Files
neovim/src/nvim/spellfile.c

5907 lines
186 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// spellfile.c: code for reading and writing spell files.
//
// See spell.c for information about spell checking.
// Vim spell file format: <HEADER>
// <SECTIONS>
// <LWORDTREE>
// <KWORDTREE>
// <PREFIXTREE>
//
// <HEADER>: <fileID> <versionnr>
//
// <fileID> 8 bytes "VIMspell"
// <versionnr> 1 byte VIMSPELLVERSION
//
//
// Sections make it possible to add information to the .spl file without
// making it incompatible with previous versions. There are two kinds of
// sections:
// 1. Not essential for correct spell checking. E.g. for making suggestions.
// These are skipped when not supported.
// 2. Optional information, but essential for spell checking when present.
// E.g. conditions for affixes. When this section is present but not
// supported an error message is given.
//
// <SECTIONS>: <section> ... <sectionend>
//
// <section>: <sectionID> <sectionflags> <sectionlen> (section contents)
//
// <sectionID> 1 byte number from 0 to 254 identifying the section
//
// <sectionflags> 1 byte SNF_REQUIRED: this section is required for correct
// spell checking
//
// <sectionlen> 4 bytes length of section contents, MSB first
//
// <sectionend> 1 byte SN_END
//
//
// sectionID == SN_INFO: <infotext>
// <infotext> N bytes free format text with spell file info (version,
// website, etc)
//
// sectionID == SN_REGION: <regionname> ...
// <regionname> 2 bytes Up to MAXREGIONS region names: ca, au, etc.
// Lower case.
// First <regionname> is region 1.
//
// sectionID == SN_CHARFLAGS: <charflagslen> <charflags>
// <folcharslen> <folchars>
// <charflagslen> 1 byte Number of bytes in <charflags> (should be 128).
// <charflags> N bytes List of flags (first one is for character 128):
// 0x01 word character CF_WORD
// 0x02 upper-case character CF_UPPER
// <folcharslen> 2 bytes Number of bytes in <folchars>.
// <folchars> N bytes Folded characters, first one is for character 128.
//
// sectionID == SN_MIDWORD: <midword>
// <midword> N bytes Characters that are word characters only when used
// in the middle of a word.
//
// sectionID == SN_PREFCOND: <prefcondcnt> <prefcond> ...
// <prefcondcnt> 2 bytes Number of <prefcond> items following.
// <prefcond> : <condlen> <condstr>
// <condlen> 1 byte Length of <condstr>.
// <condstr> N bytes Condition for the prefix.
//
// sectionID == SN_REP: <repcount> <rep> ...
// <repcount> 2 bytes number of <rep> items, MSB first.
// <rep> : <repfromlen> <repfrom> <reptolen> <repto>
// <repfromlen> 1 byte length of <repfrom>
// <repfrom> N bytes "from" part of replacement
// <reptolen> 1 byte length of <repto>
// <repto> N bytes "to" part of replacement
//
// sectionID == SN_REPSAL: <repcount> <rep> ...
// just like SN_REP but for soundfolded words
//
// sectionID == SN_SAL: <salflags> <salcount> <sal> ...
// <salflags> 1 byte flags for soundsalike conversion:
// SAL_F0LLOWUP
// SAL_COLLAPSE
// SAL_REM_ACCENTS
// <salcount> 2 bytes number of <sal> items following
// <sal> : <salfromlen> <salfrom> <saltolen> <salto>
// <salfromlen> 1 byte length of <salfrom>
// <salfrom> N bytes "from" part of soundsalike
// <saltolen> 1 byte length of <salto>
// <salto> N bytes "to" part of soundsalike
//
// sectionID == SN_SOFO: <sofofromlen> <sofofrom> <sofotolen> <sofoto>
// <sofofromlen> 2 bytes length of <sofofrom>
// <sofofrom> N bytes "from" part of soundfold
// <sofotolen> 2 bytes length of <sofoto>
// <sofoto> N bytes "to" part of soundfold
//
// sectionID == SN_SUGFILE: <timestamp>
// <timestamp> 8 bytes time in seconds that must match with .sug file
//
// sectionID == SN_NOSPLITSUGS: nothing
//
// sectionID == SN_NOCOMPOUNDSUGS: nothing
//
// sectionID == SN_WORDS: <word> ...
// <word> N bytes NUL terminated common word
//
// sectionID == SN_MAP: <mapstr>
// <mapstr> N bytes String with sequences of similar characters,
// separated by slashes.
//
// sectionID == SN_COMPOUND: <compmax> <compminlen> <compsylmax> <compoptions>
// <comppatcount> <comppattern> ... <compflags>
// <compmax> 1 byte Maximum nr of words in compound word.
// <compminlen> 1 byte Minimal word length for compounding.
// <compsylmax> 1 byte Maximum nr of syllables in compound word.
// <compoptions> 2 bytes COMP_ flags.
// <comppatcount> 2 bytes number of <comppattern> following
// <compflags> N bytes Flags from COMPOUNDRULE items, separated by
// slashes.
//
// <comppattern>: <comppatlen> <comppattext>
// <comppatlen> 1 byte length of <comppattext>
// <comppattext> N bytes end or begin chars from CHECKCOMPOUNDPATTERN
//
// sectionID == SN_NOBREAK: (empty, its presence is what matters)
//
// sectionID == SN_SYLLABLE: <syllable>
// <syllable> N bytes String from SYLLABLE item.
//
// <LWORDTREE>: <wordtree>
//
// <KWORDTREE>: <wordtree>
//
// <PREFIXTREE>: <wordtree>
//
//
// <wordtree>: <nodecount> <nodedata> ...
//
// <nodecount> 4 bytes Number of nodes following. MSB first.
//
// <nodedata>: <siblingcount> <sibling> ...
//
// <siblingcount> 1 byte Number of siblings in this node. The siblings
// follow in sorted order.
//
// <sibling>: <byte> [ <nodeidx> <xbyte>
// | <flags> [<flags2>] [<region>] [<affixID>]
// | [<pflags>] <affixID> <prefcondnr> ]
//
// <byte> 1 byte Byte value of the sibling. Special cases:
// BY_NOFLAGS: End of word without flags and for all
// regions.
// For PREFIXTREE <affixID> and
// <prefcondnr> follow.
// BY_FLAGS: End of word, <flags> follow.
// For PREFIXTREE <pflags>, <affixID>
// and <prefcondnr> follow.
// BY_FLAGS2: End of word, <flags> and <flags2>
// follow. Not used in PREFIXTREE.
// BY_INDEX: Child of sibling is shared, <nodeidx>
// and <xbyte> follow.
//
// <nodeidx> 3 bytes Index of child for this sibling, MSB first.
//
// <xbyte> 1 byte Byte value of the sibling.
//
// <flags> 1 byte Bitmask of:
// WF_ALLCAP word must have only capitals
// WF_ONECAP first char of word must be capital
// WF_KEEPCAP keep-case word
// WF_FIXCAP keep-case word, all caps not allowed
// WF_RARE rare word
// WF_BANNED bad word
// WF_REGION <region> follows
// WF_AFX <affixID> follows
//
// <flags2> 1 byte Bitmask of:
// WF_HAS_AFF >> 8 word includes affix
// WF_NEEDCOMP >> 8 word only valid in compound
// WF_NOSUGGEST >> 8 word not used for suggestions
// WF_COMPROOT >> 8 word already a compound
// WF_NOCOMPBEF >> 8 no compounding before this word
// WF_NOCOMPAFT >> 8 no compounding after this word
//
// <pflags> 1 byte Bitmask of:
// WFP_RARE rare prefix
// WFP_NC non-combining prefix
// WFP_UP letter after prefix made upper case
//
// <region> 1 byte Bitmask for regions in which word is valid. When
// omitted it's valid in all regions.
// Lowest bit is for region 1.
//
// <affixID> 1 byte ID of affix that can be used with this word. In
// PREFIXTREE used for the required prefix ID.
//
// <prefcondnr> 2 bytes Prefix condition number, index in <prefcond> list
// from HEADER.
//
// All text characters are in 'encoding', but stored as single bytes.
// Vim .sug file format: <SUGHEADER>
// <SUGWORDTREE>
// <SUGTABLE>
//
// <SUGHEADER>: <fileID> <versionnr> <timestamp>
//
// <fileID> 6 bytes "VIMsug"
// <versionnr> 1 byte VIMSUGVERSION
// <timestamp> 8 bytes timestamp that must match with .spl file
//
//
// <SUGWORDTREE>: <wordtree> (see above, no flags or region used)
//
//
// <SUGTABLE>: <sugwcount> <sugline> ...
//
// <sugwcount> 4 bytes number of <sugline> following
//
// <sugline>: <sugnr> ... NUL
//
// <sugnr>: X bytes word number that results in this soundfolded word,
// stored as an offset to the previous number in as
// few bytes as possible, see offset2bytes())
#include <assert.h>
#include <ctype.h>
#include <inttypes.h>
#include <limits.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "auto/config.h"
#include "nvim/arglist.h"
#include "nvim/ascii.h"
#include "nvim/buffer.h"
#include "nvim/charset.h"
#include "nvim/drawscreen.h"
#include "nvim/ex_cmds_defs.h"
#include "nvim/fileio.h"
#include "nvim/garray.h"
#include "nvim/gettext.h"
#include "nvim/globals.h"
#include "nvim/hashtab.h"
#include "nvim/macros.h"
#include "nvim/mbyte.h"
#include "nvim/memline.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/option.h"
#include "nvim/os/input.h"
#include "nvim/os/os.h"
#include "nvim/os/time.h"
#include "nvim/path.h"
#include "nvim/pos.h"
#include "nvim/regexp.h"
#include "nvim/runtime.h"
#include "nvim/spell.h"
#include "nvim/spell_defs.h"
#include "nvim/spellfile.h"
#include "nvim/strings.h"
#include "nvim/types.h"
#include "nvim/ui.h"
#include "nvim/undo.h"
#include "nvim/vim.h"
#ifndef UNIX // it's in os/unix_defs.h for Unix
# include <time.h>
#endif
// Special byte values for <byte>. Some are only used in the tree for
// postponed prefixes, some only in the other trees. This is a bit messy...
enum {
BY_NOFLAGS = 0, // end of word without flags or region; for postponed prefix: no <pflags>
BY_INDEX = 1, // child is shared, index follows
BY_FLAGS = 2, // end of word, <flags> byte follows; for postponed prefix: <pflags> follows
BY_FLAGS2 = 3, // end of word, <flags> and <flags2> bytes follow; never used in prefix tree
BY_SPECIAL = BY_FLAGS2, // highest special byte value
};
#define ZERO_FLAG 65009 // used when flag is zero: "0"
// Flags used in .spl file for soundsalike flags.
enum {
SAL_F0LLOWUP = 1,
SAL_COLLAPSE = 2,
SAL_REM_ACCENTS = 4,
};
#define VIMSPELLMAGIC "VIMspell" // string at start of Vim spell file
#define VIMSPELLMAGICL (sizeof(VIMSPELLMAGIC) - 1)
#define VIMSPELLVERSION 50
// Section IDs. Only renumber them when VIMSPELLVERSION changes!
enum {
SN_REGION = 0, // <regionname> section
SN_CHARFLAGS = 1, // charflags section
SN_MIDWORD = 2, // <midword> section
SN_PREFCOND = 3, // <prefcond> section
SN_REP = 4, // REP items section
SN_SAL = 5, // SAL items section
SN_SOFO = 6, // soundfolding section
SN_MAP = 7, // MAP items section
SN_COMPOUND = 8, // compound words section
SN_SYLLABLE = 9, // syllable section
SN_NOBREAK = 10, // NOBREAK section
SN_SUGFILE = 11, // timestamp for .sug file
SN_REPSAL = 12, // REPSAL items section
SN_WORDS = 13, // common words
SN_NOSPLITSUGS = 14, // don't split word for suggestions
SN_INFO = 15, // info section
SN_NOCOMPOUNDSUGS = 16, // don't compound for suggestions
SN_END = 255, // end of sections
};
#define SNF_REQUIRED 1 // <sectionflags>: required section
enum {
CF_WORD = 0x01,
CF_UPPER = 0x02,
};
static char *e_spell_trunc = N_("E758: Truncated spell file");
static char *e_illegal_character_in_word = N_("E1280: Illegal character in word");
static char *e_afftrailing = N_("Trailing text in %s line %d: %s");
static char *e_affname = N_("Affix name too long in %s line %d: %s");
static char *msg_compressing = N_("Compressing word tree...");
#define MAXLINELEN 500 // Maximum length in bytes of a line in a .aff
// and .dic file.
// Main structure to store the contents of a ".aff" file.
typedef struct afffile_S {
char_u *af_enc; // "SET", normalized, alloc'ed string or NULL
int af_flagtype; // AFT_CHAR, AFT_LONG, AFT_NUM or AFT_CAPLONG
unsigned af_rare; // RARE ID for rare word
unsigned af_keepcase; // KEEPCASE ID for keep-case word
unsigned af_bad; // BAD ID for banned word
unsigned af_needaffix; // NEEDAFFIX ID
unsigned af_circumfix; // CIRCUMFIX ID
unsigned af_needcomp; // NEEDCOMPOUND ID
unsigned af_comproot; // COMPOUNDROOT ID
unsigned af_compforbid; // COMPOUNDFORBIDFLAG ID
unsigned af_comppermit; // COMPOUNDPERMITFLAG ID
unsigned af_nosuggest; // NOSUGGEST ID
int af_pfxpostpone; // postpone prefixes without chop string and
// without flags
bool af_ignoreextra; // IGNOREEXTRA present
hashtab_T af_pref; // hashtable for prefixes, affheader_T
hashtab_T af_suff; // hashtable for suffixes, affheader_T
hashtab_T af_comp; // hashtable for compound flags, compitem_T
} afffile_T;
#define AFT_CHAR 0 // flags are one character
#define AFT_LONG 1 // flags are two characters
#define AFT_CAPLONG 2 // flags are one or two characters
#define AFT_NUM 3 // flags are numbers, comma separated
typedef struct affentry_S affentry_T;
// Affix entry from ".aff" file. Used for prefixes and suffixes.
struct affentry_S {
affentry_T *ae_next; // next affix with same name/number
char *ae_chop; // text to chop off basic word (can be NULL)
char *ae_add; // text to add to basic word (can be NULL)
char_u *ae_flags; // flags on the affix (can be NULL)
char_u *ae_cond; // condition (NULL for ".")
regprog_T *ae_prog; // regexp program for ae_cond or NULL
char ae_compforbid; // COMPOUNDFORBIDFLAG found
char ae_comppermit; // COMPOUNDPERMITFLAG found
};
#define AH_KEY_LEN 17 // 2 x 8 bytes + NUL
// Affix header from ".aff" file. Used for af_pref and af_suff.
typedef struct affheader_S {
char ah_key[AH_KEY_LEN]; // key for hashtab == name of affix
unsigned ah_flag; // affix name as number, uses "af_flagtype"
int ah_newID; // prefix ID after renumbering; 0 if not used
int ah_combine; // suffix may combine with prefix
int ah_follows; // another affix block should be following
affentry_T *ah_first; // first affix entry
} affheader_T;
#define HI2AH(hi) ((affheader_T *)(hi)->hi_key)
// Flag used in compound items.
typedef struct compitem_S {
char_u ci_key[AH_KEY_LEN]; // key for hashtab == name of compound
unsigned ci_flag; // affix name as number, uses "af_flagtype"
int ci_newID; // affix ID after renumbering.
} compitem_T;
#define HI2CI(hi) ((compitem_T *)(hi)->hi_key)
// Structure that is used to store the items in the word tree. This avoids
// the need to keep track of each allocated thing, everything is freed all at
// once after ":mkspell" is done.
// Note: "sb_next" must be just before "sb_data" to make sure the alignment of
// "sb_data" is correct for systems where pointers must be aligned on
// pointer-size boundaries and sizeof(pointer) > sizeof(int) (e.g., Sparc).
#define SBLOCKSIZE 16000 // size of sb_data
typedef struct sblock_S sblock_T;
struct sblock_S {
int sb_used; // nr of bytes already in use
sblock_T *sb_next; // next block in list
char_u sb_data[1]; // data, actually longer
};
// A node in the tree.
typedef struct wordnode_S wordnode_T;
struct wordnode_S {
union { // shared to save space
char_u hashkey[6]; // the hash key, only used while compressing
int index; // index in written nodes (valid after first
// round)
} wn_u1;
union { // shared to save space
wordnode_T *next; // next node with same hash key
wordnode_T *wnode; // parent node that will write this node
} wn_u2;
wordnode_T *wn_child; // child (next byte in word)
wordnode_T *wn_sibling; // next sibling (alternate byte in word,
// always sorted)
int wn_refs; // Nr. of references to this node. Only
// relevant for first node in a list of
// siblings, in following siblings it is
// always one.
char_u wn_byte; // Byte for this node. NUL for word end
// Info for when "wn_byte" is NUL.
// In PREFIXTREE "wn_region" is used for the prefcondnr.
// In the soundfolded word tree "wn_flags" has the MSW of the wordnr and
// "wn_region" the LSW of the wordnr.
char_u wn_affixID; // supported/required prefix ID or 0
uint16_t wn_flags; // WF_ flags
int16_t wn_region; // region mask
#ifdef SPELL_PRINTTREE
int wn_nr; // sequence nr for printing
#endif
};
#define WN_MASK 0xffff // mask relevant bits of "wn_flags"
#define HI2WN(hi) (wordnode_T *)((hi)->hi_key)
// Info used while reading the spell files.
typedef struct spellinfo_S {
wordnode_T *si_foldroot; // tree with case-folded words
long si_foldwcount; // nr of words in si_foldroot
wordnode_T *si_keeproot; // tree with keep-case words
long si_keepwcount; // nr of words in si_keeproot
wordnode_T *si_prefroot; // tree with postponed prefixes
long si_sugtree; // creating the soundfolding trie
sblock_T *si_blocks; // memory blocks used
long si_blocks_cnt; // memory blocks allocated
int si_did_emsg; // true when ran out of memory
long si_compress_cnt; // words to add before lowering
// compression limit
wordnode_T *si_first_free; // List of nodes that have been freed during
// compression, linked by "wn_child" field.
long si_free_count; // number of nodes in si_first_free
#ifdef SPELL_PRINTTREE
int si_wordnode_nr; // sequence nr for nodes
#endif
buf_T *si_spellbuf; // buffer used to store soundfold word table
int si_ascii; // handling only ASCII words
int si_add; // addition file
int si_clear_chartab; // when true clear char tables
int si_region; // region mask
vimconv_T si_conv; // for conversion to 'encoding'
int si_memtot; // runtime memory used
int si_verbose; // verbose messages
int si_msg_count; // number of words added since last message
char *si_info; // info text chars or NULL
int si_region_count; // number of regions supported (1 when there
// are no regions)
char_u si_region_name[MAXREGIONS * 2 + 1];
// region names; used only if
// si_region_count > 1)
garray_T si_rep; // list of fromto_T entries from REP lines
garray_T si_repsal; // list of fromto_T entries from REPSAL lines
garray_T si_sal; // list of fromto_T entries from SAL lines
char *si_sofofr; // SOFOFROM text
char *si_sofoto; // SOFOTO text
int si_nosugfile; // NOSUGFILE item found
int si_nosplitsugs; // NOSPLITSUGS item found
int si_nocompoundsugs; // NOCOMPOUNDSUGS item found
int si_followup; // soundsalike: ?
int si_collapse; // soundsalike: ?
hashtab_T si_commonwords; // hashtable for common words
time_t si_sugtime; // timestamp for .sug file
int si_rem_accents; // soundsalike: remove accents
garray_T si_map; // MAP info concatenated
char *si_midword; // MIDWORD chars or NULL
int si_compmax; // max nr of words for compounding
int si_compminlen; // minimal length for compounding
int si_compsylmax; // max nr of syllables for compounding
int si_compoptions; // COMP_ flags
garray_T si_comppat; // CHECKCOMPOUNDPATTERN items, each stored as
// a string
char *si_compflags; // flags used for compounding
char_u si_nobreak; // NOBREAK
char *si_syllable; // syllable string
garray_T si_prefcond; // table with conditions for postponed
// prefixes, each stored as a string
int si_newprefID; // current value for ah_newID
int si_newcompID; // current value for compound ID
} spellinfo_T;
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "spellfile.c.generated.h"
#endif
/// Read n bytes from fd to buf, returning on errors
///
/// @param[out] buf Buffer to read to, must be at least n bytes long.
/// @param[in] n Amount of bytes to read.
/// @param fd FILE* to read from.
/// @param exit_code Code to run before returning.
///
/// @return Allows to proceed if everything is OK, returns SP_TRUNCERROR if
/// there are not enough bytes, returns SP_OTHERERROR if reading failed.
#define SPELL_READ_BYTES(buf, n, fd, exit_code) \
do { \
const size_t n__SPRB = (n); \
FILE *const fd__SPRB = (fd); \
char *const buf__SPRB = (buf); \
const size_t read_bytes__SPRB = fread(buf__SPRB, 1, n__SPRB, fd__SPRB); \
if (read_bytes__SPRB != n__SPRB) { \
exit_code; \
return feof(fd__SPRB) ? SP_TRUNCERROR : SP_OTHERERROR; \
} \
} while (0)
/// Like #SPELL_READ_BYTES, but also error out if NUL byte was read
///
/// @return Allows to proceed if everything is OK, returns SP_TRUNCERROR if
/// there are not enough bytes, returns SP_OTHERERROR if reading failed,
/// returns SP_FORMERROR if read out a NUL byte.
#define SPELL_READ_NONNUL_BYTES(buf, n, fd, exit_code) \
do { \
const size_t n__SPRNB = (n); \
FILE *const fd__SPRNB = (fd); \
char *const buf__SPRNB = (buf); \
SPELL_READ_BYTES(buf__SPRNB, n__SPRNB, fd__SPRNB, exit_code); \
if (memchr(buf__SPRNB, NUL, (size_t)n__SPRNB)) { \
exit_code; \
return SP_FORMERROR; \
} \
} while (0)
/// Check that spell file starts with a magic string
///
/// Does not check for version of the file.
///
/// @param fd File to check.
///
/// @return 0 in case of success, SP_TRUNCERROR if file contains not enough
/// bytes, SP_FORMERROR if it does not match magic string and
/// SP_OTHERERROR if reading file failed.
static inline int spell_check_magic_string(FILE *const fd)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_ALWAYS_INLINE
{
char buf[VIMSPELLMAGICL];
SPELL_READ_BYTES(buf, VIMSPELLMAGICL, fd,; );
if (memcmp(buf, VIMSPELLMAGIC, VIMSPELLMAGICL) != 0) {
return SP_FORMERROR;
}
return 0;
}
/// Load one spell file and store the info into a slang_T.
///
/// This is invoked in three ways:
/// - From spell_load_cb() to load a spell file for the first time. "lang" is
/// the language name, "old_lp" is NULL. Will allocate an slang_T.
/// - To reload a spell file that was changed. "lang" is NULL and "old_lp"
/// points to the existing slang_T.
/// - Just after writing a .spl file; it's read back to produce the .sug file.
/// "old_lp" is NULL and "lang" is NULL. Will allocate an slang_T.
