mirror of
https://github.com/neovim/neovim.git
synced 2025-09-26 13:08:33 +00:00

vim-patch:8.2.1536: cannot get the class of a character; emoji widths are wrong Problem: Cannot get the class of a character; emoji widths are wrong in some environments. Solution: Add charclass(). Update some emoji widths. Add script to check emoji widths.4e4473c927
Use latest charclass() docs from Vim. Rewrite DoIt() in emoji_list.vim in Lua. Omit emoji table updates: - emoji_width update looks wrong as these added ranges are only double-width when followed by 0xFE0F. - Other updates are too old. vim-patch:8.2.1540: the user cannot try out emoji character widths Problem: The user cannot try out emoji character widths. Solution: Move the emoji script to the runtime/tools directory.98945560c1
2872 lines
82 KiB
C
2872 lines
82 KiB
C
// This is an open source non-commercial project. Dear PVS-Studio, please check
|
||
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
|
||
|
||
/// mbyte.c: Code specifically for handling multi-byte characters.
|
||
/// Multibyte extensions partly by Sung-Hoon Baek
|
||
///
|
||
/// Strings internal to Nvim are always encoded as UTF-8 (thus the legacy
|
||
/// 'encoding' option is always "utf-8").
|
||
///
|
||
/// The cell width on the display needs to be determined from the character
|
||
/// value. Recognizing UTF-8 bytes is easy: 0xxx.xxxx is a single-byte char,
|
||
/// 10xx.xxxx is a trailing byte, 11xx.xxxx is a leading byte of a multi-byte
|
||
/// character. To make things complicated, up to six composing characters
|
||
/// are allowed. These are drawn on top of the first char. For most editing
|
||
/// the sequence of bytes with composing characters included is considered to
|
||
/// be one character.
|
||
///
|
||
/// UTF-8 is used everywhere in the core. This is in registers, text
|
||
/// manipulation, buffers, etc. Nvim core communicates with external plugins
|
||
/// and GUIs in this encoding.
|
||
///
|
||
/// The encoding of a file is specified with 'fileencoding'. Conversion
|
||
/// is to be done when it's different from "utf-8".
|
||
///
|
||
/// Vim scripts may contain an ":scriptencoding" command. This has an effect
|
||
/// for some commands, like ":menutrans".
|
||
|
||
#include <inttypes.h>
|
||
#include <stdbool.h>
|
||
#include <string.h>
|
||
#include <wchar.h>
|
||
#include <wctype.h>
|
||
|
||
#include "nvim/ascii.h"
|
||
#include "nvim/vim.h"
|
||
#ifdef HAVE_LOCALE_H
|
||
# include <locale.h>
|
||
#endif
|
||
#include "nvim/arabic.h"
|
||
#include "nvim/charset.h"
|
||
#include "nvim/cursor.h"
|
||
#include "nvim/eval.h"
|
||
#include "nvim/fileio.h"
|
||
#include "nvim/func_attr.h"
|
||
#include "nvim/getchar.h"
|
||
#include "nvim/iconv.h"
|
||
#include "nvim/mark.h"
|
||
#include "nvim/mbyte.h"
|
||
#include "nvim/memline.h"
|
||
#include "nvim/memory.h"
|
||
#include "nvim/message.h"
|
||
#include "nvim/option.h"
|
||
#include "nvim/os/os.h"
|
||
#include "nvim/path.h"
|
||
#include "nvim/screen.h"
|
||
#include "nvim/spell.h"
|
||
#include "nvim/strings.h"
|
||
|
||
typedef struct {
|
||
int rangeStart;
|
||
int rangeEnd;
|
||
int step;
|
||
int offset;
|
||
} convertStruct;
|
||
|
||
struct interval {
|
||
long first;
|
||
long last;
|
||
};
|
||
|
||
#ifdef INCLUDE_GENERATED_DECLARATIONS
|
||
# include "mbyte.c.generated.h"
|
||
|
||
# include "unicode_tables.generated.h"
|
||
#endif
|
||
|
||
static char e_list_item_nr_is_not_list[]
|
||
= N_("E1109: List item %d is not a List");
|
||
static char e_list_item_nr_does_not_contain_3_numbers[]
|
||
= N_("E1110: List item %d does not contain 3 numbers");
|
||
static char e_list_item_nr_range_invalid[]
|
||
= N_("E1111: List item %d range invalid");
|
||
static char e_list_item_nr_cell_width_invalid[]
|
||
= N_("E1112: List item %d cell width invalid");
|
||
static char e_overlapping_ranges_for_nr[]
|
||
= N_("E1113: Overlapping ranges for 0x%lx");
|
||
static char e_only_values_of_0x100_and_higher_supported[]
|
||
= N_("E1114: Only values of 0x100 and higher supported");
|
||
|
||
// To speed up BYTELEN(); keep a lookup table to quickly get the length in
|
||
// bytes of a UTF-8 character from the first byte of a UTF-8 string. Bytes
|
||
// which are illegal when used as the first byte have a 1. The NUL byte has
|
||
// length 1.
|
||
const uint8_t utf8len_tab[] = {
|
||
// ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 ?A ?B ?C ?D ?E ?F
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B?
|
||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C?
|
||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D?
|
||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E?
|
||
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 1, 1, // F?
|
||
};
|
||
|
||
// Like utf8len_tab above, but using a zero for illegal lead bytes.
|
||
const uint8_t utf8len_tab_zero[] = {
|
||
// ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 ?A ?B ?C ?D ?E ?F
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6?
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7?
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8?
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 9?
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A?
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B?
|
||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C?
|
||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D?
|
||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E?
|
||
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 0, 0, // F?
|
||
};
|
||
|
||
/*
|
||
* Canonical encoding names and their properties.
|
||
* "iso-8859-n" is handled by enc_canonize() directly.
|
||
*/
|
||
static struct
|
||
{ const char *name; int prop; int codepage; }
|
||
enc_canon_table[] =
|
||
{
|
||
#define IDX_LATIN_1 0
|
||
{ "latin1", ENC_8BIT + ENC_LATIN1, 1252 },
|
||
#define IDX_ISO_2 1
|
||
{ "iso-8859-2", ENC_8BIT, 0 },
|
||
#define IDX_ISO_3 2
|
||
{ "iso-8859-3", ENC_8BIT, 0 },
|
||
#define IDX_ISO_4 3
|
||
{ "iso-8859-4", ENC_8BIT, 0 },
|
||
#define IDX_ISO_5 4
|
||
{ "iso-8859-5", ENC_8BIT, 0 },
|
||
#define IDX_ISO_6 5
|
||
{ "iso-8859-6", ENC_8BIT, 0 },
|
||
#define IDX_ISO_7 6
|
||
{ "iso-8859-7", ENC_8BIT, 0 },
|
||
#define IDX_ISO_8 7
|
||
{ "iso-8859-8", ENC_8BIT, 0 },
|
||
#define IDX_ISO_9 8
|
||
{ "iso-8859-9", ENC_8BIT, 0 },
|
||
#define IDX_ISO_10 9
|
||
{ "iso-8859-10", ENC_8BIT, 0 },
|
||
#define IDX_ISO_11 10
|
||
{ "iso-8859-11", ENC_8BIT, 0 },
|
||
#define IDX_ISO_13 11
|
||
{ "iso-8859-13", ENC_8BIT, 0 },
|
||
#define IDX_ISO_14 12
|
||
{ "iso-8859-14", ENC_8BIT, 0 },
|
||
#define IDX_ISO_15 13
|
||
{ "iso-8859-15", ENC_8BIT + ENC_LATIN9, 0 },
|
||
#define IDX_KOI8_R 14
|
||
{ "koi8-r", ENC_8BIT, 0 },
|
||
#define IDX_KOI8_U 15
|
||
{ "koi8-u", ENC_8BIT, 0 },
|
||
#define IDX_UTF8 16
|
||
{ "utf-8", ENC_UNICODE, 0 },
|
||
#define IDX_UCS2 17
|
||
{ "ucs-2", ENC_UNICODE + ENC_ENDIAN_B + ENC_2BYTE, 0 },
|
||
#define IDX_UCS2LE 18
|
||
{ "ucs-2le", ENC_UNICODE + ENC_ENDIAN_L + ENC_2BYTE, 0 },
|
||
#define IDX_UTF16 19
|
||
{ "utf-16", ENC_UNICODE + ENC_ENDIAN_B + ENC_2WORD, 0 },
|
||
#define IDX_UTF16LE 20
|
||
{ "utf-16le", ENC_UNICODE + ENC_ENDIAN_L + ENC_2WORD, 0 },
|
||
#define IDX_UCS4 21
|
||
{ "ucs-4", ENC_UNICODE + ENC_ENDIAN_B + ENC_4BYTE, 0 },
|
||
#define IDX_UCS4LE 22
|
||
{ "ucs-4le", ENC_UNICODE + ENC_ENDIAN_L + ENC_4BYTE, 0 },
|
||
|
||
// For debugging DBCS encoding on Unix.
|
||
#define IDX_DEBUG 23
|
||
{ "debug", ENC_DBCS, DBCS_DEBUG },
|
||
#define IDX_EUC_JP 24
|
||
{ "euc-jp", ENC_DBCS, DBCS_JPNU },
|
||
#define IDX_SJIS 25
|
||
{ "sjis", ENC_DBCS, DBCS_JPN },
|
||
#define IDX_EUC_KR 26
|
||
{ "euc-kr", ENC_DBCS, DBCS_KORU },
|
||
#define IDX_EUC_CN 27
|
||
{ "euc-cn", ENC_DBCS, DBCS_CHSU },
|
||
#define IDX_EUC_TW 28
|
||
{ "euc-tw", ENC_DBCS, DBCS_CHTU },
|
||
#define IDX_BIG5 29
|
||
{ "big5", ENC_DBCS, DBCS_CHT },
|
||
|
||
// MS-DOS and MS-Windows codepages are included here, so that they can be
|
||
// used on Unix too. Most of them are similar to ISO-8859 encodings, but
|
||
// not exactly the same.
