level
if (keepend_level >= current_state.ga_len) {
keepend_level = -1;
}
}
/// Find the end of a start/skip/end syntax region after "startpos".
/// Only checks one line.
/// Also handles a match item that continued from a previous line.
/// If not found, the syntax item continues in the next line. m_endpos->lnum
/// will be 0.
/// If found, the end of the region and the end of the highlighting is
/// computed.
///
/// @param idx index of the pattern
/// @param startpos where to start looking for an END match
/// @param m_endpos return: end of match
/// @param hl_endpos return: end of highlighting
/// @param flagsp return: flags of matching END
/// @param end_endpos return: end of end pattern match
/// @param end_idx return: group ID for end pat. match, or 0
/// @param start_ext submatches from the start pattern
static void find_endpos(int idx, lpos_T *startpos, lpos_T *m_endpos, lpos_T *hl_endpos,
long *flagsp, lpos_T *end_endpos, int *end_idx, reg_extmatch_T *start_ext)
{
colnr_T matchcol;
synpat_T *spp, *spp_skip;
int start_idx;
int best_idx;
regmmatch_T regmatch;
regmmatch_T best_regmatch; // startpos/endpos of best match
lpos_T pos;
char *line;
bool had_match = false;
char buf_chartab[32]; // chartab array for syn option iskeyword
// just in case we are invoked for a keyword
if (idx < 0) {
return;
}
// Check for being called with a START pattern.
// Can happen with a match that continues to the next line, because it
// contained a region.
spp = &(SYN_ITEMS(syn_block)[idx]);
if (spp->sp_type != SPTYPE_START) {
*hl_endpos = *startpos;
return;
}
// Find the SKIP or first END pattern after the last START pattern.
for (;;) {
spp = &(SYN_ITEMS(syn_block)[idx]);
if (spp->sp_type != SPTYPE_START) {
break;
}
idx++;
}
// Lookup the SKIP pattern (if present)
if (spp->sp_type == SPTYPE_SKIP) {
spp_skip = spp;
idx++;
} else {
spp_skip = NULL;
}
// Setup external matches for syn_regexec().
unref_extmatch(re_extmatch_in);
re_extmatch_in = ref_extmatch(start_ext);
matchcol = startpos->col; // start looking for a match at sstart
start_idx = idx; // remember the first END pattern.
best_regmatch.startpos[0].col = 0; // avoid compiler warning
// use syntax iskeyword option
save_chartab(buf_chartab);
for (;;) {
// Find end pattern that matches first after "matchcol".
best_idx = -1;
for (idx = start_idx; idx < syn_block->b_syn_patterns.ga_len; idx++) {
int lc_col = matchcol;
spp = &(SYN_ITEMS(syn_block)[idx]);
if (spp->sp_type != SPTYPE_END) { // past last END pattern
break;
}
lc_col -= spp->sp_offsets[SPO_LC_OFF];
if (lc_col < 0) {
lc_col = 0;
}
regmatch.rmm_ic = spp->sp_ic;
regmatch.regprog = spp->sp_prog;
int r = syn_regexec(&regmatch, startpos->lnum, lc_col,
IF_SYN_TIME(&spp->sp_time));
spp->sp_prog = regmatch.regprog;
if (r) {
if (best_idx == -1 || regmatch.startpos[0].col
< best_regmatch.startpos[0].col) {
best_idx = idx;
best_regmatch.startpos[0] = regmatch.startpos[0];
best_regmatch.endpos[0] = regmatch.endpos[0];
}
}
}
// If all end patterns have been tried, and there is no match, the
// item continues until end-of-line.
if (best_idx == -1) {
break;
}
// If the skip pattern matches before the end pattern,
// continue searching after the skip pattern.
if (spp_skip != NULL) {
int lc_col = matchcol - spp_skip->sp_offsets[SPO_LC_OFF];
if (lc_col < 0) {
lc_col = 0;
}
regmatch.rmm_ic = spp_skip->sp_ic;
regmatch.regprog = spp_skip->sp_prog;
int r = syn_regexec(&regmatch, startpos->lnum, lc_col,
IF_SYN_TIME(&spp_skip->sp_time));
spp_skip->sp_prog = regmatch.regprog;
if (r && regmatch.startpos[0].col <= best_regmatch.startpos[0].col) {
// Add offset to skip pattern match
syn_add_end_off(&pos, &regmatch, spp_skip, SPO_ME_OFF, 1);
// If the skip pattern goes on to the next line, there is no
// match with an end pattern in this line.
if (pos.lnum > startpos->lnum) {
break;
}
line = ml_get_buf(syn_buf, startpos->lnum, false);
int line_len = (int)strlen(line);
// take care of an empty match or negative offset
if (pos.col <= matchcol) {
matchcol++;
} else if (pos.col <= regmatch.endpos[0].col) {
matchcol = pos.col;
} else {
// Be careful not to jump over the NUL at the end-of-line
for (matchcol = regmatch.endpos[0].col;
matchcol < line_len && matchcol < pos.col;
matchcol++) {}
}
// if the skip pattern includes end-of-line, break here
if (matchcol >= line_len) {
break;
}
continue; // start with first end pattern again
}
}
// Match from start pattern to end pattern.
// Correct for match and highlight offset of end pattern.
spp = &(SYN_ITEMS(syn_block)[best_idx]);
syn_add_end_off(m_endpos, &best_regmatch, spp, SPO_ME_OFF, 1);
// can't end before the start
if (m_endpos->lnum == startpos->lnum && m_endpos->col < startpos->col) {
m_endpos->col = startpos->col;
}
syn_add_end_off(end_endpos, &best_regmatch, spp, SPO_HE_OFF, 1);
// can't end before the start
if (end_endpos->lnum == startpos->lnum
&& end_endpos->col < startpos->col) {
end_endpos->col = startpos->col;
}
// can't end after the match
limit_pos(end_endpos, m_endpos);
// If the end group is highlighted differently, adjust the pointers.
if (spp->sp_syn_match_id != spp->sp_syn.id && spp->sp_syn_match_id != 0) {
*end_idx = best_idx;
if (spp->sp_off_flags & (1 << (SPO_RE_OFF + SPO_COUNT))) {
hl_endpos->lnum = best_regmatch.endpos[0].lnum;
hl_endpos->col = best_regmatch.endpos[0].col;
} else {
hl_endpos->lnum = best_regmatch.startpos[0].lnum;
hl_endpos->col = best_regmatch.startpos[0].col;
}
hl_endpos->col += spp->sp_offsets[SPO_RE_OFF];
// can't end before the start
if (hl_endpos->lnum == startpos->lnum
&& hl_endpos->col < startpos->col) {
hl_endpos->col = startpos->col;
}
limit_pos(hl_endpos, m_endpos);
// now the match ends where the highlighting ends, it is turned
// into the matchgroup for the end
*m_endpos = *hl_endpos;
} else {
*end_idx = 0;
*hl_endpos = *end_endpos;
}
*flagsp = spp->sp_flags;
had_match = true;
break;
}
// no match for an END pattern in this line
if (!had_match) {
m_endpos->lnum = 0;
}
restore_chartab(buf_chartab);
// Remove external matches.
unref_extmatch(re_extmatch_in);
re_extmatch_in = NULL;
}
// Limit "pos" not to be after "limit".
static void limit_pos(lpos_T *pos, lpos_T *limit)
{
if (pos->lnum > limit->lnum) {
*pos = *limit;
} else if (pos->lnum == limit->lnum && pos->col > limit->col) {
pos->col = limit->col;
}
}
// Limit "pos" not to be after "limit", unless pos->lnum is zero.
static void limit_pos_zero(lpos_T *pos, lpos_T *limit)
{
if (pos->lnum == 0) {
*pos = *limit;
} else {
limit_pos(pos, limit);
}
}
/// Add offset to matched text for end of match or highlight.
///
/// @param result returned position
/// @param regmatch start/end of match
/// @param spp matched pattern
/// @param idx index of offset
/// @param extra extra chars for offset to start
static void syn_add_end_off(lpos_T *result, regmmatch_T *regmatch, synpat_T *spp, int idx,
int extra)
{
int col;
int off;
char *base;
char *p;
if (spp->sp_off_flags & (1 << idx)) {
result->lnum = regmatch->startpos[0].lnum;
col = regmatch->startpos[0].col;
off = spp->sp_offsets[idx] + extra;
} else {
result->lnum = regmatch->endpos[0].lnum;
col = regmatch->endpos[0].col;
off = spp->sp_offsets[idx];
}
// Don't go past the end of the line. Matters for "rs=e+2" when there
// is a matchgroup. Watch out for match with last NL in the buffer.
if (result->lnum > syn_buf->b_ml.ml_line_count) {
col = 0;
} else if (off != 0) {
base = ml_get_buf(syn_buf, result->lnum, false);
p = base + col;
if (off > 0) {
while (off-- > 0 && *p != NUL) {
MB_PTR_ADV(p);
}
} else {
while (off++ < 0 && base < p) {
MB_PTR_BACK(base, p);
}
}
col = (int)(p - base);
}
result->col = col;
}
/// Add offset to matched text for start of match or highlight.
/// Avoid resulting column to become negative.
///
/// @param result returned position
/// @param regmatch start/end of match
/// @param extra extra chars for offset to end
static void syn_add_start_off(lpos_T *result, regmmatch_T *regmatch, synpat_T *spp, int idx,
int extra)
{
int col;
int off;
char *base;
char *p;
if (spp->sp_off_flags & (1 << (idx + SPO_COUNT))) {
result->lnum = regmatch->endpos[0].lnum;
col = regmatch->endpos[0].col;
off = spp->sp_offsets[idx] + extra;
} else {
result->lnum = regmatch->startpos[0].lnum;
col = regmatch->startpos[0].col;
off = spp->sp_offsets[idx];
}
if (result->lnum > syn_buf->b_ml.ml_line_count) {
// a "\n" at the end of the pattern may take us below the last line
result->lnum = syn_buf->b_ml.ml_line_count;
col = (int)strlen(ml_get_buf(syn_buf, result->lnum, false));
}
if (off != 0) {
base = ml_get_buf(syn_buf, result->lnum, false);
p = base + col;
if (off > 0) {
while (off-- && *p != NUL) {
MB_PTR_ADV(p);
}
} else {
while (off++ && base < p) {
MB_PTR_BACK(base, p);
}
}
col = (int)(p - base);
}
result->col = col;
}
/// Get current line in syntax buffer.
static char *syn_getcurline(void)
{
return ml_get_buf(syn_buf, current_lnum, false);
}
// Call vim_regexec() to find a match with "rmp" in "syn_buf".
// Returns true when there is a match.
static int syn_regexec(regmmatch_T *rmp, linenr_T lnum, colnr_T col, syn_time_T *st)
{
int timed_out = 0;
proftime_T pt;
const bool l_syn_time_on = syn_time_on;
if (l_syn_time_on) {
pt = profile_start();
}
if (rmp->regprog == NULL) {
// This can happen if a previous call to vim_regexec_multi() tried to
// use the NFA engine, which resulted in NFA_TOO_EXPENSIVE, and
// compiling the pattern with the other engine fails.
return false;
}
rmp->rmm_maxcol = (colnr_T)syn_buf->b_p_smc;
long r = vim_regexec_multi(rmp, syn_win, syn_buf, lnum, col, syn_tm, &timed_out);
if (l_syn_time_on) {
pt = profile_end(pt);
st->total = profile_add(st->total, pt);
if (profile_cmp(pt, st->slowest) < 0) {
st->slowest = pt;
}
st->count++;
if (r > 0) {
st->match++;
}
}
if (timed_out && !syn_win->w_s->b_syn_slow) {
syn_win->w_s->b_syn_slow = true;
msg(_("'redrawtime' exceeded, syntax highlighting disabled"));
}
if (r > 0) {
rmp->startpos[0].lnum += lnum;
rmp->endpos[0].lnum += lnum;
return true;
}
return false;
}
/// Check one position in a line for a matching keyword.
/// The caller must check if a keyword can start at startcol.
/// Return its ID if found, 0 otherwise.
///
/// @param startcol position in line to check for keyword
/// @param endcolp return: character after found keyword
/// @param flagsp return: flags of matching keyword
/// @param next_listp return: next_list of matching keyword
/// @param cur_si item at the top of the stack
/// @param ccharp conceal substitution char
static int check_keyword_id(char *const line, const int startcol, int *const endcolp,
long *const flagsp, int16_t **const next_listp,
stateitem_T *const cur_si, int *const ccharp)
{
// Find first character after the keyword. First character was already
// checked.
char *const kwp = line + startcol;
int kwlen = 0;
do {
kwlen += utfc_ptr2len(kwp + kwlen);
} while (vim_iswordp_buf(kwp + kwlen, syn_buf));
if (kwlen > MAXKEYWLEN) {
return 0;
}
// Must make a copy of the keyword, so we can add a NUL and make it
// lowercase.
char keyword[MAXKEYWLEN + 1]; // assume max. keyword len is 80
xstrlcpy(keyword, kwp, (size_t)kwlen + 1);
keyentry_T *kp = NULL;
// matching case
if (syn_block->b_keywtab.ht_used != 0) {
kp = match_keyword(keyword, &syn_block->b_keywtab, cur_si);
}
// ignoring case
if (kp == NULL && syn_block->b_keywtab_ic.ht_used != 0) {
str_foldcase(kwp, kwlen, keyword, MAXKEYWLEN + 1);
kp = match_keyword(keyword, &syn_block->b_keywtab_ic, cur_si);
}
if (kp != NULL) {
*endcolp = startcol + kwlen;
*flagsp = kp->flags;
*next_listp = kp->next_list;
*ccharp = kp->k_char;
return kp->k_syn.id;
}
return 0;
}
/// Find keywords that match. There can be several with different
/// attributes.