///
/// @param silent no error if file doesn't exist
///
/// @return the slang_T the spell file was loaded into. NULL for error.
slang_T *spell_load_file(char *fname, char *lang, slang_T *old_lp, bool silent)
{
FILE *fd;
char *p;
int n;
int len;
slang_T *lp = NULL;
int c = 0;
int res;
bool did_estack_push = false;
fd = os_fopen(fname, "r");
if (fd == NULL) {
if (!silent) {
semsg(_(e_notopen), fname);
} else if (p_verbose > 2) {
verbose_enter();
smsg((char *)e_notopen, fname);
verbose_leave();
}
goto endFAIL;
}
if (p_verbose > 2) {
verbose_enter();
smsg(_("Reading spell file \"%s\""), fname);
verbose_leave();
}
if (old_lp == NULL) {
lp = slang_alloc(lang);
// Remember the file name, used to reload the file when it's updated.
lp->sl_fname = xstrdup(fname);
// Check for .add.spl.
lp->sl_add = strstr(path_tail(fname), SPL_FNAME_ADD) != NULL;
} else {
lp = old_lp;
}
// Set sourcing_name, so that error messages mention the file name.
estack_push(ETYPE_SPELL, fname, 0);
did_estack_push = true;
// <HEADER>: <fileID>
const int scms_ret = spell_check_magic_string(fd);
switch (scms_ret) {
case SP_FORMERROR:
case SP_TRUNCERROR:
semsg("%s", _("E757: This does not look like a spell file"));
goto endFAIL;
case SP_OTHERERROR:
semsg(_("E5042: Failed to read spell file %s: %s"),
fname, strerror(ferror(fd)));
goto endFAIL;
case 0:
break;
}
c = getc(fd); // <versionnr>
if (c < VIMSPELLVERSION) {
emsg(_("E771: Old spell file, needs to be updated"));
goto endFAIL;
} else if (c > VIMSPELLVERSION) {
emsg(_("E772: Spell file is for newer version of Vim"));
goto endFAIL;
}
// <SECTIONS>: <section> ... <sectionend>
// <section>: <sectionID> <sectionflags> <sectionlen> (section contents)
for (;;) {
n = getc(fd); // <sectionID> or <sectionend>
if (n == SN_END) {
break;
}
c = getc(fd); // <sectionflags>
len = get4c(fd); // <sectionlen>
if (len < 0) {
goto truncerr;
}
res = 0;
switch (n) {
case SN_INFO:
lp->sl_info = READ_STRING(fd, len); // <infotext>
if (lp->sl_info == NULL) {
goto endFAIL;
}
break;
case SN_REGION:
res = read_region_section(fd, lp, len);
break;
case SN_CHARFLAGS:
res = read_charflags_section(fd);
break;
case SN_MIDWORD:
lp->sl_midword = READ_STRING(fd, len); // <midword>
if (lp->sl_midword == NULL) {
goto endFAIL;
}
break;
case SN_PREFCOND:
res = read_prefcond_section(fd, lp);
break;
case SN_REP:
res = read_rep_section(fd, &lp->sl_rep, lp->sl_rep_first);
break;
case SN_REPSAL:
res = read_rep_section(fd, &lp->sl_repsal, lp->sl_repsal_first);
break;
case SN_SAL:
res = read_sal_section(fd, lp);
break;
case SN_SOFO:
res = read_sofo_section(fd, lp);
break;
case SN_MAP:
p = (char *)READ_STRING(fd, len); // <mapstr>
if (p == NULL) {
goto endFAIL;
}
set_map_str(lp, (char_u *)p);
xfree(p);
break;
case SN_WORDS:
res = read_words_section(fd, lp, len);
break;
case SN_SUGFILE:
lp->sl_sugtime = get8ctime(fd); // <timestamp>
break;
case SN_NOSPLITSUGS:
lp->sl_nosplitsugs = true;
break;
case SN_NOCOMPOUNDSUGS:
lp->sl_nocompoundsugs = true;
break;
case SN_COMPOUND:
res = read_compound(fd, lp, len);
break;
case SN_NOBREAK:
lp->sl_nobreak = true;
break;
case SN_SYLLABLE:
lp->sl_syllable = READ_STRING(fd, len); // <syllable>
if (lp->sl_syllable == NULL) {
goto endFAIL;
}
if (init_syl_tab(lp) != OK) {
goto endFAIL;
}
break;
default:
// Unsupported section. When it's required give an error
// message. When it's not required skip the contents.
if (c & SNF_REQUIRED) {
emsg(_("E770: Unsupported section in spell file"));
goto endFAIL;
}
while (--len >= 0) {
if (getc(fd) < 0) {
goto truncerr;
}
}
break;
}
someerror:
if (res == SP_FORMERROR) {
emsg(_(e_format));
goto endFAIL;
}
if (res == SP_TRUNCERROR) {
truncerr:
emsg(_(e_spell_trunc));
goto endFAIL;
}
if (res == SP_OTHERERROR) {
goto endFAIL;
}
}
// <LWORDTREE>
res = spell_read_tree(fd, &lp->sl_fbyts, &lp->sl_fbyts_len,
&lp->sl_fidxs, false, 0);
if (res != 0) {
goto someerror;
}
// <KWORDTREE>
res = spell_read_tree(fd, &lp->sl_kbyts, NULL, &lp->sl_kidxs, false, 0);
if (res != 0) {
goto someerror;
}
// <PREFIXTREE>
res = spell_read_tree(fd, &lp->sl_pbyts, NULL, &lp->sl_pidxs, true,
lp->sl_prefixcnt);
if (res != 0) {
goto someerror;
}
// For a new file link it in the list of spell files.
if (old_lp == NULL && lang != NULL) {
lp->sl_next = first_lang;
first_lang = lp;
}
goto endOK;
endFAIL:
if (lang != NULL) {
// truncating the name signals the error to spell_load_lang()
*lang = NUL;
}
if (lp != NULL && old_lp == NULL) {
slang_free(lp);
}
lp = NULL;
endOK:
if (fd != NULL) {
fclose(fd);
}
if (did_estack_push) {
estack_pop();
}
return lp;
}
// Fill in the wordcount fields for a trie.
// Returns the total number of words.
static void tree_count_words(const char_u *byts, idx_T *idxs)
{
int depth;
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
int c;
idx_T n;
int wordcount[MAXWLEN];
arridx[0] = 0;
curi[0] = 1;
wordcount[0] = 0;
depth = 0;
while (depth >= 0 && !got_int) {
if (curi[depth] > byts[arridx[depth]]) {
// Done all bytes at this node, go up one level.
idxs[arridx[depth]] = wordcount[depth];
if (depth > 0) {
wordcount[depth - 1] += wordcount[depth];
}
depth--;
fast_breakcheck();
} else {
// Do one more byte at this node.
n = arridx[depth] + curi[depth];
curi[depth]++;
c = byts[n];
if (c == 0) {
// End of word, count it.
wordcount[depth]++;
// Skip over any other NUL bytes (same word with different
// flags).
while (byts[n + 1] == 0) {
n++;
curi[depth]++;
}
} else {
// Normal char, go one level deeper to count the words.
depth++;
arridx[depth] = idxs[n];
curi[depth] = 1;
wordcount[depth] = 0;
}
}
}
}
/// Load the .sug files for languages that have one and weren't loaded yet.
void suggest_load_files(void)
{
langp_T *lp;
slang_T *slang;
char *dotp;
FILE *fd;
char_u buf[MAXWLEN];
int i;
time_t timestamp;
int wcount;
int wordnr;
garray_T ga;
int c;
// Do this for all languages that support sound folding.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (slang->sl_sugtime != 0 && !slang->sl_sugloaded) {
// Change ".spl" to ".sug" and open the file. When the file isn't
// found silently skip it. Do set "sl_sugloaded" so that we
// don't try again and again.
slang->sl_sugloaded = true;
dotp = strrchr(slang->sl_fname, '.');
if (dotp == NULL || path_fnamecmp(dotp, ".spl") != 0) {
continue;
}
STRCPY(dotp, ".sug");
fd = os_fopen(slang->sl_fname, "r");
if (fd == NULL) {
goto nextone;
}
// <SUGHEADER>: <fileID> <versionnr> <timestamp>
for (i = 0; i < VIMSUGMAGICL; i++) {
buf[i] = (char_u)getc(fd); // <fileID>
}
if (STRNCMP(buf, VIMSUGMAGIC, VIMSUGMAGICL) != 0) {
semsg(_("E778: This does not look like a .sug file: %s"),
slang->sl_fname);
goto nextone;
}
c = getc(fd); // <versionnr>
if (c < VIMSUGVERSION) {
semsg(_("E779: Old .sug file, needs to be updated: %s"),
slang->sl_fname);
goto nextone;
} else if (c > VIMSUGVERSION) {
semsg(_("E780: .sug file is for newer version of Vim: %s"),
slang->sl_fname);
goto nextone;
}
// Check the timestamp, it must be exactly the same as the one in
// the .spl file. Otherwise the word numbers won't match.
timestamp = get8ctime(fd); // <timestamp>
if (timestamp != slang->sl_sugtime) {
semsg(_("E781: .sug file doesn't match .spl file: %s"),
slang->sl_fname);
goto nextone;
}
// <SUGWORDTREE>: <wordtree>
// Read the trie with the soundfolded words.
if (spell_read_tree(fd, &slang->sl_sbyts, NULL, &slang->sl_sidxs,
false, 0) != 0) {
someerror:
semsg(_("E782: error while reading .sug file: %s"),
slang->sl_fname);
slang_clear_sug(slang);
goto nextone;
}
// <SUGTABLE>: <sugwcount> <sugline> ...
//
// Read the table with word numbers. We use a file buffer for
// this, because it's so much like a file with lines. Makes it
// possible to swap the info and save on memory use.
slang->sl_sugbuf = open_spellbuf();
// <sugwcount>
wcount = get4c(fd);
if (wcount < 0) {
goto someerror;
}
// Read all the wordnr lists into the buffer, one NUL terminated
// list per line.
ga_init(&ga, 1, 100);
for (wordnr = 0; wordnr < wcount; wordnr++) {
ga.ga_len = 0;
for (;;) {
c = getc(fd); // <sugline>
if (c < 0) {
goto someerror;
}
GA_APPEND(char_u, &ga, (char_u)c);
if (c == NUL) {
break;
}
}
if (ml_append_buf(slang->sl_sugbuf, (linenr_T)wordnr,
ga.ga_data, ga.ga_len, true) == FAIL) {
goto someerror;
}
}
ga_clear(&ga);
// Need to put word counts in the word tries, so that we can find
// a word by its number.
tree_count_words(slang->sl_fbyts, slang->sl_fidxs);
tree_count_words(slang->sl_sbyts, slang->sl_sidxs);
nextone:
if (fd != NULL) {
fclose(fd);
}
STRCPY(dotp, ".spl");
}
}
}
// Read a length field from "fd" in "cnt_bytes" bytes.
// Allocate memory, read the string into it and add a NUL at the end.
// Returns NULL when the count is zero.
// Sets "*cntp" to SP_*ERROR when there is an error, length of the result
// otherwise.
static char_u *read_cnt_string(FILE *fd, int cnt_bytes, int *cntp)
{
int cnt = 0;
char_u *str;
// read the length bytes, MSB first
for (int i = 0; i < cnt_bytes; i++) {
const int c = getc(fd);
if (c == EOF) {
*cntp = SP_TRUNCERROR;
return NULL;
}
cnt = (int)(((unsigned)cnt << 8) + (unsigned)c);
}
*cntp = cnt;
if (cnt == 0) {
return NULL; // nothing to read, return NULL
}
str = READ_STRING(fd, cnt);
if (str == NULL) {
*cntp = SP_OTHERERROR;
}
return str;
}
// Read SN_REGION: <regionname> ...
// Return SP_*ERROR flags.
static int read_region_section(FILE *fd, slang_T *lp, int len)
{
if (len > MAXREGIONS * 2) {
return SP_FORMERROR;
}
SPELL_READ_NONNUL_BYTES((char *)lp->sl_regions, (size_t)len, fd,; );
lp->sl_regions[len] = NUL;
return 0;
}
// Read SN_CHARFLAGS section: <charflagslen> <charflags>
// <folcharslen> <folchars>
// Return SP_*ERROR flags.
static int read_charflags_section(FILE *fd)
{
char_u *flags;
char_u *fol;
int flagslen, follen;
// <charflagslen> <charflags>
flags = read_cnt_string(fd, 1, &flagslen);
if (flagslen < 0) {
return flagslen;
}
// <folcharslen> <folchars>
fol = read_cnt_string(fd, 2, &follen);
if (follen < 0) {
xfree(flags);
return follen;
}
// Set the word-char flags and fill SPELL_ISUPPER() table.
if (flags != NULL && fol != NULL) {
set_spell_charflags(flags, flagslen, fol);
}
xfree(flags);
xfree(fol);
// When <charflagslen> is zero then <fcharlen> must also be zero.
if ((flags == NULL) != (fol == NULL)) {
return SP_FORMERROR;
}
return 0;
}
// Read SN_PREFCOND section.
// Return SP_*ERROR flags.
static int read_prefcond_section(FILE *fd, slang_T *lp)
{
// <prefcondcnt> <prefcond> ...
const int cnt = get2c(fd); // <prefcondcnt>
if (cnt <= 0) {
return SP_FORMERROR;
}
lp->sl_prefprog = xcalloc((size_t)cnt, sizeof(regprog_T *));
lp->sl_prefixcnt = cnt;
for (int i = 0; i < cnt; i++) {
// <prefcond> : <condlen> <condstr>
const int n = getc(fd); // <condlen>
if (n < 0 || n >= MAXWLEN) {
return SP_FORMERROR;
}
// When <condlen> is zero we have an empty condition. Otherwise
// compile the regexp program used to check for the condition.
if (n > 0) {
char buf[MAXWLEN + 1];
buf[0] = '^'; // always match at one position only
SPELL_READ_NONNUL_BYTES(buf + 1, (size_t)n, fd,; );
buf[n + 1] = NUL;
lp->sl_prefprog[i] = vim_regcomp(buf, RE_MAGIC | RE_STRING);
}
}
return 0;
}
// Read REP or REPSAL items section from "fd": <repcount> <rep> ...
// Return SP_*ERROR flags.
static int read_rep_section(FILE *fd, garray_T *gap, int16_t *first)
{
int cnt;
fromto_T *ftp;
cnt = get2c(fd); // <repcount>
if (cnt < 0) {
return SP_TRUNCERROR;
}
ga_grow(gap, cnt);
// <rep> : <repfromlen> <repfrom> <reptolen> <repto>
for (; gap->ga_len < cnt; ++gap->ga_len) {
int c;
ftp = &((fromto_T *)gap->ga_data)[gap->ga_len];
ftp->ft_from = read_cnt_string(fd, 1, &c);
if (c < 0) {
return c;
}
if (c == 0) {
return SP_FORMERROR;
}
ftp->ft_to = read_cnt_string(fd, 1, &c);
if (c <= 0) {
xfree(ftp->ft_from);
if (c < 0) {
return c;
}
return SP_FORMERROR;
}
}
// Fill the first-index table.
for (int i = 0; i < 256; i++) {
first[i] = -1;
}
for (int i = 0; i < gap->ga_len; i++) {
ftp = &((fromto_T *)gap->ga_data)[i];
if (first[*ftp->ft_from] == -1) {
first[*ftp->ft_from] = (int16_t)i;
}
}
return 0;
}
// Read SN_SAL section: <salflags> <salcount> <sal> ...
// Return SP_*ERROR flags.
static int read_sal_section(FILE *fd, slang_T *slang)
{
int cnt;
garray_T *gap;
salitem_T *smp;
int ccnt;
char_u *p;
slang->sl_sofo = false;
const int flags = getc(fd); // <salflags>
if (flags & SAL_F0LLOWUP) {
slang->sl_followup = true;
}
if (flags & SAL_COLLAPSE) {
slang->sl_collapse = true;
}
if (flags & SAL_REM_ACCENTS) {
slang->sl_rem_accents = true;
}
cnt = get2c(fd); // <salcount>
if (cnt < 0) {
return SP_TRUNCERROR;
}
gap = &slang->sl_sal;
ga_init(gap, sizeof(salitem_T), 10);
ga_grow(gap, cnt + 1);
// <sal> : <salfromlen> <salfrom> <saltolen> <salto>
for (; gap->ga_len < cnt; gap->ga_len++) {
int c = NUL;
smp = &((salitem_T *)gap->ga_data)[gap->ga_len];
ccnt = getc(fd); // <salfromlen>
if (ccnt < 0) {
return SP_TRUNCERROR;
}
p = xmalloc((size_t)ccnt + 2);
smp->sm_lead = p;
// Read up to the first special char into sm_lead.
int i = 0;
for (; i < ccnt; i++) {
c = getc(fd); // <salfrom>
if (vim_strchr("0123456789(-<^$", c) != NULL) {
break;
}
*p++ = (char_u)c;
}
smp->sm_leadlen = (int)(p - smp->sm_lead);
*p++ = NUL;
// Put (abc) chars in sm_oneof, if any.
if (c == '(') {
smp->sm_oneof = p;
for (++i; i < ccnt; i++) {
c = getc(fd); // <salfrom>
if (c == ')') {
break;
}
*p++ = (char_u)c;
}
*p++ = NUL;
if (++i < ccnt) {
c = getc(fd);
}
} else {
smp->sm_oneof = NULL;
}
// Any following chars go in sm_rules.
smp->sm_rules = p;
if (i < ccnt) {
// store the char we got while checking for end of sm_lead
*p++ = (char_u)c;
}
i++;
if (i < ccnt) {
SPELL_READ_NONNUL_BYTES( // <salfrom>
(char *)p, (size_t)(ccnt - i), fd,
xfree(smp->sm_lead));
p += (ccnt - i);
}
*p++ = NUL;
// <saltolen> <salto>
smp->sm_to = read_cnt_string(fd, 1, &ccnt);
if (ccnt < 0) {
xfree(smp->sm_lead);
return ccnt;
}
// convert the multi-byte strings to wide char strings
smp->sm_lead_w = mb_str2wide(smp->sm_lead);
smp->sm_leadlen = mb_charlen(smp->sm_lead);
if (smp->sm_oneof == NULL) {
smp->sm_oneof_w = NULL;
} else {
smp->sm_oneof_w = mb_str2wide(smp->sm_oneof);
}
if (smp->sm_to == NULL) {
smp->sm_to_w = NULL;
} else {
smp->sm_to_w = mb_str2wide(smp->sm_to);
}
}
if (!GA_EMPTY(gap)) {
// Add one extra entry to mark the end with an empty sm_lead. Avoids
// that we need to check the index every time.
smp = &((salitem_T *)gap->ga_data)[gap->ga_len];
p = xmalloc(1);
p[0] = NUL;
smp->sm_lead = p;
smp->sm_lead_w = mb_str2wide(smp->sm_lead);
smp->sm_leadlen = 0;
smp->sm_oneof = NULL;
smp->sm_oneof_w = NULL;
smp->sm_rules = p;
smp->sm_to = NULL;
smp->sm_to_w = NULL;
gap->ga_len++;
}
// Fill the first-index table.
set_sal_first(slang);
return 0;
}
// Read SN_WORDS: <word> ...
// Return SP_*ERROR flags.
static int read_words_section(FILE *fd, slang_T *lp, int len)
{
int done = 0;
int i;
int c;
char_u word[MAXWLEN];
while (done < len) {
// Read one word at a time.
for (i = 0;; i++) {
c = getc(fd);
if (c == EOF) {
return SP_TRUNCERROR;
}
word[i] = (char_u)c;
if (word[i] == NUL) {
break;
}
if (i == MAXWLEN - 1) {
return SP_FORMERROR;
}
}
// Init the count to 10.
count_common_word(lp, (char *)word, -1, 10);
done += i + 1;
}
return 0;
}
// SN_SOFO: <sofofromlen> <sofofrom> <sofotolen> <sofoto>
// Return SP_*ERROR flags.
static int read_sofo_section(FILE *fd, slang_T *slang)
{
int cnt;
char_u *from, *to;
int res;
slang->sl_sofo = true;
// <sofofromlen> <sofofrom>
from = read_cnt_string(fd, 2, &cnt);
if (cnt < 0) {
return cnt;
}
// <sofotolen> <sofoto>
to = read_cnt_string(fd, 2, &cnt);
if (cnt < 0) {
xfree(from);
return cnt;
}
// Store the info in slang->sl_sal and/or slang->sl_sal_first.
if (from != NULL && to != NULL) {
res = set_sofo(slang, from, to);
} else if (from != NULL || to != NULL) {
res = SP_FORMERROR; // only one of two strings is an error
} else {
res = 0;
}
xfree(from);
xfree(to);
return res;
}
// Read the compound section from the .spl file:
// <compmax> <compminlen> <compsylmax> <compoptions> <compflags>
// Returns SP_*ERROR flags.
static int read_compound(FILE *fd, slang_T *slang, int len)
{
int todo = len;
int c;
int atstart;
int cnt;
garray_T *gap;
if (todo < 2) {
return SP_FORMERROR; // need at least two bytes
}
todo--;
c = getc(fd); // <compmax>
if (c < 2) {
c = MAXWLEN;
}
slang->sl_compmax = c;
todo--;
c = getc(fd); // <compminlen>
if (c < 1) {
c = 0;
}
slang->sl_compminlen = c;
todo--;
c = getc(fd); // <compsylmax>
if (c < 1) {
c = MAXWLEN;
}
slang->sl_compsylmax = c;
c = getc(fd); // <compoptions>
if (c != 0) {
ungetc(c, fd); // be backwards compatible with Vim 7.0b
} else {
todo--;
c = getc(fd); // only use the lower byte for now
todo--;
slang->sl_compoptions = c;
gap = &slang->sl_comppat;
c = get2c(fd); // <comppatcount>
if (c < 0) {
return SP_TRUNCERROR;
}
todo -= 2;
ga_init(gap, sizeof(char_u *), c);
ga_grow(gap, c);
while (--c >= 0) {
((char **)(gap->ga_data))[gap->ga_len++] = (char *)read_cnt_string(fd, 1, &cnt);
// <comppatlen> <comppattext>
if (cnt < 0) {
return cnt;
}
todo -= cnt + 1;
}
}
if (todo < 0) {
return SP_FORMERROR;
}
// Turn the COMPOUNDRULE items into a regexp pattern:
// "a[bc]/a*b+" -> "^\(a[bc]\|a*b\+\)$".
// Inserting backslashes may double the length, "^\(\)$<Nul>" is 7 bytes.
// Conversion to utf-8 may double the size.
c = todo * 2 + 7;
c += todo * 2;
char_u *pat = xmalloc((size_t)c);
// We also need a list of all flags that can appear at the start and one
// for all flags.
char_u *cp = xmalloc((size_t)todo + 1);
slang->sl_compstartflags = cp;
*cp = NUL;
char_u *ap = xmalloc((size_t)todo + 1);
slang->sl_compallflags = ap;
*ap = NUL;
// And a list of all patterns in their original form, for checking whether
// compounding may work in match_compoundrule(). This is freed when we
// encounter a wildcard, the check doesn't work then.
char_u *crp = xmalloc((size_t)todo + 1);
slang->sl_comprules = crp;
char_u *pp = pat;
*pp++ = '^';
*pp++ = '\\';
*pp++ = '(';
atstart = 1;
while (todo-- > 0) {
c = getc(fd); // <compflags>
if (c == EOF) {
xfree(pat);
return SP_TRUNCERROR;
}
// Add all flags to "sl_compallflags".
if (vim_strchr("?*+[]/", c) == NULL
&& !byte_in_str(slang->sl_compallflags, c)) {
*ap++ = (char_u)c;
*ap = NUL;
}
if (atstart != 0) {
// At start of item: copy flags to "sl_compstartflags". For a
// [abc] item set "atstart" to 2 and copy up to the ']'.
if (c == '[') {
atstart = 2;
} else if (c == ']') {
atstart = 0;
} else {
if (!byte_in_str(slang->sl_compstartflags, c)) {
*cp++ = (char_u)c;
*cp = NUL;
}
if (atstart == 1) {
atstart = 0;
}
}
}
// Copy flag to "sl_comprules", unless we run into a wildcard.
if (crp != NULL) {
if (c == '?' || c == '+' || c == '*') {
XFREE_CLEAR(slang->sl_comprules);
crp = NULL;
} else {
*crp++ = (char_u)c;
}
}
if (c == '/') { // slash separates two items
*pp++ = '\\';
*pp++ = '|';
atstart = 1;
} else { // normal char, "[abc]" and '*' are copied as-is
if (c == '?' || c == '+' || c == '~') {
*pp++ = '\\'; // "a?" becomes "a\?", "a+" becomes "a\+"
}
pp += utf_char2bytes(c, (char *)pp);
}
}
*pp++ = '\\';
*pp++ = ')';
*pp++ = '$';
*pp = NUL;
if (crp != NULL) {
*crp = NUL;
}
slang->sl_compprog = vim_regcomp((char *)pat, RE_MAGIC + RE_STRING + RE_STRICT);
xfree(pat);
if (slang->sl_compprog == NULL) {
return SP_FORMERROR;
}
return 0;
}
// Set the SOFOFROM and SOFOTO items in language "lp".