|
||
#define IDX_CP437 30
|
||
{ "cp437", ENC_8BIT, 437 }, // like iso-8859-1
|
||
#define IDX_CP737 31
|
||
{ "cp737", ENC_8BIT, 737 }, // like iso-8859-7
|
||
#define IDX_CP775 32
|
||
{ "cp775", ENC_8BIT, 775 }, // Baltic
|
||
#define IDX_CP850 33
|
||
{ "cp850", ENC_8BIT, 850 }, // like iso-8859-4
|
||
#define IDX_CP852 34
|
||
{ "cp852", ENC_8BIT, 852 }, // like iso-8859-1
|
||
#define IDX_CP855 35
|
||
{ "cp855", ENC_8BIT, 855 }, // like iso-8859-2
|
||
#define IDX_CP857 36
|
||
{ "cp857", ENC_8BIT, 857 }, // like iso-8859-5
|
||
#define IDX_CP860 37
|
||
{ "cp860", ENC_8BIT, 860 }, // like iso-8859-9
|
||
#define IDX_CP861 38
|
||
{ "cp861", ENC_8BIT, 861 }, // like iso-8859-1
|
||
#define IDX_CP862 39
|
||
{ "cp862", ENC_8BIT, 862 }, // like iso-8859-1
|
||
#define IDX_CP863 40
|
||
{ "cp863", ENC_8BIT, 863 }, // like iso-8859-8
|
||
#define IDX_CP865 41
|
||
{ "cp865", ENC_8BIT, 865 }, // like iso-8859-1
|
||
#define IDX_CP866 42
|
||
{ "cp866", ENC_8BIT, 866 }, // like iso-8859-5
|
||
#define IDX_CP869 43
|
||
{ "cp869", ENC_8BIT, 869 }, // like iso-8859-7
|
||
#define IDX_CP874 44
|
||
{ "cp874", ENC_8BIT, 874 }, // Thai
|
||
#define IDX_CP932 45
|
||
{ "cp932", ENC_DBCS, DBCS_JPN },
|
||
#define IDX_CP936 46
|
||
{ "cp936", ENC_DBCS, DBCS_CHS },
|
||
#define IDX_CP949 47
|
||
{ "cp949", ENC_DBCS, DBCS_KOR },
|
||
#define IDX_CP950 48
|
||
{ "cp950", ENC_DBCS, DBCS_CHT },
|
||
#define IDX_CP1250 49
|
||
{ "cp1250", ENC_8BIT, 1250 }, // Czech, Polish, etc.
|
||
#define IDX_CP1251 50
|
||
{ "cp1251", ENC_8BIT, 1251 }, // Cyrillic
|
||
// cp1252 is considered to be equal to latin1
|
||
#define IDX_CP1253 51
|
||
{ "cp1253", ENC_8BIT, 1253 }, // Greek
|
||
#define IDX_CP1254 52
|
||
{ "cp1254", ENC_8BIT, 1254 }, // Turkish
|
||
#define IDX_CP1255 53
|
||
{ "cp1255", ENC_8BIT, 1255 }, // Hebrew
|
||
#define IDX_CP1256 54
|
||
{ "cp1256", ENC_8BIT, 1256 }, // Arabic
|
||
#define IDX_CP1257 55
|
||
{ "cp1257", ENC_8BIT, 1257 }, // Baltic
|
||
#define IDX_CP1258 56
|
||
{ "cp1258", ENC_8BIT, 1258 }, // Vietnamese
|
||
|
||
#define IDX_MACROMAN 57
|
||
{ "macroman", ENC_8BIT + ENC_MACROMAN, 0 }, // Mac OS
|
||
#define IDX_HPROMAN8 58
|
||
{ "hp-roman8", ENC_8BIT, 0 }, // HP Roman8
|
||
#define IDX_COUNT 59
|
||
};
|
||
|
||
/*
|
||
* Aliases for encoding names.
|
||
*/
|
||
static struct
|
||
{ const char *name; int canon; }
|
||
enc_alias_table[] =
|
||
{
|
||
{ "ansi", IDX_LATIN_1 },
|
||
{ "iso-8859-1", IDX_LATIN_1 },
|
||
{ "latin2", IDX_ISO_2 },
|
||
{ "latin3", IDX_ISO_3 },
|
||
{ "latin4", IDX_ISO_4 },
|
||
{ "cyrillic", IDX_ISO_5 },
|
||
{ "arabic", IDX_ISO_6 },
|
||
{ "greek", IDX_ISO_7 },
|
||
{ "hebrew", IDX_ISO_8 },
|
||
{ "latin5", IDX_ISO_9 },
|
||
{ "turkish", IDX_ISO_9 }, // ?
|
||
{ "latin6", IDX_ISO_10 },
|
||
{ "nordic", IDX_ISO_10 }, // ?
|
||
{ "thai", IDX_ISO_11 }, // ?
|
||
{ "latin7", IDX_ISO_13 },
|
||
{ "latin8", IDX_ISO_14 },
|
||
{ "latin9", IDX_ISO_15 },
|
||
{ "utf8", IDX_UTF8 },
|
||
{ "unicode", IDX_UCS2 },
|
||
{ "ucs2", IDX_UCS2 },
|
||
{ "ucs2be", IDX_UCS2 },
|
||
{ "ucs-2be", IDX_UCS2 },
|
||
{ "ucs2le", IDX_UCS2LE },
|
||
{ "utf16", IDX_UTF16 },
|
||
{ "utf16be", IDX_UTF16 },
|
||
{ "utf-16be", IDX_UTF16 },
|
||
{ "utf16le", IDX_UTF16LE },
|
||
{ "ucs4", IDX_UCS4 },
|
||
{ "ucs4be", IDX_UCS4 },
|
||
{ "ucs-4be", IDX_UCS4 },
|
||
{ "ucs4le", IDX_UCS4LE },
|
||
{ "utf32", IDX_UCS4 },
|
||
{ "utf-32", IDX_UCS4 },
|
||
{ "utf32be", IDX_UCS4 },
|
||
{ "utf-32be", IDX_UCS4 },
|
||
{ "utf32le", IDX_UCS4LE },
|
||
{ "utf-32le", IDX_UCS4LE },
|
||
{ "932", IDX_CP932 },
|
||
{ "949", IDX_CP949 },
|
||
{ "936", IDX_CP936 },
|
||
{ "gbk", IDX_CP936 },
|
||
{ "950", IDX_CP950 },
|
||
{ "eucjp", IDX_EUC_JP },
|
||
{ "unix-jis", IDX_EUC_JP },
|
||
{ "ujis", IDX_EUC_JP },
|
||
{ "shift-jis", IDX_SJIS },
|
||
{ "pck", IDX_SJIS }, // Sun: PCK
|
||
{ "euckr", IDX_EUC_KR },
|
||
{ "5601", IDX_EUC_KR }, // Sun: KS C 5601
|
||
{ "euccn", IDX_EUC_CN },
|
||
{ "gb2312", IDX_EUC_CN },
|
||
{ "euctw", IDX_EUC_TW },
|
||
{ "japan", IDX_EUC_JP },
|
||
{ "korea", IDX_EUC_KR },
|
||
{ "prc", IDX_EUC_CN },
|
||
{ "zh-cn", IDX_EUC_CN },
|
||
{ "chinese", IDX_EUC_CN },
|
||
{ "zh-tw", IDX_EUC_TW },
|
||
{ "taiwan", IDX_EUC_TW },
|
||
{ "cp950", IDX_BIG5 },
|
||
{ "950", IDX_BIG5 },
|
||
{ "mac", IDX_MACROMAN },
|
||
{ "mac-roman", IDX_MACROMAN },
|
||
{ NULL, 0 }
|
||
};
|
||
|
||
/*
|
||
* Find encoding "name" in the list of canonical encoding names.
|
||
* Returns -1 if not found.
|
||
*/
|
||
static int enc_canon_search(const char_u *name)
|
||
FUNC_ATTR_PURE
|
||
{
|
||
for (int i = 0; i < IDX_COUNT; i++) {
|
||
if (STRCMP(name, enc_canon_table[i].name) == 0) {
|
||
return i;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/*
|
||
* Find canonical encoding "name" in the list and return its properties.
|
||
* Returns 0 if not found.
|
||
*/
|
||
int enc_canon_props(const char_u *name)
|
||
FUNC_ATTR_PURE
|
||
{
|
||
int i = enc_canon_search(name);
|
||
if (i >= 0) {
|
||
return enc_canon_table[i].prop;
|
||
} else if (STRNCMP(name, "2byte-", 6) == 0) {
|
||
return ENC_DBCS;
|
||
} else if (STRNCMP(name, "8bit-", 5) == 0 || STRNCMP(name, "iso-8859-", 9) == 0) {
|
||
return ENC_8BIT;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Return the size of the BOM for the current buffer:
|
||
* 0 - no BOM
|
||
* 2 - UCS-2 or UTF-16 BOM
|
||
* 4 - UCS-4 BOM
|
||
* 3 - UTF-8 BOM
|
||
*/
|
||
int bomb_size(void)
|
||
FUNC_ATTR_PURE
|
||
{
|
||
int n = 0;
|
||
|
||
if (curbuf->b_p_bomb && !curbuf->b_p_bin) {
|
||
if (*curbuf->b_p_fenc == NUL
|
||
|| STRCMP(curbuf->b_p_fenc, "utf-8") == 0) {
|
||
n = 3;
|
||
} else if (STRNCMP(curbuf->b_p_fenc, "ucs-2", 5) == 0
|
||
|| STRNCMP(curbuf->b_p_fenc, "utf-16", 6) == 0) {
|
||
n = 2;
|
||
} else if (STRNCMP(curbuf->b_p_fenc, "ucs-4", 5) == 0) {
|
||
n = 4;
|
||
}
|
||
}
|
||
return n;
|
||
}
|
||
|
||
/*
|
||
* Remove all BOM from "s" by moving remaining text.