/// When current_next_list is non-zero accept only that group, otherwise:
/// Accept a not-contained keyword at toplevel.
/// Accept a keyword at other levels only if it is in the contains list.
static keyentry_T *match_keyword(char *keyword, hashtab_T *ht, stateitem_T *cur_si)
{
hashitem_T *hi = hash_find(ht, keyword);
if (!HASHITEM_EMPTY(hi)) {
for (keyentry_T *kp = HI2KE(hi); kp != NULL; kp = kp->ke_next) {
if (current_next_list != 0
? in_id_list(NULL, current_next_list, &kp->k_syn, 0)
: (cur_si == NULL
? !(kp->flags & HL_CONTAINED)
: in_id_list(cur_si, cur_si->si_cont_list,
&kp->k_syn, kp->flags & HL_CONTAINED))) {
return kp;
}
}
}
return NULL;
}
// Handle ":syntax conceal" command.
static void syn_cmd_conceal(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *next;
eap->nextcmd = find_nextcmd(arg);
if (eap->skip) {
return;
}
next = skiptowhite(arg);
if (*arg == NUL) {
if (curwin->w_s->b_syn_conceal) {
msg("syntax conceal on");
} else {
msg("syntax conceal off");
}
} else if (STRNICMP(arg, "on", 2) == 0 && next - arg == 2) {
curwin->w_s->b_syn_conceal = true;
} else if (STRNICMP(arg, "off", 3) == 0 && next - arg == 3) {
curwin->w_s->b_syn_conceal = false;
} else {
semsg(_(e_illegal_arg), arg);
}
}
/// Handle ":syntax case" command.
static void syn_cmd_case(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *next;
eap->nextcmd = find_nextcmd(arg);
if (eap->skip) {
return;
}
next = skiptowhite(arg);
if (*arg == NUL) {
if (curwin->w_s->b_syn_ic) {
msg("syntax case ignore");
} else {
msg("syntax case match");
}
} else if (STRNICMP(arg, "match", 5) == 0 && next - arg == 5) {
curwin->w_s->b_syn_ic = false;
} else if (STRNICMP(arg, "ignore", 6) == 0 && next - arg == 6) {
curwin->w_s->b_syn_ic = true;
} else {
semsg(_(e_illegal_arg), arg);
}
}
/// Handle ":syntax foldlevel" command.
static void syn_cmd_foldlevel(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *arg_end;
eap->nextcmd = find_nextcmd(arg);
if (eap->skip) {
return;
}
if (*arg == NUL) {
switch (curwin->w_s->b_syn_foldlevel) {
case SYNFLD_START:
msg("syntax foldlevel start"); break;
case SYNFLD_MINIMUM:
msg("syntax foldlevel minimum"); break;
default:
break;
}
return;
}
arg_end = skiptowhite(arg);
if (STRNICMP(arg, "start", 5) == 0 && arg_end - arg == 5) {
curwin->w_s->b_syn_foldlevel = SYNFLD_START;
} else if (STRNICMP(arg, "minimum", 7) == 0 && arg_end - arg == 7) {
curwin->w_s->b_syn_foldlevel = SYNFLD_MINIMUM;
} else {
semsg(_(e_illegal_arg), arg);
return;
}
arg = skipwhite(arg_end);
if (*arg != NUL) {
semsg(_(e_illegal_arg), arg);
}
}
/// Handle ":syntax spell" command.
static void syn_cmd_spell(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *next;
eap->nextcmd = find_nextcmd(arg);
if (eap->skip) {
return;
}
next = skiptowhite(arg);
if (*arg == NUL) {
if (curwin->w_s->b_syn_spell == SYNSPL_TOP) {
msg("syntax spell toplevel");
} else if (curwin->w_s->b_syn_spell == SYNSPL_NOTOP) {
msg("syntax spell notoplevel");
} else {
msg("syntax spell default");
}
} else if (STRNICMP(arg, "toplevel", 8) == 0 && next - arg == 8) {
curwin->w_s->b_syn_spell = SYNSPL_TOP;
} else if (STRNICMP(arg, "notoplevel", 10) == 0 && next - arg == 10) {
curwin->w_s->b_syn_spell = SYNSPL_NOTOP;
} else if (STRNICMP(arg, "default", 7) == 0 && next - arg == 7) {
curwin->w_s->b_syn_spell = SYNSPL_DEFAULT;
} else {
semsg(_(e_illegal_arg), arg);
return;
}
// assume spell checking changed, force a redraw
redraw_later(curwin, UPD_NOT_VALID);
}
/// Handle ":syntax iskeyword" command.
static void syn_cmd_iskeyword(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char save_chartab[32];
char *save_isk;
if (eap->skip) {
return;
}
arg = skipwhite(arg);
if (*arg == NUL) {
msg_puts("\n");
if (curwin->w_s->b_syn_isk != empty_option) {
msg_puts("syntax iskeyword ");
msg_outtrans(curwin->w_s->b_syn_isk);
} else {
msg_outtrans(_("syntax iskeyword not set"));
}
} else {
if (STRNICMP(arg, "clear", 5) == 0) {
memmove(curwin->w_s->b_syn_chartab, curbuf->b_chartab, (size_t)32);
clear_string_option(&curwin->w_s->b_syn_isk);
} else {
memmove(save_chartab, curbuf->b_chartab, (size_t)32);
save_isk = curbuf->b_p_isk;
curbuf->b_p_isk = xstrdup(arg);
buf_init_chartab(curbuf, false);
memmove(curwin->w_s->b_syn_chartab, curbuf->b_chartab, (size_t)32);
memmove(curbuf->b_chartab, save_chartab, (size_t)32);
clear_string_option(&curwin->w_s->b_syn_isk);
curwin->w_s->b_syn_isk = curbuf->b_p_isk;
curbuf->b_p_isk = save_isk;
}
}
redraw_later(curwin, UPD_NOT_VALID);
}
// Clear all syntax info for one buffer.
void syntax_clear(synblock_T *block)
{
block->b_syn_error = false; // clear previous error
block->b_syn_slow = false; // clear previous timeout
block->b_syn_ic = false; // Use case, by default
block->b_syn_foldlevel = SYNFLD_START;
block->b_syn_spell = SYNSPL_DEFAULT; // default spell checking
block->b_syn_containedin = false;
block->b_syn_conceal = false;
// free the keywords
clear_keywtab(&block->b_keywtab);
clear_keywtab(&block->b_keywtab_ic);
// free the syntax patterns
for (int i = block->b_syn_patterns.ga_len; --i >= 0;) {
syn_clear_pattern(block, i);
}
ga_clear(&block->b_syn_patterns);
// free the syntax clusters
for (int i = block->b_syn_clusters.ga_len; --i >= 0;) {
syn_clear_cluster(block, i);
}
ga_clear(&block->b_syn_clusters);
block->b_spell_cluster_id = 0;
block->b_nospell_cluster_id = 0;
block->b_syn_sync_flags = 0;
block->b_syn_sync_minlines = 0;
block->b_syn_sync_maxlines = 0;
block->b_syn_sync_linebreaks = 0;
vim_regfree(block->b_syn_linecont_prog);
block->b_syn_linecont_prog = NULL;
XFREE_CLEAR(block->b_syn_linecont_pat);
block->b_syn_folditems = 0;
clear_string_option(&block->b_syn_isk);
// free the stored states
syn_stack_free_all(block);
invalidate_current_state();
// Reset the counter for ":syn include"
running_syn_inc_tag = 0;
}
// Get rid of ownsyntax for window "wp".
void reset_synblock(win_T *wp)
{
if (wp->w_s != &wp->w_buffer->b_s) {
syntax_clear(wp->w_s);
xfree(wp->w_s);
wp->w_s = &wp->w_buffer->b_s;
}
}
// Clear syncing info for one buffer.
static void syntax_sync_clear(void)
{
// free the syntax patterns
for (int i = curwin->w_s->b_syn_patterns.ga_len; --i >= 0;) {
if (SYN_ITEMS(curwin->w_s)[i].sp_syncing) {
syn_remove_pattern(curwin->w_s, i);
}
}
curwin->w_s->b_syn_sync_flags = 0;
curwin->w_s->b_syn_sync_minlines = 0;
curwin->w_s->b_syn_sync_maxlines = 0;
curwin->w_s->b_syn_sync_linebreaks = 0;
vim_regfree(curwin->w_s->b_syn_linecont_prog);
curwin->w_s->b_syn_linecont_prog = NULL;
XFREE_CLEAR(curwin->w_s->b_syn_linecont_pat);
clear_string_option(&curwin->w_s->b_syn_isk);
syn_stack_free_all(curwin->w_s); // Need to recompute all syntax.
}
// Remove one pattern from the buffer's pattern list.
static void syn_remove_pattern(synblock_T *block, int idx)
{
synpat_T *spp;
spp = &(SYN_ITEMS(block)[idx]);
if (spp->sp_flags & HL_FOLD) {
block->b_syn_folditems--;
}
syn_clear_pattern(block, idx);
memmove(spp, spp + 1, sizeof(synpat_T) * (size_t)(block->b_syn_patterns.ga_len - idx - 1));
block->b_syn_patterns.ga_len--;
}
// Clear and free one syntax pattern. When clearing all, must be called from
// last to first!
static void syn_clear_pattern(synblock_T *block, int i)
{
xfree(SYN_ITEMS(block)[i].sp_pattern);
vim_regfree(SYN_ITEMS(block)[i].sp_prog);
// Only free sp_cont_list and sp_next_list of first start pattern
if (i == 0 || SYN_ITEMS(block)[i - 1].sp_type != SPTYPE_START) {
xfree(SYN_ITEMS(block)[i].sp_cont_list);
xfree(SYN_ITEMS(block)[i].sp_next_list);
xfree(SYN_ITEMS(block)[i].sp_syn.cont_in_list);
}
}
// Clear and free one syntax cluster.
static void syn_clear_cluster(synblock_T *block, int i)
{
xfree(SYN_CLSTR(block)[i].scl_name);
xfree(SYN_CLSTR(block)[i].scl_name_u);
xfree(SYN_CLSTR(block)[i].scl_list);
}
/// Handle ":syntax clear" command.
static void syn_cmd_clear(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *arg_end;
int id;
eap->nextcmd = find_nextcmd(arg);
if (eap->skip) {
return;
}
// We have to disable this within ":syn include @group filename",
// because otherwise @group would get deleted.
// Only required for Vim 5.x syntax files, 6.0 ones don't contain ":syn
// clear".
if (curwin->w_s->b_syn_topgrp != 0) {
return;
}
if (ends_excmd(*arg)) {
// No argument: Clear all syntax items.
if (syncing) {
syntax_sync_clear();
} else {
syntax_clear(curwin->w_s);
if (curwin->w_s == &curwin->w_buffer->b_s) {
do_unlet(S_LEN("b:current_syntax"), true);
}
do_unlet(S_LEN("w:current_syntax"), true);
}
} else {
// Clear the group IDs that are in the argument.
while (!ends_excmd(*arg)) {
arg_end = skiptowhite(arg);
if (*arg == '@') {
id = syn_scl_namen2id(arg + 1, (int)(arg_end - arg - 1));
if (id == 0) {
semsg(_("E391: No such syntax cluster: %s"), arg);
break;
}
// We can't physically delete a cluster without changing
// the IDs of other clusters, so we do the next best thing
// and make it empty.
int scl_id = id - SYNID_CLUSTER;
XFREE_CLEAR(SYN_CLSTR(curwin->w_s)[scl_id].scl_list);
} else {
id = syn_name2id_len(arg, (size_t)(arg_end - arg));
if (id == 0) {
semsg(_(e_nogroup), arg);
break;
}
syn_clear_one(id, syncing);
}
arg = skipwhite(arg_end);
}
}
redraw_curbuf_later(UPD_SOME_VALID);
syn_stack_free_all(curwin->w_s); // Need to recompute all syntax.
}
// Clear one syntax group for the current buffer.
static void syn_clear_one(const int id, const bool syncing)
{
synpat_T *spp;
// Clear keywords only when not ":syn sync clear group-name"
if (!syncing) {
syn_clear_keyword(id, &curwin->w_s->b_keywtab);
syn_clear_keyword(id, &curwin->w_s->b_keywtab_ic);
}
// clear the patterns for "id"
for (int idx = curwin->w_s->b_syn_patterns.ga_len; --idx >= 0;) {
spp = &(SYN_ITEMS(curwin->w_s)[idx]);
if (spp->sp_syn.id != id || spp->sp_syncing != syncing) {
continue;
}
syn_remove_pattern(curwin->w_s, idx);
}
}
// Handle ":syntax on" command.
static void syn_cmd_on(exarg_T *eap, int syncing)
{
syn_cmd_onoff(eap, "syntax");
}
// Handle ":syntax reset" command.