// Returns SP_*ERROR flags when there is something wrong.
static int set_sofo(slang_T *lp, char_u *from, char_u *to)
{
char_u *s;
char_u *p;
// Use "sl_sal" as an array with 256 pointers to a list of wide
// characters. The index is the low byte of the character.
// The list contains from-to pairs with a terminating NUL.
// sl_sal_first[] is used for latin1 "from" characters.
garray_T *gap = &lp->sl_sal;
ga_init(gap, sizeof(int *), 1);
ga_grow(gap, 256);
memset(gap->ga_data, 0, sizeof(int *) * 256);
gap->ga_len = 256;
// First count the number of items for each list. Temporarily use
// sl_sal_first[] for this.
for (p = from, s = to; *p != NUL && *s != NUL;) {
const int c = mb_cptr2char_adv((const char_u **)&p);
MB_CPTR_ADV(s);
if (c >= 256) {
lp->sl_sal_first[c & 0xff]++;
}
}
if (*p != NUL || *s != NUL) { // lengths differ
return SP_FORMERROR;
}
// Allocate the lists.
for (int i = 0; i < 256; i++) {
if (lp->sl_sal_first[i] > 0) {
p = xmalloc(sizeof(int) * (size_t)(lp->sl_sal_first[i] * 2 + 1));
((int **)gap->ga_data)[i] = (int *)p;
*(int *)p = 0;
}
}
// Put the characters up to 255 in sl_sal_first[] the rest in a sl_sal
// list.
memset(lp->sl_sal_first, 0, sizeof(salfirst_T) * 256);
for (p = from, s = to; *p != NUL && *s != NUL;) {
const int c = mb_cptr2char_adv((const char_u **)&p);
const int i = mb_cptr2char_adv((const char_u **)&s);
if (c >= 256) {
// Append the from-to chars at the end of the list with
// the low byte.
int *inp = ((int **)gap->ga_data)[c & 0xff];
while (*inp != 0) {
inp++;
}
*inp++ = c; // from char
*inp++ = i; // to char
*inp++ = NUL; // NUL at the end
} else {
// mapping byte to char is done in sl_sal_first[]
lp->sl_sal_first[c] = i;
}
}
return 0;
}
// Fill the first-index table for "lp".
static void set_sal_first(slang_T *lp)
{
salfirst_T *sfirst;
salitem_T *smp;
int c;
garray_T *gap = &lp->sl_sal;
sfirst = lp->sl_sal_first;
for (int i = 0; i < 256; i++) {
sfirst[i] = -1;
}
smp = (salitem_T *)gap->ga_data;
for (int i = 0; i < gap->ga_len; i++) {
// Use the lowest byte of the first character. For latin1 it's
// the character, for other encodings it should differ for most
// characters.
c = *smp[i].sm_lead_w & 0xff;
if (sfirst[c] == -1) {
sfirst[c] = i;
// Make sure all entries with this byte are following each
// other. Move the ones that are in the wrong position. Do
// keep the same ordering!
while (i + 1 < gap->ga_len
&& (*smp[i + 1].sm_lead_w & 0xff) == c) {
// Skip over entry with same index byte.
i++;
}
for (int n = 1; i + n < gap->ga_len; n++) {
if ((*smp[i + n].sm_lead_w & 0xff) == c) {
salitem_T tsal;
// Move entry with same index byte after the entries
// we already found.
i++;
n--;
tsal = smp[i + n];
memmove(smp + i + 1, smp + i, sizeof(salitem_T) * (size_t)n);
smp[i] = tsal;
}
}
}
}
}
// Turn a multi-byte string into a wide character string.
// Return it in allocated memory.
static int *mb_str2wide(char_u *s)
{
int i = 0;
int *res = xmalloc(((size_t)mb_charlen(s) + 1) * sizeof(int));
for (char_u *p = s; *p != NUL;) {
res[i++] = mb_ptr2char_adv((const char_u **)&p);
}
res[i] = NUL;
return res;
}
/// Reads a tree from the .spl or .sug file.
/// Allocates the memory and stores pointers in "bytsp" and "idxsp".
/// This is skipped when the tree has zero length.
///
/// @param prefixtree true for the prefix tree
/// @param prefixcnt when "prefixtree" is true: prefix count
///
/// @return zero when OK, SP_ value for an error.
static int spell_read_tree(FILE *fd, char_u **bytsp, long *bytsp_len, idx_T **idxsp,
bool prefixtree, int prefixcnt)
FUNC_ATTR_NONNULL_ARG(1, 2, 4)
{
int idx;
char_u *bp;
idx_T *ip;
// The tree size was computed when writing the file, so that we can
// allocate it as one long block. <nodecount>
long len = get4c(fd);
if (len < 0) {
return SP_TRUNCERROR;
}
if ((size_t)len >= SIZE_MAX / sizeof(int)) { // -V547
// Invalid length, multiply with sizeof(int) would overflow.
return SP_FORMERROR;
}
if (len > 0) {
// Allocate the byte array.
bp = xmalloc((size_t)len);
*bytsp = bp;
if (bytsp_len != NULL) {
*bytsp_len = len;
}
// Allocate the index array.
ip = xcalloc((size_t)len, sizeof(*ip));
*idxsp = ip;
// Recursively read the tree and store it in the array.
idx = read_tree_node(fd, bp, ip, (int)len, 0, prefixtree, prefixcnt);
if (idx < 0) {
return idx;
}
}
return 0;
}
/// Read one row of siblings from the spell file and store it in the byte array
/// "byts" and index array "idxs". Recursively read the children.
///
/// NOTE: The code here must match put_node()!
///
/// Returns the index (>= 0) following the siblings.
/// Returns SP_TRUNCERROR if the file is shorter than expected.
/// Returns SP_FORMERROR if there is a format error.
///
/// @param maxidx size of arrays
/// @param startidx current index in "byts" and "idxs"
/// @param prefixtree true for reading PREFIXTREE
/// @param maxprefcondnr maximum for <prefcondnr>
static idx_T read_tree_node(FILE *fd, char_u *byts, idx_T *idxs, int maxidx, idx_T startidx,
bool prefixtree, int maxprefcondnr)
{
int len;
int i;
int n;
idx_T idx = startidx;
int c;
int c2;
#define SHARED_MASK 0x8000000
len = getc(fd); // <siblingcount>
if (len <= 0) {
return SP_TRUNCERROR;
}
if (startidx + len >= maxidx) {
return SP_FORMERROR;
}
byts[idx++] = (char_u)len;
// Read the byte values, flag/region bytes and shared indexes.
for (i = 1; i <= len; i++) {
c = getc(fd); // <byte>
if (c < 0) {
return SP_TRUNCERROR;
}
if (c <= BY_SPECIAL) {
if (c == BY_NOFLAGS && !prefixtree) {
// No flags, all regions.
idxs[idx] = 0;
} else if (c != BY_INDEX) {
if (prefixtree) {
// Read the optional pflags byte, the prefix ID and the
// condition nr. In idxs[] store the prefix ID in the low
// byte, the condition index shifted up 8 bits, the flags
// shifted up 24 bits.
if (c == BY_FLAGS) {
c = getc(fd) << 24; // <pflags>
} else {
c = 0;
}
c |= getc(fd); // <affixID>
n = get2c(fd); // <prefcondnr>
if (n >= maxprefcondnr) {
return SP_FORMERROR;
}
c |= (n << 8);
} else { // c must be BY_FLAGS or BY_FLAGS2
// Read flags and optional region and prefix ID. In
// idxs[] the flags go in the low two bytes, region above
// that and prefix ID above the region.
c2 = c;
c = getc(fd); // <flags>
if (c2 == BY_FLAGS2) {
c = (getc(fd) << 8) + c; // <flags2>
}
if (c & WF_REGION) {
c = (getc(fd) << 16) + c; // <region>
}
if (c & WF_AFX) {
c = (getc(fd) << 24) + c; // <affixID>
}
}
idxs[idx] = c;
c = 0;
} else { // c == BY_INDEX
// <nodeidx>
n = get3c(fd);
if (n < 0 || n >= maxidx) {
return SP_FORMERROR;
}
idxs[idx] = n + SHARED_MASK;
c = getc(fd); // <xbyte>
}
}
byts[idx++] = (char_u)c;
}
// Recursively read the children for non-shared siblings.
// Skip the end-of-word ones (zero byte value) and the shared ones (and
// remove SHARED_MASK)
for (i = 1; i <= len; i++) {
if (byts[startidx + i] != 0) {
if (idxs[startidx + i] & SHARED_MASK) {
idxs[startidx + i] &= ~SHARED_MASK;
} else {
idxs[startidx + i] = idx;
idx = read_tree_node(fd, byts, idxs, maxidx, idx,
prefixtree, maxprefcondnr);
if (idx < 0) {
break;
}
}
}
}
return idx;
}
/// Reload the spell file "fname" if it's loaded.
///
/// @param added_word invoked through "zg"
static void spell_reload_one(char_u *fname, bool added_word)
{
slang_T *slang;
bool didit = false;
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (path_full_compare((char *)fname, slang->sl_fname, false, true) == kEqualFiles) {
slang_clear(slang);
if (spell_load_file((char *)fname, NULL, slang, false) == NULL) {
// reloading failed, clear the language
slang_clear(slang);
}
redraw_all_later(UPD_SOME_VALID);
didit = true;
}
}
// When "zg" was used and the file wasn't loaded yet, should redo
// 'spelllang' to load it now.
if (added_word && !didit) {
did_set_spelllang(curwin);
}
}
// Functions for ":mkspell".
// In the postponed prefixes tree wn_flags is used to store the WFP_ flags,
// but it must be negative to indicate the prefix tree to tree_add_word().
// Use a negative number with the lower 8 bits zero.
#define PFX_FLAGS (-256)
// flags for "condit" argument of store_aff_word()
#define CONDIT_COMB 1 // affix must combine
#define CONDIT_CFIX 2 // affix must have CIRCUMFIX flag
#define CONDIT_SUF 4 // add a suffix for matching flags
#define CONDIT_AFF 8 // word already has an affix
// Tunable parameters for when the tree is compressed. Filled from the
// 'mkspellmem' option.
static long compress_start = 30000; // memory / SBLOCKSIZE
static long compress_inc = 100; // memory / SBLOCKSIZE
static long compress_added = 500000; // word count
// Check the 'mkspellmem' option. Return FAIL if it's wrong.
// Sets "sps_flags".
int spell_check_msm(void)
{
char *p = p_msm;
long start = 0;
long incr = 0;
long added = 0;
if (!ascii_isdigit(*p)) {
return FAIL;
}
// block count = (value * 1024) / SBLOCKSIZE (but avoid overflow)
start = (getdigits_long(&p, true, 0) * 10) / (SBLOCKSIZE / 102);
if (*p != ',') {
return FAIL;
}
p++;
if (!ascii_isdigit(*p)) {
return FAIL;
}
incr = (getdigits_long(&p, true, 0) * 102) / (SBLOCKSIZE / 10);
if (*p != ',') {
return FAIL;
}
p++;
if (!ascii_isdigit(*p)) {
return FAIL;
}
added = getdigits_long(&p, true, 0) * 1024;
if (*p != NUL) {
return FAIL;
}
if (start == 0 || incr == 0 || added == 0 || incr > start) {
return FAIL;
}
compress_start = start;
compress_inc = incr;
compress_added = added;
return OK;
}
#ifdef SPELL_PRINTTREE
// For debugging the tree code: print the current tree in a (more or less)
// readable format, so that we can see what happens when adding a word and/or
// compressing the tree.
// Based on code from Olaf Seibert.
# define PRINTLINESIZE 1000
# define PRINTWIDTH 6
# define PRINTSOME(l, depth, fmt, a1, a2) vim_snprintf(l + depth * PRINTWIDTH, \
PRINTLINESIZE - PRINTWIDTH * depth, fmt, a1, \
a2)
static char line1[PRINTLINESIZE];
static char line2[PRINTLINESIZE];
static char line3[PRINTLINESIZE];
static void spell_clear_flags(wordnode_T *node)
{
wordnode_T *np;
for (np = node; np != NULL; np = np->wn_sibling) {
np->wn_u1.index = false;
spell_clear_flags(np->wn_child);
}
}
static void spell_print_node(wordnode_T *node, int depth)
{
if (node->wn_u1.index) {
// Done this node before, print the reference.
PRINTSOME(line1, depth, "(%d)", node->wn_nr, 0);
PRINTSOME(line2, depth, " ", 0, 0);
PRINTSOME(line3, depth, " ", 0, 0);
msg((char_u *)line1);
msg((char_u *)line2);
msg((char_u *)line3);
} else {
node->wn_u1.index = true;
if (node->wn_byte != NUL) {
if (node->wn_child != NULL) {
PRINTSOME(line1, depth, " %c -> ", node->wn_byte, 0);
} else {
// Cannot happen?
PRINTSOME(line1, depth, " %c ???", node->wn_byte, 0);
}
} else {
PRINTSOME(line1, depth, " $ ", 0, 0);
}
PRINTSOME(line2, depth, "%d/%d ", node->wn_nr, node->wn_refs);
if (node->wn_sibling != NULL) {
PRINTSOME(line3, depth, " | ", 0, 0);
} else {
PRINTSOME(line3, depth, " ", 0, 0);
}
if (node->wn_byte == NUL) {
msg((char_u *)line1);
msg((char_u *)line2);
msg((char_u *)line3);
}
// do the children
if (node->wn_byte != NUL && node->wn_child != NULL) {
spell_print_node(node->wn_child, depth + 1);
}
// do the siblings
if (node->wn_sibling != NULL) {
// get rid of all parent details except |
STRCPY(line1, line3);
STRCPY(line2, line3);
spell_print_node(node->wn_sibling, depth);
}
}
}
static void spell_print_tree(wordnode_T *root)
{
if (root != NULL) {
// Clear the "wn_u1.index" fields, used to remember what has been
// done.
spell_clear_flags(root);
// Recursively print the tree.
spell_print_node(root, 0);
}
}
#endif // SPELL_PRINTTREE
// Reads the affix file "fname".
// Returns an afffile_T, NULL for complete failure.
static afffile_T *spell_read_aff(spellinfo_T *spin, char_u *fname)
{
FILE *fd;
char_u rline[MAXLINELEN];
char_u *line;
char_u *pc = NULL;
#define MAXITEMCNT 30
char *(items[MAXITEMCNT]);
int itemcnt;
char *p;
int lnum = 0;
affheader_T *cur_aff = NULL;
bool did_postpone_prefix = false;
int aff_todo = 0;
hashtab_T *tp;
char *low = NULL;
char *fol = NULL;
char *upp = NULL;
int do_rep;
int do_repsal;
int do_sal;
int do_mapline;
bool found_map = false;
hashitem_T *hi;
int l;
int compminlen = 0; // COMPOUNDMIN value
int compsylmax = 0; // COMPOUNDSYLMAX value
int compoptions = 0; // COMP_ flags
int compmax = 0; // COMPOUNDWORDMAX value
char *compflags = NULL; // COMPOUNDFLAG and COMPOUNDRULE
// concatenated
char_u *midword = NULL; // MIDWORD value
char_u *syllable = NULL; // SYLLABLE value
char_u *sofofrom = NULL; // SOFOFROM value
char_u *sofoto = NULL; // SOFOTO value
// Open the file.
fd = os_fopen((char *)fname, "r");
if (fd == NULL) {
semsg(_(e_notopen), fname);
return NULL;
}
vim_snprintf((char *)IObuff, IOSIZE, _("Reading affix file %s..."), fname);
spell_message(spin, (char *)IObuff);
// Only do REP lines when not done in another .aff file already.
do_rep = GA_EMPTY(&spin->si_rep);
// Only do REPSAL lines when not done in another .aff file already.
do_repsal = GA_EMPTY(&spin->si_repsal);
// Only do SAL lines when not done in another .aff file already.
do_sal = GA_EMPTY(&spin->si_sal);
// Only do MAP lines when not done in another .aff file already.
do_mapline = GA_EMPTY(&spin->si_map);
// Allocate and init the afffile_T structure.
afffile_T *aff = getroom(spin, sizeof(*aff), true);
hash_init(&aff->af_pref);
hash_init(&aff->af_suff);
hash_init(&aff->af_comp);
// Read all the lines in the file one by one.
while (!vim_fgets((char *)rline, MAXLINELEN, fd) && !got_int) {
line_breakcheck();
lnum++;
// Skip comment lines.
if (*rline == '#') {
continue;
}
// Convert from "SET" to 'encoding' when needed.
xfree(pc);
if (spin->si_conv.vc_type != CONV_NONE) {
pc = (char_u *)string_convert(&spin->si_conv, (char *)rline, NULL);
if (pc == NULL) {
smsg(_("Conversion failure for word in %s line %d: %s"),
fname, lnum, rline);
continue;
}
line = pc;
} else {
pc = NULL;
line = rline;
}
// Split the line up in white separated items. Put a NUL after each
// item.
itemcnt = 0;
for (p = (char *)line;;) {
while (*p != NUL && (uint8_t)(*p) <= ' ') { // skip white space and CR/NL
p++;
}
if (*p == NUL) {
break;
}
if (itemcnt == MAXITEMCNT) { // too many items
break;
}
items[itemcnt++] = p;
// A few items have arbitrary text argument, don't split them.
if (itemcnt == 2 && spell_info_item(items[0])) {
while ((uint8_t)(*p) >= ' ' || *p == TAB) { // skip until CR/NL
p++;
}
} else {
while ((uint8_t)(*p) > ' ') { // skip until white space or CR/NL
p++;
}
}
if (*p == NUL) {
break;
}
*p++ = NUL;
}
// Handle non-empty lines.
if (itemcnt > 0) {
if (is_aff_rule(items, itemcnt, "SET", 2) && aff->af_enc == NULL) {
// Setup for conversion from "ENC" to 'encoding'.
aff->af_enc = (char_u *)enc_canonize((char *)items[1]);
if (!spin->si_ascii
&& convert_setup(&spin->si_conv, (char *)aff->af_enc, p_enc) == FAIL) {
smsg(_("Conversion in %s not supported: from %s to %s"),
fname, aff->af_enc, p_enc);
}
spin->si_conv.vc_fail = true;
} else if (is_aff_rule(items, itemcnt, "FLAG", 2)
&& aff->af_flagtype == AFT_CHAR) {
if (strcmp(items[1], "long") == 0) {
aff->af_flagtype = AFT_LONG;
} else if (strcmp(items[1], "num") == 0) {
aff->af_flagtype = AFT_NUM;
} else if (strcmp(items[1], "caplong") == 0) {
aff->af_flagtype = AFT_CAPLONG;
} else {
smsg(_("Invalid value for FLAG in %s line %d: %s"),
fname, lnum, items[1]);
}
if (aff->af_rare != 0
|| aff->af_keepcase != 0
|| aff->af_bad != 0
|| aff->af_needaffix != 0
|| aff->af_circumfix != 0
|| aff->af_needcomp != 0
|| aff->af_comproot != 0
|| aff->af_nosuggest != 0
|| compflags != NULL
|| aff->af_suff.ht_used > 0
|| aff->af_pref.ht_used > 0) {
smsg(_("FLAG after using flags in %s line %d: %s"),
fname, lnum, items[1]);
}
} else if (spell_info_item(items[0]) && itemcnt > 1) {
p = getroom(spin,
(spin->si_info == NULL ? 0 : strlen(spin->si_info))
+ strlen(items[0])
+ strlen(items[1]) + 3, false);
if (spin->si_info != NULL) {
STRCPY(p, spin->si_info);
STRCAT(p, "\n");
}
STRCAT(p, items[0]);
STRCAT(p, " ");
STRCAT(p, items[1]);
spin->si_info = p;
} else if (is_aff_rule(items, itemcnt, "MIDWORD", 2) && midword == NULL) {
midword = (char_u *)getroom_save(spin, items[1]);
} else if (is_aff_rule(items, itemcnt, "TRY", 2)) {
// ignored, we look in the tree for what chars may appear
} else if ((is_aff_rule(items, itemcnt, "RAR", 2) // TODO(vim): remove "RAR" later
|| is_aff_rule(items, itemcnt, "RARE", 2))
&& aff->af_rare == 0) {
aff->af_rare = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
} else if ((is_aff_rule(items, itemcnt, "KEP", 2) // TODO(vim): remove "KEP" later
|| is_aff_rule(items, itemcnt, "KEEPCASE", 2))
&& aff->af_keepcase == 0) {
aff->af_keepcase = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
} else if ((is_aff_rule(items, itemcnt, "BAD", 2)
|| is_aff_rule(items, itemcnt, "FORBIDDENWORD", 2))
&& aff->af_bad == 0) {
aff->af_bad = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "NEEDAFFIX", 2)
&& aff->af_needaffix == 0) {
aff->af_needaffix = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "CIRCUMFIX", 2)
&& aff->af_circumfix == 0) {
aff->af_circumfix = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "NOSUGGEST", 2)
&& aff->af_nosuggest == 0) {
aff->af_nosuggest = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
} else if ((is_aff_rule(items, itemcnt, "NEEDCOMPOUND", 2)
|| is_aff_rule(items, itemcnt, "ONLYINCOMPOUND", 2))
&& aff->af_needcomp == 0) {
aff->af_needcomp = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "COMPOUNDROOT", 2)
&& aff->af_comproot == 0) {
aff->af_comproot = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
} else if (is_aff_rule(items, itemcnt, "COMPOUNDFORBIDFLAG", 2)
&& aff->af_compforbid == 0) {
aff->af_compforbid = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
if (aff->af_pref.ht_used > 0) {
smsg(_("Defining COMPOUNDFORBIDFLAG after PFX item may give wrong results in %s line %d"),
fname, lnum);
}
} else if (is_aff_rule(items, itemcnt, "COMPOUNDPERMITFLAG", 2)
&& aff->af_comppermit == 0) {
aff->af_comppermit = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
if (aff->af_pref.ht_used > 0) {
smsg(_("Defining COMPOUNDPERMITFLAG after PFX item may give wrong results in %s line %d"),
fname, lnum);
}
} else if (is_aff_rule(items, itemcnt, "COMPOUNDFLAG", 2)
&& compflags == NULL) {
// Turn flag "c" into COMPOUNDRULE compatible string "c+",
// "Na" into "Na+", "1234" into "1234+".