|
||
*/
|
||
void remove_bom(char_u *s)
|
||
{
|
||
char *p = (char *)s;
|
||
|
||
while ((p = strchr(p, 0xef)) != NULL) {
|
||
if ((uint8_t)p[1] == 0xbb && (uint8_t)p[2] == 0xbf) {
|
||
STRMOVE(p, p + 3);
|
||
} else {
|
||
p++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Get class of pointer:
|
||
* 0 for blank or NUL
|
||
* 1 for punctuation
|
||
* 2 for an (ASCII) word character
|
||
* >2 for other word characters
|
||
*/
|
||
int mb_get_class(const char_u *p)
|
||
FUNC_ATTR_PURE
|
||
{
|
||
return mb_get_class_tab(p, curbuf->b_chartab);
|
||
}
|
||
|
||
int mb_get_class_tab(const char_u *p, const uint64_t *const chartab)
|
||
FUNC_ATTR_PURE
|
||
{
|
||
if (MB_BYTE2LEN(p[0]) == 1) {
|
||
if (p[0] == NUL || ascii_iswhite(p[0])) {
|
||
return 0;
|
||
}
|
||
if (vim_iswordc_tab(p[0], chartab)) {
|
||
return 2;
|
||
}
|
||
return 1;
|
||
}
|
||
return utf_class_tab(utf_ptr2char((char *)p), chartab);
|
||
}
|
||
|
||
/*
|
||
* Return true if "c" is in "table".
|
||
*/
|
||
static bool intable(const struct interval *table, size_t n_items, int c)
|
||
FUNC_ATTR_PURE
|
||
{
|
||
int mid, bot, top;
|
||
|
||
// first quick check for Latin1 etc. characters
|
||
if (c < table[0].first) {
|
||
return false;
|
||
}
|
||
|
||
// binary search in table
|
||
bot = 0;
|
||
top = (int)(n_items - 1);
|
||
while (top >= bot) {
|
||
mid = (bot + top) / 2;
|
||
if (table[mid].last < c) {
|
||
bot = mid + 1;
|
||
} else if (table[mid].first > c) {
|
||
top = mid - 1;
|
||
} else {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/// For UTF-8 character "c" return 2 for a double-width character, 1 for others.
|
||
/// Returns 4 or 6 for an unprintable character.
|
||
/// Is only correct for characters >= 0x80.
|
||
/// When p_ambw is "double", return 2 for a character with East Asian Width
|
||
/// class 'A'(mbiguous).
|
||
///
|
||
/// @note Tables `doublewidth` and `ambiguous` are generated by
|
||
/// gen_unicode_tables.lua, which must be manually invoked as needed.
|
||
int utf_char2cells(int c)
|
||
{
|
||
if (c >= 0x100) {
|
||
int n = cw_value(c);
|
||
if (n != 0) {
|
||
return n;
|
||
}
|
||
|
||
if (!utf_printable(c)) {
|
||
return 6; // unprintable, displays <xxxx>
|
||
}
|
||
if (intable(doublewidth, ARRAY_SIZE(doublewidth), c)) {
|
||
return 2;
|
||
}
|
||
if (p_emoji && intable(emoji_wide, ARRAY_SIZE(emoji_wide), c)) {
|
||
return 2;
|
||
}
|
||
} else if (c >= 0x80 && !vim_isprintc(c)) {
|
||
// Characters below 0x100 are influenced by 'isprint' option.
|
||
return 4; // unprintable, displays <xx>
|
||
}
|
||
|
||
if (c >= 0x80 && *p_ambw == 'd'
|
||
&& intable(ambiguous, ARRAY_SIZE(ambiguous), c)) {
|
||
return 2;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/// Return the number of display cells character at "*p" occupies.
|
||
/// This doesn't take care of unprintable characters, use ptr2cells() for that.
|
||
int utf_ptr2cells(const char *p)
|
||
{
|
||
int c;
|
||
|
||
// Need to convert to a character number.
|
||
if ((uint8_t)(*p) >= 0x80) {
|
||
c = utf_ptr2char(p);
|
||
// An illegal byte is displayed as <xx>.
|
||
if (utf_ptr2len(p) == 1 || c == NUL) {
|
||
return 4;
|
||
}
|
||
// If the char is ASCII it must be an overlong sequence.
|
||
if (c < 0x80) {
|
||
return char2cells(c);
|
||
}
|
||
return utf_char2cells(c);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/// Like utf_ptr2cells(), but limit string length to "size".
|
||
/// For an empty string or truncated character returns 1.
|
||
int utf_ptr2cells_len(const char_u *p, int size)
|
||
{
|
||
int c;
|
||
|
||
// Need to convert to a wide character.
|
||
if (size > 0 && *p >= 0x80) {
|
||
if (utf_ptr2len_len(p, size) < utf8len_tab[*p]) {
|
||
return 1; // truncated
|
||
}
|
||
c = utf_ptr2char((char *)p);
|
||
// An illegal byte is displayed as <xx>.
|
||
if (utf_ptr2len((char *)p) == 1 || c == NUL) {
|
||
return 4;
|
||
}
|
||
// If the char is ASCII it must be an overlong sequence.
|
||
if (c < 0x80) {
|
||
return char2cells(c);
|
||
}
|
||
return utf_char2cells(c);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/// Calculate the number of cells occupied by string `str`.
|
||
///
|
||
/// @param str The source string, may not be NULL, must be a NUL-terminated
|
||
/// string.
|
||
/// @return The number of cells occupied by string `str`
|
||
size_t mb_string2cells(const char *str)
|
||
{
|
||
size_t clen = 0;
|
||
|
||
for (const char_u *p = (char_u *)str; *p != NUL; p += utfc_ptr2len((char *)p)) {
|
||
clen += (size_t)utf_ptr2cells((char *)p);
|
||
}
|
||
|
||
return clen;
|
||
}
|
||
|
||
/// Get the number of cells occupied by string `str` with maximum length `size`
|
||
///
|
||
/// @param str The source string, may not be NULL, must be a NUL-terminated
|
||
/// string.
|
||
/// @param size maximum length of string. It will terminate on earlier NUL.
|
||
/// @return The number of cells occupied by string `str`
|
||
size_t mb_string2cells_len(const char *str, size_t size)
|
||
FUNC_ATTR_NONNULL_ARG(1)
|
||
{
|
||
size_t clen = 0;
|
||
|
||
for (const char_u *p = (char_u *)str; *p != NUL && p < (char_u *)str + size;
|
||
p += utfc_ptr2len_len(p, (int)size + (int)(p - (char_u *)str))) {
|
||
clen += (size_t)utf_ptr2cells((char *)p);
|
||
}
|
||
|
||
return clen;
|
||
}
|
||
|
||
/// Convert a UTF-8 byte sequence to a character number.
|
||
///
|
||
/// If the sequence is illegal or truncated by a NUL then the first byte is
|
||
/// returned.
|
||
/// For an overlong sequence this may return zero.
|
||
/// Does not include composing characters for obvious reasons.
|
||
///
|
||
/// @param[in] p String to convert.
|
||
///
|
||
/// @return Unicode codepoint or byte value.
|
||
int utf_ptr2char(const char *const p_in)
|
||
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
uint8_t *p = (uint8_t *)p_in;
|
||
if (p[0] < 0x80) { // Be quick for ASCII.
|
||
return p[0];
|
||
}
|
||
|
||
const uint8_t len = utf8len_tab_zero[p[0]];
|
||
if (len > 1 && (p[1] & 0xc0) == 0x80) {
|
||
if (len == 2) {
|
||
return ((p[0] & 0x1f) << 6) + (p[1] & 0x3f);
|
||
}
|
||
if ((p[2] & 0xc0) == 0x80) {
|
||
if (len == 3) {
|
||
return (((p[0] & 0x0f) << 12) + ((p[1] & 0x3f) << 6)
|
||
+ (p[2] & 0x3f));
|
||
}
|
||
if ((p[3] & 0xc0) == 0x80) {
|
||
if (len == 4) {
|
||
return (((p[0] & 0x07) << 18) + ((p[1] & 0x3f) << 12)
|
||
+ ((p[2] & 0x3f) << 6) + (p[3] & 0x3f));
|
||
}
|
||
if ((p[4] & 0xc0) == 0x80) {
|
||
if (len == 5) {
|
||
return (((p[0] & 0x03) << 24) + ((p[1] & 0x3f) << 18)
|
||
+ ((p[2] & 0x3f) << 12) + ((p[3] & 0x3f) << 6)
|
||
+ (p[4] & 0x3f));
|
||
}
|
||
if ((p[5] & 0xc0) == 0x80 && len == 6) {
|
||
return (((p[0] & 0x01) << 30) + ((p[1] & 0x3f) << 24)
|
||
+ ((p[2] & 0x3f) << 18) + ((p[3] & 0x3f) << 12)
|
||
+ ((p[4] & 0x3f) << 6) + (p[5] & 0x3f));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
// Illegal value: just return the first byte.
|
||
return p[0];
|
||
}
|
||
|
||
/*
|
||
* Convert a UTF-8 byte sequence to a wide character.
|
||
* String is assumed to be terminated by NUL or after "n" bytes, whichever
|
||
* comes first.
|
||
* The function is safe in the sense that it never accesses memory beyond the
|
||
* first "n" bytes of "s".
|
||
*
|
||
* On success, returns decoded codepoint, advances "s" to the beginning of
|
||
* next character and decreases "n" accordingly.
|
||
*
|
||
* If end of string was reached, returns 0 and, if "n" > 0, advances "s" past
|
||
* NUL byte.
|
||
*
|
||
* If byte sequence is illegal or incomplete, returns -1 and does not advance
|
||
* "s".
|
||
*/
|
||
static int utf_safe_read_char_adv(const char_u **s, size_t *n)
|
||
{
|
||
int c;
|
||
|
||
if (*n == 0) { // end of buffer
|
||
return 0;
|
||
}
|
||
|
||
uint8_t k = utf8len_tab_zero[**s];
|
||
|
||
if (k == 1) {
|
||
// ASCII character or NUL
|
||
(*n)--;
|
||
return *(*s)++;
|
||
}
|
||
|
||
if (k <= *n) {
|
||
// We have a multibyte sequence and it isn't truncated by buffer
|
||
// limits so utf_ptr2char() is safe to use. Or the first byte is
|
||
// illegal (k=0), and it's also safe to use utf_ptr2char().