// It actually resets highlighting, not syntax.
static void syn_cmd_reset(exarg_T *eap, int syncing)
{
eap->nextcmd = check_nextcmd(eap->arg);
if (!eap->skip) {
init_highlight(true, true);
}
}
// Handle ":syntax manual" command.
static void syn_cmd_manual(exarg_T *eap, int syncing)
{
syn_cmd_onoff(eap, "manual");
}
// Handle ":syntax off" command.
static void syn_cmd_off(exarg_T *eap, int syncing)
{
syn_cmd_onoff(eap, "nosyntax");
}
static void syn_cmd_onoff(exarg_T *eap, char *name)
FUNC_ATTR_NONNULL_ALL
{
eap->nextcmd = check_nextcmd(eap->arg);
if (!eap->skip) {
did_syntax_onoff = true;
char buf[100];
memcpy(buf, "so ", 4);
vim_snprintf(buf + 3, sizeof(buf) - 3, SYNTAX_FNAME, name);
do_cmdline_cmd(buf);
}
}
void syn_maybe_enable(void)
{
if (!did_syntax_onoff) {
exarg_T ea;
ea.arg = "";
ea.skip = false;
syn_cmd_on(&ea, false);
}
}
/// Handle ":syntax [list]" command: list current syntax words.
///
/// @param syncing when true: list syncing items
static void syn_cmd_list(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *arg_end;
eap->nextcmd = find_nextcmd(arg);
if (eap->skip) {
return;
}
if (!syntax_present(curwin)) {
msg(_(msg_no_items));
return;
}
if (syncing) {
if (curwin->w_s->b_syn_sync_flags & SF_CCOMMENT) {
msg_puts(_("syncing on C-style comments"));
syn_lines_msg();
syn_match_msg();
return;
} else if (!(curwin->w_s->b_syn_sync_flags & SF_MATCH)) {
if (curwin->w_s->b_syn_sync_minlines == 0) {
msg_puts(_("no syncing"));
} else {
if (curwin->w_s->b_syn_sync_minlines == MAXLNUM) {
msg_puts(_("syncing starts at the first line"));
} else {
msg_puts(_("syncing starts "));
msg_outnum(curwin->w_s->b_syn_sync_minlines);
msg_puts(_(" lines before top line"));
}
syn_match_msg();
}
return;
}
msg_puts_title(_("\n--- Syntax sync items ---"));
if (curwin->w_s->b_syn_sync_minlines > 0
|| curwin->w_s->b_syn_sync_maxlines > 0
|| curwin->w_s->b_syn_sync_linebreaks > 0) {
msg_puts(_("\nsyncing on items"));
syn_lines_msg();
syn_match_msg();
}
} else {
msg_puts_title(_("\n--- Syntax items ---"));
}
if (ends_excmd(*arg)) {
// No argument: List all group IDs and all syntax clusters.
for (int id = 1; id <= highlight_num_groups() && !got_int; id++) {
syn_list_one(id, syncing, false);
}
for (int id = 0; id < curwin->w_s->b_syn_clusters.ga_len && !got_int; id++) {
syn_list_cluster(id);
}
} else {
// List the group IDs and syntax clusters that are in the argument.
while (!ends_excmd(*arg) && !got_int) {
arg_end = skiptowhite(arg);
if (*arg == '@') {
int id = syn_scl_namen2id(arg + 1, (int)(arg_end - arg - 1));
if (id == 0) {
semsg(_("E392: No such syntax cluster: %s"), arg);
} else {
syn_list_cluster(id - SYNID_CLUSTER);
}
} else {
int id = syn_name2id_len(arg, (size_t)(arg_end - arg));
if (id == 0) {
semsg(_(e_nogroup), arg);
} else {
syn_list_one(id, syncing, true);
}
}
arg = skipwhite(arg_end);
}
}
eap->nextcmd = check_nextcmd(arg);
}
static void syn_lines_msg(void)
{
if (curwin->w_s->b_syn_sync_maxlines > 0
|| curwin->w_s->b_syn_sync_minlines > 0) {
msg_puts("; ");
if (curwin->w_s->b_syn_sync_minlines == MAXLNUM) {
msg_puts(_("from the first line"));
} else {
if (curwin->w_s->b_syn_sync_minlines > 0) {
msg_puts(_("minimal "));
msg_outnum(curwin->w_s->b_syn_sync_minlines);
if (curwin->w_s->b_syn_sync_maxlines) {
msg_puts(", ");
}
}
if (curwin->w_s->b_syn_sync_maxlines > 0) {
msg_puts(_("maximal "));
msg_outnum(curwin->w_s->b_syn_sync_maxlines);
}
msg_puts(_(" lines before top line"));
}
}
}
static void syn_match_msg(void)
{
if (curwin->w_s->b_syn_sync_linebreaks > 0) {
msg_puts(_("; match "));
msg_outnum(curwin->w_s->b_syn_sync_linebreaks);
msg_puts(_(" line breaks"));
}
}
static int last_matchgroup;
/// List one syntax item, for ":syntax" or "syntax list syntax_name".
///
/// @param syncing when true: list syncing items
/// @param link_only when true; list link-only too
static void syn_list_one(const int id, const bool syncing, const bool link_only)
{
bool did_header = false;
static struct name_list namelist1[] = {
{ HL_DISPLAY, "display" },
{ HL_CONTAINED, "contained" },
{ HL_ONELINE, "oneline" },
{ HL_KEEPEND, "keepend" },
{ HL_EXTEND, "extend" },
{ HL_EXCLUDENL, "excludenl" },
{ HL_TRANSP, "transparent" },
{ HL_FOLD, "fold" },
{ HL_CONCEAL, "conceal" },
{ HL_CONCEALENDS, "concealends" },
{ 0, NULL }
};
static struct name_list namelist2[] = {
{ HL_SKIPWHITE, "skipwhite" },
{ HL_SKIPNL, "skipnl" },
{ HL_SKIPEMPTY, "skipempty" },
{ 0, NULL }
};
const int attr = HL_ATTR(HLF_D); // highlight like directories
// list the keywords for "id"
if (!syncing) {
did_header = syn_list_keywords(id, &curwin->w_s->b_keywtab, false, attr);
did_header = syn_list_keywords(id, &curwin->w_s->b_keywtab_ic,
did_header, attr);
}
// list the patterns for "id"
for (int idx = 0;
idx < curwin->w_s->b_syn_patterns.ga_len && !got_int;
idx++) {
const synpat_T *const spp = &(SYN_ITEMS(curwin->w_s)[idx]);
if (spp->sp_syn.id != id || spp->sp_syncing != syncing) {
continue;
}
(void)syn_list_header(did_header, 0, id, true);
did_header = true;
last_matchgroup = 0;
if (spp->sp_type == SPTYPE_MATCH) {
put_pattern("match", ' ', spp, attr);
msg_putchar(' ');
} else if (spp->sp_type == SPTYPE_START) {
while (SYN_ITEMS(curwin->w_s)[idx].sp_type == SPTYPE_START) {
put_pattern("start", '=', &SYN_ITEMS(curwin->w_s)[idx++], attr);
}
if (SYN_ITEMS(curwin->w_s)[idx].sp_type == SPTYPE_SKIP) {
put_pattern("skip", '=', &SYN_ITEMS(curwin->w_s)[idx++], attr);
}
while (idx < curwin->w_s->b_syn_patterns.ga_len
&& SYN_ITEMS(curwin->w_s)[idx].sp_type == SPTYPE_END) {
put_pattern("end", '=', &SYN_ITEMS(curwin->w_s)[idx++], attr);
}
idx--;
msg_putchar(' ');
}
syn_list_flags(namelist1, spp->sp_flags, attr);
if (spp->sp_cont_list != NULL) {
put_id_list("contains", spp->sp_cont_list, attr);
}
if (spp->sp_syn.cont_in_list != NULL) {
put_id_list("containedin", spp->sp_syn.cont_in_list, attr);
}
if (spp->sp_next_list != NULL) {
put_id_list("nextgroup", spp->sp_next_list, attr);
syn_list_flags(namelist2, spp->sp_flags, attr);
}
if (spp->sp_flags & (HL_SYNC_HERE|HL_SYNC_THERE)) {
if (spp->sp_flags & HL_SYNC_HERE) {
msg_puts_attr("grouphere", attr);
} else {
msg_puts_attr("groupthere", attr);
}
msg_putchar(' ');
if (spp->sp_sync_idx >= 0) {
msg_outtrans(highlight_group_name(SYN_ITEMS(curwin->w_s)
[spp->sp_sync_idx].sp_syn.id - 1));
} else {
msg_puts("NONE");
}
msg_putchar(' ');
}
}
// list the link, if there is one
if (highlight_link_id(id - 1) && (did_header || link_only) && !got_int) {
(void)syn_list_header(did_header, 0, id, true);
msg_puts_attr("links to", attr);
msg_putchar(' ');
msg_outtrans(highlight_group_name(highlight_link_id(id - 1) - 1));
}
}
static void syn_list_flags(struct name_list *nlist, int flags, int attr)
{
int i;
for (i = 0; nlist[i].flag != 0; i++) {
if (flags & nlist[i].flag) {
msg_puts_attr(nlist[i].name, attr);
msg_putchar(' ');
}
}
}
// List one syntax cluster, for ":syntax" or "syntax list syntax_name".
static void syn_list_cluster(int id)
{
int endcol = 15;
// slight hack: roughly duplicate the guts of syn_list_header()
msg_putchar('\n');
msg_outtrans((char *)SYN_CLSTR(curwin->w_s)[id].scl_name);
if (msg_col >= endcol) { // output at least one space
endcol = msg_col + 1;
}
if (Columns <= endcol) { // avoid hang for tiny window
endcol = Columns - 1;
}
msg_advance(endcol);
if (SYN_CLSTR(curwin->w_s)[id].scl_list != NULL) {
put_id_list("cluster", SYN_CLSTR(curwin->w_s)[id].scl_list, HL_ATTR(HLF_D));
} else {
msg_puts_attr("cluster", HL_ATTR(HLF_D));
msg_puts("=NONE");
}
}
static void put_id_list(const char *const name, const int16_t *const list, const int attr)
{
msg_puts_attr(name, attr);
msg_putchar('=');
for (const int16_t *p = list; *p; p++) {
if (*p >= SYNID_ALLBUT && *p < SYNID_TOP) {
if (p[1]) {
msg_puts("ALLBUT");
} else {
msg_puts("ALL");
}
} else if (*p >= SYNID_TOP && *p < SYNID_CONTAINED) {
msg_puts("TOP");
} else if (*p >= SYNID_CONTAINED && *p < SYNID_CLUSTER) {
msg_puts("CONTAINED");
} else if (*p >= SYNID_CLUSTER) {
int scl_id = *p - SYNID_CLUSTER;
msg_putchar('@');
msg_outtrans((char *)SYN_CLSTR(curwin->w_s)[scl_id].scl_name);
} else {
msg_outtrans(highlight_group_name(*p - 1));
}
if (p[1]) {
msg_putchar(',');
}
}
msg_putchar(' ');
}
static void put_pattern(const char *const s, const int c, const synpat_T *const spp, const int attr)
{
static const char *const sepchars = "/+=-#@\"|'^&";
int i;
// May have to write "matchgroup=group"
if (last_matchgroup != spp->sp_syn_match_id) {
last_matchgroup = spp->sp_syn_match_id;
msg_puts_attr("matchgroup", attr);
msg_putchar('=');
if (last_matchgroup == 0) {
msg_outtrans("NONE");
} else {
msg_outtrans(highlight_group_name(last_matchgroup - 1));
}
msg_putchar(' ');
}
// Output the name of the pattern and an '=' or ' '.
msg_puts_attr(s, attr);
msg_putchar(c);
// output the pattern, in between a char that is not in the pattern
for (i = 0; vim_strchr(spp->sp_pattern, (uint8_t)sepchars[i]) != NULL;) {
if (sepchars[++i] == NUL) {
i = 0; // no good char found, just use the first one
break;
}
}
msg_putchar(sepchars[i]);
msg_outtrans(spp->sp_pattern);
msg_putchar(sepchars[i]);
// output any pattern options
bool first = true;
for (i = 0; i < SPO_COUNT; i++) {
const int mask = (1 << i);
if (!(spp->sp_off_flags & (mask + (mask << SPO_COUNT)))) {
continue;
}
if (!first) {
msg_putchar(','); // Separate with commas.
}
msg_puts(spo_name_tab[i]);
const long n = spp->sp_offsets[i];
if (i != SPO_LC_OFF) {
if (spp->sp_off_flags & mask) {
msg_putchar('s');
} else {
msg_putchar('e');
}
if (n > 0) {
msg_putchar('+');
}
}
if (n || i == SPO_LC_OFF) {
msg_outnum(n);
}
first = false;
}
msg_putchar(' ');
}
/// List or clear the keywords for one syntax group.