p = getroom(spin, strlen(items[1]) + 2, false);
STRCPY(p, items[1]);
STRCAT(p, "+");
compflags = p;
} else if (is_aff_rule(items, itemcnt, "COMPOUNDRULES", 2)) {
// We don't use the count, but do check that it's a number and
// not COMPOUNDRULE mistyped.
if (atoi((char *)items[1]) == 0) {
smsg(_("Wrong COMPOUNDRULES value in %s line %d: %s"),
fname, lnum, items[1]);
}
} else if (is_aff_rule(items, itemcnt, "COMPOUNDRULE", 2)) {
// Don't use the first rule if it is a number.
if (compflags != NULL || *skipdigits((char *)items[1]) != NUL) {
// Concatenate this string to previously defined ones,
// using a slash to separate them.
l = (int)strlen(items[1]) + 1;
if (compflags != NULL) {
l += (int)strlen(compflags) + 1;
}
p = getroom(spin, (size_t)l, false);
if (compflags != NULL) {
STRCPY(p, compflags);
STRCAT(p, "/");
}
STRCAT(p, items[1]);
compflags = p;
}
} else if (is_aff_rule(items, itemcnt, "COMPOUNDWORDMAX", 2)
&& compmax == 0) {
compmax = atoi((char *)items[1]);
if (compmax == 0) {
smsg(_("Wrong COMPOUNDWORDMAX value in %s line %d: %s"),
fname, lnum, items[1]);
}
} else if (is_aff_rule(items, itemcnt, "COMPOUNDMIN", 2)
&& compminlen == 0) {
compminlen = atoi((char *)items[1]);
if (compminlen == 0) {
smsg(_("Wrong COMPOUNDMIN value in %s line %d: %s"),
fname, lnum, items[1]);
}
} else if (is_aff_rule(items, itemcnt, "COMPOUNDSYLMAX", 2)
&& compsylmax == 0) {
compsylmax = atoi((char *)items[1]);
if (compsylmax == 0) {
smsg(_("Wrong COMPOUNDSYLMAX value in %s line %d: %s"),
fname, lnum, items[1]);
}
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDDUP", 1)) {
compoptions |= COMP_CHECKDUP;
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDREP", 1)) {
compoptions |= COMP_CHECKREP;
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDCASE", 1)) {
compoptions |= COMP_CHECKCASE;
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDTRIPLE", 1)) {
compoptions |= COMP_CHECKTRIPLE;
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDPATTERN", 2)) {
if (atoi((char *)items[1]) == 0) {
smsg(_("Wrong CHECKCOMPOUNDPATTERN value in %s line %d: %s"),
fname, lnum, items[1]);
}
} else if (is_aff_rule(items, itemcnt, "CHECKCOMPOUNDPATTERN", 3)) {
garray_T *gap = &spin->si_comppat;
int i;
// Only add the couple if it isn't already there.
for (i = 0; i < gap->ga_len - 1; i += 2) {
if (strcmp(((char **)(gap->ga_data))[i], items[1]) == 0
&& strcmp(((char **)(gap->ga_data))[i + 1], items[2]) == 0) {
break;
}
}
if (i >= gap->ga_len) {
ga_grow(gap, 2);
((char **)(gap->ga_data))[gap->ga_len++] = getroom_save(spin, items[1]);
((char **)(gap->ga_data))[gap->ga_len++] = getroom_save(spin, items[2]);
}
} else if (is_aff_rule(items, itemcnt, "SYLLABLE", 2)
&& syllable == NULL) {
syllable = (char_u *)getroom_save(spin, items[1]);
} else if (is_aff_rule(items, itemcnt, "NOBREAK", 1)) {
spin->si_nobreak = true;
} else if (is_aff_rule(items, itemcnt, "NOSPLITSUGS", 1)) {
spin->si_nosplitsugs = true;
} else if (is_aff_rule(items, itemcnt, "NOCOMPOUNDSUGS", 1)) {
spin->si_nocompoundsugs = true;
} else if (is_aff_rule(items, itemcnt, "NOSUGFILE", 1)) {
spin->si_nosugfile = true;
} else if (is_aff_rule(items, itemcnt, "PFXPOSTPONE", 1)) {
aff->af_pfxpostpone = true;
} else if (is_aff_rule(items, itemcnt, "IGNOREEXTRA", 1)) {
aff->af_ignoreextra = true;
} else if ((strcmp(items[0], "PFX") == 0
|| strcmp(items[0], "SFX") == 0)
&& aff_todo == 0
&& itemcnt >= 4) {
int lasti = 4;
char_u key[AH_KEY_LEN];
if (*items[0] == 'P') {
tp = &aff->af_pref;
} else {
tp = &aff->af_suff;
}
// Myspell allows the same affix name to be used multiple
// times. The affix files that do this have an undocumented
// "S" flag on all but the last block, thus we check for that
// and store it in ah_follows.
STRLCPY(key, items[1], AH_KEY_LEN);
hi = hash_find(tp, (char *)key);
if (!HASHITEM_EMPTY(hi)) {
cur_aff = HI2AH(hi);
if (cur_aff->ah_combine != (*items[2] == 'Y')) {
smsg(_("Different combining flag in continued affix block in %s line %d: %s"),
fname, lnum, items[1]);
}
if (!cur_aff->ah_follows) {
smsg(_("Duplicate affix in %s line %d: %s"),
fname, lnum, items[1]);
}
} else {
// New affix letter.
cur_aff = getroom(spin, sizeof(*cur_aff), true);
cur_aff->ah_flag = affitem2flag(aff->af_flagtype, (char_u *)items[1],
fname, lnum);
if (cur_aff->ah_flag == 0 || strlen(items[1]) >= AH_KEY_LEN) {
break;
}
if (cur_aff->ah_flag == aff->af_bad
|| cur_aff->ah_flag == aff->af_rare
|| cur_aff->ah_flag == aff->af_keepcase
|| cur_aff->ah_flag == aff->af_needaffix
|| cur_aff->ah_flag == aff->af_circumfix
|| cur_aff->ah_flag == aff->af_nosuggest
|| cur_aff->ah_flag == aff->af_needcomp
|| cur_aff->ah_flag == aff->af_comproot) {
smsg(_("Affix also used for "
"BAD/RARE/KEEPCASE/NEEDAFFIX/NEEDCOMPOUND/NOSUGGEST "
"in %s line %d: %s"),
fname, lnum, items[1]);
}
STRCPY(cur_aff->ah_key, items[1]);
hash_add(tp, cur_aff->ah_key);
cur_aff->ah_combine = (*items[2] == 'Y');
}
// Check for the "S" flag, which apparently means that another
// block with the same affix name is following.
if (itemcnt > lasti && strcmp(items[lasti], "S") == 0) {
lasti++;
cur_aff->ah_follows = true;
} else {
cur_aff->ah_follows = false;
}
// Myspell allows extra text after the item, but that might
// mean mistakes go unnoticed. Require a comment-starter,
// unless IGNOREEXTRA is used. Hunspell uses a "-" item.
if (itemcnt > lasti
&& !aff->af_ignoreextra
&& *items[lasti] != '#') {
smsg(_(e_afftrailing), fname, lnum, items[lasti]);
}
if (strcmp(items[2], "Y") != 0 && strcmp(items[2], "N") != 0) {
smsg(_("Expected Y or N in %s line %d: %s"),
fname, lnum, items[2]);
}
if (*items[0] == 'P' && aff->af_pfxpostpone) {
if (cur_aff->ah_newID == 0) {
// Use a new number in the .spl file later, to be able
// to handle multiple .aff files.
check_renumber(spin);
cur_aff->ah_newID = ++spin->si_newprefID;
// We only really use ah_newID if the prefix is
// postponed. We know that only after handling all
// the items.
did_postpone_prefix = false;
} else {
// Did use the ID in a previous block.
did_postpone_prefix = true;
}
}
aff_todo = atoi((char *)items[3]);
} else if ((strcmp(items[0], "PFX") == 0
|| strcmp(items[0], "SFX") == 0)
&& aff_todo > 0
&& strcmp(cur_aff->ah_key, items[1]) == 0
&& itemcnt >= 5) {
affentry_T *aff_entry;
bool upper = false;
int lasti = 5;
// Myspell allows extra text after the item, but that might
// mean mistakes go unnoticed. Require a comment-starter.
// Hunspell uses a "-" item.
if (itemcnt > lasti && *items[lasti] != '#'
&& (strcmp(items[lasti], "-") != 0
|| itemcnt != lasti + 1)) {
smsg(_(e_afftrailing), fname, lnum, items[lasti]);
}
// New item for an affix letter.
aff_todo--;
aff_entry = getroom(spin, sizeof(*aff_entry), true);
if (strcmp(items[2], "0") != 0) {
aff_entry->ae_chop = getroom_save(spin, items[2]);
}
if (strcmp(items[3], "0") != 0) {
aff_entry->ae_add = getroom_save(spin, items[3]);
// Recognize flags on the affix: abcd/XYZ
aff_entry->ae_flags = (char_u *)vim_strchr(aff_entry->ae_add, '/');
if (aff_entry->ae_flags != NULL) {
*aff_entry->ae_flags++ = NUL;
aff_process_flags(aff, aff_entry);
}
}
// Don't use an affix entry with non-ASCII characters when
// "spin->si_ascii" is true.
if (!spin->si_ascii || !(has_non_ascii((char_u *)aff_entry->ae_chop)
|| has_non_ascii((char_u *)aff_entry->ae_add))) {
aff_entry->ae_next = cur_aff->ah_first;
cur_aff->ah_first = aff_entry;
if (strcmp(items[4], ".") != 0) {
char_u buf[MAXLINELEN];
aff_entry->ae_cond = (char_u *)getroom_save(spin, items[4]);
if (*items[0] == 'P') {
sprintf((char *)buf, "^%s", items[4]); // NOLINT(runtime/printf)
} else {
sprintf((char *)buf, "%s$", items[4]); // NOLINT(runtime/printf)
}
aff_entry->ae_prog = vim_regcomp((char *)buf, RE_MAGIC + RE_STRING + RE_STRICT);
if (aff_entry->ae_prog == NULL) {
smsg(_("Broken condition in %s line %d: %s"),
fname, lnum, items[4]);
}
}
// For postponed prefixes we need an entry in si_prefcond
// for the condition. Use an existing one if possible.
// Can't be done for an affix with flags, ignoring
// COMPOUNDFORBIDFLAG and COMPOUNDPERMITFLAG.
if (*items[0] == 'P' && aff->af_pfxpostpone
&& aff_entry->ae_flags == NULL) {
// When the chop string is one lower-case letter and
// the add string ends in the upper-case letter we set
// the "upper" flag, clear "ae_chop" and remove the
// letters from "ae_add". The condition must either
// be empty or start with the same letter.
if (aff_entry->ae_chop != NULL
&& aff_entry->ae_add != NULL
&& aff_entry->ae_chop[utfc_ptr2len(aff_entry->ae_chop)] ==
NUL) {
int c, c_up;
c = utf_ptr2char(aff_entry->ae_chop);
c_up = SPELL_TOUPPER(c);
if (c_up != c
&& (aff_entry->ae_cond == NULL
|| utf_ptr2char((char *)aff_entry->ae_cond) == c)) {
p = aff_entry->ae_add + strlen(aff_entry->ae_add);
MB_PTR_BACK(aff_entry->ae_add, p);
if (utf_ptr2char(p) == c_up) {
upper = true;
aff_entry->ae_chop = NULL;
*p = NUL;
// The condition is matched with the
// actual word, thus must check for the
// upper-case letter.
if (aff_entry->ae_cond != NULL) {
char_u buf[MAXLINELEN];
onecap_copy((char_u *)items[4], buf, true);
aff_entry->ae_cond = (char_u *)getroom_save(spin, (char *)buf);
if (aff_entry->ae_cond != NULL) {
sprintf((char *)buf, "^%s", aff_entry->ae_cond); // NOLINT(runtime/printf)
vim_regfree(aff_entry->ae_prog);
aff_entry->ae_prog = vim_regcomp((char *)buf, RE_MAGIC + RE_STRING);
}
}
}
}
}
if (aff_entry->ae_chop == NULL) {
int idx;
char_u **pp;
int n;
// Find a previously used condition.
for (idx = spin->si_prefcond.ga_len - 1; idx >= 0; idx--) {
p = ((char **)spin->si_prefcond.ga_data)[idx];
if (str_equal(p, (char *)aff_entry->ae_cond)) {
break;
}
}
if (idx < 0) {
// Not found, add a new condition.
idx = spin->si_prefcond.ga_len;
pp = GA_APPEND_VIA_PTR(char_u *, &spin->si_prefcond);
*pp = (aff_entry->ae_cond == NULL) ?
NULL : (char_u *)getroom_save(spin, (char *)aff_entry->ae_cond);
}
// Add the prefix to the prefix tree.
if (aff_entry->ae_add == NULL) {
p = "";
} else {
p = aff_entry->ae_add;
}
// PFX_FLAGS is a negative number, so that
// tree_add_word() knows this is the prefix tree.
n = PFX_FLAGS;
if (!cur_aff->ah_combine) {
n |= WFP_NC;
}
if (upper) {
n |= WFP_UP;
}
if (aff_entry->ae_comppermit) {
n |= WFP_COMPPERMIT;
}
if (aff_entry->ae_compforbid) {
n |= WFP_COMPFORBID;
}
tree_add_word(spin, (char_u *)p, spin->si_prefroot, n,
idx, cur_aff->ah_newID);
did_postpone_prefix = true;
}
// Didn't actually use ah_newID, backup si_newprefID.
if (aff_todo == 0 && !did_postpone_prefix) {
spin->si_newprefID--;
cur_aff->ah_newID = 0;
}
}
}
} else if (is_aff_rule(items, itemcnt, "FOL", 2) && fol == NULL) {
fol = xstrdup(items[1]);
} else if (is_aff_rule(items, itemcnt, "LOW", 2) && low == NULL) {
low = xstrdup(items[1]);
} else if (is_aff_rule(items, itemcnt, "UPP", 2) && upp == NULL) {
upp = xstrdup(items[1]);
} else if (is_aff_rule(items, itemcnt, "REP", 2)
|| is_aff_rule(items, itemcnt, "REPSAL", 2)) {
// Ignore REP/REPSAL count
if (!isdigit(*items[1])) {
smsg(_("Expected REP(SAL) count in %s line %d"),
fname, lnum);
}
} else if ((strcmp(items[0], "REP") == 0
|| strcmp(items[0], "REPSAL") == 0)
&& itemcnt >= 3) {
// REP/REPSAL item
// Myspell ignores extra arguments, we require it starts with
// # to detect mistakes.
if (itemcnt > 3 && items[3][0] != '#') {
smsg(_(e_afftrailing), fname, lnum, items[3]);
}
if (items[0][3] == 'S' ? do_repsal : do_rep) {
// Replace underscore with space (can't include a space
// directly).
for (p = items[1]; *p != NUL; MB_PTR_ADV(p)) {
if (*p == '_') {
*p = ' ';
}
}
for (p = items[2]; *p != NUL; MB_PTR_ADV(p)) {
if (*p == '_') {
*p = ' ';
}
}
add_fromto(spin, items[0][3] == 'S'
? &spin->si_repsal
: &spin->si_rep, items[1], items[2]);
}
} else if (is_aff_rule(items, itemcnt, "MAP", 2)) {
// MAP item or count
if (!found_map) {
// First line contains the count.
found_map = true;
if (!isdigit(*items[1])) {
smsg(_("Expected MAP count in %s line %d"),
fname, lnum);
}
} else if (do_mapline) {
int c;
// Check that every character appears only once.
for (p = items[1]; *p != NUL;) {
c = mb_ptr2char_adv((const char_u **)&p);
if ((!GA_EMPTY(&spin->si_map)
&& vim_strchr(spin->si_map.ga_data, c)
!= NULL)
|| vim_strchr(p, c) != NULL) {
smsg(_("Duplicate character in MAP in %s line %d"),
fname, lnum);
}
}
// We simply concatenate all the MAP strings, separated by
// slashes.
ga_concat(&spin->si_map, (char *)items[1]);
ga_append(&spin->si_map, '/');
}
}
// Accept "SAL from to" and "SAL from to #comment".
else if (is_aff_rule(items, itemcnt, "SAL", 3)) {
if (do_sal) {
// SAL item (sounds-a-like)
// Either one of the known keys or a from-to pair.
if (strcmp(items[1], "followup") == 0) {
spin->si_followup = sal_to_bool(items[2]);
} else if (strcmp(items[1], "collapse_result") == 0) {
spin->si_collapse = sal_to_bool(items[2]);
} else if (strcmp(items[1], "remove_accents") == 0) {
spin->si_rem_accents = sal_to_bool(items[2]);
} else {
// when "to" is "_" it means empty
add_fromto(spin, &spin->si_sal, items[1],
strcmp(items[2], "_") == 0 ? ""
: items[2]);
}
}
} else if (is_aff_rule(items, itemcnt, "SOFOFROM", 2)
&& sofofrom == NULL) {
sofofrom = (char_u *)getroom_save(spin, items[1]);
} else if (is_aff_rule(items, itemcnt, "SOFOTO", 2)
&& sofoto == NULL) {
sofoto = (char_u *)getroom_save(spin, items[1]);
} else if (strcmp(items[0], "COMMON") == 0) {
int i;
for (i = 1; i < itemcnt; i++) {
if (HASHITEM_EMPTY(hash_find(&spin->si_commonwords, (char *)items[i]))) {
p = xstrdup(items[i]);
hash_add(&spin->si_commonwords, p);
}
}
} else {
smsg(_("Unrecognized or duplicate item in %s line %d: %s"),
fname, lnum, items[0]);
}
}
}
if (fol != NULL || low != NULL || upp != NULL) {
if (spin->si_clear_chartab) {
// Clear the char type tables, don't want to use any of the
// currently used spell properties.
init_spell_chartab();
spin->si_clear_chartab = false;
}
xfree(fol);
xfree(low);
xfree(upp);
}
// Use compound specifications of the .aff file for the spell info.
if (compmax != 0) {
aff_check_number(spin->si_compmax, compmax, "COMPOUNDWORDMAX");
spin->si_compmax = compmax;
}
if (compminlen != 0) {
aff_check_number(spin->si_compminlen, compminlen, "COMPOUNDMIN");
spin->si_compminlen = compminlen;
}
if (compsylmax != 0) {
if (syllable == NULL) {
smsg("%s", _("COMPOUNDSYLMAX used without SYLLABLE"));
}
aff_check_number(spin->si_compsylmax, compsylmax, "COMPOUNDSYLMAX");
spin->si_compsylmax = compsylmax;
}
if (compoptions != 0) {
aff_check_number(spin->si_compoptions, compoptions, "COMPOUND options");
spin->si_compoptions |= compoptions;
}
if (compflags != NULL) {
process_compflags(spin, aff, compflags);
}
// Check that we didn't use too many renumbered flags.
if (spin->si_newcompID < spin->si_newprefID) {
if (spin->si_newcompID == 127 || spin->si_newcompID == 255) {
msg(_("Too many postponed prefixes"));
} else if (spin->si_newprefID == 0 || spin->si_newprefID == 127) {
msg(_("Too many compound flags"));
} else {
msg(_("Too many postponed prefixes and/or compound flags"));
}
}
if (syllable != NULL) {
aff_check_string(spin->si_syllable, (char *)syllable, "SYLLABLE");
spin->si_syllable = (char *)syllable;
}
if (sofofrom != NULL || sofoto != NULL) {
if (sofofrom == NULL || sofoto == NULL) {
smsg(_("Missing SOFO%s line in %s"),
sofofrom == NULL ? "FROM" : "TO", fname);
} else if (!GA_EMPTY(&spin->si_sal)) {
smsg(_("Both SAL and SOFO lines in %s"), fname);
} else {
aff_check_string(spin->si_sofofr, (char *)sofofrom, "SOFOFROM");
aff_check_string(spin->si_sofoto, (char *)sofoto, "SOFOTO");
spin->si_sofofr = (char *)sofofrom;
spin->si_sofoto = (char *)sofoto;
}
}
if (midword != NULL) {
aff_check_string(spin->si_midword, (char *)midword, "MIDWORD");
spin->si_midword = (char *)midword;
}
xfree(pc);
fclose(fd);
return aff;
}
/// @return true when items[0] equals "rulename", there are "mincount" items or
/// a comment is following after item "mincount".
static bool is_aff_rule(char **items, int itemcnt, char *rulename, int mincount)
{
return strcmp(items[0], rulename) == 0
&& (itemcnt == mincount
|| (itemcnt > mincount && items[mincount][0] == '#'));
}
// For affix "entry" move COMPOUNDFORBIDFLAG and COMPOUNDPERMITFLAG from
// ae_flags to ae_comppermit and ae_compforbid.
static void aff_process_flags(afffile_T *affile, affentry_T *entry)
{
char_u *p;
char_u *prevp;
unsigned flag;
if (entry->ae_flags != NULL
&& (affile->af_compforbid != 0 || affile->af_comppermit != 0)) {
for (p = entry->ae_flags; *p != NUL;) {
prevp = p;
flag = get_affitem(affile->af_flagtype, &p);
if (flag == affile->af_comppermit || flag == affile->af_compforbid) {
STRMOVE(prevp, (char *)p);
p = prevp;
if (flag == affile->af_comppermit) {
entry->ae_comppermit = true;
} else {
entry->ae_compforbid = true;
}
}
if (affile->af_flagtype == AFT_NUM && *p == ',') {
p++;
}
}
if (*entry->ae_flags == NUL) {
entry->ae_flags = NULL; // nothing left
}
}
}
/// @return true if "s" is the name of an info item in the affix file.
static bool spell_info_item(char *s)
{
return strcmp(s, "NAME") == 0
|| strcmp(s, "HOME") == 0
|| strcmp(s, "VERSION") == 0
|| strcmp(s, "AUTHOR") == 0
|| strcmp(s, "EMAIL") == 0
|| strcmp(s, "COPYRIGHT") == 0;
}
// Turn an affix flag name into a number, according to the FLAG type.
// returns zero for failure.
static unsigned affitem2flag(int flagtype, char_u *item, char_u *fname, int lnum)
{
unsigned res;
char_u *p = item;
res = get_affitem(flagtype, &p);
if (res == 0) {
if (flagtype == AFT_NUM) {
smsg(_("Flag is not a number in %s line %d: %s"),
fname, lnum, item);
} else {
smsg(_("Illegal flag in %s line %d: %s"),
fname, lnum, item);
}
}
if (*p != NUL) {
smsg(_(e_affname), fname, lnum, item);
return 0;
}
return res;
}
// Get one affix name from "*pp" and advance the pointer.
// Returns ZERO_FLAG for "0".
// Returns zero for an error, still advances the pointer then.
static unsigned get_affitem(int flagtype, char_u **pp)
{
int res;
if (flagtype == AFT_NUM) {
if (!ascii_isdigit(**pp)) {
++*pp; // always advance, avoid getting stuck
return 0;
}
res = getdigits_int((char **)pp, true, 0);
if (res == 0) {
res = ZERO_FLAG;
}
} else {
res = mb_ptr2char_adv((const char_u **)pp);
if (flagtype == AFT_LONG || (flagtype == AFT_CAPLONG
&& res >= 'A' && res <= 'Z')) {
if (**pp == NUL) {
return 0;
}
res = mb_ptr2char_adv((const char_u **)pp) + (res << 16);
}
}
return (unsigned)res;
}
/// Process the "compflags" string used in an affix file and append it to
/// spin->si_compflags.