|
||
c = utf_ptr2char((char *)(*s));
|
||
|
||
// On failure, utf_ptr2char() returns the first byte, so here we
|
||
// check equality with the first byte. The only non-ASCII character
|
||
// which equals the first byte of its own UTF-8 representation is
|
||
// U+00C3 (UTF-8: 0xC3 0x83), so need to check that special case too.
|
||
// It's safe even if n=1, else we would have k=2 > n.
|
||
if (c != (int)(**s) || (c == 0xC3 && (*s)[1] == 0x83)) {
|
||
// byte sequence was successfully decoded
|
||
*s += k;
|
||
*n -= k;
|
||
return c;
|
||
}
|
||
}
|
||
|
||
// byte sequence is incomplete or illegal
|
||
return -1;
|
||
}
|
||
|
||
/*
|
||
* Get character at **pp and advance *pp to the next character.
|
||
* Note: composing characters are skipped!
|
||
*/
|
||
int mb_ptr2char_adv(const char_u **const pp)
|
||
{
|
||
int c;
|
||
|
||
c = utf_ptr2char((char *)(*pp));
|
||
*pp += utfc_ptr2len((char *)(*pp));
|
||
return c;
|
||
}
|
||
|
||
/*
|
||
* Get character at **pp and advance *pp to the next character.
|
||
* Note: composing characters are returned as separate characters.
|
||
*/
|
||
int mb_cptr2char_adv(const char_u **pp)
|
||
{
|
||
int c;
|
||
|
||
c = utf_ptr2char((char *)(*pp));
|
||
*pp += utf_ptr2len((char *)(*pp));
|
||
return c;
|
||
}
|
||
|
||
/*
|
||
* Check if the character pointed to by "p2" is a composing character when it
|
||
* comes after "p1". For Arabic sometimes "ab" is replaced with "c", which
|
||
* behaves like a composing character.
|
||
*/
|
||
bool utf_composinglike(const char_u *p1, const char_u *p2)
|
||
{
|
||
int c2;
|
||
|
||
c2 = utf_ptr2char((char *)p2);
|
||
if (utf_iscomposing(c2)) {
|
||
return true;
|
||
}
|
||
if (!arabic_maycombine(c2)) {
|
||
return false;
|
||
}
|
||
return arabic_combine(utf_ptr2char((char *)p1), c2);
|
||
}
|
||
|
||
/// Convert a UTF-8 string to a wide character
|
||
///
|
||
/// Also gets up to #MAX_MCO composing characters.
|
||
///
|
||
/// @param[out] pcc Location where to store composing characters. Must have
|
||
/// space at least for #MAX_MCO + 1 elements.
|
||
///
|
||
/// @return leading character.
|
||
int utfc_ptr2char(const char_u *p, int *pcc)
|
||
{
|
||
int len;
|
||
int c;
|
||
int cc;
|
||
int i = 0;
|
||
|
||
c = utf_ptr2char((char *)p);
|
||
len = utf_ptr2len((char *)p);
|
||
|
||
// Only accept a composing char when the first char isn't illegal.
|
||
if ((len > 1 || *p < 0x80)
|
||
&& p[len] >= 0x80
|
||
&& utf_composinglike(p, p + len)) {
|
||
cc = utf_ptr2char((char *)p + len);
|
||
for (;;) {
|
||
pcc[i++] = cc;
|
||
if (i == MAX_MCO) {
|
||
break;
|
||
}
|
||
len += utf_ptr2len((char *)p + len);
|
||
if (p[len] < 0x80 || !utf_iscomposing(cc = utf_ptr2char((char *)p + len))) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (i < MAX_MCO) { // last composing char must be 0
|
||
pcc[i] = 0;
|
||
}
|
||
|
||
return c;
|
||
}
|
||
|
||
/*
|
||
* Convert a UTF-8 byte string to a wide character. Also get up to MAX_MCO
|
||
* composing characters. Use no more than p[maxlen].
|
||
*
|
||
* @param [out] pcc: composing chars, last one is 0
|
||
*/
|
||
int utfc_ptr2char_len(const char_u *p, int *pcc, int maxlen)
|
||
{
|
||
assert(maxlen > 0);
|
||
|
||
int i = 0;
|
||
|
||
int len = utf_ptr2len_len(p, maxlen);
|
||
// Is it safe to use utf_ptr2char()?
|
||
bool safe = len > 1 && len <= maxlen;
|
||
int c = safe ? utf_ptr2char((char *)p) : *p;
|
||
|
||
// Only accept a composing char when the first char isn't illegal.
|
||
if ((safe || c < 0x80) && len < maxlen && p[len] >= 0x80) {
|
||
for (; i < MAX_MCO; i++) {
|
||
int len_cc = utf_ptr2len_len(p + len, maxlen - len);
|
||
safe = len_cc > 1 && len_cc <= maxlen - len;
|
||
if (!safe || (pcc[i] = utf_ptr2char((char *)p + len)) < 0x80
|
||
|| !(i == 0 ? utf_composinglike(p, p + len) : utf_iscomposing(pcc[i]))) {
|
||
break;
|
||
}
|
||
len += len_cc;
|
||
}
|
||
}
|
||
|
||
if (i < MAX_MCO) {
|
||
// last composing char must be 0
|
||
pcc[i] = 0;
|
||
}
|
||
|
||
return c;
|
||
#undef ISCOMPOSING
|
||
}
|
||
|
||
/// Get the length of a UTF-8 byte sequence representing a single codepoint
|
||
///
|
||
/// @param[in] p UTF-8 string.
|
||
///
|
||
/// @return Sequence length, 0 for empty string and 1 for non-UTF-8 byte
|
||
/// sequence.
|
||
int utf_ptr2len(const char *const p_in)
|
||
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
uint8_t *p = (uint8_t *)p_in;
|
||
if (*p == NUL) {
|
||
return 0;
|
||
}
|
||
const int len = utf8len_tab[*p];
|
||
for (int i = 1; i < len; i++) {
|
||
if ((p[i] & 0xc0) != 0x80) {
|
||
return 1;
|
||
}
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/*
|
||
* Return length of UTF-8 character, obtained from the first byte.
|
||
* "b" must be between 0 and 255!
|
||
* Returns 1 for an invalid first byte value.
|
||
*/
|
||
int utf_byte2len(int b)
|
||
{
|
||
return utf8len_tab[b];
|
||
}
|
||
|
||
/*
|
||
* Get the length of UTF-8 byte sequence "p[size]". Does not include any
|
||
* following composing characters.
|
||
* Returns 1 for "".
|
||
* Returns 1 for an illegal byte sequence (also in incomplete byte seq.).
|
||
* Returns number > "size" for an incomplete byte sequence.
|
||
* Never returns zero.
|
||
*/
|
||
int utf_ptr2len_len(const char_u *p, int size)
|
||
{
|
||
int len;
|
||
int i;
|
||
int m;
|
||
|
||
len = utf8len_tab[*p];
|
||
if (len == 1) {
|
||
return 1; // NUL, ascii or illegal lead byte
|
||
}
|
||
if (len > size) {
|
||
m = size; // incomplete byte sequence.
|
||
} else {
|
||
m = len;
|
||
}
|
||
for (i = 1; i < m; ++i) {
|
||
if ((p[i] & 0xc0) != 0x80) {
|
||
return 1;
|
||
}
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/// Return the number of bytes occupied by a UTF-8 character in a string
|
||
///
|
||
/// This includes following composing characters.
|
||
int utfc_ptr2len(const char *const p_in)
|
||
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
uint8_t *p = (uint8_t *)p_in;
|
||
uint8_t b0 = *p;
|
||
|
||
if (b0 == NUL) {
|
||
return 0;
|
||
}
|
||
if (b0 < 0x80 && p[1] < 0x80) { // be quick for ASCII
|
||
return 1;
|
||
}
|
||
|
||
// Skip over first UTF-8 char, stopping at a NUL byte.
|
||
int len = utf_ptr2len((char *)p);
|
||
|
||
// Check for illegal byte.
|
||
if (len == 1 && b0 >= 0x80) {
|
||
return 1;
|
||
}
|
||
|
||
// Check for composing characters. We can handle only the first six, but
|
||
// skip all of them (otherwise the cursor would get stuck).
|
||
int prevlen = 0;
|
||
for (;;) {
|
||
if (p[len] < 0x80 || !utf_composinglike(p + prevlen, p + len)) {
|
||
return len;
|
||
}
|
||
|
||
// Skip over composing char.
|
||
prevlen = len;
|
||
len += utf_ptr2len((char *)p + len);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Return the number of bytes the UTF-8 encoding of the character at "p[size]"
|
||
* takes. This includes following composing characters.
|
||
* Returns 0 for an empty string.
|
||
* Returns 1 for an illegal char or an incomplete byte sequence.
|
||
*/
|
||
int utfc_ptr2len_len(const char_u *p, int size)
|
||
{
|
||
int len;
|
||
int prevlen;
|
||
|
||
if (size < 1 || *p == NUL) {
|
||
return 0;
|
||
}
|
||
if (p[0] < 0x80 && (size == 1 || p[1] < 0x80)) { // be quick for ASCII
|
||
return 1;
|
||
}
|
||
|
||
// Skip over first UTF-8 char, stopping at a NUL byte.
|
||
len = utf_ptr2len_len(p, size);
|
||
|
||
// Check for illegal byte and incomplete byte sequence.
|
||
if ((len == 1 && p[0] >= 0x80) || len > size) {
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
* Check for composing characters. We can handle only the first six, but
|
||
* skip all of them (otherwise the cursor would get stuck).