///
/// @param did_header header has already been printed
///
/// @return true if the header has been printed.
static bool syn_list_keywords(const int id, const hashtab_T *const ht, bool did_header,
const int attr)
{
int prev_contained = 0;
const int16_t *prev_next_list = NULL;
const int16_t *prev_cont_in_list = NULL;
int prev_skipnl = 0;
int prev_skipwhite = 0;
int prev_skipempty = 0;
// Unfortunately, this list of keywords is not sorted on alphabet but on
// hash value...
size_t todo = ht->ht_used;
for (const hashitem_T *hi = ht->ht_array; todo > 0 && !got_int; hi++) {
if (HASHITEM_EMPTY(hi)) {
continue;
}
todo--;
for (keyentry_T *kp = HI2KE(hi); kp != NULL && !got_int; kp = kp->ke_next) {
if (kp->k_syn.id == id) {
int outlen = 0;
bool force_newline = false;
if (prev_contained != (kp->flags & HL_CONTAINED)
|| prev_skipnl != (kp->flags & HL_SKIPNL)
|| prev_skipwhite != (kp->flags & HL_SKIPWHITE)
|| prev_skipempty != (kp->flags & HL_SKIPEMPTY)
|| prev_cont_in_list != kp->k_syn.cont_in_list
|| prev_next_list != kp->next_list) {
force_newline = true;
} else {
outlen = (int)strlen(kp->keyword);
}
// output "contained" and "nextgroup" on each line
if (syn_list_header(did_header, outlen, id, force_newline)) {
prev_contained = 0;
prev_next_list = NULL;
prev_cont_in_list = NULL;
prev_skipnl = 0;
prev_skipwhite = 0;
prev_skipempty = 0;
}
did_header = true;
if (prev_contained != (kp->flags & HL_CONTAINED)) {
msg_puts_attr("contained", attr);
msg_putchar(' ');
prev_contained = (kp->flags & HL_CONTAINED);
}
if (kp->k_syn.cont_in_list != prev_cont_in_list) {
put_id_list("containedin", kp->k_syn.cont_in_list, attr);
msg_putchar(' ');
prev_cont_in_list = kp->k_syn.cont_in_list;
}
if (kp->next_list != prev_next_list) {
put_id_list("nextgroup", kp->next_list, attr);
msg_putchar(' ');
prev_next_list = kp->next_list;
if (kp->flags & HL_SKIPNL) {
msg_puts_attr("skipnl", attr);
msg_putchar(' ');
prev_skipnl = (kp->flags & HL_SKIPNL);
}
if (kp->flags & HL_SKIPWHITE) {
msg_puts_attr("skipwhite", attr);
msg_putchar(' ');
prev_skipwhite = (kp->flags & HL_SKIPWHITE);
}
if (kp->flags & HL_SKIPEMPTY) {
msg_puts_attr("skipempty", attr);
msg_putchar(' ');
prev_skipempty = (kp->flags & HL_SKIPEMPTY);
}
}
msg_outtrans((char *)kp->keyword);
}
}
}
return did_header;
}
static void syn_clear_keyword(int id, hashtab_T *ht)
{
hashitem_T *hi;
keyentry_T *kp;
keyentry_T *kp_prev;
keyentry_T *kp_next;
int todo;
hash_lock(ht);
todo = (int)ht->ht_used;
for (hi = ht->ht_array; todo > 0; hi++) {
if (HASHITEM_EMPTY(hi)) {
continue;
}
todo--;
kp_prev = NULL;
for (kp = HI2KE(hi); kp != NULL;) {
if (kp->k_syn.id == id) {
kp_next = kp->ke_next;
if (kp_prev == NULL) {
if (kp_next == NULL) {
hash_remove(ht, hi);
} else {
hi->hi_key = (char *)KE2HIKEY(kp_next);
}
} else {
kp_prev->ke_next = kp_next;
}
xfree(kp->next_list);
xfree(kp->k_syn.cont_in_list);
xfree(kp);
kp = kp_next;
} else {
kp_prev = kp;
kp = kp->ke_next;
}
}
}
hash_unlock(ht);
}
// Clear a whole keyword table.
static void clear_keywtab(hashtab_T *ht)
{
hashitem_T *hi;
int todo;
keyentry_T *kp;
keyentry_T *kp_next;
todo = (int)ht->ht_used;
for (hi = ht->ht_array; todo > 0; hi++) {
if (!HASHITEM_EMPTY(hi)) {
todo--;
for (kp = HI2KE(hi); kp != NULL; kp = kp_next) {
kp_next = kp->ke_next;
xfree(kp->next_list);
xfree(kp->k_syn.cont_in_list);
xfree(kp);
}
}
}
hash_clear(ht);
hash_init(ht);
}
/// Add a keyword to the list of keywords.
///
/// @param name name of keyword
/// @param id group ID for this keyword
/// @param flags flags for this keyword
/// @param cont_in_list containedin for this keyword
/// @param next_list nextgroup for this keyword
static void add_keyword(char *const name, const int id, const int flags,
int16_t *const cont_in_list, int16_t *const next_list,
const int conceal_char)
{
char name_folded[MAXKEYWLEN + 1];
const char *const name_ic = (curwin->w_s->b_syn_ic)
? str_foldcase(name, (int)strlen(name), name_folded,
sizeof(name_folded))
: name;
keyentry_T *const kp = xmalloc(sizeof(keyentry_T) + strlen(name_ic));
STRCPY(kp->keyword, name_ic);
kp->k_syn.id = (int16_t)id;
kp->k_syn.inc_tag = current_syn_inc_tag;
kp->flags = flags;
kp->k_char = conceal_char;
kp->k_syn.cont_in_list = copy_id_list(cont_in_list);
if (cont_in_list != NULL) {
curwin->w_s->b_syn_containedin = true;
}
kp->next_list = copy_id_list(next_list);
const hash_T hash = hash_hash((char_u *)kp->keyword);
hashtab_T *const ht = (curwin->w_s->b_syn_ic)
? &curwin->w_s->b_keywtab_ic
: &curwin->w_s->b_keywtab;
hashitem_T *const hi = hash_lookup(ht, (const char *)kp->keyword,
strlen(kp->keyword), hash);
// even though it looks like only the kp->keyword member is
// being used here, vim uses some pointer trickery to get the original
// struct again later by using knowledge of the offset of the keyword
// field in the struct. See the definition of the HI2KE macro.
if (HASHITEM_EMPTY(hi)) {
// new keyword, add to hashtable
kp->ke_next = NULL;
hash_add_item(ht, hi, (char_u *)kp->keyword, hash);
} else {
// keyword already exists, prepend to list
kp->ke_next = HI2KE(hi);
hi->hi_key = (char *)KE2HIKEY(kp);
}
}
/// Get the start and end of the group name argument.
///
/// @param arg start of the argument
/// @param name_end pointer to end of the name
///
/// @return a pointer to the first argument.
/// Return NULL if the end of the command was found instead of further args.
static char *get_group_name(char *arg, char **name_end)
{
*name_end = skiptowhite(arg);
char *rest = skipwhite(*name_end);
// Check if there are enough arguments. The first argument may be a
// pattern, where '|' is allowed, so only check for NUL.
if (ends_excmd(*arg) || *rest == NUL) {
return NULL;
}
return rest;
}
/// Check for syntax command option arguments.
/// This can be called at any place in the list of arguments, and just picks
/// out the arguments that are known. Can be called several times in a row to
/// collect all options in between other arguments.
///
/// @param arg next argument to be checked
/// @param opt various things
/// @param skip true if skipping over command
///
/// @return a pointer to the next argument (which isn't an option).
/// Return NULL for any error;
static char *get_syn_options(char *arg, syn_opt_arg_T *opt, int *conceal_char, int skip)
{
char *gname_start, *gname;
int syn_id;
int len = 0;
char *p;
int fidx;
static const struct flag {
char *name;
int argtype;
int flags;
} flagtab[] = { { "cCoOnNtTaAiInNeEdD", 0, HL_CONTAINED },
{ "oOnNeElLiInNeE", 0, HL_ONELINE },
{ "kKeEeEpPeEnNdD", 0, HL_KEEPEND },
{ "eExXtTeEnNdD", 0, HL_EXTEND },
{ "eExXcClLuUdDeEnNlL", 0, HL_EXCLUDENL },
{ "tTrRaAnNsSpPaArReEnNtT", 0, HL_TRANSP },
{ "sSkKiIpPnNlL", 0, HL_SKIPNL },
{ "sSkKiIpPwWhHiItTeE", 0, HL_SKIPWHITE },
{ "sSkKiIpPeEmMpPtTyY", 0, HL_SKIPEMPTY },
{ "gGrRoOuUpPhHeErReE", 0, HL_SYNC_HERE },
{ "gGrRoOuUpPtThHeErReE", 0, HL_SYNC_THERE },
{ "dDiIsSpPlLaAyY", 0, HL_DISPLAY },
{ "fFoOlLdD", 0, HL_FOLD },
{ "cCoOnNcCeEaAlL", 0, HL_CONCEAL },
{ "cCoOnNcCeEaAlLeEnNdDsS", 0, HL_CONCEALENDS },
{ "cCcChHaArR", 11, 0 },
{ "cCoOnNtTaAiInNsS", 1, 0 },
{ "cCoOnNtTaAiInNeEdDiInN", 2, 0 },
{ "nNeExXtTgGrRoOuUpP", 3, 0 }, };
static const char *const first_letters = "cCoOkKeEtTsSgGdDfFnN";
if (arg == NULL) { // already detected error
return NULL;
}
if (curwin->w_s->b_syn_conceal) {
opt->flags |= HL_CONCEAL;
}
for (;;) {
// This is used very often when a large number of keywords is defined.
// Need to skip quickly when no option name is found.
// Also avoid tolower(), it's slow.
if (strchr(first_letters, *arg) == NULL) {
break;
}
for (fidx = ARRAY_SIZE(flagtab); --fidx >= 0;) {
p = flagtab[fidx].name;
int i;
for (i = 0, len = 0; p[i] != NUL; i += 2, len++) {
if (arg[len] != p[i] && arg[len] != p[i + 1]) {
break;
}
}
if (p[i] == NUL && (ascii_iswhite(arg[len])
|| (flagtab[fidx].argtype > 0
? arg[len] == '='
: ends_excmd(arg[len])))) {
if (opt->keyword
&& (flagtab[fidx].flags == HL_DISPLAY
|| flagtab[fidx].flags == HL_FOLD
|| flagtab[fidx].flags == HL_EXTEND)) {
// treat "display", "fold" and "extend" as a keyword
fidx = -1;
}
break;
}
}
if (fidx < 0) { // no match found
break;
}
if (flagtab[fidx].argtype == 1) {
if (!opt->has_cont_list) {
emsg(_("E395: contains argument not accepted here"));
return NULL;
}
if (get_id_list(&arg, 8, &opt->cont_list, skip) == FAIL) {
return NULL;
}
} else if (flagtab[fidx].argtype == 2) {
if (get_id_list(&arg, 11, &opt->cont_in_list, skip) == FAIL) {
return NULL;
}
} else if (flagtab[fidx].argtype == 3) {
if (get_id_list(&arg, 9, &opt->next_list, skip) == FAIL) {
return NULL;
}
} else if (flagtab[fidx].argtype == 11 && arg[5] == '=') {
// cchar=?
*conceal_char = utf_ptr2char(arg + 6);
arg += utfc_ptr2len(arg + 6) - 1;
if (!vim_isprintc_strict(*conceal_char)) {
emsg(_("E844: invalid cchar value"));
return NULL;
}
arg = skipwhite(arg + 7);
} else {
opt->flags |= flagtab[fidx].flags;
arg = skipwhite(arg + len);
if (flagtab[fidx].flags == HL_SYNC_HERE
|| flagtab[fidx].flags == HL_SYNC_THERE) {
if (opt->sync_idx == NULL) {
emsg(_("E393: group[t]here not accepted here"));
return NULL;
}
gname_start = arg;
arg = skiptowhite(arg);
if (gname_start == arg) {
return NULL;
}
gname = xstrnsave(gname_start, (size_t)(arg - gname_start));
if (strcmp(gname, "NONE") == 0) {
*opt->sync_idx = NONE_IDX;
} else {
syn_id = syn_name2id(gname);
int i;
for (i = curwin->w_s->b_syn_patterns.ga_len; --i >= 0;) {
if (SYN_ITEMS(curwin->w_s)[i].sp_syn.id == syn_id
&& SYN_ITEMS(curwin->w_s)[i].sp_type == SPTYPE_START) {
*opt->sync_idx = i;
break;
}
}
if (i < 0) {
semsg(_("E394: Didn't find region item for %s"), gname);
xfree(gname);
return NULL;
}
}
xfree(gname);
arg = skipwhite(arg);
} else if (flagtab[fidx].flags == HL_FOLD
&& foldmethodIsSyntax(curwin)) {
// Need to update folds later.
foldUpdateAll(curwin);
}
}
}
return arg;
}
// Adjustments to syntax item when declared in a ":syn include"'d file.