/// The processing involves changing the affix names to ID numbers, so that
/// they fit in one byte.
static void process_compflags(spellinfo_T *spin, afffile_T *aff, char *compflags)
{
char *p;
char_u *prevp;
unsigned flag;
compitem_T *ci;
int id;
int len;
char_u *tp;
char_u key[AH_KEY_LEN];
hashitem_T *hi;
// Make room for the old and the new compflags, concatenated with a / in
// between. Processing it makes it shorter, but we don't know by how
// much, thus allocate the maximum.
len = (int)strlen(compflags) + 1;
if (spin->si_compflags != NULL) {
len += (int)strlen(spin->si_compflags) + 1;
}
p = getroom(spin, (size_t)len, false);
if (spin->si_compflags != NULL) {
STRCPY(p, spin->si_compflags);
STRCAT(p, "/");
}
spin->si_compflags = p;
tp = (char_u *)p + strlen(p);
for (p = compflags; *p != NUL;) {
if (vim_strchr("/?*+[]", *p) != NULL) {
// Copy non-flag characters directly.
*tp++ = (char_u)(*p++);
} else {
// First get the flag number, also checks validity.
prevp = (char_u *)p;
flag = get_affitem(aff->af_flagtype, (char_u **)&p);
if (flag != 0) {
// Find the flag in the hashtable. If it was used before, use
// the existing ID. Otherwise add a new entry.
STRLCPY(key, prevp, (char_u *)p - prevp + 1);
hi = hash_find(&aff->af_comp, (char *)key);
if (!HASHITEM_EMPTY(hi)) {
id = HI2CI(hi)->ci_newID;
} else {
ci = getroom(spin, sizeof(compitem_T), true);
STRCPY(ci->ci_key, key);
ci->ci_flag = flag;
// Avoid using a flag ID that has a special meaning in a
// regexp (also inside []).
do {
check_renumber(spin);
id = spin->si_newcompID--;
} while (vim_strchr("/?*+[]\\-^", id) != NULL);
ci->ci_newID = id;
hash_add(&aff->af_comp, (char *)ci->ci_key);
}
*tp++ = (char_u)id;
}
if (aff->af_flagtype == AFT_NUM && *p == ',') {
p++;
}
}
}
*tp = NUL;
}
// Check that the new IDs for postponed affixes and compounding don't overrun
// each other. We have almost 255 available, but start at 0-127 to avoid
// using two bytes for utf-8. When the 0-127 range is used up go to 128-255.
// When that is used up an error message is given.
static void check_renumber(spellinfo_T *spin)
{
if (spin->si_newprefID == spin->si_newcompID && spin->si_newcompID < 128) {
spin->si_newprefID = 127;
spin->si_newcompID = 255;
}
}
// Returns true if flag "flag" appears in affix list "afflist".
static bool flag_in_afflist(int flagtype, char_u *afflist, unsigned flag)
{
char *p;
unsigned n;
switch (flagtype) {
case AFT_CHAR:
return vim_strchr((char *)afflist, (int)flag) != NULL;
case AFT_CAPLONG:
case AFT_LONG:
for (p = (char *)afflist; *p != NUL;) {
n = (unsigned)mb_ptr2char_adv((const char_u **)&p);
if ((flagtype == AFT_LONG || (n >= 'A' && n <= 'Z'))
&& *p != NUL) {
n = (unsigned)mb_ptr2char_adv((const char_u **)&p) + (n << 16);
}
if (n == flag) {
return true;
}
}
break;
case AFT_NUM:
for (p = (char *)afflist; *p != NUL;) {
int digits = getdigits_int(&p, true, 0);
assert(digits >= 0);
n = (unsigned int)digits;
if (n == 0) {
n = ZERO_FLAG;
}
if (n == flag) {
return true;
}
if (*p != NUL) { // skip over comma
p++;
}
}
break;
}
return false;
}
// Give a warning when "spinval" and "affval" numbers are set and not the same.
static void aff_check_number(int spinval, int affval, char *name)
{
if (spinval != 0 && spinval != affval) {
smsg(_("%s value differs from what is used in another .aff file"),
name);
}
}
/// Give a warning when "spinval" and "affval" strings are set and not the same.
static void aff_check_string(char *spinval, char *affval, char *name)
{
if (spinval != NULL && strcmp(spinval, affval) != 0) {
smsg(_("%s value differs from what is used in another .aff file"),
name);
}
}
/// @return true if strings "s1" and "s2" are equal. Also consider both being
/// NULL as equal.
static bool str_equal(char *s1, char *s2)
{
if (s1 == NULL || s2 == NULL) {
return s1 == s2;
}
return strcmp(s1, s2) == 0;
}
/// Add a from-to item to "gap". Used for REP and SAL items.
/// They are stored case-folded.
static void add_fromto(spellinfo_T *spin, garray_T *gap, char *from, char *to)
{
char_u word[MAXWLEN];
fromto_T *ftp = GA_APPEND_VIA_PTR(fromto_T, gap);
(void)spell_casefold(curwin, (char_u *)from, (int)strlen(from), word, MAXWLEN);
ftp->ft_from = (char_u *)getroom_save(spin, (char *)word);
(void)spell_casefold(curwin, (char_u *)to, (int)strlen(to), word, MAXWLEN);
ftp->ft_to = (char_u *)getroom_save(spin, (char *)word);
}
/// Converts a boolean argument in a SAL line to true or false;
static bool sal_to_bool(char *s)
{
return strcmp(s, "1") == 0 || strcmp(s, "true") == 0;
}
// Free the structure filled by spell_read_aff().
static void spell_free_aff(afffile_T *aff)
{
hashtab_T *ht;
hashitem_T *hi;
int todo;
affheader_T *ah;
affentry_T *ae;
xfree(aff->af_enc);
// All this trouble to free the "ae_prog" items...
for (ht = &aff->af_pref;; ht = &aff->af_suff) {
todo = (int)ht->ht_used;
for (hi = ht->ht_array; todo > 0; hi++) {
if (!HASHITEM_EMPTY(hi)) {
todo--;
ah = HI2AH(hi);
for (ae = ah->ah_first; ae != NULL; ae = ae->ae_next) {
vim_regfree(ae->ae_prog);
}
}
}
if (ht == &aff->af_suff) {
break;
}
}
hash_clear(&aff->af_pref);
hash_clear(&aff->af_suff);
hash_clear(&aff->af_comp);
}
// Read dictionary file "fname".
// Returns OK or FAIL;
static int spell_read_dic(spellinfo_T *spin, char_u *fname, afffile_T *affile)
{
hashtab_T ht;
char line[MAXLINELEN];
char_u *p;
char_u *afflist;
char_u store_afflist[MAXWLEN];
int pfxlen;
bool need_affix;
char *dw;
char_u *pc;
char_u *w;
int l;
hash_T hash;
hashitem_T *hi;
FILE *fd;
int lnum = 1;
int non_ascii = 0;
int retval = OK;
char_u message[MAXLINELEN + MAXWLEN];
int flags;
int duplicate = 0;
Timestamp last_msg_time = 0;
// Open the file.
fd = os_fopen((char *)fname, "r");
if (fd == NULL) {
semsg(_(e_notopen), fname);
return FAIL;
}
// The hashtable is only used to detect duplicated words.
hash_init(&ht);
vim_snprintf((char *)IObuff, IOSIZE,
_("Reading dictionary file %s..."), fname);
spell_message(spin, (char *)IObuff);
// start with a message for the first line
spin->si_msg_count = 999999;
// Read and ignore the first line: word count.
if (vim_fgets((char *)line, MAXLINELEN, fd) || !ascii_isdigit(*skipwhite((char *)line))) {
semsg(_("E760: No word count in %s"), fname);
}
// Read all the lines in the file one by one.
// The words are converted to 'encoding' here, before being added to
// the hashtable.
while (!vim_fgets((char *)line, MAXLINELEN, fd) && !got_int) {
line_breakcheck();
lnum++;
if (line[0] == '#' || line[0] == '/') {
continue; // comment line
}
// Remove CR, LF and white space from the end. White space halfway through
// the word is kept to allow multi-word terms like "et al.".
l = (int)strlen(line);
while (l > 0 && line[l - 1] <= ' ') {
l--;
}
if (l == 0) {
continue; // empty line
}
line[l] = NUL;
// Convert from "SET" to 'encoding' when needed.
if (spin->si_conv.vc_type != CONV_NONE) {
pc = (char_u *)string_convert(&spin->si_conv, (char *)line, NULL);
if (pc == NULL) {
smsg(_("Conversion failure for word in %s line %d: %s"),
fname, lnum, line);
continue;
}
w = pc;
} else {
pc = NULL;
w = (char_u *)line;
}
// Truncate the word at the "/", set "afflist" to what follows.
// Replace "\/" by "/" and "\\" by "\".
afflist = NULL;
for (p = w; *p != NUL; MB_PTR_ADV(p)) {
if (*p == '\\' && (p[1] == '\\' || p[1] == '/')) {
STRMOVE(p, (char *)p + 1);
} else if (*p == '/') {
*p = NUL;
afflist = p + 1;
break;
}
}
// Skip non-ASCII words when "spin->si_ascii" is true.
if (spin->si_ascii && has_non_ascii(w)) {
non_ascii++;
xfree(pc);
continue;
}
// This takes time, print a message every 10000 words, but not more
// often than once per second.
if (spin->si_verbose && spin->si_msg_count > 10000) {
spin->si_msg_count = 0;
if (os_time() > last_msg_time) {
last_msg_time = os_time();
vim_snprintf((char *)message, sizeof(message),
_("line %6d, word %6ld - %s"),
lnum, spin->si_foldwcount + spin->si_keepwcount, w);
msg_start();
msg_outtrans_long_attr((char *)message, 0);
msg_clr_eos();
msg_didout = false;
msg_col = 0;
ui_flush();
}
}
// Store the word in the hashtable to be able to find duplicates.
dw = getroom_save(spin, (char *)w);
if (dw == NULL) {
retval = FAIL;
xfree(pc);
break;
}
hash = hash_hash((char_u *)dw);
hi = hash_lookup(&ht, (const char *)dw, strlen(dw), hash);
if (!HASHITEM_EMPTY(hi)) {
if (p_verbose > 0) {
smsg(_("Duplicate word in %s line %d: %s"),
fname, lnum, dw);
} else if (duplicate == 0) {
smsg(_("First duplicate word in %s line %d: %s"),
fname, lnum, dw);
}
duplicate++;
} else {
hash_add_item(&ht, hi, (char_u *)dw, hash);
}
flags = 0;
store_afflist[0] = NUL;
pfxlen = 0;
need_affix = false;
if (afflist != NULL) {
// Extract flags from the affix list.
flags |= get_affix_flags(affile, afflist);
if (affile->af_needaffix != 0
&& flag_in_afflist(affile->af_flagtype, afflist,
affile->af_needaffix)) {
need_affix = true;
}
if (affile->af_pfxpostpone) {
// Need to store the list of prefix IDs with the word.
pfxlen = get_pfxlist(affile, afflist, store_afflist);
}
if (spin->si_compflags != NULL) {
// Need to store the list of compound flags with the word.
// Concatenate them to the list of prefix IDs.
get_compflags(affile, afflist, store_afflist + pfxlen);
}
}
// Add the word to the word tree(s).
if (store_word(spin, dw, flags, spin->si_region,
store_afflist, need_affix) == FAIL) {
retval = FAIL;
}
if (afflist != NULL) {
// Find all matching suffixes and add the resulting words.
// Additionally do matching prefixes that combine.
if (store_aff_word(spin, dw, afflist, affile,
&affile->af_suff, &affile->af_pref,
CONDIT_SUF, flags, store_afflist, pfxlen) == FAIL) {
retval = FAIL;
}
// Find all matching prefixes and add the resulting words.
if (store_aff_word(spin, dw, afflist, affile,
&affile->af_pref, NULL,
CONDIT_SUF, flags, store_afflist, pfxlen) == FAIL) {
retval = FAIL;
}
}
xfree(pc);
}
if (duplicate > 0) {
smsg(_("%d duplicate word(s) in %s"), duplicate, fname);
}
if (spin->si_ascii && non_ascii > 0) {
smsg(_("Ignored %d word(s) with non-ASCII characters in %s"),
non_ascii, fname);
}
hash_clear(&ht);
fclose(fd);
return retval;
}
// Check for affix flags in "afflist" that are turned into word flags.
// Return WF_ flags.
static int get_affix_flags(afffile_T *affile, char_u *afflist)
{
int flags = 0;
if (affile->af_keepcase != 0
&& flag_in_afflist(affile->af_flagtype, afflist,
affile->af_keepcase)) {
flags |= WF_KEEPCAP | WF_FIXCAP;
}
if (affile->af_rare != 0
&& flag_in_afflist(affile->af_flagtype, afflist, affile->af_rare)) {
flags |= WF_RARE;
}
if (affile->af_bad != 0
&& flag_in_afflist(affile->af_flagtype, afflist, affile->af_bad)) {
flags |= WF_BANNED;
}
if (affile->af_needcomp != 0
&& flag_in_afflist(affile->af_flagtype, afflist,
affile->af_needcomp)) {
flags |= WF_NEEDCOMP;
}
if (affile->af_comproot != 0
&& flag_in_afflist(affile->af_flagtype, afflist,
affile->af_comproot)) {
flags |= WF_COMPROOT;
}
if (affile->af_nosuggest != 0
&& flag_in_afflist(affile->af_flagtype, afflist,
affile->af_nosuggest)) {
flags |= WF_NOSUGGEST;
}
return flags;
}
// Get the list of prefix IDs from the affix list "afflist".
// Used for PFXPOSTPONE.
// Put the resulting flags in "store_afflist[MAXWLEN]" with a terminating NUL
// and return the number of affixes.
static int get_pfxlist(afffile_T *affile, char_u *afflist, char_u *store_afflist)
{
char_u *p;
char_u *prevp;
int cnt = 0;
int id;
char_u key[AH_KEY_LEN];
hashitem_T *hi;
for (p = afflist; *p != NUL;) {
prevp = p;
if (get_affitem(affile->af_flagtype, &p) != 0) {
// A flag is a postponed prefix flag if it appears in "af_pref"
// and its ID is not zero.
STRLCPY(key, prevp, p - prevp + 1);
hi = hash_find(&affile->af_pref, (char *)key);
if (!HASHITEM_EMPTY(hi)) {
id = HI2AH(hi)->ah_newID;
if (id != 0) {
store_afflist[cnt++] = (char_u)id;
}
}
}
if (affile->af_flagtype == AFT_NUM && *p == ',') {
p++;
}
}
store_afflist[cnt] = NUL;
return cnt;
}
// Get the list of compound IDs from the affix list "afflist" that are used
// for compound words.
// Puts the flags in "store_afflist[]".
static void get_compflags(afffile_T *affile, char_u *afflist, char_u *store_afflist)
{
char_u *p;
char_u *prevp;
int cnt = 0;
char_u key[AH_KEY_LEN];
hashitem_T *hi;
for (p = afflist; *p != NUL;) {
prevp = p;
if (get_affitem(affile->af_flagtype, &p) != 0) {
// A flag is a compound flag if it appears in "af_comp".
STRLCPY(key, prevp, p - prevp + 1);
hi = hash_find(&affile->af_comp, (char *)key);
if (!HASHITEM_EMPTY(hi)) {
store_afflist[cnt++] = (char_u)HI2CI(hi)->ci_newID;
}
}
if (affile->af_flagtype == AFT_NUM && *p == ',') {
p++;
}
}
store_afflist[cnt] = NUL;
}
/// Apply affixes to a word and store the resulting words.
/// "ht" is the hashtable with affentry_T that need to be applied, either
/// prefixes or suffixes.
/// "xht", when not NULL, is the prefix hashtable, to be used additionally on
/// the resulting words for combining affixes.
///
/// @param spin spell info
/// @param word basic word start
/// @param afflist list of names of supported affixes
/// @param condit CONDIT_SUF et al.
/// @param flags flags for the word
/// @param pfxlist list of prefix IDs
/// @param pfxlen nr of flags in "pfxlist" for prefixes, rest is compound flags
///
/// @return FAIL when out of memory.
static int store_aff_word(spellinfo_T *spin, char *word, char_u *afflist, afffile_T *affile,
hashtab_T *ht, hashtab_T *xht, int condit, int flags, char_u *pfxlist,
int pfxlen)
{
int todo;
hashitem_T *hi;
affheader_T *ah;
affentry_T *ae;
char newword[MAXWLEN];
int retval = OK;
int i, j;
char_u *p;
int use_flags;
char_u *use_pfxlist;
int use_pfxlen;
bool need_affix;
char_u store_afflist[MAXWLEN];
char_u pfx_pfxlist[MAXWLEN];
size_t wordlen = strlen(word);
int use_condit;
todo = (int)ht->ht_used;
for (hi = ht->ht_array; todo > 0 && retval == OK; hi++) {
if (!HASHITEM_EMPTY(hi)) {
todo--;
ah = HI2AH(hi);
// Check that the affix combines, if required, and that the word
// supports this affix.
if (((condit & CONDIT_COMB) == 0 || ah->ah_combine)
&& flag_in_afflist(affile->af_flagtype, afflist,
ah->ah_flag)) {
// Loop over all affix entries with this name.
for (ae = ah->ah_first; ae != NULL; ae = ae->ae_next) {
// Check the condition. It's not logical to match case
// here, but it is required for compatibility with
// Myspell.
// Another requirement from Myspell is that the chop
// string is shorter than the word itself.
// For prefixes, when "PFXPOSTPONE" was used, only do
// prefixes with a chop string and/or flags.
// When a previously added affix had CIRCUMFIX this one
// must have it too, if it had not then this one must not
// have one either.
if ((xht != NULL || !affile->af_pfxpostpone
|| ae->ae_chop != NULL
|| ae->ae_flags != NULL)
&& (ae->ae_chop == NULL
|| strlen(ae->ae_chop) < wordlen)
&& (ae->ae_prog == NULL
|| vim_regexec_prog(&ae->ae_prog, false, (char_u *)word, (colnr_T)0))
&& (((condit & CONDIT_CFIX) == 0)
== ((condit & CONDIT_AFF) == 0
|| ae->ae_flags == NULL
|| !flag_in_afflist(affile->af_flagtype,
ae->ae_flags, affile->af_circumfix)))) {
// Match. Remove the chop and add the affix.
if (xht == NULL) {
// prefix: chop/add at the start of the word
if (ae->ae_add == NULL) {
*newword = NUL;
} else {
STRLCPY(newword, ae->ae_add, MAXWLEN);
}
p = (char_u *)word;
if (ae->ae_chop != NULL) {
// Skip chop string.
i = mb_charlen((char_u *)ae->ae_chop);
for (; i > 0; i--) {
MB_PTR_ADV(p);
}
}
STRCAT(newword, p);
} else {
// suffix: chop/add at the end of the word
STRLCPY(newword, word, MAXWLEN);
if (ae->ae_chop != NULL) {
// Remove chop string.
p = (char_u *)newword + strlen(newword);
i = mb_charlen((char_u *)ae->ae_chop);
for (; i > 0; i--) {
MB_PTR_BACK(newword, p);
}
*p = NUL;
}
if (ae->ae_add != NULL) {
STRCAT(newword, ae->ae_add);
}
}
use_flags = flags;
use_pfxlist = pfxlist;
use_pfxlen = pfxlen;
need_affix = false;
use_condit = condit | CONDIT_COMB | CONDIT_AFF;
if (ae->ae_flags != NULL) {
// Extract flags from the affix list.
use_flags |= get_affix_flags(affile, ae->ae_flags);
if (affile->af_needaffix != 0 && flag_in_afflist(affile->af_flagtype, ae->ae_flags,
affile->af_needaffix)) {
need_affix = true;
}
// When there is a CIRCUMFIX flag the other affix
// must also have it and we don't add the word
// with one affix.
if (affile->af_circumfix != 0 && flag_in_afflist(affile->af_flagtype, ae->ae_flags,
affile->af_circumfix)) {
use_condit |= CONDIT_CFIX;
if ((condit & CONDIT_CFIX) == 0) {
need_affix = true;
}
}
if (affile->af_pfxpostpone
|| spin->si_compflags != NULL) {
if (affile->af_pfxpostpone) {
// Get prefix IDS from the affix list.
use_pfxlen = get_pfxlist(affile,
ae->ae_flags, store_afflist);
} else {
use_pfxlen = 0;
}
use_pfxlist = store_afflist;
// Combine the prefix IDs. Avoid adding the
// same ID twice.
for (i = 0; i < pfxlen; i++) {
for (j = 0; j < use_pfxlen; j++) {
if (pfxlist[i] == use_pfxlist[j]) {
break;
}
}
if (j == use_pfxlen) {
use_pfxlist[use_pfxlen++] = pfxlist[i];
}
}
if (spin->si_compflags != NULL) {
// Get compound IDS from the affix list.
get_compflags(affile, ae->ae_flags,
use_pfxlist + use_pfxlen);
} else {
use_pfxlist[use_pfxlen] = NUL;
}
// Combine the list of compound flags.
// Concatenate them to the prefix IDs list.