|
||
*/
|
||
prevlen = 0;
|
||
while (len < size) {
|
||
int len_next_char;
|
||
|
||
if (p[len] < 0x80) {
|
||
break;
|
||
}
|
||
|
||
/*
|
||
* Next character length should not go beyond size to ensure that
|
||
* utf_composinglike(...) does not read beyond size.
|
||
*/
|
||
len_next_char = utf_ptr2len_len(p + len, size - len);
|
||
if (len_next_char > size - len) {
|
||
break;
|
||
}
|
||
|
||
if (!utf_composinglike(p + prevlen, p + len)) {
|
||
break;
|
||
}
|
||
|
||
// Skip over composing char
|
||
prevlen = len;
|
||
len += len_next_char;
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/// Determine how many bytes certain unicode codepoint will occupy
|
||
int utf_char2len(const int c)
|
||
{
|
||
if (c < 0x80) {
|
||
return 1;
|
||
} else if (c < 0x800) {
|
||
return 2;
|
||
} else if (c < 0x10000) {
|
||
return 3;
|
||
} else if (c < 0x200000) {
|
||
return 4;
|
||
} else if (c < 0x4000000) {
|
||
return 5;
|
||
} else {
|
||
return 6;
|
||
}
|
||
}
|
||
|
||
/// Convert Unicode character to UTF-8 string
|
||
///
|
||
/// @param c character to convert to \p buf
|
||
/// @param[out] buf UTF-8 string generated from \p c, does not add \0
|
||
/// @return Number of bytes (1-6).
|
||
int utf_char2bytes(const int c, char *const buf)
|
||
{
|
||
if (c < 0x80) { // 7 bits
|
||
buf[0] = (char)c;
|
||
return 1;
|
||
} else if (c < 0x800) { // 11 bits
|
||
buf[0] = (char)(0xc0 + ((unsigned)c >> 6));
|
||
buf[1] = (char)(0x80 + ((unsigned)c & 0x3f));
|
||
return 2;
|
||
} else if (c < 0x10000) { // 16 bits
|
||
buf[0] = (char)(0xe0 + ((unsigned)c >> 12));
|
||
buf[1] = (char)(0x80 + (((unsigned)c >> 6) & 0x3f));
|
||
buf[2] = (char)(0x80 + ((unsigned)c & 0x3f));
|
||
return 3;
|
||
} else if (c < 0x200000) { // 21 bits
|
||
buf[0] = (char)(0xf0 + ((unsigned)c >> 18));
|
||
buf[1] = (char)(0x80 + (((unsigned)c >> 12) & 0x3f));
|
||
buf[2] = (char)(0x80 + (((unsigned)c >> 6) & 0x3f));
|
||
buf[3] = (char)(0x80 + ((unsigned)c & 0x3f));
|
||
return 4;
|
||
} else if (c < 0x4000000) { // 26 bits
|
||
buf[0] = (char)(0xf8 + ((unsigned)c >> 24));
|
||
buf[1] = (char)(0x80 + (((unsigned)c >> 18) & 0x3f));
|
||
buf[2] = (char)(0x80 + (((unsigned)c >> 12) & 0x3f));
|
||
buf[3] = (char)(0x80 + (((unsigned)c >> 6) & 0x3f));
|
||
buf[4] = (char)(0x80 + ((unsigned)c & 0x3f));
|
||
return 5;
|
||
} else { // 31 bits
|
||
buf[0] = (char)(0xfc + ((unsigned)c >> 30));
|
||
buf[1] = (char)(0x80 + (((unsigned)c >> 24) & 0x3f));
|
||
buf[2] = (char)(0x80 + (((unsigned)c >> 18) & 0x3f));
|
||
buf[3] = (char)(0x80 + (((unsigned)c >> 12) & 0x3f));
|
||
buf[4] = (char)(0x80 + (((unsigned)c >> 6) & 0x3f));
|
||
buf[5] = (char)(0x80 + ((unsigned)c & 0x3f));
|
||
return 6;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Return true if "c" is a composing UTF-8 character. This means it will be
|
||
* drawn on top of the preceding character.
|
||
* Based on code from Markus Kuhn.
|
||
*/
|
||
bool utf_iscomposing(int c)
|
||
{
|
||
return intable(combining, ARRAY_SIZE(combining), c);
|
||
}
|
||
|
||
/*
|
||
* Return true for characters that can be displayed in a normal way.
|
||
* Only for characters of 0x100 and above!
|
||
*/
|
||
bool utf_printable(int c)
|
||
{
|
||
// Sorted list of non-overlapping intervals.
|
||
// 0xd800-0xdfff is reserved for UTF-16, actually illegal.
|
||
static struct interval nonprint[] =
|
||
{
|
||
{ 0x070f, 0x070f }, { 0x180b, 0x180e }, { 0x200b, 0x200f }, { 0x202a, 0x202e },
|
||
{ 0x2060, 0x206f }, { 0xd800, 0xdfff }, { 0xfeff, 0xfeff }, { 0xfff9, 0xfffb },
|
||
{ 0xfffe, 0xffff }
|
||
};
|
||
|
||
return !intable(nonprint, ARRAY_SIZE(nonprint), c);
|
||
}
|
||
|
||
/*
|
||
* Get class of a Unicode character.
|
||
* 0: white space
|
||
* 1: punctuation
|
||
* 2 or bigger: some class of word character.
|
||
*/
|
||
int utf_class(const int c)
|
||
{
|
||
return utf_class_tab(c, curbuf->b_chartab);
|
||
}
|
||
|
||
int utf_class_tab(const int c, const uint64_t *const chartab)
|
||
FUNC_ATTR_PURE
|
||
{
|
||
// sorted list of non-overlapping intervals
|
||
static struct clinterval {
|
||
unsigned int first;
|
||
unsigned int last;
|
||
unsigned int class;
|
||
} classes[] = {
|
||
{ 0x037e, 0x037e, 1 }, // Greek question mark
|
||
{ 0x0387, 0x0387, 1 }, // Greek ano teleia
|
||
{ 0x055a, 0x055f, 1 }, // Armenian punctuation
|
||
{ 0x0589, 0x0589, 1 }, // Armenian full stop
|
||
{ 0x05be, 0x05be, 1 },
|
||
{ 0x05c0, 0x05c0, 1 },
|
||
{ 0x05c3, 0x05c3, 1 },
|
||
{ 0x05f3, 0x05f4, 1 },
|
||
{ 0x060c, 0x060c, 1 },
|
||
{ 0x061b, 0x061b, 1 },
|
||
{ 0x061f, 0x061f, 1 },
|
||
{ 0x066a, 0x066d, 1 },
|
||
{ 0x06d4, 0x06d4, 1 },
|
||
{ 0x0700, 0x070d, 1 }, // Syriac punctuation
|
||
{ 0x0964, 0x0965, 1 },
|
||
{ 0x0970, 0x0970, 1 },
|
||
{ 0x0df4, 0x0df4, 1 },
|
||
{ 0x0e4f, 0x0e4f, 1 },
|
||
{ 0x0e5a, 0x0e5b, 1 },
|
||
{ 0x0f04, 0x0f12, 1 },
|
||
{ 0x0f3a, 0x0f3d, 1 },
|
||
{ 0x0f85, 0x0f85, 1 },
|
||
{ 0x104a, 0x104f, 1 }, // Myanmar punctuation
|
||
{ 0x10fb, 0x10fb, 1 }, // Georgian punctuation
|
||
{ 0x1361, 0x1368, 1 }, // Ethiopic punctuation
|
||
{ 0x166d, 0x166e, 1 }, // Canadian Syl. punctuation
|
||
{ 0x1680, 0x1680, 0 },
|
||
{ 0x169b, 0x169c, 1 },
|
||
{ 0x16eb, 0x16ed, 1 },
|
||
{ 0x1735, 0x1736, 1 },
|
||
{ 0x17d4, 0x17dc, 1 }, // Khmer punctuation
|
||
{ 0x1800, 0x180a, 1 }, // Mongolian punctuation
|
||
{ 0x2000, 0x200b, 0 }, // spaces
|
||
{ 0x200c, 0x2027, 1 }, // punctuation and symbols
|
||
{ 0x2028, 0x2029, 0 },
|
||
{ 0x202a, 0x202e, 1 }, // punctuation and symbols
|
||
{ 0x202f, 0x202f, 0 },
|
||
{ 0x2030, 0x205e, 1 }, // punctuation and symbols
|
||
{ 0x205f, 0x205f, 0 },
|
||
{ 0x2060, 0x27ff, 1 }, // punctuation and symbols
|
||
{ 0x2070, 0x207f, 0x2070 }, // superscript
|
||
{ 0x2080, 0x2094, 0x2080 }, // subscript
|
||
{ 0x20a0, 0x27ff, 1 }, // all kinds of symbols
|
||
{ 0x2800, 0x28ff, 0x2800 }, // braille
|
||
{ 0x2900, 0x2998, 1 }, // arrows, brackets, etc.