// Set the contained flag, and if the item is not already contained, add it
// to the specified top-level group, if any.
static void syn_incl_toplevel(int id, int *flagsp)
{
if ((*flagsp & HL_CONTAINED) || curwin->w_s->b_syn_topgrp == 0) {
return;
}
*flagsp |= HL_CONTAINED;
if (curwin->w_s->b_syn_topgrp >= SYNID_CLUSTER) {
// We have to alloc this, because syn_combine_list() will free it.
int16_t *grp_list = xmalloc(2 * sizeof(*grp_list));
int tlg_id = curwin->w_s->b_syn_topgrp - SYNID_CLUSTER;
grp_list[0] = (int16_t)id;
grp_list[1] = 0;
syn_combine_list(&SYN_CLSTR(curwin->w_s)[tlg_id].scl_list, &grp_list,
CLUSTER_ADD);
}
}
// Handle ":syntax include [@{group-name}] filename" command.
static void syn_cmd_include(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
int sgl_id = 1;
char *group_name_end;
char *rest;
char *errormsg = NULL;
int prev_toplvl_grp;
int prev_syn_inc_tag;
bool source = false;
eap->nextcmd = find_nextcmd(arg);
if (eap->skip) {
return;
}
if (arg[0] == '@') {
arg++;
rest = get_group_name(arg, &group_name_end);
if (rest == NULL) {
emsg(_("E397: Filename required"));
return;
}
sgl_id = syn_check_cluster(arg, (int)(group_name_end - arg));
if (sgl_id == 0) {
return;
}
// separate_nextcmd() and expand_filename() depend on this
eap->arg = rest;
}
// Everything that's left, up to the next command, should be the
// filename to include.
eap->argt |= (EX_XFILE | EX_NOSPC);
separate_nextcmd(eap);
if (*eap->arg == '<' || *eap->arg == '$' || path_is_absolute(eap->arg)) {
// For an absolute path, "$VIM/..." or "<sfile>.." we ":source" the
// file. Need to expand the file name first. In other cases
// ":runtime!" is used.
source = true;
if (expand_filename(eap, syn_cmdlinep, &errormsg) == FAIL) {
if (errormsg != NULL) {
emsg(errormsg);
}
return;
}
}
// Save and restore the existing top-level grouplist id and ":syn
// include" tag around the actual inclusion.
if (running_syn_inc_tag >= MAX_SYN_INC_TAG) {
emsg(_("E847: Too many syntax includes"));
return;
}
prev_syn_inc_tag = current_syn_inc_tag;
current_syn_inc_tag = ++running_syn_inc_tag;
prev_toplvl_grp = curwin->w_s->b_syn_topgrp;
curwin->w_s->b_syn_topgrp = sgl_id;
if (source
? do_source(eap->arg, false, DOSO_NONE) == FAIL
: source_runtime(eap->arg, DIP_ALL) == FAIL) {
semsg(_(e_notopen), eap->arg);
}
curwin->w_s->b_syn_topgrp = prev_toplvl_grp;
current_syn_inc_tag = prev_syn_inc_tag;
}
// Handle ":syntax keyword {group-name} [{option}] keyword .." command.
static void syn_cmd_keyword(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *group_name_end;
int syn_id;
char *rest;
char *keyword_copy = NULL;
char *p;
char *kw;
syn_opt_arg_T syn_opt_arg;
int cnt;
int conceal_char = NUL;
rest = get_group_name(arg, &group_name_end);
if (rest != NULL) {
if (eap->skip) {
syn_id = -1;
} else {
syn_id = syn_check_group(arg, (size_t)(group_name_end - arg));
}
if (syn_id != 0) {
// Allocate a buffer, for removing backslashes in the keyword.
keyword_copy = xmalloc(strlen(rest) + 1);
}
if (keyword_copy != NULL) {
syn_opt_arg.flags = 0;
syn_opt_arg.keyword = true;
syn_opt_arg.sync_idx = NULL;
syn_opt_arg.has_cont_list = false;
syn_opt_arg.cont_in_list = NULL;
syn_opt_arg.next_list = NULL;
// The options given apply to ALL keywords, so all options must be
// found before keywords can be created.
// 1: collect the options and copy the keywords to keyword_copy.
cnt = 0;
p = keyword_copy;
for (; rest != NULL && !ends_excmd(*rest); rest = skipwhite(rest)) {
rest = get_syn_options(rest, &syn_opt_arg, &conceal_char, eap->skip);
if (rest == NULL || ends_excmd(*rest)) {
break;
}
// Copy the keyword, removing backslashes, and add a NUL.
while (*rest != NUL && !ascii_iswhite(*rest)) {
if (*rest == '\\' && rest[1] != NUL) {
rest++;
}
*p++ = *rest++;
}
*p++ = NUL;
cnt++;
}
if (!eap->skip) {
// Adjust flags for use of ":syn include".
syn_incl_toplevel(syn_id, &syn_opt_arg.flags);
// 2: Add an entry for each keyword.
for (kw = keyword_copy; --cnt >= 0; kw += strlen(kw) + 1) {
for (p = vim_strchr(kw, '[');;) {
if (p != NULL) {
*p = NUL;
}
add_keyword(kw, syn_id, syn_opt_arg.flags,
syn_opt_arg.cont_in_list,
syn_opt_arg.next_list, conceal_char);
if (p == NULL) {
break;
}
if (p[1] == NUL) {
semsg(_("E789: Missing ']': %s"), kw);
goto error;
}
if (p[1] == ']') {
if (p[2] != NUL) {
semsg(_("E890: trailing char after ']': %s]%s"),
kw, &p[2]);
goto error;
}
kw = p + 1;
break; // skip over the "]"
}
const int l = utfc_ptr2len(p + 1);
memmove(p, p + 1, (size_t)l);
p += l;
}
}
}
error:
xfree(keyword_copy);
xfree(syn_opt_arg.cont_in_list);
xfree(syn_opt_arg.next_list);
}
}
if (rest != NULL) {
eap->nextcmd = check_nextcmd(rest);
} else {
semsg(_(e_invarg2), arg);
}
redraw_curbuf_later(UPD_SOME_VALID);
syn_stack_free_all(curwin->w_s); // Need to recompute all syntax.
}
/// Handle ":syntax match {name} [{options}] {pattern} [{options}]".
///
/// Also ":syntax sync match {name} [[grouphere | groupthere] {group-name}] .."
///
/// @param syncing true for ":syntax sync match .. "
static void syn_cmd_match(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *group_name_end;
synpat_T item; // the item found in the line
int syn_id;
syn_opt_arg_T syn_opt_arg;
int sync_idx = 0;
int conceal_char = NUL;
// Isolate the group name, check for validity
char *rest = get_group_name(arg, &group_name_end);
// Get options before the pattern
syn_opt_arg.flags = 0;
syn_opt_arg.keyword = false;
syn_opt_arg.sync_idx = syncing ? &sync_idx : NULL;
syn_opt_arg.has_cont_list = true;
syn_opt_arg.cont_list = NULL;
syn_opt_arg.cont_in_list = NULL;
syn_opt_arg.next_list = NULL;
rest = get_syn_options(rest, &syn_opt_arg, &conceal_char, eap->skip);
// get the pattern.
init_syn_patterns();
CLEAR_FIELD(item);
rest = get_syn_pattern(rest, &item);
if (vim_regcomp_had_eol() && !(syn_opt_arg.flags & HL_EXCLUDENL)) {
syn_opt_arg.flags |= HL_HAS_EOL;
}
// Get options after the pattern
rest = get_syn_options(rest, &syn_opt_arg, &conceal_char, eap->skip);
if (rest != NULL) { // all arguments are valid
// Check for trailing command and illegal trailing arguments.
eap->nextcmd = check_nextcmd(rest);
if (!ends_excmd(*rest) || eap->skip) {
rest = NULL;
} else {
if ((syn_id = syn_check_group(arg, (size_t)(group_name_end - arg))) != 0) {
syn_incl_toplevel(syn_id, &syn_opt_arg.flags);
// Store the pattern in the syn_items list
synpat_T *spp = GA_APPEND_VIA_PTR(synpat_T,
&curwin->w_s->b_syn_patterns);
*spp = item;
spp->sp_syncing = syncing;
spp->sp_type = SPTYPE_MATCH;
spp->sp_syn.id = (int16_t)syn_id;
spp->sp_syn.inc_tag = current_syn_inc_tag;
spp->sp_flags = syn_opt_arg.flags;
spp->sp_sync_idx = sync_idx;
spp->sp_cont_list = syn_opt_arg.cont_list;
spp->sp_syn.cont_in_list = syn_opt_arg.cont_in_list;
spp->sp_cchar = conceal_char;
if (syn_opt_arg.cont_in_list != NULL) {
curwin->w_s->b_syn_containedin = true;
}
spp->sp_next_list = syn_opt_arg.next_list;
// remember that we found a match for syncing on
if (syn_opt_arg.flags & (HL_SYNC_HERE|HL_SYNC_THERE)) {
curwin->w_s->b_syn_sync_flags |= SF_MATCH;
}
if (syn_opt_arg.flags & HL_FOLD) {
curwin->w_s->b_syn_folditems++;
}
redraw_curbuf_later(UPD_SOME_VALID);
syn_stack_free_all(curwin->w_s); // Need to recompute all syntax.
return; // don't free the progs and patterns now
}
}
}
// Something failed, free the allocated memory.
vim_regfree(item.sp_prog);
xfree(item.sp_pattern);
xfree(syn_opt_arg.cont_list);
xfree(syn_opt_arg.cont_in_list);
xfree(syn_opt_arg.next_list);
if (rest == NULL) {
semsg(_(e_invarg2), arg);
}
}
/// Handle ":syntax region {group-name} [matchgroup={group-name}]
/// start {start} .. [skip {skip}] end {end} .. [{options}]".
///
/// @param syncing true for ":syntax sync region .."
static void syn_cmd_region(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *group_name_end;
char *rest; // next arg, NULL on error
char *key_end;
char *key = NULL;
char *p;
int item;
#define ITEM_START 0
#define ITEM_SKIP 1
#define ITEM_END 2
#define ITEM_MATCHGROUP 3
struct pat_ptr {
synpat_T *pp_synp; // pointer to syn_pattern
int pp_matchgroup_id; // matchgroup ID
struct pat_ptr *pp_next; // pointer to next pat_ptr
} *(pat_ptrs[3]);
// patterns found in the line
struct pat_ptr *ppp;
struct pat_ptr *ppp_next;
int pat_count = 0; // nr of syn_patterns found
int syn_id;
int matchgroup_id = 0;
bool not_enough = false; // not enough arguments
bool illegal = false; // illegal arguments
bool success = false;
syn_opt_arg_T syn_opt_arg;
int conceal_char = NUL;
// Isolate the group name, check for validity
rest = get_group_name(arg, &group_name_end);
pat_ptrs[0] = NULL;
pat_ptrs[1] = NULL;
pat_ptrs[2] = NULL;
init_syn_patterns();
syn_opt_arg.flags = 0;
syn_opt_arg.keyword = false;
syn_opt_arg.sync_idx = NULL;
syn_opt_arg.has_cont_list = true;
syn_opt_arg.cont_list = NULL;
syn_opt_arg.cont_in_list = NULL;
syn_opt_arg.next_list = NULL;
// get the options, patterns and matchgroup.
while (rest != NULL && !ends_excmd(*rest)) {
// Check for option arguments
rest = get_syn_options(rest, &syn_opt_arg, &conceal_char, eap->skip);
if (rest == NULL || ends_excmd(*rest)) {
break;
}
// must be a pattern or matchgroup then
key_end = rest;
while (*key_end && !ascii_iswhite(*key_end) && *key_end != '=') {
key_end++;
}
xfree(key);
key = vim_strnsave_up(rest, (size_t)(key_end - rest));
if (strcmp(key, "MATCHGROUP") == 0) {
item = ITEM_MATCHGROUP;
} else if (strcmp(key, "START") == 0) {
item = ITEM_START;
} else if (strcmp(key, "END") == 0) {
item = ITEM_END;
} else if (strcmp(key, "SKIP") == 0) {
if (pat_ptrs[ITEM_SKIP] != NULL) { // One skip pattern allowed.
illegal = true;
break;
}
item = ITEM_SKIP;
} else {
break;
}
rest = skipwhite(key_end);
if (*rest != '=') {
rest = NULL;
semsg(_("E398: Missing '=': %s"), arg);
break;
}
rest = skipwhite(rest + 1);
if (*rest == NUL) {
not_enough = true;
break;
}
if (item == ITEM_MATCHGROUP) {
p = skiptowhite(rest);
if ((p - rest == 4 && strncmp(rest, "NONE", 4) == 0) || eap->skip) {
matchgroup_id = 0;
} else {
matchgroup_id = syn_check_group(rest, (size_t)(p - rest));
if (matchgroup_id == 0) {
illegal = true;
break;
}
}
rest = skipwhite(p);
} else {
// Allocate room for a syn_pattern, and link it in the list of
// syn_patterns for this item, at the start (because the list is
// used from end to start).
ppp = xmalloc(sizeof(struct pat_ptr));
ppp->pp_next = pat_ptrs[item];
pat_ptrs[item] = ppp;
ppp->pp_synp = xcalloc(1, sizeof(synpat_T));
// Get the syntax pattern and the following offset(s).
// Enable the appropriate \z specials.
if (item == ITEM_START) {
reg_do_extmatch = REX_SET;
} else {
assert(item == ITEM_SKIP || item == ITEM_END);
reg_do_extmatch = REX_USE;
}
rest = get_syn_pattern(rest, ppp->pp_synp);
reg_do_extmatch = 0;
if (item == ITEM_END && vim_regcomp_had_eol()
&& !(syn_opt_arg.flags & HL_EXCLUDENL)) {
ppp->pp_synp->sp_flags |= HL_HAS_EOL;
}
ppp->pp_matchgroup_id = matchgroup_id;
pat_count++;
}
}
xfree(key);
if (illegal || not_enough) {
rest = NULL;
}
// Must have a "start" and "end" pattern.
if (rest != NULL && (pat_ptrs[ITEM_START] == NULL
|| pat_ptrs[ITEM_END] == NULL)) {
not_enough = true;
rest = NULL;
}
if (rest != NULL) {
// Check for trailing garbage or command.