// Avoid adding the same ID twice.
for (i = pfxlen; pfxlist[i] != NUL; i++) {
for (j = use_pfxlen; use_pfxlist[j] != NUL; j++) {
if (pfxlist[i] == use_pfxlist[j]) {
break;
}
}
if (use_pfxlist[j] == NUL) {
use_pfxlist[j++] = pfxlist[i];
use_pfxlist[j] = NUL;
}
}
}
}
// Obey a "COMPOUNDFORBIDFLAG" of the affix: don't
// use the compound flags.
if (use_pfxlist != NULL && ae->ae_compforbid) {
STRLCPY(pfx_pfxlist, use_pfxlist, use_pfxlen + 1);
use_pfxlist = pfx_pfxlist;
}
// When there are postponed prefixes...
if (spin->si_prefroot != NULL
&& spin->si_prefroot->wn_sibling != NULL) {
// ... add a flag to indicate an affix was used.
use_flags |= WF_HAS_AFF;
// ... don't use a prefix list if combining
// affixes is not allowed. But do use the
// compound flags after them.
if (!ah->ah_combine && use_pfxlist != NULL) {
use_pfxlist += use_pfxlen;
}
}
// When compounding is supported and there is no
// "COMPOUNDPERMITFLAG" then forbid compounding on the
// side where the affix is applied.
if (spin->si_compflags != NULL && !ae->ae_comppermit) {
if (xht != NULL) {
use_flags |= WF_NOCOMPAFT;
} else {
use_flags |= WF_NOCOMPBEF;
}
}
// Store the modified word.
if (store_word(spin, newword, use_flags,
spin->si_region, use_pfxlist,
need_affix) == FAIL) {
retval = FAIL;
}
// When added a prefix or a first suffix and the affix
// has flags may add a(nother) suffix. RECURSIVE!
if ((condit & CONDIT_SUF) && ae->ae_flags != NULL) {
if (store_aff_word(spin, newword, ae->ae_flags,
affile, &affile->af_suff, xht,
use_condit & (xht == NULL
? ~0 : ~CONDIT_SUF),
use_flags, use_pfxlist, pfxlen) == FAIL) {
retval = FAIL;
}
}
// When added a suffix and combining is allowed also
// try adding a prefix additionally. Both for the
// word flags and for the affix flags. RECURSIVE!
if (xht != NULL && ah->ah_combine) {
if (store_aff_word(spin, newword,
afflist, affile,
xht, NULL, use_condit,
use_flags, use_pfxlist,
pfxlen) == FAIL
|| (ae->ae_flags != NULL
&& store_aff_word(spin, newword,
ae->ae_flags, affile,
xht, NULL, use_condit,
use_flags, use_pfxlist,
pfxlen) == FAIL)) {
retval = FAIL;
}
}
}
}
}
}
}
return retval;
}
// Read a file with a list of words.
static int spell_read_wordfile(spellinfo_T *spin, char_u *fname)
{
FILE *fd;
long lnum = 0;
char rline[MAXLINELEN];
char *line;
char_u *pc = NULL;
char_u *p;
int l;
int retval = OK;
bool did_word = false;
int non_ascii = 0;
int flags;
int regionmask;
// Open the file.
fd = os_fopen((char *)fname, "r");
if (fd == NULL) {
semsg(_(e_notopen), fname);
return FAIL;
}
vim_snprintf((char *)IObuff, IOSIZE, _("Reading word file %s..."), fname);
spell_message(spin, (char *)IObuff);
// Read all the lines in the file one by one.
while (!vim_fgets((char *)rline, MAXLINELEN, fd) && !got_int) {
line_breakcheck();
lnum++;
// Skip comment lines.
if (*rline == '#') {
continue;
}
// Remove CR, LF and white space from the end.
l = (int)strlen(rline);
while (l > 0 && (uint8_t)rline[l - 1] <= ' ') {
l--;
}
if (l == 0) {
continue; // empty or blank line
}
rline[l] = NUL;
// Convert from "/encoding={encoding}" to 'encoding' when needed.
xfree(pc);
if (spin->si_conv.vc_type != CONV_NONE) {
pc = (char_u *)string_convert(&spin->si_conv, rline, NULL);
if (pc == NULL) {
smsg(_("Conversion failure for word in %s line %ld: %s"),
fname, lnum, rline);
continue;
}
line = (char *)pc;
} else {
pc = NULL;
line = rline;
}
if (*line == '/') {
line++;
if (strncmp(line, "encoding=", 9) == 0) {
if (spin->si_conv.vc_type != CONV_NONE) {
smsg(_("Duplicate /encoding= line ignored in %s line %ld: %s"),
fname, lnum, line - 1);
} else if (did_word) {
smsg(_("/encoding= line after word ignored in %s line %ld: %s"),
fname, lnum, line - 1);
} else {
char *enc;
// Setup for conversion to 'encoding'.
line += 9;
enc = enc_canonize(line);
if (!spin->si_ascii
&& convert_setup(&spin->si_conv, enc, p_enc) == FAIL) {
smsg(_("Conversion in %s not supported: from %s to %s"),
fname, line, p_enc);
}
xfree(enc);
spin->si_conv.vc_fail = true;
}
continue;
}
if (strncmp(line, "regions=", 8) == 0) {
if (spin->si_region_count > 1) {
smsg(_("Duplicate /regions= line ignored in %s line %ld: %s"),
fname, lnum, line);
} else {
line += 8;
if (strlen(line) > MAXREGIONS * 2) {
smsg(_("Too many regions in %s line %ld: %s"),
fname, lnum, line);
} else {
spin->si_region_count = (int)strlen(line) / 2;
STRCPY(spin->si_region_name, line);
// Adjust the mask for a word valid in all regions.
spin->si_region = (1 << spin->si_region_count) - 1;
}
}
continue;
}
smsg(_("/ line ignored in %s line %ld: %s"),
fname, lnum, line - 1);
continue;
}
flags = 0;
regionmask = spin->si_region;
// Check for flags and region after a slash.
p = (char_u *)vim_strchr(line, '/');
if (p != NULL) {
*p++ = NUL;
while (*p != NUL) {
if (*p == '=') { // keep-case word
flags |= WF_KEEPCAP | WF_FIXCAP;
} else if (*p == '!') { // Bad, bad, wicked word.
flags |= WF_BANNED;
} else if (*p == '?') { // Rare word.
flags |= WF_RARE;
} else if (ascii_isdigit(*p)) { // region number(s)
if ((flags & WF_REGION) == 0) { // first one
regionmask = 0;
}
flags |= WF_REGION;
l = *p - '0';
if (l == 0 || l > spin->si_region_count) {
smsg(_("Invalid region nr in %s line %ld: %s"),
fname, lnum, p);
break;
}
regionmask |= 1 << (l - 1);
} else {
smsg(_("Unrecognized flags in %s line %ld: %s"),
fname, lnum, p);
break;
}
p++;
}
}
// Skip non-ASCII words when "spin->si_ascii" is true.
if (spin->si_ascii && has_non_ascii((char_u *)line)) {
non_ascii++;
continue;
}
// Normal word: store it.
if (store_word(spin, line, flags, regionmask, NULL, false) == FAIL) {
retval = FAIL;
break;
}
did_word = true;
}
xfree(pc);
fclose(fd);
if (spin->si_ascii && non_ascii > 0) {
vim_snprintf((char *)IObuff, IOSIZE,
_("Ignored %d words with non-ASCII characters"), non_ascii);
spell_message(spin, (char *)IObuff);
}
return retval;
}
/// Get part of an sblock_T, "len" bytes long.
/// This avoids calling free() for every little struct we use (and keeping
/// track of them).
/// The memory is cleared to all zeros.
///
/// @param len Length needed (<= SBLOCKSIZE).
/// @param align Align for pointer.
/// @return Pointer into block data.
static void *getroom(spellinfo_T *spin, size_t len, bool align)
FUNC_ATTR_NONNULL_RET
{
char_u *p;
sblock_T *bl = spin->si_blocks;
assert(len <= SBLOCKSIZE);
if (align && bl != NULL) {
// Round size up for alignment. On some systems structures need to be
// aligned to the size of a pointer (e.g., SPARC).
bl->sb_used = (int)(((size_t)bl->sb_used + sizeof(char *) - 1) & ~(sizeof(char *) - 1));
}
if (bl == NULL || (size_t)bl->sb_used + len > SBLOCKSIZE) {
// Allocate a block of memory. It is not freed until much later.
bl = xcalloc(1, (sizeof(sblock_T) + SBLOCKSIZE));
bl->sb_next = spin->si_blocks;
spin->si_blocks = bl;
bl->sb_used = 0;
spin->si_blocks_cnt++;
}
p = bl->sb_data + bl->sb_used;
bl->sb_used += (int)len;
return p;
}
/// Make a copy of a string into memory allocated with getroom().
///
/// @return NULL when out of memory.
static char *getroom_save(spellinfo_T *spin, char *s)
{
const size_t s_size = strlen(s) + 1;
return memcpy(getroom(spin, s_size, false), s, s_size);
}
// Free the list of allocated sblock_T.
static void free_blocks(sblock_T *bl)
{
sblock_T *next;
while (bl != NULL) {
next = bl->sb_next;
xfree(bl);
bl = next;
}
}
// Allocate the root of a word tree.
// Returns NULL when out of memory.
static wordnode_T *wordtree_alloc(spellinfo_T *spin)
FUNC_ATTR_NONNULL_RET
{
return (wordnode_T *)getroom(spin, sizeof(wordnode_T), true);
}
/// Return true if "word" contains valid word characters.
/// Control characters and trailing '/' are invalid. Space is OK.
static bool valid_spell_word(const char *word, const char *end)
{
if (!utf_valid_string((char_u *)word, (char_u *)end)) {
return false;
}
for (const char *p = word; *p != NUL && p < end; p += utfc_ptr2len(p)) {
if ((uint8_t)(*p) < ' ' || (p[0] == '/' && p[1] == NUL)) {
return false;
}
}
return true;
}
/// Store a word in the tree(s).
/// Always store it in the case-folded tree. For a keep-case word this is
/// useful when the word can also be used with all caps (no WF_FIXCAP flag) and
/// used to find suggestions.
/// For a keep-case word also store it in the keep-case tree.
/// When "pfxlist" is not NULL store the word for each postponed prefix ID and
/// compound flag.
///
/// @param flags extra flags, wf_banned
/// @param region supported region(s)
/// @param pfxlist list of prefix ids or null
/// @param need_affix only store word with affix id
static int store_word(spellinfo_T *spin, char *word, int flags, int region, const char_u *pfxlist,
bool need_affix)
{
int len = (int)strlen(word);
int ct = captype((char_u *)word, (char_u *)word + len);
char_u foldword[MAXWLEN];
int res = OK;
// Avoid adding illegal bytes to the word tree.
if (!valid_spell_word(word, word + len)) {
return FAIL;
}
(void)spell_casefold(curwin, (char_u *)word, len, foldword, MAXWLEN);
for (const char_u *p = pfxlist; res == OK; p++) {
if (!need_affix || (p != NULL && *p != NUL)) {
res = tree_add_word(spin, foldword, spin->si_foldroot, ct | flags,
region, p == NULL ? 0 : *p);
}
if (p == NULL || *p == NUL) {
break;
}
}
spin->si_foldwcount++;
if (res == OK && (ct == WF_KEEPCAP || (flags & WF_KEEPCAP))) {
for (const char_u *p = pfxlist; res == OK; p++) {
if (!need_affix || (p != NULL && *p != NUL)) {
res = tree_add_word(spin, (char_u *)word, spin->si_keeproot, flags,
region, p == NULL ? 0 : *p);
}
if (p == NULL || *p == NUL) {
break;
}
}
spin->si_keepwcount++;
}
return res;
}
// Add word "word" to a word tree at "root".
// When "flags" < 0 we are adding to the prefix tree where "flags" is used for
// "rare" and "region" is the condition nr.
// Returns FAIL when out of memory.
static int tree_add_word(spellinfo_T *spin, const char_u *word, wordnode_T *root, int flags,
int region, int affixID)
{
wordnode_T *node = root;
wordnode_T *np;
wordnode_T *copyp, **copyprev;
wordnode_T **prev = NULL;
int i;
// Add each byte of the word to the tree, including the NUL at the end.
for (i = 0;; i++) {
// When there is more than one reference to this node we need to make
// a copy, so that we can modify it. Copy the whole list of siblings
// (we don't optimize for a partly shared list of siblings).
if (node != NULL && node->wn_refs > 1) {
node->wn_refs--;
copyprev = prev;
for (copyp = node; copyp != NULL; copyp = copyp->wn_sibling) {
// Allocate a new node and copy the info.
np = get_wordnode(spin);
if (np == NULL) {
return FAIL;
}
np->wn_child = copyp->wn_child;
if (np->wn_child != NULL) {
np->wn_child->wn_refs++; // child gets extra ref
}
np->wn_byte = copyp->wn_byte;
if (np->wn_byte == NUL) {
np->wn_flags = copyp->wn_flags;
np->wn_region = copyp->wn_region;
np->wn_affixID = copyp->wn_affixID;
}
// Link the new node in the list, there will be one ref.
np->wn_refs = 1;
if (copyprev != NULL) {
*copyprev = np;
}
copyprev = &np->wn_sibling;
// Let "node" point to the head of the copied list.
if (copyp == node) {
node = np;
}
}
}
// Look for the sibling that has the same character. They are sorted
// on byte value, thus stop searching when a sibling is found with a
// higher byte value. For zero bytes (end of word) the sorting is
// done on flags and then on affixID.
while (node != NULL
&& (node->wn_byte < word[i]
|| (node->wn_byte == NUL
&& (flags < 0
? node->wn_affixID < (unsigned)affixID
: (node->wn_flags < (unsigned)(flags & WN_MASK)
|| (node->wn_flags == (flags & WN_MASK)
&& (spin->si_sugtree
? (node->wn_region & 0xffff) < region
: node->wn_affixID
< (unsigned)affixID))))))) {
prev = &node->wn_sibling;
node = *prev;
}
if (node == NULL
|| node->wn_byte != word[i]
|| (word[i] == NUL
&& (flags < 0
|| spin->si_sugtree
|| node->wn_flags != (flags & WN_MASK)
|| node->wn_affixID != affixID))) {
// Allocate a new node.
np = get_wordnode(spin);
if (np == NULL) {
return FAIL;
}
np->wn_byte = word[i];
// If "node" is NULL this is a new child or the end of the sibling
// list: ref count is one. Otherwise use ref count of sibling and
// make ref count of sibling one (matters when inserting in front
// of the list of siblings).
if (node == NULL) {
np->wn_refs = 1;
} else {
np->wn_refs = node->wn_refs;
node->wn_refs = 1;
}
if (prev != NULL) {
*prev = np;
}
np->wn_sibling = node;
node = np;
}
if (word[i] == NUL) {
node->wn_flags = (uint16_t)flags;
node->wn_region |= (int16_t)region;
node->wn_affixID = (char_u)affixID;
break;
}
prev = &node->wn_child;
node = *prev;
}
#ifdef SPELL_PRINTTREE
smsg((char_u *)"Added \"%s\"", word);
spell_print_tree(root->wn_sibling);
#endif
// count nr of words added since last message
spin->si_msg_count++;
if (spin->si_compress_cnt > 1) {
if (--spin->si_compress_cnt == 1) {
// Did enough words to lower the block count limit.
spin->si_blocks_cnt += compress_inc;
}
}
// When we have allocated lots of memory we need to compress the word tree
// to free up some room. But compression is slow, and we might actually
// need that room, thus only compress in the following situations:
// 1. When not compressed before (si_compress_cnt == 0): when using
// "compress_start" blocks.
// 2. When compressed before and used "compress_inc" blocks before
// adding "compress_added" words (si_compress_cnt > 1).
// 3. When compressed before, added "compress_added" words
// (si_compress_cnt == 1) and the number of free nodes drops below the
// maximum word length.
#ifndef SPELL_COMPRESS_ALWAYS
if (spin->si_compress_cnt == 1 // NOLINT(readability/braces)
? spin->si_free_count < MAXWLEN
: spin->si_blocks_cnt >= compress_start)
#endif
{
// Decrement the block counter. The effect is that we compress again
// when the freed up room has been used and another "compress_inc"
// blocks have been allocated. Unless "compress_added" words have
// been added, then the limit is put back again.
spin->si_blocks_cnt -= compress_inc;
spin->si_compress_cnt = compress_added;
if (spin->si_verbose) {
msg_start();
msg_puts(_(msg_compressing));
msg_clr_eos();
msg_didout = false;
msg_col = 0;
ui_flush();
}
// Compress both trees. Either they both have many nodes, which makes
// compression useful, or one of them is small, which means
// compression goes fast. But when filling the soundfold word tree
// there is no keep-case tree.
wordtree_compress(spin, spin->si_foldroot, "case-folded");
if (affixID >= 0) {
wordtree_compress(spin, spin->si_keeproot, "keep-case");
}
}
return OK;
}
// Get a wordnode_T, either from the list of previously freed nodes or
// allocate a new one.
// Returns NULL when out of memory.
static wordnode_T *get_wordnode(spellinfo_T *spin)
{
wordnode_T *n;
if (spin->si_first_free == NULL) {
n = (wordnode_T *)getroom(spin, sizeof(wordnode_T), true);
} else {
n = spin->si_first_free;
spin->si_first_free = n->wn_child;
CLEAR_POINTER(n);
spin->si_free_count--;
}
#ifdef SPELL_PRINTTREE
if (n != NULL) {
n->wn_nr = ++spin->si_wordnode_nr;
}
#endif
return n;
}
// Decrement the reference count on a node (which is the head of a list of
// siblings). If the reference count becomes zero free the node and its
// siblings.
// Returns the number of nodes actually freed.
static int deref_wordnode(spellinfo_T *spin, wordnode_T *node)
FUNC_ATTR_NONNULL_ALL
{
wordnode_T *np;
int cnt = 0;
if (--node->wn_refs == 0) {
for (np = node; np != NULL; np = np->wn_sibling) {
if (np->wn_child != NULL) {
cnt += deref_wordnode(spin, np->wn_child);
}
free_wordnode(spin, np);
cnt++;
}
cnt++; // length field
}
return cnt;
}
// Free a wordnode_T for re-use later.
// Only the "wn_child" field becomes invalid.
static void free_wordnode(spellinfo_T *spin, wordnode_T *n)
FUNC_ATTR_NONNULL_ALL
{
n->wn_child = spin->si_first_free;
spin->si_first_free = n;
spin->si_free_count++;
}
// Compress a tree: find tails that are identical and can be shared.
static void wordtree_compress(spellinfo_T *spin, wordnode_T *root, const char *name)
FUNC_ATTR_NONNULL_ALL
{
hashtab_T ht;
long tot = 0;
long perc;
// Skip the root itself, it's not actually used. The first sibling is the
// start of the tree.
if (root->wn_sibling != NULL) {
hash_init(&ht);
const long n = node_compress(spin, root->wn_sibling, &ht, &tot);
#ifndef SPELL_PRINTTREE
if (spin->si_verbose || p_verbose > 2)
#endif
{
if (tot > 1000000) {
perc = (tot - n) / (tot / 100);
} else if (tot == 0) {
perc = 0;
} else {
perc = (tot - n) * 100 / tot;
}
vim_snprintf((char *)IObuff, IOSIZE,
_("Compressed %s of %ld nodes; %ld (%ld%%) remaining"),
name, tot, tot - n, perc);
spell_message(spin, (char *)IObuff);
}
#ifdef SPELL_PRINTTREE
spell_print_tree(root->wn_sibling);
#endif
hash_clear(&ht);
}
}
/// Compress a node, its siblings and its children, depth first.
/// Returns the number of compressed nodes.
///
/// @param tot total count of nodes before compressing, incremented while going through the tree
static long node_compress(spellinfo_T *spin, wordnode_T *node, hashtab_T *ht, long *tot)
FUNC_ATTR_NONNULL_ALL
{
wordnode_T *np;
wordnode_T *tp;
wordnode_T *child;
hash_T hash;
hashitem_T *hi;
long len = 0;
unsigned nr, n;
long compressed = 0;
// Go through the list of siblings. Compress each child and then try
// finding an identical child to replace it.
// Note that with "child" we mean not just the node that is pointed to,
// but the whole list of siblings of which the child node is the first.
for (np = node; np != NULL && !got_int; np = np->wn_sibling) {
len++;
if ((child = np->wn_child) != NULL) {
// Compress the child first. This fills hashkey.
compressed += node_compress(spin, child, ht, tot);
// Try to find an identical child.
hash = hash_hash(child->wn_u1.hashkey);
hi = hash_lookup(ht, (const char *)child->wn_u1.hashkey,
strlen((char *)child->wn_u1.hashkey), hash);
if (!HASHITEM_EMPTY(hi)) {
// There are children we encountered before with a hash value
// identical to the current child. Now check if there is one
// that is really identical.
for (tp = HI2WN(hi); tp != NULL; tp = tp->wn_u2.next) {
if (node_equal(child, tp)) {
// Found one! Now use that child in place of the
// current one. This means the current child and all
// its siblings is unlinked from the tree.
tp->wn_refs++;
compressed += deref_wordnode(spin, child);
np->wn_child = tp;
break;
}
}
if (tp == NULL) {
// No other child with this hash value equals the child of
// the node, add it to the linked list after the first
// item.
tp = HI2WN(hi);
child->wn_u2.next = tp->wn_u2.next;
tp->wn_u2.next = child;
}
} else {
// No other child has this hash value, add it to the
// hashtable.
hash_add_item(ht, hi, child->wn_u1.hashkey, hash);
}
}
}
*tot += len + 1; // add one for the node that stores the length
// Make a hash key for the node and its siblings, so that we can quickly
// find a lookalike node. This must be done after compressing the sibling
// list, otherwise the hash key would become invalid by the compression.
node->wn_u1.hashkey[0] = (char_u)len;
nr = 0;
for (np = node; np != NULL; np = np->wn_sibling) {
if (np->wn_byte == NUL) {
// end node: use wn_flags, wn_region and wn_affixID
n = (unsigned)(np->wn_flags + (np->wn_region << 8) + (np->wn_affixID << 16));
} else {
// byte node: use the byte value and the child pointer
n = (unsigned)(np->wn_byte + ((uintptr_t)np->wn_child << 8));
}
nr = nr * 101 + n;
}
// Avoid NUL bytes, it terminates the hash key.
n = nr & 0xff;
node->wn_u1.hashkey[1] = n == 0 ? 1 : (char_u)n;
n = (nr >> 8) & 0xff;
node->wn_u1.hashkey[2] = n == 0 ? 1 : (char_u)n;
n = (nr >> 16) & 0xff;
node->wn_u1.hashkey[3] = n == 0 ? 1 : (char_u)n;
n = (nr >> 24) & 0xff;
node->wn_u1.hashkey[4] = n == 0 ? 1 : (char_u)n;
node->wn_u1.hashkey[5] = NUL;
// Check for CTRL-C pressed now and then.
veryfast_breakcheck();
return compressed;
}
// Returns true when two nodes have identical siblings and children.
static bool node_equal(wordnode_T *n1, wordnode_T *n2)
{
wordnode_T *p1;
wordnode_T *p2;
for (p1 = n1, p2 = n2; p1 != NULL && p2 != NULL;
p1 = p1->wn_sibling, p2 = p2->wn_sibling) {
if (p1->wn_byte != p2->wn_byte
|| (p1->wn_byte == NUL
? (p1->wn_flags != p2->wn_flags
|| p1->wn_region != p2->wn_region
|| p1->wn_affixID != p2->wn_affixID)
: (p1->wn_child != p2->wn_child))) {
break;
}
}
return p1 == NULL && p2 == NULL;
}
/// Function given to qsort() to sort the REP items on "from" string.
static int rep_compare(const void *s1, const void *s2)
{
fromto_T *p1 = (fromto_T *)s1;
fromto_T *p2 = (fromto_T *)s2;
return strcmp((char *)p1->ft_from, (char *)p2->ft_from);
}
/// Write the Vim .spl file "fname".
///
/// @return OK/FAIL.
static int write_vim_spell(spellinfo_T *spin, char *fname)
{
int retval = OK;
int regionmask;
FILE *fd = os_fopen(fname, "w");
if (fd == NULL) {
semsg(_(e_notopen), fname);
return FAIL;
}
// <HEADER>: <fileID> <versionnr>
// <fileID>
size_t fwv = fwrite(VIMSPELLMAGIC, VIMSPELLMAGICL, 1, fd);
if (fwv != (size_t)1) {
// Catch first write error, don't try writing more.
goto theend;
}
putc(VIMSPELLVERSION, fd); // <versionnr>
// <SECTIONS>: <section> ... <sectionend>
// SN_INFO: <infotext>
if (spin->si_info != NULL) {
putc(SN_INFO, fd); // <sectionID>
putc(0, fd); // <sectionflags>
size_t i = strlen(spin->si_info);
put_bytes(fd, i, 4); // <sectionlen>
fwv &= fwrite(spin->si_info, i, 1, fd); // <infotext>
}
// SN_REGION: <regionname> ...
// Write the region names only if there is more than one.
if (spin->si_region_count > 1) {
putc(SN_REGION, fd); // <sectionID>
putc(SNF_REQUIRED, fd); // <sectionflags>
size_t l = (size_t)spin->si_region_count * 2;
put_bytes(fd, l, 4); // <sectionlen>
fwv &= fwrite(spin->si_region_name, l, 1, fd);
// <regionname> ...
regionmask = (1 << spin->si_region_count) - 1;
} else {
regionmask = 0;
}
// SN_CHARFLAGS: <charflagslen> <charflags> <folcharslen> <folchars>
//
// The table with character flags and the table for case folding.
// This makes sure the same characters are recognized as word characters
// when generating and when using a spell file.
// Skip this for ASCII, the table may conflict with the one used for
// 'encoding'.