|
||
{ 0x29d8, 0x29db, 1 },
|
||
{ 0x29fc, 0x29fd, 1 },
|
||
{ 0x2e00, 0x2e7f, 1 }, // supplemental punctuation
|
||
{ 0x3000, 0x3000, 0 }, // ideographic space
|
||
{ 0x3001, 0x3020, 1 }, // ideographic punctuation
|
||
{ 0x3030, 0x3030, 1 },
|
||
{ 0x303d, 0x303d, 1 },
|
||
{ 0x3040, 0x309f, 0x3040 }, // Hiragana
|
||
{ 0x30a0, 0x30ff, 0x30a0 }, // Katakana
|
||
{ 0x3300, 0x9fff, 0x4e00 }, // CJK Ideographs
|
||
{ 0xac00, 0xd7a3, 0xac00 }, // Hangul Syllables
|
||
{ 0xf900, 0xfaff, 0x4e00 }, // CJK Ideographs
|
||
{ 0xfd3e, 0xfd3f, 1 },
|
||
{ 0xfe30, 0xfe6b, 1 }, // punctuation forms
|
||
{ 0xff00, 0xff0f, 1 }, // half/fullwidth ASCII
|
||
{ 0xff1a, 0xff20, 1 }, // half/fullwidth ASCII
|
||
{ 0xff3b, 0xff40, 1 }, // half/fullwidth ASCII
|
||
{ 0xff5b, 0xff65, 1 }, // half/fullwidth ASCII
|
||
{ 0x1d000, 0x1d24f, 1 }, // Musical notation
|
||
{ 0x1d400, 0x1d7ff, 1 }, // Mathematical Alphanumeric Symbols
|
||
{ 0x1f000, 0x1f2ff, 1 }, // Game pieces; enclosed characters
|
||
{ 0x1f300, 0x1f9ff, 1 }, // Many symbol blocks
|
||
{ 0x20000, 0x2a6df, 0x4e00 }, // CJK Ideographs
|
||
{ 0x2a700, 0x2b73f, 0x4e00 }, // CJK Ideographs
|
||
{ 0x2b740, 0x2b81f, 0x4e00 }, // CJK Ideographs
|
||
{ 0x2f800, 0x2fa1f, 0x4e00 }, // CJK Ideographs
|
||
};
|
||
int bot = 0;
|
||
int top = ARRAY_SIZE(classes) - 1;
|
||
int mid;
|
||
|
||
// First quick check for Latin1 characters, use 'iskeyword'.
|
||
if (c < 0x100) {
|
||
if (c == ' ' || c == '\t' || c == NUL || c == 0xa0) {
|
||
return 0; // blank
|
||
}
|
||
if (vim_iswordc_tab(c, chartab)) {
|
||
return 2; // word character
|
||
}
|
||
return 1; // punctuation
|
||
}
|
||
|
||
// emoji
|
||
if (intable(emoji_all, ARRAY_SIZE(emoji_all), c)) {
|
||
return 3;
|
||
}
|
||
|
||
// binary search in table
|
||
while (top >= bot) {
|
||
mid = (bot + top) / 2;
|
||
if (classes[mid].last < (unsigned int)c) {
|
||
bot = mid + 1;
|
||
} else if (classes[mid].first > (unsigned int)c) {
|
||
top = mid - 1;
|
||
} else {
|
||
return (int)classes[mid].class;
|
||
}
|
||
}
|
||
|
||
// most other characters are "word" characters
|
||
return 2;
|
||
}
|
||
|
||
bool utf_ambiguous_width(int c)
|
||
{
|
||
return c >= 0x80 && (intable(ambiguous, ARRAY_SIZE(ambiguous), c)
|
||
|| intable(emoji_all, ARRAY_SIZE(emoji_all), c));
|
||
}
|
||
|
||
/*
|
||
* Generic conversion function for case operations.
|
||
* Return the converted equivalent of "a", which is a UCS-4 character. Use
|
||
* the given conversion "table". Uses binary search on "table".
|
||
*/
|
||
static int utf_convert(int a, const convertStruct *const table, size_t n_items)
|
||
{
|
||
size_t start, mid, end; // indices into table
|
||
|
||
start = 0;
|
||
end = n_items;
|
||
while (start < end) {
|
||
// need to search further
|
||
mid = (end + start) / 2;
|
||
if (table[mid].rangeEnd < a) {
|
||
start = mid + 1;
|
||
} else {
|
||
end = mid;
|
||
}
|
||
}
|
||
if (start < n_items
|
||
&& table[start].rangeStart <= a
|
||
&& a <= table[start].rangeEnd
|
||
&& (a - table[start].rangeStart) % table[start].step == 0) {
|
||
return a + table[start].offset;
|
||
} else {
|
||
return a;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Return the folded-case equivalent of "a", which is a UCS-4 character. Uses
|
||
* simple case folding.
|
||
*/
|
||
int utf_fold(int a)
|
||
{
|
||
if (a < 0x80) {
|
||
// be fast for ASCII
|
||
return a >= 0x41 && a <= 0x5a ? a + 32 : a;
|
||
}
|
||
return utf_convert(a, foldCase, ARRAY_SIZE(foldCase));
|
||
}
|
||
|
||
// Vim's own character class functions. These exist because many library
|
||
// islower()/toupper() etc. do not work properly: they crash when used with
|
||
// invalid values or can't handle latin1 when the locale is C.
|
||
// Speed is most important here.
|
||
|
||
/// Return the upper-case equivalent of "a", which is a UCS-4 character. Use
|
||
/// simple case folding.
|
||
int mb_toupper(int a)
|
||
{
|
||
// If 'casemap' contains "keepascii" use ASCII style toupper().
|
||
if (a < 128 && (cmp_flags & CMP_KEEPASCII)) {
|
||
return TOUPPER_ASC(a);
|
||
}
|
||
|
||
#if defined(__STDC_ISO_10646__)
|
||
// If towupper() is available and handles Unicode, use it.
|
||
if (!(cmp_flags & CMP_INTERNAL)) {
|
||
return (int)towupper((wint_t)a);
|
||
}
|
||
#endif
|
||
|
||
// For characters below 128 use locale sensitive toupper().
|
||
if (a < 128) {
|
||
return TOUPPER_LOC(a);
|
||
}
|
||
|
||
// For any other characters use the above mapping table.
|
||
return utf_convert(a, toUpper, ARRAY_SIZE(toUpper));
|
||
}
|
||
|
||
bool mb_islower(int a)
|
||
{
|
||
// German sharp s is lower case but has no upper case equivalent.
|
||
return (mb_toupper(a) != a) || a == 0xdf;
|
||
}
|
||
|
||
/// Return the lower-case equivalent of "a", which is a UCS-4 character. Use
|
||
/// simple case folding.
|
||
int mb_tolower(int a)
|
||
{
|
||
// If 'casemap' contains "keepascii" use ASCII style tolower().
|
||
if (a < 128 && (cmp_flags & CMP_KEEPASCII)) {
|
||
return TOLOWER_ASC(a);
|
||
}
|
||
|
||
#if defined(__STDC_ISO_10646__)
|
||
// If towlower() is available and handles Unicode, use it.
|
||
if (!(cmp_flags & CMP_INTERNAL)) {
|
||
return (int)towlower((wint_t)a);
|
||
}
|
||
#endif
|
||
|
||
// For characters below 128 use locale sensitive tolower().
|
||
if (a < 128) {
|
||
return TOLOWER_LOC(a);
|
||
}
|
||
|
||
// For any other characters use the above mapping table.
|
||
return utf_convert(a, toLower, ARRAY_SIZE(toLower));
|
||
}
|
||
|
||
bool mb_isupper(int a)
|
||
{
|
||
return mb_tolower(a) != a;
|
||
}
|
||
|
||
bool mb_isalpha(int a)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
return mb_islower(a) || mb_isupper(a);
|
||
}
|
||
|
||
static int utf_strnicmp(const char_u *s1, const char_u *s2, size_t n1, size_t n2)
|
||
{
|
||
int c1, c2, cdiff;
|
||
char buffer[6];
|
||
|
||
for (;;) {
|
||
c1 = utf_safe_read_char_adv(&s1, &n1);
|
||
c2 = utf_safe_read_char_adv(&s2, &n2);
|
||
|
||
if (c1 <= 0 || c2 <= 0) {
|
||
break;
|
||
}
|
||
|
||
if (c1 == c2) {
|
||
continue;
|
||
}
|
||
|
||
cdiff = utf_fold(c1) - utf_fold(c2);
|
||
if (cdiff != 0) {
|
||
return cdiff;
|
||
}
|
||
}
|
||
|
||
// some string ended or has an incomplete/illegal character sequence
|
||
|
||
if (c1 == 0 || c2 == 0) {
|
||
// some string ended. shorter string is smaller
|
||
if (c1 == 0 && c2 == 0) {
|
||
return 0;
|
||
}
|
||
return c1 == 0 ? -1 : 1;
|
||
}
|
||
|
||
// Continue with bytewise comparison to produce some result that
|
||
// would make comparison operations involving this function transitive.
|
||
//
|
||
// If only one string had an error, comparison should be made with
|
||
// folded version of the other string. In this case it is enough
|
||
// to fold just one character to determine the result of comparison.
|
||
|
||
if (c1 != -1 && c2 == -1) {
|
||
n1 = (size_t)utf_char2bytes(utf_fold(c1), (char *)buffer);
|
||
s1 = (char_u *)buffer;
|
||
} else if (c2 != -1 && c1 == -1) {
|
||
n2 = (size_t)utf_char2bytes(utf_fold(c2), (char *)buffer);
|
||
s2 = (char_u *)buffer;
|
||
}
|
||
|
||
while (n1 > 0 && n2 > 0 && *s1 != NUL && *s2 != NUL) {
|
||
cdiff = (int)(*s1) - (int)(*s2);
|
||
if (cdiff != 0) {
|
||
return cdiff;
|
||
}
|
||
|
||
s1++;
|
||
s2++;
|
||
n1--;
|
||
n2--;
|
||
}
|
||
|
||
if (n1 > 0 && *s1 == NUL) {
|
||
n1 = 0;
|
||
}
|
||
if (n2 > 0 && *s2 == NUL) {
|
||
n2 = 0;
|
||
}
|
||
|
||
if (n1 == 0 && n2 == 0) {
|
||
return 0;
|
||
}
|
||
return n1 == 0 ? -1 : 1;
|
||
}
|
||
|
||
#ifdef WIN32
|
||
# ifndef CP_UTF8
|
||
# define CP_UTF8 65001 // magic number from winnls.h
|
||
# endif
|
||
|
||
/// Converts string from UTF-8 to UTF-16.
|
||
///
|
||
/// @param utf8 UTF-8 string.
|
||
/// @param utf8len Length of `utf8`. May be -1 if `utf8` is NUL-terminated.
|
||
/// @param utf16[out,allocated] NUL-terminated UTF-16 string, or NULL on error
|
||
/// @return 0 on success, or libuv error code
|
||
int utf8_to_utf16(const char *utf8, int utf8len, wchar_t **utf16)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
// Compute the length needed for the converted UTF-16 string.