// If OK, add the item.
eap->nextcmd = check_nextcmd(rest);
if (!ends_excmd(*rest) || eap->skip) {
rest = NULL;
} else {
ga_grow(&(curwin->w_s->b_syn_patterns), pat_count);
if ((syn_id = syn_check_group(arg, (size_t)(group_name_end - arg))) != 0) {
syn_incl_toplevel(syn_id, &syn_opt_arg.flags);
// Store the start/skip/end in the syn_items list
int idx = curwin->w_s->b_syn_patterns.ga_len;
for (item = ITEM_START; item <= ITEM_END; item++) {
for (ppp = pat_ptrs[item]; ppp != NULL; ppp = ppp->pp_next) {
SYN_ITEMS(curwin->w_s)[idx] = *(ppp->pp_synp);
SYN_ITEMS(curwin->w_s)[idx].sp_syncing = syncing;
SYN_ITEMS(curwin->w_s)[idx].sp_type =
(item == ITEM_START) ? SPTYPE_START :
(item == ITEM_SKIP) ? SPTYPE_SKIP : SPTYPE_END;
SYN_ITEMS(curwin->w_s)[idx].sp_flags |= syn_opt_arg.flags;
SYN_ITEMS(curwin->w_s)[idx].sp_syn.id = (int16_t)syn_id;
SYN_ITEMS(curwin->w_s)[idx].sp_syn.inc_tag =
current_syn_inc_tag;
SYN_ITEMS(curwin->w_s)[idx].sp_syn_match_id = (int16_t)ppp->pp_matchgroup_id;
SYN_ITEMS(curwin->w_s)[idx].sp_cchar = conceal_char;
if (item == ITEM_START) {
SYN_ITEMS(curwin->w_s)[idx].sp_cont_list =
syn_opt_arg.cont_list;
SYN_ITEMS(curwin->w_s)[idx].sp_syn.cont_in_list =
syn_opt_arg.cont_in_list;
if (syn_opt_arg.cont_in_list != NULL) {
curwin->w_s->b_syn_containedin = true;
}
SYN_ITEMS(curwin->w_s)[idx].sp_next_list =
syn_opt_arg.next_list;
}
curwin->w_s->b_syn_patterns.ga_len++;
idx++;
if (syn_opt_arg.flags & HL_FOLD) {
curwin->w_s->b_syn_folditems++;
}
}
}
redraw_curbuf_later(UPD_SOME_VALID);
syn_stack_free_all(curwin->w_s); // Need to recompute all syntax.
success = true; // don't free the progs and patterns now
}
}
}
// Free the allocated memory.
for (item = ITEM_START; item <= ITEM_END; item++) {
for (ppp = pat_ptrs[item]; ppp != NULL; ppp = ppp_next) {
if (!success && ppp->pp_synp != NULL) {
vim_regfree(ppp->pp_synp->sp_prog);
xfree(ppp->pp_synp->sp_pattern);
}
xfree(ppp->pp_synp);
ppp_next = ppp->pp_next;
xfree(ppp);
}
}
if (!success) {
xfree(syn_opt_arg.cont_list);
xfree(syn_opt_arg.cont_in_list);
xfree(syn_opt_arg.next_list);
if (not_enough) {
semsg(_("E399: Not enough arguments: syntax region %s"), arg);
} else if (illegal || rest == NULL) {
semsg(_(e_invarg2), arg);
}
}
}
// A simple syntax group ID comparison function suitable for use in qsort()
static int syn_compare_stub(const void *const v1, const void *const v2)
{
const int16_t *const s1 = v1;
const int16_t *const s2 = v2;
return *s1 > *s2 ? 1 : *s1 < *s2 ? -1 : 0;
}
// Combines lists of syntax clusters.
// *clstr1 and *clstr2 must both be allocated memory; they will be consumed.
static void syn_combine_list(int16_t **const clstr1, int16_t **const clstr2, const int list_op)
{
size_t count1 = 0;
size_t count2 = 0;
const int16_t *g1;
const int16_t *g2;
int16_t *clstr = NULL;
// Handle degenerate cases.
if (*clstr2 == NULL) {
return;
}
if (*clstr1 == NULL || list_op == CLUSTER_REPLACE) {
if (list_op == CLUSTER_REPLACE) {
xfree(*clstr1);
}
if (list_op == CLUSTER_REPLACE || list_op == CLUSTER_ADD) {
*clstr1 = *clstr2;
} else {
xfree(*clstr2);
}
return;
}
for (g1 = *clstr1; *g1; g1++) {
count1++;
}
for (g2 = *clstr2; *g2; g2++) {
count2++;
}
// For speed purposes, sort both lists.
qsort(*clstr1, count1, sizeof(**clstr1), syn_compare_stub);
qsort(*clstr2, count2, sizeof(**clstr2), syn_compare_stub);
// We proceed in two passes; in round 1, we count the elements to place
// in the new list, and in round 2, we allocate and populate the new
// list. For speed, we use a mergesort-like method, adding the smaller
// of the current elements in each list to the new list.
for (int round = 1; round <= 2; round++) {
g1 = *clstr1;
g2 = *clstr2;
int count = 0;
// First, loop through the lists until one of them is empty.
while (*g1 && *g2) {
// We always want to add from the first list.
if (*g1 < *g2) {
if (round == 2) {
clstr[count] = *g1;
}
count++;
g1++;
continue;
}
// We only want to add from the second list if we're adding the
// lists.
if (list_op == CLUSTER_ADD) {
if (round == 2) {
clstr[count] = *g2;
}
count++;
}
if (*g1 == *g2) {
g1++;
}
g2++;
}
// Now add the leftovers from whichever list didn't get finished
// first. As before, we only want to add from the second list if
// we're adding the lists.
for (; *g1; g1++, count++) {
if (round == 2) {
clstr[count] = *g1;
}
}
if (list_op == CLUSTER_ADD) {
for (; *g2; g2++, count++) {
if (round == 2) {
clstr[count] = *g2;
}
}
}
if (round == 1) {
// If the group ended up empty, we don't need to allocate any
// space for it.
if (count == 0) {
clstr = NULL;
break;
}
clstr = xmalloc(((size_t)count + 1) * sizeof(*clstr));
clstr[count] = 0;
}
}
// Finally, put the new list in place.
xfree(*clstr1);
xfree(*clstr2);
*clstr1 = clstr;
}
/// Lookup a syntax cluster name and return its ID.
/// If it is not found, 0 is returned.
static int syn_scl_name2id(char *name)
{
// Avoid using stricmp() too much, it's slow on some systems
char *name_u = vim_strsave_up(name);
int i;
for (i = curwin->w_s->b_syn_clusters.ga_len; --i >= 0;) {
if (SYN_CLSTR(curwin->w_s)[i].scl_name_u != NULL
&& strcmp(name_u, SYN_CLSTR(curwin->w_s)[i].scl_name_u) == 0) {
break;
}
}
xfree(name_u);
return i < 0 ? 0 : i + SYNID_CLUSTER;
}
/// Like syn_scl_name2id(), but take a pointer + length argument.
static int syn_scl_namen2id(char *linep, int len)
{
char *name = xstrnsave(linep, (size_t)len);
int id = syn_scl_name2id(name);
xfree(name);
return id;
}
/// Find syntax cluster name in the table and return its ID.
/// The argument is a pointer to the name and the length of the name.
/// If it doesn't exist yet, a new entry is created.
///
/// @return 0 for failure.
static int syn_check_cluster(char *pp, int len)
{
char *name = xstrnsave(pp, (size_t)len);
int id = syn_scl_name2id(name);
if (id == 0) { // doesn't exist yet
id = syn_add_cluster(name);
} else {
xfree(name);
}
return id;
}
/// Add new syntax cluster and return its ID.
/// "name" must be an allocated string, it will be consumed.
///
/// @return 0 for failure.
static int syn_add_cluster(char *name)
{
// First call for this growarray: init growing array.
if (curwin->w_s->b_syn_clusters.ga_data == NULL) {
curwin->w_s->b_syn_clusters.ga_itemsize = sizeof(syn_cluster_T);
ga_set_growsize(&curwin->w_s->b_syn_clusters, 10);
}
int len = curwin->w_s->b_syn_clusters.ga_len;
if (len >= MAX_CLUSTER_ID) {
emsg(_("E848: Too many syntax clusters"));
xfree(name);
return 0;
}
syn_cluster_T *scp = GA_APPEND_VIA_PTR(syn_cluster_T,
&curwin->w_s->b_syn_clusters);
CLEAR_POINTER(scp);
scp->scl_name = (char_u *)name;
scp->scl_name_u = vim_strsave_up(name);
scp->scl_list = NULL;
if (STRICMP(name, "Spell") == 0) {
curwin->w_s->b_spell_cluster_id = len + SYNID_CLUSTER;
}
if (STRICMP(name, "NoSpell") == 0) {
curwin->w_s->b_nospell_cluster_id = len + SYNID_CLUSTER;
}
return len + SYNID_CLUSTER;
}
// Handle ":syntax cluster {cluster-name} [contains={groupname},..]
// [add={groupname},..] [remove={groupname},..]".
static void syn_cmd_cluster(exarg_T *eap, int syncing)
{
char *arg = eap->arg;
char *group_name_end;
char *rest;
bool got_clstr = false;
int opt_len;
int list_op;
eap->nextcmd = find_nextcmd(arg);
if (eap->skip) {
return;
}
rest = get_group_name(arg, &group_name_end);
if (rest != NULL) {
int scl_id = syn_check_cluster(arg, (int)(group_name_end - arg));
if (scl_id == 0) {
return;
}
scl_id -= SYNID_CLUSTER;
for (;;) {
if (STRNICMP(rest, "add", 3) == 0
&& (ascii_iswhite(rest[3]) || rest[3] == '=')) {
opt_len = 3;
list_op = CLUSTER_ADD;
} else if (STRNICMP(rest, "remove", 6) == 0
&& (ascii_iswhite(rest[6]) || rest[6] == '=')) {
opt_len = 6;
list_op = CLUSTER_SUBTRACT;
} else if (STRNICMP(rest, "contains", 8) == 0
&& (ascii_iswhite(rest[8]) || rest[8] == '=')) {
opt_len = 8;
list_op = CLUSTER_REPLACE;
} else {
break;
}
int16_t *clstr_list = NULL;
if (get_id_list(&rest, opt_len, &clstr_list, eap->skip) == FAIL) {
semsg(_(e_invarg2), rest);
break;
}
if (scl_id >= 0) {
syn_combine_list(&SYN_CLSTR(curwin->w_s)[scl_id].scl_list,
&clstr_list, list_op);
} else {
xfree(clstr_list);
}
got_clstr = true;
}
if (got_clstr) {
redraw_curbuf_later(UPD_SOME_VALID);
syn_stack_free_all(curwin->w_s); // Need to recompute all.
}
}
if (!got_clstr) {
emsg(_("E400: No cluster specified"));
}
if (rest == NULL || !ends_excmd(*rest)) {
semsg(_(e_invarg2), arg);
}
}
// On first call for current buffer: Init growing array.
static void init_syn_patterns(void)
{
curwin->w_s->b_syn_patterns.ga_itemsize = sizeof(synpat_T);
ga_set_growsize(&curwin->w_s->b_syn_patterns, 10);
}
/// Get one pattern for a ":syntax match" or ":syntax region" command.
/// Stores the pattern and program in a synpat_T.
///
/// @return a pointer to the next argument, or NULL in case of an error.
static char *get_syn_pattern(char *arg, synpat_T *ci)
{
char *end;
int *p;
int idx;
char *cpo_save;
// need at least three chars
if (arg == NULL || arg[0] == NUL || arg[1] == NUL || arg[2] == NUL) {
return NULL;
}
end = skip_regexp(arg + 1, *arg, true);
if (*end != *arg) { // end delimiter not found
semsg(_("E401: Pattern delimiter not found: %s"), arg);
return NULL;
}
// store the pattern and compiled regexp program
ci->sp_pattern = xstrnsave(arg + 1, (size_t)(end - arg) - 1);
// Make 'cpoptions' empty, to avoid the 'l' flag
cpo_save = p_cpo;
p_cpo = empty_option;
ci->sp_prog = vim_regcomp(ci->sp_pattern, RE_MAGIC);
p_cpo = cpo_save;
if (ci->sp_prog == NULL) {
return NULL;
}
ci->sp_ic = curwin->w_s->b_syn_ic;
syn_clear_time(&ci->sp_time);
// Check for a match, highlight or region offset.
end++;
do {
for (idx = SPO_COUNT; --idx >= 0;) {
if (strncmp(end, spo_name_tab[idx], 3) == 0) {
break;
}
}
if (idx >= 0) {
p = &(ci->sp_offsets[idx]);
if (idx != SPO_LC_OFF) {
switch (end[3]) {
case 's':
break;
case 'b':
break;
case 'e':
idx += SPO_COUNT; break;
default:
idx = -1; break;
}
}
if (idx >= 0) {
ci->sp_off_flags |= (int16_t)(1 << idx);
if (idx == SPO_LC_OFF) { // lc=99
end += 3;
*p = getdigits_int(&end, true, 0);
// "lc=" offset automatically sets "ms=" offset
if (!(ci->sp_off_flags & (1 << SPO_MS_OFF))) {
ci->sp_off_flags |= (1 << SPO_MS_OFF);
ci->sp_offsets[SPO_MS_OFF] = *p;
}
} else { // yy=x+99
end += 4;
if (*end == '+') {
end++;
*p = getdigits_int(&end, true, 0); // positive offset
} else if (*end == '-') {
end++;
*p = -getdigits_int(&end, true, 0); // negative offset
}
}
if (*end != ',') {
break;
}
end++;
}
}
} while (idx >= 0);
if (!ends_excmd(*end) && !ascii_iswhite(*end)) {
semsg(_("E402: Garbage after pattern: %s"), arg);
return NULL;
}
return skipwhite(end);
}
/// Handle ":syntax sync .." command.