// Also skip this for an .add.spl file, the main spell file must contain
// the table (avoids that it conflicts). File is shorter too.
if (!spin->si_ascii && !spin->si_add) {
char folchars[128 * 8];
int flags;
putc(SN_CHARFLAGS, fd); // <sectionID>
putc(SNF_REQUIRED, fd); // <sectionflags>
// Form the <folchars> string first, we need to know its length.
size_t l = 0;
for (size_t i = 128; i < 256; i++) {
l += (size_t)utf_char2bytes(spelltab.st_fold[i], (char *)folchars + l);
}
put_bytes(fd, 1 + 128 + 2 + l, 4); // <sectionlen>
fputc(128, fd); // <charflagslen>
for (size_t i = 128; i < 256; i++) {
flags = 0;
if (spelltab.st_isw[i]) {
flags |= CF_WORD;
}
if (spelltab.st_isu[i]) {
flags |= CF_UPPER;
}
fputc(flags, fd); // <charflags>
}
put_bytes(fd, l, 2); // <folcharslen>
fwv &= fwrite(folchars, l, 1, fd); // <folchars>
}
// SN_MIDWORD: <midword>
if (spin->si_midword != NULL) {
putc(SN_MIDWORD, fd); // <sectionID>
putc(SNF_REQUIRED, fd); // <sectionflags>
size_t i = strlen(spin->si_midword);
put_bytes(fd, i, 4); // <sectionlen>
fwv &= fwrite(spin->si_midword, i, 1, fd);
// <midword>
}
// SN_PREFCOND: <prefcondcnt> <prefcond> ...
if (!GA_EMPTY(&spin->si_prefcond)) {
putc(SN_PREFCOND, fd); // <sectionID>
putc(SNF_REQUIRED, fd); // <sectionflags>
size_t l = (size_t)write_spell_prefcond(NULL, &spin->si_prefcond, &fwv);
put_bytes(fd, l, 4); // <sectionlen>
write_spell_prefcond(fd, &spin->si_prefcond, &fwv);
}
// SN_REP: <repcount> <rep> ...
// SN_SAL: <salflags> <salcount> <sal> ...
// SN_REPSAL: <repcount> <rep> ...
// round 1: SN_REP section
// round 2: SN_SAL section (unless SN_SOFO is used)
// round 3: SN_REPSAL section
for (unsigned int round = 1; round <= 3; round++) {
garray_T *gap;
if (round == 1) {
gap = &spin->si_rep;
} else if (round == 2) {
// Don't write SN_SAL when using a SN_SOFO section
if (spin->si_sofofr != NULL && spin->si_sofoto != NULL) {
continue;
}
gap = &spin->si_sal;
} else {
gap = &spin->si_repsal;
}
// Don't write the section if there are no items.
if (GA_EMPTY(gap)) {
continue;
}
// Sort the REP/REPSAL items.
if (round != 2) {
qsort(gap->ga_data, (size_t)gap->ga_len,
sizeof(fromto_T), rep_compare);
}
int sect_id = round == 1 ? SN_REP : (round == 2 ? SN_SAL : SN_REPSAL);
putc(sect_id, fd); // <sectionID>
// This is for making suggestions, section is not required.
putc(0, fd); // <sectionflags>
// Compute the length of what follows.
size_t l = 2; // count <repcount> or <salcount>
assert(gap->ga_len >= 0);
for (size_t i = 0; i < (size_t)gap->ga_len; i++) {
fromto_T *ftp = &((fromto_T *)gap->ga_data)[i];
l += 1 + strlen((char *)ftp->ft_from); // count <*fromlen> and <*from>
l += 1 + strlen((char *)ftp->ft_to); // count <*tolen> and <*to>
}
if (round == 2) {
l++; // count <salflags>
}
put_bytes(fd, l, 4); // <sectionlen>
if (round == 2) {
int i = 0;
if (spin->si_followup) {
i |= SAL_F0LLOWUP;
}
if (spin->si_collapse) {
i |= SAL_COLLAPSE;
}
if (spin->si_rem_accents) {
i |= SAL_REM_ACCENTS;
}
putc(i, fd); // <salflags>
}
put_bytes(fd, (uintmax_t)gap->ga_len, 2); // <repcount> or <salcount>
for (size_t i = 0; i < (size_t)gap->ga_len; i++) {
// <rep> : <repfromlen> <repfrom> <reptolen> <repto>
// <sal> : <salfromlen> <salfrom> <saltolen> <salto>
fromto_T *ftp = &((fromto_T *)gap->ga_data)[i];
for (unsigned int rr = 1; rr <= 2; rr++) {
char *p = rr == 1 ? (char *)ftp->ft_from : (char *)ftp->ft_to;
l = strlen(p);
assert(l < INT_MAX);
putc((int)l, fd);
if (l > 0) {
fwv &= fwrite(p, l, 1, fd);
}
}
}
}
// SN_SOFO: <sofofromlen> <sofofrom> <sofotolen> <sofoto>
// This is for making suggestions, section is not required.
if (spin->si_sofofr != NULL && spin->si_sofoto != NULL) {
putc(SN_SOFO, fd); // <sectionID>
putc(0, fd); // <sectionflags>
size_t l = strlen(spin->si_sofofr);
put_bytes(fd, l + strlen(spin->si_sofoto) + 4, 4); // <sectionlen>
put_bytes(fd, l, 2); // <sofofromlen>
fwv &= fwrite(spin->si_sofofr, l, 1, fd); // <sofofrom>
l = strlen(spin->si_sofoto);
put_bytes(fd, l, 2); // <sofotolen>
fwv &= fwrite(spin->si_sofoto, l, 1, fd); // <sofoto>
}
// SN_WORDS: <word> ...
// This is for making suggestions, section is not required.
if (spin->si_commonwords.ht_used > 0) {
putc(SN_WORDS, fd); // <sectionID>
putc(0, fd); // <sectionflags>
// round 1: count the bytes
// round 2: write the bytes
for (unsigned int round = 1; round <= 2; round++) {
size_t todo;
size_t len = 0;
hashitem_T *hi;
todo = spin->si_commonwords.ht_used;
for (hi = spin->si_commonwords.ht_array; todo > 0; hi++) {
if (!HASHITEM_EMPTY(hi)) {
size_t l = strlen(hi->hi_key) + 1;
len += l;
if (round == 2) { // <word>
fwv &= fwrite(hi->hi_key, l, 1, fd);
}
todo--;
}
}
if (round == 1) {
put_bytes(fd, len, 4); // <sectionlen>
}
}
}
// SN_MAP: <mapstr>
// This is for making suggestions, section is not required.
if (!GA_EMPTY(&spin->si_map)) {
putc(SN_MAP, fd); // <sectionID>
putc(0, fd); // <sectionflags>
size_t l = (size_t)spin->si_map.ga_len;
put_bytes(fd, l, 4); // <sectionlen>
fwv &= fwrite(spin->si_map.ga_data, l, 1, fd); // <mapstr>
}
// SN_SUGFILE: <timestamp>
// This is used to notify that a .sug file may be available and at the
// same time allows for checking that a .sug file that is found matches
// with this .spl file. That's because the word numbers must be exactly
// right.
if (!spin->si_nosugfile
&& (!GA_EMPTY(&spin->si_sal)
|| (spin->si_sofofr != NULL && spin->si_sofoto != NULL))) {
putc(SN_SUGFILE, fd); // <sectionID>
putc(0, fd); // <sectionflags>
put_bytes(fd, 8, 4); // <sectionlen>
// Set si_sugtime and write it to the file.
spin->si_sugtime = time(NULL);
put_time(fd, spin->si_sugtime); // <timestamp>
}
// SN_NOSPLITSUGS: nothing
// This is used to notify that no suggestions with word splits are to be
// made.
if (spin->si_nosplitsugs) {
putc(SN_NOSPLITSUGS, fd); // <sectionID>
putc(0, fd); // <sectionflags>
put_bytes(fd, 0, 4); // <sectionlen>
}
// SN_NOCOMPUNDSUGS: nothing
// This is used to notify that no suggestions with compounds are to be
// made.
if (spin->si_nocompoundsugs) {
putc(SN_NOCOMPOUNDSUGS, fd); // <sectionID>
putc(0, fd); // <sectionflags>
put_bytes(fd, 0, 4); // <sectionlen>
}
// SN_COMPOUND: compound info.
// We don't mark it required, when not supported all compound words will
// be bad words.
if (spin->si_compflags != NULL) {
putc(SN_COMPOUND, fd); // <sectionID>
putc(0, fd); // <sectionflags>
size_t l = strlen(spin->si_compflags);
assert(spin->si_comppat.ga_len >= 0);
for (size_t i = 0; i < (size_t)spin->si_comppat.ga_len; i++) {
l += strlen(((char **)(spin->si_comppat.ga_data))[i]) + 1;
}
put_bytes(fd, l + 7, 4); // <sectionlen>
putc(spin->si_compmax, fd); // <compmax>
putc(spin->si_compminlen, fd); // <compminlen>
putc(spin->si_compsylmax, fd); // <compsylmax>
putc(0, fd); // for Vim 7.0b compatibility
putc(spin->si_compoptions, fd); // <compoptions>
put_bytes(fd, (uintmax_t)spin->si_comppat.ga_len, 2); // <comppatcount>
for (size_t i = 0; i < (size_t)spin->si_comppat.ga_len; i++) {
char *p = ((char **)(spin->si_comppat.ga_data))[i];
assert(strlen(p) < INT_MAX);
putc((int)strlen(p), fd); // <comppatlen>
fwv &= fwrite(p, strlen(p), 1, fd); // <comppattext>
}
// <compflags>
fwv &= fwrite(spin->si_compflags, strlen(spin->si_compflags), 1, fd);
}
// SN_NOBREAK: NOBREAK flag
if (spin->si_nobreak) {
putc(SN_NOBREAK, fd); // <sectionID>
putc(0, fd); // <sectionflags>
// It's empty, the presence of the section flags the feature.
put_bytes(fd, 0, 4); // <sectionlen>
}
// SN_SYLLABLE: syllable info.
// We don't mark it required, when not supported syllables will not be
// counted.
if (spin->si_syllable != NULL) {
putc(SN_SYLLABLE, fd); // <sectionID>
putc(0, fd); // <sectionflags>
size_t l = strlen(spin->si_syllable);
put_bytes(fd, l, 4); // <sectionlen>
fwv &= fwrite(spin->si_syllable, l, 1, fd); // <syllable>
}
// end of <SECTIONS>
putc(SN_END, fd); // <sectionend>
// <LWORDTREE> <KWORDTREE> <PREFIXTREE>
spin->si_memtot = 0;
for (unsigned int round = 1; round <= 3; round++) {
wordnode_T *tree;
if (round == 1) {
tree = spin->si_foldroot->wn_sibling;
} else if (round == 2) {
tree = spin->si_keeproot->wn_sibling;
} else {
tree = spin->si_prefroot->wn_sibling;
}
// Clear the index and wnode fields in the tree.
clear_node(tree);
// Count the number of nodes. Needed to be able to allocate the
// memory when reading the nodes. Also fills in index for shared
// nodes.
size_t nodecount = (size_t)put_node(NULL, tree, 0, regionmask, round == 3);
// number of nodes in 4 bytes
put_bytes(fd, nodecount, 4); // <nodecount>
assert(nodecount + nodecount * sizeof(int) < INT_MAX);
spin->si_memtot += (int)(nodecount + nodecount * sizeof(int));
// Write the nodes.
(void)put_node(fd, tree, 0, regionmask, round == 3);
}
// Write another byte to check for errors (file system full).
if (putc(0, fd) == EOF) {
retval = FAIL;
}
theend:
if (fclose(fd) == EOF) {
retval = FAIL;
}
if (fwv != (size_t)1) {
retval = FAIL;
}
if (retval == FAIL) {
emsg(_(e_write));
}
return retval;
}
// Clear the index and wnode fields of "node", it siblings and its
// children. This is needed because they are a union with other items to save
// space.
static void clear_node(wordnode_T *node)
{
wordnode_T *np;
if (node != NULL) {
for (np = node; np != NULL; np = np->wn_sibling) {
np->wn_u1.index = 0;
np->wn_u2.wnode = NULL;
if (np->wn_byte != NUL) {
clear_node(np->wn_child);
}
}
}
}
/// Dump a word tree at node "node".
///
/// This first writes the list of possible bytes (siblings). Then for each
/// byte recursively write the children.
///
/// NOTE: The code here must match the code in read_tree_node(), since
/// assumptions are made about the indexes (so that we don't have to write them
/// in the file).
///
/// @param fd NULL when only counting
/// @param prefixtree true for PREFIXTREE
///
/// @return the number of nodes used.
static int put_node(FILE *fd, wordnode_T *node, int idx, int regionmask, bool prefixtree)
{
// If "node" is zero the tree is empty.
if (node == NULL) {
return 0;
}
// Store the index where this node is written.
node->wn_u1.index = idx;
// Count the number of siblings.
int siblingcount = 0;
for (wordnode_T *np = node; np != NULL; np = np->wn_sibling) {
siblingcount++;
}
// Write the sibling count.
if (fd != NULL) {
putc(siblingcount, fd); // <siblingcount>
}
// Write each sibling byte and optionally extra info.
for (wordnode_T *np = node; np != NULL; np = np->wn_sibling) {
if (np->wn_byte == 0) {
if (fd != NULL) {
// For a NUL byte (end of word) write the flags etc.
if (prefixtree) {
// In PREFIXTREE write the required affixID and the
// associated condition nr (stored in wn_region). The
// byte value is misused to store the "rare" and "not
// combining" flags
if (np->wn_flags == (uint16_t)PFX_FLAGS) {
putc(BY_NOFLAGS, fd); // <byte>
} else {
putc(BY_FLAGS, fd); // <byte>
putc(np->wn_flags, fd); // <pflags>
}
putc(np->wn_affixID, fd); // <affixID>
put_bytes(fd, (uintmax_t)np->wn_region, 2); // <prefcondnr>
} else {
// For word trees we write the flag/region items.
int flags = np->wn_flags;
if (regionmask != 0 && np->wn_region != regionmask) {
flags |= WF_REGION;
}
if (np->wn_affixID != 0) {
flags |= WF_AFX;
}
if (flags == 0) {
// word without flags or region
putc(BY_NOFLAGS, fd); // <byte>
} else {
if (np->wn_flags >= 0x100) {
putc(BY_FLAGS2, fd); // <byte>
putc(flags, fd); // <flags>
putc((int)((unsigned)flags >> 8), fd); // <flags2>
} else {
putc(BY_FLAGS, fd); // <byte>
putc(flags, fd); // <flags>
}
if (flags & WF_REGION) {
putc(np->wn_region, fd); // <region>
}
if (flags & WF_AFX) {
putc(np->wn_affixID, fd); // <affixID>
}
}
}
}
} else {
if (np->wn_child->wn_u1.index != 0
&& np->wn_child->wn_u2.wnode != node) {
// The child is written elsewhere, write the reference.
if (fd != NULL) {
putc(BY_INDEX, fd); // <byte>
put_bytes(fd, (uintmax_t)np->wn_child->wn_u1.index, 3); // <nodeidx>
}
} else if (np->wn_child->wn_u2.wnode == NULL) {
// We will write the child below and give it an index.
np->wn_child->wn_u2.wnode = node;
}
if (fd != NULL) {
if (putc(np->wn_byte, fd) == EOF) { // <byte> or <xbyte>
emsg(_(e_write));
return 0;
}
}
}
}
// Space used in the array when reading: one for each sibling and one for
// the count.
int newindex = idx + siblingcount + 1;
// Recursively dump the children of each sibling.
for (wordnode_T *np = node; np != NULL; np = np->wn_sibling) {
if (np->wn_byte != 0 && np->wn_child->wn_u2.wnode == node) {
newindex = put_node(fd, np->wn_child, newindex, regionmask,
prefixtree);
}
}
return newindex;
}
// ":mkspell [-ascii] outfile infile ..."
// ":mkspell [-ascii] addfile"
void ex_mkspell(exarg_T *eap)
{
int fcount;
char **fnames;
char *arg = eap->arg;
bool ascii = false;
if (strncmp(arg, "-ascii", 6) == 0) {
ascii = true;
arg = skipwhite(arg + 6);
}
// Expand all the remaining arguments (e.g., $VIMRUNTIME).
if (get_arglist_exp(arg, &fcount, &fnames, false) == OK) {
mkspell(fcount, fnames, ascii, eap->forceit, false);
FreeWild(fcount, fnames);
}
}
// Create the .sug file.
// Uses the soundfold info in "spin".
// Writes the file with the name "wfname", with ".spl" changed to ".sug".
static void spell_make_sugfile(spellinfo_T *spin, char *wfname)
{
char *fname = NULL;
int len;
slang_T *slang;
bool free_slang = false;
// Read back the .spl file that was written. This fills the required
// info for soundfolding. This also uses less memory than the
// pointer-linked version of the trie. And it avoids having two versions
// of the code for the soundfolding stuff.
// It might have been done already by spell_reload_one().
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (path_full_compare(wfname, slang->sl_fname, false, true)
== kEqualFiles) {
break;
}
}
if (slang == NULL) {
spell_message(spin, _("Reading back spell file..."));
slang = spell_load_file(wfname, NULL, NULL, false);
if (slang == NULL) {
return;
}
free_slang = true;
}
// Clear the info in "spin" that is used.
spin->si_blocks = NULL;
spin->si_blocks_cnt = 0;
spin->si_compress_cnt = 0; // will stay at 0 all the time
spin->si_free_count = 0;
spin->si_first_free = NULL;
spin->si_foldwcount = 0;
// Go through the trie of good words, soundfold each word and add it to
// the soundfold trie.
spell_message(spin, _("Performing soundfolding..."));
if (sug_filltree(spin, slang) == FAIL) {
goto theend;
}
// Create the table which links each soundfold word with a list of the
// good words it may come from. Creates buffer "spin->si_spellbuf".
// This also removes the wordnr from the NUL byte entries to make
// compression possible.
if (sug_maketable(spin) == FAIL) {
goto theend;
}
smsg(_("Number of words after soundfolding: %" PRId64),
(int64_t)spin->si_spellbuf->b_ml.ml_line_count);
// Compress the soundfold trie.
spell_message(spin, _(msg_compressing));
wordtree_compress(spin, spin->si_foldroot, "case-folded");
// Write the .sug file.
// Make the file name by changing ".spl" to ".sug".
fname = xmalloc(MAXPATHL);
STRLCPY(fname, wfname, MAXPATHL);
len = (int)strlen(fname);
fname[len - 2] = 'u';
fname[len - 1] = 'g';
sug_write(spin, (char_u *)fname);
theend:
xfree(fname);
if (free_slang) {
slang_free(slang);
}
free_blocks(spin->si_blocks);
close_spellbuf(spin->si_spellbuf);
}
// Build the soundfold trie for language "slang".
static int sug_filltree(spellinfo_T *spin, slang_T *slang)
{
char_u *byts;
idx_T *idxs;
int depth;
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
char_u tword[MAXWLEN];
char_u tsalword[MAXWLEN];
int c;
idx_T n;
unsigned words_done = 0;
int wordcount[MAXWLEN];
// We use si_foldroot for the soundfolded trie.
spin->si_foldroot = wordtree_alloc(spin);
// Let tree_add_word() know we're adding to the soundfolded tree
spin->si_sugtree = true;
// Go through the whole case-folded tree, soundfold each word and put it
// in the trie.
byts = slang->sl_fbyts;
idxs = slang->sl_fidxs;
arridx[0] = 0;
curi[0] = 1;
wordcount[0] = 0;
depth = 0;
while (depth >= 0 && !got_int) {
if (curi[depth] > byts[arridx[depth]]) {
// Done all bytes at this node, go up one level.
idxs[arridx[depth]] = wordcount[depth];
if (depth > 0) {
wordcount[depth - 1] += wordcount[depth];
}
depth--;
line_breakcheck();
} else {
// Do one more byte at this node.
n = arridx[depth] + curi[depth];
curi[depth]++;
c = byts[n];
if (c == 0) {
// Sound-fold the word.
tword[depth] = NUL;
spell_soundfold(slang, (char *)tword, true, (char *)tsalword);
// We use the "flags" field for the MSB of the wordnr,
// "region" for the LSB of the wordnr.
if (tree_add_word(spin, tsalword, spin->si_foldroot,
(int)(words_done >> 16), words_done & 0xffff,
0) == FAIL) {
return FAIL;
}
words_done++;
wordcount[depth]++;
// Reset the block count each time to avoid compression
// kicking in.
spin->si_blocks_cnt = 0;
// Skip over any other NUL bytes (same word with different
// flags). But don't go over the end.
while (n + 1 < slang->sl_fbyts_len && byts[n + 1] == 0) {
n++;
curi[depth]++;
}
} else {
// Normal char, go one level deeper.
tword[depth++] = (char_u)c;
arridx[depth] = idxs[n];
curi[depth] = 1;
wordcount[depth] = 0;
}
}
}
smsg(_("Total number of words: %d"), words_done);
return OK;
}
// Make the table that links each word in the soundfold trie to the words it
// can be produced from.
// This is not unlike lines in a file, thus use a memfile to be able to access
// the table efficiently.
// Returns FAIL when out of memory.
static int sug_maketable(spellinfo_T *spin)
{
garray_T ga;
int res = OK;
// Allocate a buffer, open a memline for it and create the swap file
// (uses a temp file, not a .swp file).
spin->si_spellbuf = open_spellbuf();
// Use a buffer to store the line info, avoids allocating many small
// pieces of memory.
ga_init(&ga, 1, 100);
// recursively go through the tree
if (sug_filltable(spin, spin->si_foldroot->wn_sibling, 0, &ga) == -1) {
res = FAIL;
}
ga_clear(&ga);
return res;
}
/// Fill the table for one node and its children.
/// Returns the wordnr at the start of the node.
/// Returns -1 when out of memory.
///
/// @param gap place to store line of numbers
static int sug_filltable(spellinfo_T *spin, wordnode_T *node, int startwordnr, garray_T *gap)
{
wordnode_T *p, *np;
int wordnr = startwordnr;
int nr;
int prev_nr;
for (p = node; p != NULL; p = p->wn_sibling) {
if (p->wn_byte == NUL) {
gap->ga_len = 0;
prev_nr = 0;
for (np = p; np != NULL && np->wn_byte == NUL; np = np->wn_sibling) {
ga_grow(gap, 10);
nr = (np->wn_flags << 16) + (np->wn_region & 0xffff);
// Compute the offset from the previous nr and store the
// offset in a way that it takes a minimum number of bytes.
// It's a bit like utf-8, but without the need to mark
// following bytes.
nr -= prev_nr;
prev_nr += nr;
gap->ga_len += offset2bytes(nr,
(char_u *)gap->ga_data + gap->ga_len);
}
// add the NUL byte
((char_u *)gap->ga_data)[gap->ga_len++] = NUL;
if (ml_append_buf(spin->si_spellbuf, (linenr_T)wordnr,
gap->ga_data, gap->ga_len, true) == FAIL) {
return -1;
}
wordnr++;
// Remove extra NUL entries, we no longer need them. We don't
// bother freeing the nodes, they won't be reused anyway.
while (p->wn_sibling != NULL && p->wn_sibling->wn_byte == NUL) {
p->wn_sibling = p->wn_sibling->wn_sibling;
}
// Clear the flags on the remaining NUL node, so that compression
// works a lot better.
p->wn_flags = 0;
p->wn_region = 0;
} else {
wordnr = sug_filltable(spin, p->wn_child, wordnr, gap);
if (wordnr == -1) {
return -1;
}
}
}
return wordnr;
}
// Convert an offset into a minimal number of bytes.