|
||
int bufsize = MultiByteToWideChar(CP_UTF8,
|
||
0, // dwFlags: must be 0 for UTF-8
|
||
utf8, // -1: process up to NUL
|
||
utf8len,
|
||
NULL,
|
||
0); // 0: get length, don't convert
|
||
if (bufsize == 0) {
|
||
*utf16 = NULL;
|
||
return uv_translate_sys_error(GetLastError());
|
||
}
|
||
|
||
// Allocate the destination buffer adding an extra byte for the terminating
|
||
// NULL. If `utf8len` is not -1 MultiByteToWideChar will not add it, so
|
||
// we do it ourselves always, just in case.
|
||
*utf16 = xmalloc(sizeof(wchar_t) * (bufsize + 1));
|
||
|
||
// Convert to UTF-16.
|
||
bufsize = MultiByteToWideChar(CP_UTF8, 0, utf8, utf8len, *utf16, bufsize);
|
||
if (bufsize == 0) {
|
||
XFREE_CLEAR(*utf16);
|
||
return uv_translate_sys_error(GetLastError());
|
||
}
|
||
|
||
(*utf16)[bufsize] = L'\0';
|
||
return 0;
|
||
}
|
||
|
||
/// Converts string from UTF-16 to UTF-8.
|
||
///
|
||
/// @param utf16 UTF-16 string.
|
||
/// @param utf16len Length of `utf16`. May be -1 if `utf16` is NUL-terminated.
|
||
/// @param utf8[out,allocated] NUL-terminated UTF-8 string, or NULL on error
|
||
/// @return 0 on success, or libuv error code
|
||
int utf16_to_utf8(const wchar_t *utf16, int utf16len, char **utf8)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
// Compute the space needed for the converted UTF-8 string.
|
||
DWORD bufsize = WideCharToMultiByte(CP_UTF8,
|
||
0,
|
||
utf16,
|
||
utf16len,
|
||
NULL,
|
||
0,
|
||
NULL,
|
||
NULL);
|
||
if (bufsize == 0) {
|
||
*utf8 = NULL;
|
||
return uv_translate_sys_error(GetLastError());
|
||
}
|
||
|
||
// Allocate the destination buffer adding an extra byte for the terminating
|
||
// NULL. If `utf16len` is not -1 WideCharToMultiByte will not add it, so
|
||
// we do it ourselves always, just in case.
|
||
*utf8 = xmalloc(bufsize + 1);
|
||
|
||
// Convert to UTF-8.
|
||
bufsize = WideCharToMultiByte(CP_UTF8,
|
||
0,
|
||
utf16,
|
||
utf16len,
|
||
*utf8,
|
||
bufsize,
|
||
NULL,
|
||
NULL);
|
||
if (bufsize == 0) {
|
||
XFREE_CLEAR(*utf8);
|
||
return uv_translate_sys_error(GetLastError());
|
||
}
|
||
|
||
(*utf8)[bufsize] = '\0';
|
||
return 0;
|
||
}
|
||
|
||
#endif
|
||
|
||
/// Measure the length of a string in corresponding UTF-32 and UTF-16 units.
|
||
///
|
||
/// Invalid UTF-8 bytes, or embedded surrogates, count as one code point/unit
|
||
/// each.
|
||
///
|
||
/// The out parameters are incremented. This is used to measure the size of
|
||
/// a buffer region consisting of multiple line segments.
|
||
///
|
||
/// @param s the string
|
||
/// @param len maximum length (an earlier NUL terminates)
|
||
/// @param[out] codepoints incremented with UTF-32 code point size
|
||
/// @param[out] codeunits incremented with UTF-16 code unit size
|
||
void mb_utflen(const char_u *s, size_t len, size_t *codepoints, size_t *codeunits)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
size_t count = 0, extra = 0;
|
||
size_t clen;
|
||
for (size_t i = 0; i < len && s[i] != NUL; i += clen) {
|
||
clen = (size_t)utf_ptr2len_len(s + i, (int)(len - i));
|
||
// NB: gets the byte value of invalid sequence bytes.
|
||
// we only care whether the char fits in the BMP or not
|
||
int c = (clen > 1) ? utf_ptr2char((char *)s + i) : s[i];
|
||
count++;
|
||
if (c > 0xFFFF) {
|
||
extra++;
|
||
}
|
||
}
|
||
*codepoints += count;
|
||
*codeunits += count + extra;
|
||
}
|
||
|
||
ssize_t mb_utf_index_to_bytes(const char_u *s, size_t len, size_t index, bool use_utf16_units)
|
||
FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
size_t count = 0;
|
||
size_t clen, i;
|
||
if (index == 0) {
|
||
return 0;
|
||
}
|
||
for (i = 0; i < len && s[i] != NUL; i += clen) {
|
||
clen = (size_t)utf_ptr2len_len(s + i, (int)(len - i));
|
||
// NB: gets the byte value of invalid sequence bytes.
|
||
// we only care whether the char fits in the BMP or not
|
||
int c = (clen > 1) ? utf_ptr2char((char *)s + i) : s[i];
|
||
count++;
|
||
if (use_utf16_units && c > 0xFFFF) {
|
||
count++;
|
||
}
|
||
if (count >= index) {
|
||
return (ssize_t)(i + clen);
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/*
|
||
* Version of strnicmp() that handles multi-byte characters.
|
||
* Needed for Big5, Shift-JIS and UTF-8 encoding. Other DBCS encodings can
|
||
* probably use strnicmp(), because there are no ASCII characters in the
|
||
* second byte.
|
||
* Returns zero if s1 and s2 are equal (ignoring case), the difference between
|
||
* two characters otherwise.
|
||
*/
|
||
int mb_strnicmp(const char_u *s1, const char_u *s2, const size_t nn)
|
||
{
|
||
return utf_strnicmp(s1, s2, nn, nn);
|
||
}
|
||
|
||
/// Compare strings case-insensitively
|
||
///
|
||
/// @note We need to call mb_stricmp() even when we aren't dealing with
|
||
/// a multi-byte encoding because mb_stricmp() takes care of all ASCII and
|
||
/// non-ascii encodings, including characters with umlauts in latin1,
|
||
/// etc., while STRICMP() only handles the system locale version, which
|
||
/// often does not handle non-ascii properly.
|
||
///
|
||
/// @param[in] s1 First string to compare, not more then #MAXCOL characters.
|
||
/// @param[in] s2 Second string to compare, not more then #MAXCOL characters.
|
||
///
|
||
/// @return 0 if strings are equal, <0 if s1 < s2, >0 if s1 > s2.
|
||
int mb_stricmp(const char *s1, const char *s2)
|
||
{
|
||
return mb_strnicmp((const char_u *)s1, (const char_u *)s2, MAXCOL);
|
||
}
|
||
|
||
/*
|
||
* "g8": show bytes of the UTF-8 char under the cursor. Doesn't matter what
|
||
* 'encoding' has been set to.
|
||
*/
|
||
void show_utf8(void)
|
||
{
|
||
int len;
|
||
int rlen = 0;
|
||
char_u *line;
|
||
int clen;
|
||
int i;
|
||
|
||
// Get the byte length of the char under the cursor, including composing
|
||
// characters.
|
||
line = get_cursor_pos_ptr();
|
||
len = utfc_ptr2len((char *)line);
|
||
if (len == 0) {
|
||
msg("NUL");
|
||
return;
|
||
}
|
||
|
||
clen = 0;
|
||
for (i = 0; i < len; ++i) {
|
||
if (clen == 0) {
|
||
// start of (composing) character, get its length
|
||
if (i > 0) {
|
||
STRCPY(IObuff + rlen, "+ ");
|
||
rlen += 2;
|
||
}
|
||
clen = utf_ptr2len((char *)line + i);
|
||
}
|
||
sprintf((char *)IObuff + rlen, "%02x ",
|
||
(line[i] == NL) ? NUL : line[i]); // NUL is stored as NL
|
||
--clen;
|
||
rlen += (int)STRLEN(IObuff + rlen);
|
||
if (rlen > IOSIZE - 20) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
msg((char *)IObuff);
|
||
}
|
||
|
||
/// Return offset from "p" to the start of a character, including composing characters.
|
||
/// "base" must be the start of the string, which must be NUL terminated.
|
||
/// If "p" points to the NUL at the end of the string return 0.
|
||
/// Returns 0 when already at the first byte of a character.
|
||
int utf_head_off(const char_u *base, const char_u *p)
|
||
{
|
||
int c;
|
||
int len;
|
||
|
||
if (*p < 0x80) { // be quick for ASCII
|
||
return 0;
|
||
}
|
||
|
||
// Skip backwards over trailing bytes: 10xx.xxxx
|
||
// Skip backwards again if on a composing char.
|
||
const char_u *q;
|
||
for (q = p;; --q) {
|
||
// Move s to the last byte of this char.
|
||
const char_u *s;
|
||
for (s = q; (s[1] & 0xc0) == 0x80; ++s) {}
|
||
|
||
// Move q to the first byte of this char.
|
||
while (q > base && (*q & 0xc0) == 0x80) {
|
||
--q;
|
||
}
|
||
// Check for illegal sequence. Do allow an illegal byte after where we
|
||
// started.
|
||
len = utf8len_tab[*q];
|
||
if (len != (int)(s - q + 1) && len != (int)(p - q + 1)) {
|
||
return 0;
|
||
}
|
||
|
||
if (q <= base) {
|
||
break;
|
||
}
|
||
|
||
c = utf_ptr2char((char *)q);
|
||
if (utf_iscomposing(c)) {
|
||
continue;
|
||
}
|
||
|
||
if (arabic_maycombine(c)) {
|
||
// Advance to get a sneak-peak at the next char
|
||
const char_u *j = q;
|
||
--j;
|
||
// Move j to the first byte of this char.
|
||
while (j > base && (*j & 0xc0) == 0x80) {
|
||
--j;
|
||
}
|
||
if (arabic_combine(utf_ptr2char((char *)j), c)) {
|
||
continue;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
return (int)(p - q);
|
||
}
|
||
|
||
// Whether space is NOT allowed before/after 'c'.