static void syn_cmd_sync(exarg_T *eap, int syncing)
{
char *arg_start = eap->arg;
char *arg_end;
char *key = NULL;
char *next_arg;
int illegal = false;
int finished = false;
char *cpo_save;
if (ends_excmd(*arg_start)) {
syn_cmd_list(eap, true);
return;
}
while (!ends_excmd(*arg_start)) {
arg_end = skiptowhite(arg_start);
next_arg = skipwhite(arg_end);
xfree(key);
key = vim_strnsave_up(arg_start, (size_t)(arg_end - arg_start));
if (strcmp(key, "CCOMMENT") == 0) {
if (!eap->skip) {
curwin->w_s->b_syn_sync_flags |= SF_CCOMMENT;
}
if (!ends_excmd(*next_arg)) {
arg_end = skiptowhite(next_arg);
if (!eap->skip) {
curwin->w_s->b_syn_sync_id =
(int16_t)syn_check_group(next_arg, (size_t)(arg_end - next_arg));
}
next_arg = skipwhite(arg_end);
} else if (!eap->skip) {
curwin->w_s->b_syn_sync_id = (int16_t)syn_name2id("Comment");
}
} else if (strncmp(key, "LINES", 5) == 0
|| strncmp(key, "MINLINES", 8) == 0
|| strncmp(key, "MAXLINES", 8) == 0
|| strncmp(key, "LINEBREAKS", 10) == 0) {
if (key[4] == 'S') {
arg_end = key + 6;
} else if (key[0] == 'L') {
arg_end = key + 11;
} else {
arg_end = key + 9;
}
if (arg_end[-1] != '=' || !ascii_isdigit(*arg_end)) {
illegal = true;
break;
}
linenr_T n = getdigits_int32(&arg_end, false, 0);
if (!eap->skip) {
if (key[4] == 'B') {
curwin->w_s->b_syn_sync_linebreaks = n;
} else if (key[1] == 'A') {
curwin->w_s->b_syn_sync_maxlines = n;
} else {
curwin->w_s->b_syn_sync_minlines = n;
}
}
} else if (strcmp(key, "FROMSTART") == 0) {
if (!eap->skip) {
curwin->w_s->b_syn_sync_minlines = MAXLNUM;
curwin->w_s->b_syn_sync_maxlines = 0;
}
} else if (strcmp(key, "LINECONT") == 0) {
if (*next_arg == NUL) { // missing pattern
illegal = true;
break;
}
if (curwin->w_s->b_syn_linecont_pat != NULL) {
emsg(_("E403: syntax sync: line continuations pattern specified twice"));
finished = true;
break;
}
arg_end = skip_regexp(next_arg + 1, *next_arg, true);
if (*arg_end != *next_arg) { // end delimiter not found
illegal = true;
break;
}
if (!eap->skip) {
// store the pattern and compiled regexp program
curwin->w_s->b_syn_linecont_pat =
xstrnsave(next_arg + 1, (size_t)(arg_end - next_arg) - 1);
curwin->w_s->b_syn_linecont_ic = curwin->w_s->b_syn_ic;
// Make 'cpoptions' empty, to avoid the 'l' flag
cpo_save = p_cpo;
p_cpo = empty_option;
curwin->w_s->b_syn_linecont_prog =
vim_regcomp(curwin->w_s->b_syn_linecont_pat, RE_MAGIC);
p_cpo = cpo_save;
syn_clear_time(&curwin->w_s->b_syn_linecont_time);
if (curwin->w_s->b_syn_linecont_prog == NULL) {
XFREE_CLEAR(curwin->w_s->b_syn_linecont_pat);
finished = true;
break;
}
}
next_arg = skipwhite(arg_end + 1);
} else {
eap->arg = next_arg;
if (strcmp(key, "MATCH") == 0) {
syn_cmd_match(eap, true);
} else if (strcmp(key, "REGION") == 0) {
syn_cmd_region(eap, true);
} else if (strcmp(key, "CLEAR") == 0) {
syn_cmd_clear(eap, true);
} else {
illegal = true;
}
finished = true;
break;
}
arg_start = next_arg;
}
xfree(key);
if (illegal) {
semsg(_("E404: Illegal arguments: %s"), arg_start);
} else if (!finished) {
eap->nextcmd = check_nextcmd(arg_start);
redraw_curbuf_later(UPD_SOME_VALID);
syn_stack_free_all(curwin->w_s); // Need to recompute all syntax.
}
}
/// Convert a line of highlight group names into a list of group ID numbers.
/// "arg" should point to the "contains" or "nextgroup" keyword.
/// "arg" is advanced to after the last group name.
/// Careful: the argument is modified (NULs added).
///
/// @param keylen length of keyword
/// @param list where to store the resulting list, if not NULL, the list is silently skipped!
///
/// @return FAIL for some error, OK for success.
static int get_id_list(char **const arg, const int keylen, int16_t **const list, const bool skip)
{
char *p = NULL;
char *end;
int total_count = 0;
int16_t *retval = NULL;
regmatch_T regmatch;
int id;
bool failed = false;
// We parse the list twice:
// round == 1: count the number of items, allocate the array.
// round == 2: fill the array with the items.
// In round 1 new groups may be added, causing the number of items to
// grow when a regexp is used. In that case round 1 is done once again.
for (int round = 1; round <= 2; round++) {
// skip "contains"
p = skipwhite(*arg + keylen);
if (*p != '=') {
semsg(_("E405: Missing equal sign: %s"), *arg);
break;
}
p = skipwhite(p + 1);
if (ends_excmd(*p)) {
semsg(_("E406: Empty argument: %s"), *arg);
break;
}
// parse the arguments after "contains"
int count = 0;
do {
for (end = p; *end && !ascii_iswhite(*end) && *end != ','; end++) {}
char *const name = xmalloc((size_t)(end - p) + 3); // leave room for "^$"
xstrlcpy(name + 1, p, (size_t)(end - p) + 1);
if (strcmp(name + 1, "ALLBUT") == 0
|| strcmp(name + 1, "ALL") == 0
|| strcmp(name + 1, "TOP") == 0
|| strcmp(name + 1, "CONTAINED") == 0) {
if (TOUPPER_ASC(**arg) != 'C') {
semsg(_("E407: %s not allowed here"), name + 1);
failed = true;
xfree(name);
break;
}
if (count != 0) {
semsg(_("E408: %s must be first in contains list"),
name + 1);
failed = true;
xfree(name);
break;
}
if (name[1] == 'A') {
id = SYNID_ALLBUT + current_syn_inc_tag;
} else if (name[1] == 'T') {
if (curwin->w_s->b_syn_topgrp >= SYNID_CLUSTER) {
id = curwin->w_s->b_syn_topgrp;
} else {
id = SYNID_TOP + current_syn_inc_tag;
}
} else {
id = SYNID_CONTAINED + current_syn_inc_tag;
}
} else if (name[1] == '@') {
if (skip) {
id = -1;
} else {
id = syn_check_cluster(name + 2, (int)(end - p - 1));
}
} else {
// Handle full group name.
if (strpbrk(name + 1, "\\.*^$~[") == NULL) {
id = syn_check_group((name + 1), (size_t)(end - p));
} else {
// Handle match of regexp with group names.
*name = '^';
STRCAT(name, "$");
regmatch.regprog = vim_regcomp(name, RE_MAGIC);
if (regmatch.regprog == NULL) {
failed = true;
xfree(name);
break;
}
regmatch.rm_ic = true;
id = 0;
for (int i = highlight_num_groups(); --i >= 0;) {
if (vim_regexec(&regmatch, highlight_group_name(i), (colnr_T)0)) {
if (round == 2) {
// Got more items than expected; can happen
// when adding items that match:
// "contains=a.*b,axb".
// Go back to first round.
if (count >= total_count) {
xfree(retval);
round = 1;
} else {
retval[count] = (int16_t)(i + 1); // -V522
}
}
count++;
id = -1; // Remember that we found one.
}
}
vim_regfree(regmatch.regprog);
}
}
xfree(name);
if (id == 0) {
semsg(_("E409: Unknown group name: %s"), p);
failed = true;
break;
}
if (id > 0) {
if (round == 2) {
// Got more items than expected, go back to first round.
if (count >= total_count) {
xfree(retval);
round = 1;
} else {
retval[count] = (int16_t)id;
}
}
count++;
}
p = skipwhite(end);
if (*p != ',') {
break;
}
p = skipwhite(p + 1); // skip comma in between arguments
} while (!ends_excmd(*p));
if (failed) {
break;
}
if (round == 1) {
retval = xmalloc(((size_t)count + 1) * sizeof(*retval));
retval[count] = 0; // zero means end of the list
total_count = count;
}
}
*arg = p;
if (failed || retval == NULL) {
xfree(retval);
return FAIL;
}
if (*list == NULL) {
*list = retval;
} else {
xfree(retval); // list already found, don't overwrite it
}
return OK;
}
// Make a copy of an ID list.
static int16_t *copy_id_list(const int16_t *const list)
{
if (list == NULL) {
return NULL;
}
int count;
for (count = 0; list[count]; count++) {}
const size_t len = ((size_t)count + 1) * sizeof(int16_t);
int16_t *const retval = xmalloc(len);
memmove(retval, list, len);
return retval;
}
/// Check if syntax group "ssp" is in the ID list "list" of "cur_si".
/// "cur_si" can be NULL if not checking the "containedin" list.
/// Used to check if a syntax item is in the "contains" or "nextgroup" list of
/// the current item.
/// This function is called very often, keep it fast!!
///
/// @param cur_si current item or NULL
/// @param list id list
/// @param ssp group id and ":syn include" tag of group
/// @param contained group id is contained
static int in_id_list(stateitem_T *cur_si, int16_t *list, struct sp_syn *ssp, int contained)
{
int retval;
int16_t *scl_list;
int16_t item;
int16_t id = ssp->id;
static int depth = 0;
int r;
// If ssp has a "containedin" list and "cur_si" is in it, return true.
if (cur_si != NULL && ssp->cont_in_list != NULL
&& !(cur_si->si_flags & HL_MATCH)) {
// Ignore transparent items without a contains argument. Double check
// that we don't go back past the first one.
while ((cur_si->si_flags & HL_TRANS_CONT)
&& cur_si > (stateitem_T *)(current_state.ga_data)) {
cur_si--;
}
// cur_si->si_idx is -1 for keywords, these never contain anything.
if (cur_si->si_idx >= 0 && in_id_list(NULL, ssp->cont_in_list,
&(SYN_ITEMS(syn_block)[cur_si->si_idx].sp_syn),
SYN_ITEMS(syn_block)[cur_si->si_idx].sp_flags &
HL_CONTAINED)) {
return true;
}
}
if (list == NULL) {
return false;
}
// If list is ID_LIST_ALL, we are in a transparent item that isn't
// inside anything. Only allow not-contained groups.
if (list == ID_LIST_ALL) {
return !contained;
}
// If the first item is "ALLBUT", return true if "id" is NOT in the
// contains list. We also require that "id" is at the same ":syn include"
// level as the list.
item = *list;
if (item >= SYNID_ALLBUT && item < SYNID_CLUSTER) {
if (item < SYNID_TOP) {
// ALL or ALLBUT: accept all groups in the same file
if (item - SYNID_ALLBUT != ssp->inc_tag) {
return false;
}
} else if (item < SYNID_CONTAINED) {
// TOP: accept all not-contained groups in the same file
if (item - SYNID_TOP != ssp->inc_tag || contained) {
return false;
}
} else {
// CONTAINED: accept all contained groups in the same file
if (item - SYNID_CONTAINED != ssp->inc_tag || !contained) {
return false;
}
}
item = *++list;
retval = false;
} else {
retval = true;
}
// Return "retval" if id is in the contains list.
while (item != 0) {
if (item == id) {
return retval;
}
if (item >= SYNID_CLUSTER) {
scl_list = SYN_CLSTR(syn_block)[item - SYNID_CLUSTER].scl_list;
// restrict recursiveness to 30 to avoid an endless loop for a
// cluster that includes itself (indirectly)
if (scl_list != NULL && depth < 30) {
depth++;
r = in_id_list(NULL, scl_list, ssp, contained);
depth--;
if (r) {
return retval;
}
}
}
item = *++list;
}
return !retval;
}
struct subcommand {
char *name; // subcommand name
void (*func)(exarg_T *, int); // function to call
};
static struct subcommand subcommands[] = {
{ "case", syn_cmd_case },
{ "clear", syn_cmd_clear },
{ "cluster", syn_cmd_cluster },
{ "conceal", syn_cmd_conceal },
{ "enable", syn_cmd_on },
{ "foldlevel", syn_cmd_foldlevel },
{ "include", syn_cmd_include },
{ "iskeyword", syn_cmd_iskeyword },
{ "keyword", syn_cmd_keyword },
{ "list", syn_cmd_list },
{ "manual", syn_cmd_manual },
{ "match", syn_cmd_match },
{ "on", syn_cmd_on },
{ "off", syn_cmd_off },
{ "region", syn_cmd_region },
{ "reset", syn_cmd_reset },
{ "spell", syn_cmd_spell },
{ "sync", syn_cmd_sync },
{ "", syn_cmd_list },
{ NULL, NULL }
};
/// ":syntax".