// Similar to utf_char2byters, but use 8 bits in followup bytes and avoid NUL
// bytes.
static int offset2bytes(int nr, char_u *buf)
{
int rem;
int b1, b2, b3, b4;
// Split the number in parts of base 255. We need to avoid NUL bytes.
b1 = nr % 255 + 1;
rem = nr / 255;
b2 = rem % 255 + 1;
rem = rem / 255;
b3 = rem % 255 + 1;
b4 = rem / 255 + 1;
if (b4 > 1 || b3 > 0x1f) { // 4 bytes
buf[0] = (char_u)(0xe0 + b4);
buf[1] = (char_u)b3;
buf[2] = (char_u)b2;
buf[3] = (char_u)b1;
return 4;
}
if (b3 > 1 || b2 > 0x3f) { // 3 bytes
buf[0] = (char_u)(0xc0 + b3);
buf[1] = (char_u)b2;
buf[2] = (char_u)b1;
return 3;
}
if (b2 > 1 || b1 > 0x7f) { // 2 bytes
buf[0] = (char_u)(0x80 + b2);
buf[1] = (char_u)b1;
return 2;
}
// 1 byte
buf[0] = (char_u)b1;
return 1;
}
// Write the .sug file in "fname".
static void sug_write(spellinfo_T *spin, char_u *fname)
{
// Create the file. Note that an existing file is silently overwritten!
FILE *fd = os_fopen((char *)fname, "w");
if (fd == NULL) {
semsg(_(e_notopen), fname);
return;
}
vim_snprintf((char *)IObuff, IOSIZE,
_("Writing suggestion file %s..."), fname);
spell_message(spin, (char *)IObuff);
// <SUGHEADER>: <fileID> <versionnr> <timestamp>
if (fwrite(VIMSUGMAGIC, VIMSUGMAGICL, (size_t)1, fd) != 1) { // <fileID>
emsg(_(e_write));
goto theend;
}
putc(VIMSUGVERSION, fd); // <versionnr>
// Write si_sugtime to the file.
put_time(fd, spin->si_sugtime); // <timestamp>
// <SUGWORDTREE>
spin->si_memtot = 0;
wordnode_T *tree = spin->si_foldroot->wn_sibling;
// Clear the index and wnode fields in the tree.
clear_node(tree);
// Count the number of nodes. Needed to be able to allocate the
// memory when reading the nodes. Also fills in index for shared
// nodes.
size_t nodecount = (size_t)put_node(NULL, tree, 0, 0, false);
// number of nodes in 4 bytes
put_bytes(fd, nodecount, 4); // <nodecount>
assert(nodecount + nodecount * sizeof(int) < INT_MAX);
spin->si_memtot += (int)(nodecount + nodecount * sizeof(int));
// Write the nodes.
(void)put_node(fd, tree, 0, 0, false);
// <SUGTABLE>: <sugwcount> <sugline> ...
linenr_T wcount = spin->si_spellbuf->b_ml.ml_line_count;
assert(wcount >= 0);
put_bytes(fd, (uintmax_t)wcount, 4); // <sugwcount>
for (linenr_T lnum = 1; lnum <= wcount; lnum++) {
// <sugline>: <sugnr> ... NUL
char *line = ml_get_buf(spin->si_spellbuf, lnum, false);
size_t len = strlen(line) + 1;
if (fwrite(line, len, 1, fd) == 0) {
emsg(_(e_write));
goto theend;
}
assert((size_t)spin->si_memtot + len <= INT_MAX);
spin->si_memtot += (int)len;
}
// Write another byte to check for errors.
if (putc(0, fd) == EOF) {
emsg(_(e_write));
}
vim_snprintf((char *)IObuff, IOSIZE,
_("Estimated runtime memory use: %d bytes"), spin->si_memtot);
spell_message(spin, (char *)IObuff);
theend:
// close the file
fclose(fd);
}
/// Create a Vim spell file from one or more word lists.
/// "fnames[0]" is the output file name.
/// "fnames[fcount - 1]" is the last input file name.
/// Exception: when "fnames[0]" ends in ".add" it's used as the input file name
/// and ".spl" is appended to make the output file name.
///
/// @param ascii -ascii argument given
/// @param over_write overwrite existing output file
/// @param added_word invoked through "zg"
static void mkspell(int fcount, char **fnames, bool ascii, bool over_write, bool added_word)
{
char_u *fname = NULL;
char **innames;
int incount;
afffile_T *(afile[MAXREGIONS]);
int i;
int len;
bool error = false;
spellinfo_T spin;
CLEAR_FIELD(spin);
spin.si_verbose = !added_word;
spin.si_ascii = ascii;
spin.si_followup = true;
spin.si_rem_accents = true;
ga_init(&spin.si_rep, (int)sizeof(fromto_T), 20);
ga_init(&spin.si_repsal, (int)sizeof(fromto_T), 20);
ga_init(&spin.si_sal, (int)sizeof(fromto_T), 20);
ga_init(&spin.si_map, (int)sizeof(char_u), 100);
ga_init(&spin.si_comppat, (int)sizeof(char_u *), 20);
ga_init(&spin.si_prefcond, (int)sizeof(char_u *), 50);
hash_init(&spin.si_commonwords);
spin.si_newcompID = 127; // start compound ID at first maximum
// default: fnames[0] is output file, following are input files
// When "fcount" is 1 there is only one file.
innames = &fnames[fcount == 1 ? 0 : 1];
incount = fcount - 1;
char *wfname = xmalloc(MAXPATHL);
if (fcount >= 1) {
len = (int)strlen(fnames[0]);
if (fcount == 1 && len > 4 && strcmp(fnames[0] + len - 4, ".add") == 0) {
// For ":mkspell path/en.latin1.add" output file is
// "path/en.latin1.add.spl".
incount = 1;
vim_snprintf(wfname, MAXPATHL, "%s.spl", fnames[0]);
} else if (fcount == 1) {
// For ":mkspell path/vim" output file is "path/vim.latin1.spl".
incount = 1;
vim_snprintf(wfname, MAXPATHL, SPL_FNAME_TMPL,
fnames[0], spin.si_ascii ? (char_u *)"ascii" : spell_enc());
} else if (len > 4 && strcmp(fnames[0] + len - 4, ".spl") == 0) {
// Name ends in ".spl", use as the file name.
STRLCPY(wfname, fnames[0], MAXPATHL);
} else {
// Name should be language, make the file name from it.
vim_snprintf(wfname, MAXPATHL, SPL_FNAME_TMPL,
fnames[0], spin.si_ascii ? (char_u *)"ascii" : spell_enc());
}
// Check for .ascii.spl.
if (strstr(path_tail(wfname), SPL_FNAME_ASCII) != NULL) {
spin.si_ascii = true;
}
// Check for .add.spl.
if (strstr(path_tail(wfname), SPL_FNAME_ADD) != NULL) {
spin.si_add = true;
}
}
if (incount <= 0) {
emsg(_(e_invarg)); // need at least output and input names
} else if (vim_strchr(path_tail(wfname), '_') != NULL) {
emsg(_("E751: Output file name must not have region name"));
} else if (incount > MAXREGIONS) {
semsg(_("E754: Only up to %d regions supported"), MAXREGIONS);
} else {
// Check for overwriting before doing things that may take a lot of
// time.
if (!over_write && os_path_exists(wfname)) {
emsg(_(e_exists));
goto theend;
}
if (os_isdir(wfname)) {
semsg(_(e_isadir2), wfname);
goto theend;
}
fname = xmalloc(MAXPATHL);
// Init the aff and dic pointers.
// Get the region names if there are more than 2 arguments.
for (i = 0; i < incount; i++) {
afile[i] = NULL;
if (incount > 1) {
len = (int)strlen(innames[i]);
if (strlen(path_tail(innames[i])) < 5
|| innames[i][len - 3] != '_') {
semsg(_("E755: Invalid region in %s"), innames[i]);
goto theend;
}
spin.si_region_name[i * 2] = (char_u)TOLOWER_ASC(innames[i][len - 2]);
spin.si_region_name[i * 2 + 1] = (char_u)TOLOWER_ASC(innames[i][len - 1]);
}
}
spin.si_region_count = incount;
spin.si_foldroot = wordtree_alloc(&spin);
spin.si_keeproot = wordtree_alloc(&spin);
spin.si_prefroot = wordtree_alloc(&spin);
// When not producing a .add.spl file clear the character table when
// we encounter one in the .aff file. This means we dump the current
// one in the .spl file if the .aff file doesn't define one. That's
// better than guessing the contents, the table will match a
// previously loaded spell file.
if (!spin.si_add) {
spin.si_clear_chartab = true;
}
// Read all the .aff and .dic files.
// Text is converted to 'encoding'.
// Words are stored in the case-folded and keep-case trees.
for (i = 0; i < incount && !error; i++) {
spin.si_conv.vc_type = CONV_NONE;
spin.si_region = 1 << i;
vim_snprintf((char *)fname, MAXPATHL, "%s.aff", innames[i]);
if (os_path_exists((char *)fname)) {
// Read the .aff file. Will init "spin->si_conv" based on the
// "SET" line.
afile[i] = spell_read_aff(&spin, fname);
if (afile[i] == NULL) {
error = true;
} else {
// Read the .dic file and store the words in the trees.
vim_snprintf((char *)fname, MAXPATHL, "%s.dic",
innames[i]);
if (spell_read_dic(&spin, fname, afile[i]) == FAIL) {
error = true;
}
}
} else {
// No .aff file, try reading the file as a word list. Store
// the words in the trees.
if (spell_read_wordfile(&spin, (char_u *)innames[i]) == FAIL) {
error = true;
}
}
// Free any conversion stuff.
convert_setup(&spin.si_conv, NULL, NULL);
}
if (spin.si_compflags != NULL && spin.si_nobreak) {
msg(_("Warning: both compounding and NOBREAK specified"));
}
if (!error && !got_int) {
// Combine tails in the tree.
spell_message(&spin, _(msg_compressing));
wordtree_compress(&spin, spin.si_foldroot, "case-folded");
wordtree_compress(&spin, spin.si_keeproot, "keep-case");
wordtree_compress(&spin, spin.si_prefroot, "prefixes");
}
if (!error && !got_int) {
// Write the info in the spell file.
vim_snprintf((char *)IObuff, IOSIZE,
_("Writing spell file %s..."), wfname);
spell_message(&spin, (char *)IObuff);
error = write_vim_spell(&spin, wfname) == FAIL;
spell_message(&spin, _("Done!"));
vim_snprintf((char *)IObuff, IOSIZE,
_("Estimated runtime memory use: %d bytes"), spin.si_memtot);
spell_message(&spin, (char *)IObuff);
// If the file is loaded need to reload it.
if (!error) {
spell_reload_one((char_u *)wfname, added_word);
}
}
// Free the allocated memory.
ga_clear(&spin.si_rep);
ga_clear(&spin.si_repsal);
ga_clear(&spin.si_sal);
ga_clear(&spin.si_map);
ga_clear(&spin.si_comppat);
ga_clear(&spin.si_prefcond);
hash_clear_all(&spin.si_commonwords, 0);
// Free the .aff file structures.
for (i = 0; i < incount; i++) {
if (afile[i] != NULL) {
spell_free_aff(afile[i]);
}
}
// Free all the bits and pieces at once.
free_blocks(spin.si_blocks);
// If there is soundfolding info and no NOSUGFILE item create the
// .sug file with the soundfolded word trie.
if (spin.si_sugtime != 0 && !error && !got_int) {
spell_make_sugfile(&spin, wfname);
}
}
theend:
xfree(fname);
xfree(wfname);
}
// Display a message for spell file processing when 'verbose' is set or using
// ":mkspell". "str" can be IObuff.
static void spell_message(const spellinfo_T *spin, char *str)
FUNC_ATTR_NONNULL_ALL
{
if (spin->si_verbose || p_verbose > 2) {
if (!spin->si_verbose) {
verbose_enter();
}
msg(str);
ui_flush();
if (!spin->si_verbose) {
verbose_leave();
}
}
}
// ":[count]spellgood {word}"
// ":[count]spellwrong {word}"
// ":[count]spellundo {word}"
// ":[count]spellrare {word}"
void ex_spell(exarg_T *eap)
{
spell_add_word((char_u *)eap->arg, (int)strlen(eap->arg),
eap->cmdidx == CMD_spellwrong ? SPELL_ADD_BAD :
eap->cmdidx == CMD_spellrare ? SPELL_ADD_RARE : SPELL_ADD_GOOD,
eap->forceit ? 0 : (int)eap->line2,
eap->cmdidx == CMD_spellundo);
}
/// Add "word[len]" to 'spellfile' as a good or bad word.
///
/// @param what SPELL_ADD_ values
/// @param idx "zG" and "zW": zero, otherwise index in 'spellfile'
/// @param bool // true for "zug", "zuG", "zuw" and "zuW"
void spell_add_word(char_u *word, int len, SpellAddType what, int idx, bool undo)
{
FILE *fd = NULL;
buf_T *buf = NULL;
bool new_spf = false;
char *fname;
char_u *fnamebuf = NULL;
char_u line[MAXWLEN * 2];
long fpos, fpos_next = 0;
int i;
char_u *spf;
if (!valid_spell_word((char *)word, (char *)word + len)) {
emsg(_(e_illegal_character_in_word));
return;
}
if (idx == 0) { // use internal wordlist
if (int_wordlist == NULL) {
int_wordlist = (char_u *)vim_tempname();
if (int_wordlist == NULL) {
return;
}
}
fname = (char *)int_wordlist;
} else {
// If 'spellfile' isn't set figure out a good default value.
if (*curwin->w_s->b_p_spf == NUL) {
init_spellfile();
new_spf = true;
}
if (*curwin->w_s->b_p_spf == NUL) {
semsg(_(e_notset), "spellfile");
return;
}
fnamebuf = xmalloc(MAXPATHL);
for (spf = (char_u *)curwin->w_s->b_p_spf, i = 1; *spf != NUL; i++) {
copy_option_part((char **)&spf, (char *)fnamebuf, MAXPATHL, ",");
if (i == idx) {
break;
}
if (*spf == NUL) {
semsg(_("E765: 'spellfile' does not have %" PRId64 " entries"), (int64_t)idx);
xfree(fnamebuf);
return;
}
}
// Check that the user isn't editing the .add file somewhere.
buf = buflist_findname_exp((char *)fnamebuf);
if (buf != NULL && buf->b_ml.ml_mfp == NULL) {
buf = NULL;
}
if (buf != NULL && bufIsChanged(buf)) {
emsg(_(e_bufloaded));
xfree(fnamebuf);
return;
}
fname = (char *)fnamebuf;
}
if (what == SPELL_ADD_BAD || undo) {
// When the word appears as good word we need to remove that one,
// since its flags sort before the one with WF_BANNED.
fd = os_fopen(fname, "r");
if (fd != NULL) {
while (!vim_fgets((char *)line, MAXWLEN * 2, fd)) {
fpos = fpos_next;
fpos_next = ftell(fd);
if (fpos_next < 0) {
break; // should never happen
}
if (STRNCMP(word, line, len) == 0
&& (line[len] == '/' || line[len] < ' ')) {
// Found duplicate word. Remove it by writing a '#' at
// the start of the line. Mixing reading and writing
// doesn't work for all systems, close the file first.
fclose(fd);
fd = os_fopen(fname, "r+");
if (fd == NULL) {
break;
}
if (fseek(fd, fpos, SEEK_SET) == 0) {
fputc('#', fd);
if (undo) {
home_replace(NULL, fname, (char *)NameBuff, MAXPATHL, true);
smsg(_("Word '%.*s' removed from %s"), len, word, NameBuff);
}
}
if (fseek(fd, fpos_next, SEEK_SET) != 0) {
PERROR(_("Seek error in spellfile"));
break;
}
}
}
if (fd != NULL) {
fclose(fd);
}
}
}
if (!undo) {
fd = os_fopen(fname, "a");
if (fd == NULL && new_spf) {
char_u *p;
// We just initialized the 'spellfile' option and can't open the
// file. We may need to create the "spell" directory first. We
// already checked the runtime directory is writable in
// init_spellfile().
if (!dir_of_file_exists((char_u *)fname)
&& (p = (char_u *)path_tail_with_sep(fname)) != (char_u *)fname) {
int c = *p;
// The directory doesn't exist. Try creating it and opening
// the file again.
*p = NUL;
os_mkdir(fname, 0755);
*p = (char_u)c;
fd = os_fopen(fname, "a");
}
}
if (fd == NULL) {
semsg(_(e_notopen), fname);
} else {
if (what == SPELL_ADD_BAD) {
fprintf(fd, "%.*s/!\n", len, word);
} else if (what == SPELL_ADD_RARE) {
fprintf(fd, "%.*s/?\n", len, word);
} else {
fprintf(fd, "%.*s\n", len, word);
}
fclose(fd);
home_replace(NULL, fname, (char *)NameBuff, MAXPATHL, true);
smsg(_("Word '%.*s' added to %s"), len, word, NameBuff);
}
}
if (fd != NULL) {
// Update the .add.spl file.
mkspell(1, &fname, false, true, true);
// If the .add file is edited somewhere, reload it.
if (buf != NULL) {
buf_reload(buf, buf->b_orig_mode, false);
}
redraw_all_later(UPD_SOME_VALID);
}
xfree(fnamebuf);
}
// Initialize 'spellfile' for the current buffer.
static void init_spellfile(void)
{
char *buf;
int l;
char_u *fname;
char_u *rtp;
char_u *lend;
bool aspath = false;
char_u *lstart = (char_u *)curbuf->b_s.b_p_spl;
if (*curwin->w_s->b_p_spl != NUL && !GA_EMPTY(&curwin->w_s->b_langp)) {
buf = xmalloc(MAXPATHL);
// Find the end of the language name. Exclude the region. If there
// is a path separator remember the start of the tail.
for (lend = (char_u *)curwin->w_s->b_p_spl; *lend != NUL
&& vim_strchr(",._", *lend) == NULL; lend++) {
if (vim_ispathsep(*lend)) {
aspath = true;
lstart = lend + 1;
}
}
// Loop over all entries in 'runtimepath'. Use the first one where we
// are allowed to write.
rtp = (char_u *)p_rtp;
while (*rtp != NUL) {
if (aspath) {
// Use directory of an entry with path, e.g., for
// "/dir/lg.utf-8.spl" use "/dir".
STRLCPY(buf, curbuf->b_s.b_p_spl, lstart - (char_u *)curbuf->b_s.b_p_spl);
} else {
// Copy the path from 'runtimepath' to buf[].
copy_option_part((char **)&rtp, buf, MAXPATHL, ",");
}
if (os_file_is_writable(buf) == 2) {
// Use the first language name from 'spelllang' and the
// encoding used in the first loaded .spl file.
if (aspath) {
STRLCPY(buf, curbuf->b_s.b_p_spl, lend - (char_u *)curbuf->b_s.b_p_spl + 1);
} else {
// Create the "spell" directory if it doesn't exist yet.
l = (int)strlen(buf);
vim_snprintf(buf + l, MAXPATHL - (size_t)l, "/spell");
if (os_file_is_writable(buf) != 2) {
os_mkdir(buf, 0755);
}
l = (int)strlen(buf);
vim_snprintf(buf + l, MAXPATHL - (size_t)l,
"/%.*s", (int)(lend - lstart), lstart);
}
l = (int)strlen(buf);
fname = (char_u *)LANGP_ENTRY(curwin->w_s->b_langp, 0)
->lp_slang->sl_fname;
vim_snprintf(buf + l, MAXPATHL - (size_t)l, ".%s.add",
((fname != NULL
&& strstr(path_tail((char *)fname), ".ascii.") != NULL)
? "ascii"
: (const char *)spell_enc()));
set_option_value_give_err("spellfile", 0L, (const char *)buf, OPT_LOCAL);
break;
}
aspath = false;
}
xfree(buf);
}
}
/// Set the spell character tables from strings in the .spl file.
///
/// @param cnt length of "flags"
static void set_spell_charflags(const char_u *flags, int cnt, char_u *fol)
{
// We build the new tables here first, so that we can compare with the
// previous one.
spelltab_T new_st;
int i;
char_u *p = fol;
int c;
clear_spell_chartab(&new_st);
for (i = 0; i < 128; i++) {
if (i < cnt) {
new_st.st_isw[i + 128] = (flags[i] & CF_WORD) != 0;
new_st.st_isu[i + 128] = (flags[i] & CF_UPPER) != 0;
}
if (*p != NUL) {
c = mb_ptr2char_adv((const char_u **)&p);
new_st.st_fold[i + 128] = (char_u)c;
if (i + 128 != c && new_st.st_isu[i + 128] && c < 256) {
new_st.st_upper[c] = (char_u)(i + 128);
}
}
}
(void)set_spell_finish(&new_st);
}
static int set_spell_finish(spelltab_T *new_st)
{
int i;
if (did_set_spelltab) {
// check that it's the same table
for (i = 0; i < 256; i++) {
if (spelltab.st_isw[i] != new_st->st_isw[i]
|| spelltab.st_isu[i] != new_st->st_isu[i]
|| spelltab.st_fold[i] != new_st->st_fold[i]
|| spelltab.st_upper[i] != new_st->st_upper[i]) {
emsg(_("E763: Word characters differ between spell files"));
return FAIL;
}
}
} else {
// copy the new spelltab into the one being used
spelltab = *new_st;
did_set_spelltab = true;
}
return OK;
}
// Write the table with prefix conditions to the .spl file.
// When "fd" is NULL only count the length of what is written.
static int write_spell_prefcond(FILE *fd, garray_T *gap, size_t *fwv)
{
assert(gap->ga_len >= 0);
if (fd != NULL) {
put_bytes(fd, (uintmax_t)gap->ga_len, 2); // <prefcondcnt>
}
size_t totlen = 2 + (size_t)gap->ga_len; // <prefcondcnt> and <condlen> bytes
for (int i = 0; i < gap->ga_len; i++) {
// <prefcond> : <condlen> <condstr>
char *p = ((char **)gap->ga_data)[i];
if (p != NULL) {
size_t len = strlen(p);
if (fd != NULL) {
assert(len <= INT_MAX);
fputc((int)len, fd);
*fwv &= fwrite(p, len, 1, fd);
}
totlen += len;
} else if (fd != NULL) {
fputc(0, fd);
}
}
assert(totlen <= INT_MAX);
return (int)totlen;
}
// Use map string "map" for languages "lp".
static void set_map_str(slang_T *lp, char_u *map)
{
char_u *p;
int headc = 0;
int c;
int i;
if (*map == NUL) {
lp->sl_has_map = false;
return;
}
lp->sl_has_map = true;
// Init the array and hash tables empty.
for (i = 0; i < 256; i++) {
lp->sl_map_array[i] = 0;
}
hash_init(&lp->sl_map_hash);
// The similar characters are stored separated with slashes:
// "aaa/bbb/ccc/". Fill sl_map_array[c] with the character before c and
// before the same slash. For characters above 255 sl_map_hash is used.
for (p = map; *p != NUL;) {
c = mb_cptr2char_adv((const char_u **)&p);
if (c == '/') {
headc = 0;
} else {
if (headc == 0) {
headc = c;
}
// Characters above 255 don't fit in sl_map_array[], put them in
// the hash table. Each entry is the char, a NUL the headchar and
// a NUL.
if (c >= 256) {
int cl = utf_char2len(c);
int headcl = utf_char2len(headc);
hash_T hash;
hashitem_T *hi;
char *b = xmalloc((size_t)(cl + headcl) + 2);
utf_char2bytes(c, b);
b[cl] = NUL;
utf_char2bytes(headc, b + cl + 1);
b[cl + 1 + headcl] = NUL;
hash = hash_hash((char_u *)b);
hi = hash_lookup(&lp->sl_map_hash, (const char *)b, strlen(b), hash);
if (HASHITEM_EMPTY(hi)) {
hash_add_item(&lp->sl_map_hash, hi, (char_u *)b, hash);
} else {
// This should have been checked when generating the .spl
// file.
emsg(_("E783: duplicate char in MAP entry"));
xfree(b);
}
} else {
lp->sl_map_array[c] = headc;
}
}
}
}