/// This searches the subcommands[] table for the subcommand name, and calls a
/// syntax_subcommand() function to do the rest.
void ex_syntax(exarg_T *eap)
{
char *arg = eap->arg;
char *subcmd_end;
syn_cmdlinep = eap->cmdlinep;
// isolate subcommand name
for (subcmd_end = arg; ASCII_ISALPHA(*subcmd_end); subcmd_end++) {}
char *const subcmd_name = xstrnsave(arg, (size_t)(subcmd_end - arg));
if (eap->skip) { // skip error messages for all subcommands
emsg_skip++;
}
for (int i = 0;; i++) {
if (subcommands[i].name == NULL) {
semsg(_("E410: Invalid :syntax subcommand: %s"), subcmd_name);
break;
}
if (strcmp(subcmd_name, subcommands[i].name) == 0) {
eap->arg = skipwhite(subcmd_end);
(subcommands[i].func)(eap, false);
break;
}
}
xfree(subcmd_name);
if (eap->skip) {
emsg_skip--;
}
}
void ex_ownsyntax(exarg_T *eap)
{
char *old_value;
char *new_value;
if (curwin->w_s == &curwin->w_buffer->b_s) {
curwin->w_s = xcalloc(1, sizeof(synblock_T));
hash_init(&curwin->w_s->b_keywtab);
hash_init(&curwin->w_s->b_keywtab_ic);
// TODO(vim): Keep the spell checking as it was.
curwin->w_p_spell = false; // No spell checking
// make sure option values are "empty_option" instead of NULL
clear_string_option(&curwin->w_s->b_p_spc);
clear_string_option(&curwin->w_s->b_p_spf);
clear_string_option(&curwin->w_s->b_p_spl);
clear_string_option(&curwin->w_s->b_p_spo);
clear_string_option(&curwin->w_s->b_syn_isk);
}
// Save value of b:current_syntax.
old_value = get_var_value("b:current_syntax");
if (old_value != NULL) {
old_value = xstrdup(old_value);
}
// Apply the "syntax" autocommand event, this finds and loads the syntax file.
apply_autocmds(EVENT_SYNTAX, eap->arg, curbuf->b_fname, true, curbuf);
// Move value of b:current_syntax to w:current_syntax.
new_value = get_var_value("b:current_syntax");
if (new_value != NULL) {
set_internal_string_var("w:current_syntax", new_value);
}
// Restore value of b:current_syntax.
if (old_value == NULL) {
do_unlet(S_LEN("b:current_syntax"), true);
} else {
set_internal_string_var("b:current_syntax", old_value);
xfree(old_value);
}
}
bool syntax_present(win_T *win)
{
return win->w_s->b_syn_patterns.ga_len != 0
|| win->w_s->b_syn_clusters.ga_len != 0
|| win->w_s->b_keywtab.ht_used > 0
|| win->w_s->b_keywtab_ic.ht_used > 0;
}
static enum {
EXP_SUBCMD, // expand ":syn" sub-commands
EXP_CASE, // expand ":syn case" arguments
EXP_SPELL, // expand ":syn spell" arguments
EXP_SYNC, // expand ":syn sync" arguments
EXP_CLUSTER, // expand ":syn list @cluster" arguments
} expand_what;
// Reset include_link, include_default, include_none to 0.
// Called when we are done expanding.
void reset_expand_highlight(void)
{
include_link = include_default = include_none = 0;
}
// Handle command line completion for :match and :echohl command: Add "None"
// as highlight group.
void set_context_in_echohl_cmd(expand_T *xp, const char *arg)
{
xp->xp_context = EXPAND_HIGHLIGHT;
xp->xp_pattern = (char *)arg;
include_none = 1;
}
// Handle command line completion for :syntax command.
void set_context_in_syntax_cmd(expand_T *xp, const char *arg)
{
// Default: expand subcommands.
xp->xp_context = EXPAND_SYNTAX;
expand_what = EXP_SUBCMD;
xp->xp_pattern = (char *)arg;
include_link = 0;
include_default = 0;
// (part of) subcommand already typed
if (*arg != NUL) {
const char *p = (const char *)skiptowhite(arg);
if (*p != NUL) { // Past first word.
xp->xp_pattern = skipwhite(p);
if (*skiptowhite(xp->xp_pattern) != NUL) {
xp->xp_context = EXPAND_NOTHING;
} else if (STRNICMP(arg, "case", p - arg) == 0) {
expand_what = EXP_CASE;
} else if (STRNICMP(arg, "spell", p - arg) == 0) {
expand_what = EXP_SPELL;
} else if (STRNICMP(arg, "sync", p - arg) == 0) {
expand_what = EXP_SYNC;
} else if (STRNICMP(arg, "list", p - arg) == 0) {
p = skipwhite(p);
if (*p == '@') {
expand_what = EXP_CLUSTER;
} else {
xp->xp_context = EXPAND_HIGHLIGHT;
}
} else if (STRNICMP(arg, "keyword", p - arg) == 0
|| STRNICMP(arg, "region", p - arg) == 0
|| STRNICMP(arg, "match", p - arg) == 0) {
xp->xp_context = EXPAND_HIGHLIGHT;
} else {
xp->xp_context = EXPAND_NOTHING;
}
}
}
}
// Function given to ExpandGeneric() to obtain the list syntax names for
// expansion.
char *get_syntax_name(expand_T *xp, int idx)
{
switch (expand_what) {
case EXP_SUBCMD:
return subcommands[idx].name;
case EXP_CASE: {
static char *case_args[] = { "match", "ignore", NULL };
return case_args[idx];
}
case EXP_SPELL: {
static char *spell_args[] =
{ "toplevel", "notoplevel", "default", NULL };
return spell_args[idx];
}
case EXP_SYNC: {
static char *sync_args[] =
{ "ccomment", "clear", "fromstart",
"linebreaks=", "linecont", "lines=", "match",
"maxlines=", "minlines=", "region", NULL };
return sync_args[idx];
}
case EXP_CLUSTER:
if (idx < curwin->w_s->b_syn_clusters.ga_len) {
vim_snprintf(xp->xp_buf, EXPAND_BUF_LEN, "@%s",
SYN_CLSTR(curwin->w_s)[idx].scl_name);
return xp->xp_buf;
} else {
return NULL;
}
}
return NULL;
}
/// Function called for expression evaluation: get syntax ID at file position.
///
/// @param trans remove transparency
/// @param spellp return: can do spell checking
/// @param keep_state keep state of char at "col"
int syn_get_id(win_T *wp, linenr_T lnum, colnr_T col, int trans, bool *spellp, int keep_state)
{
// When the position is not after the current position and in the same
// line of the same window with the same buffer, need to restart parsing.
if (wp != syn_win || wp->w_buffer != syn_buf || lnum != current_lnum || col < current_col) {
syntax_start(wp, lnum);
} else if (col > current_col) {
// next_match may not be correct when moving around, e.g. with the
// "skip" expression in searchpair()
next_match_idx = -1;
}
(void)get_syntax_attr(col, spellp, keep_state);
return trans ? current_trans_id : current_id;
}
// Get extra information about the syntax item. Must be called right after
// get_syntax_attr().
// Stores the current item sequence nr in "*seqnrp".
// Returns the current flags.
int get_syntax_info(int *seqnrp)
{
*seqnrp = current_seqnr;
return current_flags;
}
/// Get the sequence number of the concealed file position.
///
/// @return seqnr if the file position is concealed, 0 otherwise.
int syn_get_concealed_id(win_T *wp, linenr_T lnum, colnr_T col)
{
int seqnr;
int syntax_flags;
(void)syn_get_id(wp, lnum, col, false, NULL, false);
syntax_flags = get_syntax_info(&seqnr);
if (syntax_flags & HL_CONCEAL) {
return seqnr;
}
return 0;
}
// Return conceal substitution character
int syn_get_sub_char(void)
{
return current_sub_char;
}
// Return the syntax ID at position "i" in the current stack.
// The caller must have called syn_get_id() before to fill the stack.
// Returns -1 when "i" is out of range.
int syn_get_stack_item(int i)
{
if (i >= current_state.ga_len) {
// Need to invalidate the state, because we didn't properly finish it
// for the last character, "keep_state" was true.
invalidate_current_state();
current_col = MAXCOL;
return -1;
}
return CUR_STATE(i).si_id;
}
static int syn_cur_foldlevel(void)
{
int level = 0;
for (int i = 0; i < current_state.ga_len; i++) {
if (CUR_STATE(i).si_flags & HL_FOLD) {
level++;
}
}
return level;
}
/// Function called to get folding level for line "lnum" in window "wp".
int syn_get_foldlevel(win_T *wp, linenr_T lnum)
{
int level = 0;
// Return quickly when there are no fold items at all.
if (wp->w_s->b_syn_folditems != 0
&& !wp->w_s->b_syn_error
&& !wp->w_s->b_syn_slow) {
syntax_start(wp, lnum);
// Start with the fold level at the start of the line.
level = syn_cur_foldlevel();
if (wp->w_s->b_syn_foldlevel == SYNFLD_MINIMUM) {
// Find the lowest fold level that is followed by a higher one.
int cur_level = level;
int low_level = cur_level;
while (!current_finished) {
(void)syn_current_attr(false, false, NULL, false);
cur_level = syn_cur_foldlevel();
if (cur_level < low_level) {
low_level = cur_level;
} else if (cur_level > low_level) {
level = low_level;
}
current_col++;
}
}
}
if (level > wp->w_p_fdn) {
level = (int)wp->w_p_fdn;
if (level < 0) {
level = 0;
}
}
return level;
}
// ":syntime".
void ex_syntime(exarg_T *eap)
{
if (strcmp(eap->arg, "on") == 0) {
syn_time_on = true;
} else if (strcmp(eap->arg, "off") == 0) {
syn_time_on = false;
} else if (strcmp(eap->arg, "clear") == 0) {
syntime_clear();
} else if (strcmp(eap->arg, "report") == 0) {
syntime_report();
} else {
semsg(_(e_invarg2), eap->arg);
}
}
static void syn_clear_time(syn_time_T *st)
{
st->total = profile_zero();
st->slowest = profile_zero();
st->count = 0;
st->match = 0;
}
// Clear the syntax timing for the current buffer.
static void syntime_clear(void)
{
synpat_T *spp;
if (!syntax_present(curwin)) {
msg(_(msg_no_items));
return;
}
for (int idx = 0; idx < curwin->w_s->b_syn_patterns.ga_len; idx++) {
spp = &(SYN_ITEMS(curwin->w_s)[idx]);
syn_clear_time(&spp->sp_time);
}
}
// Function given to ExpandGeneric() to obtain the possible arguments of the
// ":syntime {on,off,clear,report}" command.
char *get_syntime_arg(expand_T *xp, int idx)
{
switch (idx) {
case 0:
return "on";
case 1:
return "off";
case 2:
return "clear";
case 3:
return "report";
}
return NULL;
}
static int syn_compare_syntime(const void *v1, const void *v2)
{
const time_entry_T *s1 = v1;
const time_entry_T *s2 = v2;
return profile_cmp(s1->total, s2->total);
}
// Clear the syntax timing for the current buffer.
static void syntime_report(void)
{
if (!syntax_present(curwin)) {
msg(_(msg_no_items));
return;
}
garray_T ga;
ga_init(&ga, sizeof(time_entry_T), 50);
proftime_T total_total = profile_zero();
int total_count = 0;
time_entry_T *p;
for (int idx = 0; idx < curwin->w_s->b_syn_patterns.ga_len; idx++) {
synpat_T *spp = &(SYN_ITEMS(curwin->w_s)[idx]);
if (spp->sp_time.count > 0) {
p = GA_APPEND_VIA_PTR(time_entry_T, &ga);
p->total = spp->sp_time.total;
total_total = profile_add(total_total, spp->sp_time.total);
p->count = (int)spp->sp_time.count;
p->match = (int)spp->sp_time.match;
total_count += (int)spp->sp_time.count;
p->slowest = spp->sp_time.slowest;
proftime_T tm = profile_divide(spp->sp_time.total, (int)spp->sp_time.count);
p->average = tm;
p->id = spp->sp_syn.id;
p->pattern = spp->sp_pattern;
}
}
// Sort on total time. Skip if there are no items to avoid passing NULL
// pointer to qsort().
if (ga.ga_len > 1) {
qsort(ga.ga_data, (size_t)ga.ga_len, sizeof(time_entry_T),
syn_compare_syntime);
}
msg_puts_title(_(" TOTAL COUNT MATCH SLOWEST AVERAGE NAME PATTERN"));
msg_puts("\n");
for (int idx = 0; idx < ga.ga_len && !got_int; idx++) {
p = ((time_entry_T *)ga.ga_data) + idx;
msg_puts(profile_msg(p->total));
msg_puts(" "); // make sure there is always a separating space
msg_advance(13);
msg_outnum(p->count);
msg_puts(" ");
msg_advance(20);
msg_outnum(p->match);
msg_puts(" ");
msg_advance(26);
msg_puts(profile_msg(p->slowest));
msg_puts(" ");
msg_advance(38);
msg_puts(profile_msg(p->average));
msg_puts(" ");
msg_advance(50);
msg_outtrans(highlight_group_name(p->id - 1));
msg_puts(" ");
msg_advance(69);
int len;
if (Columns < 80) {
len = 20; // will wrap anyway
} else {
len = Columns - 70;
}
if (len > (int)strlen(p->pattern)) {
len = (int)strlen(p->pattern);
}
msg_outtrans_len(p->pattern, len);
msg_puts("\n");
}
ga_clear(&ga);
if (!got_int) {
msg_puts("\n");
msg_puts(profile_msg(total_total));
msg_advance(13);
msg_outnum(total_count);
msg_puts("\n");
}
}