|
||
bool utf_eat_space(int cc)
|
||
FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
return (cc >= 0x2000 && cc <= 0x206F) // General punctuations
|
||
|| (cc >= 0x2e00 && cc <= 0x2e7f) // Supplemental punctuations
|
||
|| (cc >= 0x3000 && cc <= 0x303f) // CJK symbols and punctuations
|
||
|| (cc >= 0xff01 && cc <= 0xff0f) // Full width ASCII punctuations
|
||
|| (cc >= 0xff1a && cc <= 0xff20) // ..
|
||
|| (cc >= 0xff3b && cc <= 0xff40) // ..
|
||
|| (cc >= 0xff5b && cc <= 0xff65); // ..
|
||
}
|
||
|
||
// Whether line break is allowed before "cc".
|
||
bool utf_allow_break_before(int cc)
|
||
FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
static const int BOL_prohibition_punct[] = {
|
||
'!',
|
||
'%',
|
||
')',
|
||
',',
|
||
':',
|
||
';',
|
||
'>',
|
||
'?',
|
||
']',
|
||
'}',
|
||
0x2019, // ’ right single quotation mark
|
||
0x201d, // ” right double quotation mark
|
||
0x2020, // † dagger
|
||
0x2021, // ‡ double dagger
|
||
0x2026, // … horizontal ellipsis
|
||
0x2030, // ‰ per mille sign
|
||
0x2031, // ‱ per then thousand sign
|
||
0x203c, // ‼ double exclamation mark
|
||
0x2047, // ⁇ double question mark
|
||
0x2048, // ⁈ question exclamation mark
|
||
0x2049, // ⁉ exclamation question mark
|
||
0x2103, // ℃ degree celsius
|
||
0x2109, // ℉ degree fahrenheit
|
||
0x3001, // 、 ideographic comma
|
||
0x3002, // 。 ideographic full stop
|
||
0x3009, // 〉 right angle bracket
|
||
0x300b, // 》 right double angle bracket
|
||
0x300d, // 」 right corner bracket
|
||
0x300f, // 』 right white corner bracket
|
||
0x3011, // 】 right black lenticular bracket
|
||
0x3015, // 〕 right tortoise shell bracket
|
||
0x3017, // 〗 right white lenticular bracket
|
||
0x3019, // 〙 right white tortoise shell bracket
|
||
0x301b, // 〛 right white square bracket
|
||
0xff01, // ! fullwidth exclamation mark
|
||
0xff09, // ) fullwidth right parenthesis
|
||
0xff0c, // , fullwidth comma
|
||
0xff0e, // . fullwidth full stop
|
||
0xff1a, // : fullwidth colon
|
||
0xff1b, // ; fullwidth semicolon
|
||
0xff1f, // ? fullwidth question mark
|
||
0xff3d, // ] fullwidth right square bracket
|
||
0xff5d, // } fullwidth right curly bracket
|
||
};
|
||
|
||
int first = 0;
|
||
int last = ARRAY_SIZE(BOL_prohibition_punct) - 1;
|
||
|
||
while (first < last) {
|
||
const int mid = (first + last) / 2;
|
||
|
||
if (cc == BOL_prohibition_punct[mid]) {
|
||
return false;
|
||
} else if (cc > BOL_prohibition_punct[mid]) {
|
||
first = mid + 1;
|
||
} else {
|
||
last = mid - 1;
|
||
}
|
||
}
|
||
|
||
return cc != BOL_prohibition_punct[first];
|
||
}
|
||
|
||
// Whether line break is allowed after "cc".
|
||
bool utf_allow_break_after(int cc)
|
||
FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
static const int EOL_prohibition_punct[] = {
|
||
'(',
|
||
'<',
|
||
'[',
|
||
'`',
|
||
'{',
|
||
// 0x2014, // — em dash
|
||
0x2018, // ‘ left single quotation mark
|
||
0x201c, // “ left double quotation mark
|
||
// 0x2053, // ~ swung dash
|
||
0x3008, // 〈 left angle bracket
|
||
0x300a, // 《 left double angle bracket
|
||
0x300c, // 「 left corner bracket
|
||
0x300e, // 『 left white corner bracket
|
||
0x3010, // 【 left black lenticular bracket
|
||
0x3014, // 〔 left tortoise shell bracket
|
||
0x3016, // 〖 left white lenticular bracket
|
||
0x3018, // 〘 left white tortoise shell bracket
|
||
0x301a, // 〚 left white square bracket
|
||
0xff08, // ( fullwidth left parenthesis
|
||
0xff3b, // [ fullwidth left square bracket
|
||
0xff5b, // { fullwidth left curly bracket
|
||
};
|
||
|
||
int first = 0;
|
||
int last = ARRAY_SIZE(EOL_prohibition_punct) - 1;
|
||
|
||
while (first < last) {
|
||
const int mid = (first + last)/2;
|
||
|
||
if (cc == EOL_prohibition_punct[mid]) {
|
||
return false;
|
||
} else if (cc > EOL_prohibition_punct[mid]) {
|
||
first = mid + 1;
|
||
} else {
|
||
last = mid - 1;
|
||
}
|
||
}
|
||
|
||
return cc != EOL_prohibition_punct[first];
|
||
}
|
||
|
||
// Whether line break is allowed between "cc" and "ncc".
|
||
bool utf_allow_break(int cc, int ncc)
|
||
FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT
|
||
{
|
||
// don't break between two-letter punctuations
|
||
if (cc == ncc
|
||
&& (cc == 0x2014 // em dash
|
||
|| cc == 0x2026)) { // horizontal ellipsis
|
||
return false;
|
||
}
|
||
return utf_allow_break_after(cc) && utf_allow_break_before(ncc);
|
||
}
|
||
|
||
/// Copy a character, advancing the pointers
|
||
///
|
||
/// @param[in,out] fp Source of the character to copy.
|
||
/// @param[in,out] tp Destination to copy to.
|
||
void mb_copy_char(const char **const fp, char **const tp)
|
||
{
|
||
const size_t l = (size_t)utfc_ptr2len(*fp);
|
||
|
||
memmove(*tp, *fp, l);
|
||
*tp += l;
|
||
*fp += l;
|
||
}
|
||
|
||
/// Return the offset from "p" to the first byte of a character. When "p" is
|
||
/// at the start of a character 0 is returned, otherwise the offset to the next
|
||
/// character. Can start anywhere in a stream of bytes.
|
||
int mb_off_next(const char_u *base, const char_u *p)
|
||
{
|
||
int i;
|
||
int j;
|
||
|
||
if (*p < 0x80) { // be quick for ASCII
|
||
return 0;
|
||
}
|
||
|
||
// Find the next character that isn't 10xx.xxxx
|
||
for (i = 0; (p[i] & 0xc0) == 0x80; i++) {}
|
||
if (i > 0) {
|
||
// Check for illegal sequence.
|
||
for (j = 0; p - j > base; j++) {
|
||
if ((p[-j] & 0xc0) != 0x80) {
|
||
break;
|
||
}
|
||
}
|
||
if (utf8len_tab[p[-j]] != i + j) {
|
||
return 0;
|
||
}
|
||
}
|
||
return i;
|
||
}
|
||
|
||
/// Return the offset from `p_in` to the last byte of the codepoint it points
|
||
/// to. Can start anywhere in a stream of bytes.
|
||
/// Note: Counts individual codepoints of composed characters separately.
|
||
int utf_cp_tail_off(const char *base, const char *p_in)
|
||
{
|
||
const uint8_t *p = (uint8_t *)p_in;
|
||
int i;
|
||
int j;
|
||
|
||
if (*p == NUL) {
|
||
return 0;
|
||
}
|
||
|
||
// Find the last character that is 10xx.xxxx
|
||
for (i = 0; (p[i + 1] & 0xc0) == 0x80; i++) {}
|
||
|
||
// Check for illegal sequence.
|
||
for (j = 0; p_in - j > base; j++) {
|
||
if ((p[-j] & 0xc0) != 0x80) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (utf8len_tab[p[-j]] != i + j + 1) {
|
||
return 0;
|
||
}
|
||
return i;
|
||
}
|
||
|
||
/// Return the offset from "p" to the first byte of the codepoint it points
|
||
/// to. Can start anywhere in a stream of bytes.
|
||
/// Note: Unlike `utf_head_off`, this counts individual codepoints of composed characters
|
||
/// separately and returns a negative offset.
|
||
///
|
||
/// @param[in] base Pointer to start of string
|
||
/// @param[in] p Pointer to byte for which to return the offset to the previous codepoint
|
||
//
|
||
/// @return 0 if invalid sequence, else offset to previous codepoint
|
||
int utf_cp_head_off(const char_u *base, const char_u *p)
|
||
{
|
||
int i;
|
||
int j;
|
||
|
||
if (*p == NUL) {
|
||
return 0;
|
||
}
|
||
|
||
// Find the first character that is not 10xx.xxxx
|
||
for (i = 0; p - i > base; i--) {
|
||
if ((p[i] & 0xc0) != 0x80) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Find the last character that is 10xx.xxxx
|
||
for (j = 0; (p[j + 1] & 0xc0) == 0x80; j++) {}
|
||
|
||
// Check for illegal sequence.
|
||
if (utf8len_tab[p[i]] == 1) {
|
||
return 0;
|
||
}
|
||
return i;
|
||
}
|
||
|
||
/*
|
||
* Find the next illegal byte sequence.
|
||
*/
|
||
void utf_find_illegal(void)
|
||
{
|
||
pos_T pos = curwin->w_cursor;
|
||
char_u *p;
|
||
int len;
|
||
vimconv_T vimconv;
|
||
char_u *tofree = NULL;
|
||
|
||
vimconv.vc_type = CONV_NONE;
|
||
if (enc_canon_props(curbuf->b_p_fenc) & ENC_8BIT) {
|
||
// 'encoding' is "utf-8" but we are editing a 8-bit encoded file,
|
||
// possibly a utf-8 file with illegal bytes. Setup for conversion
|
||
// from utf-8 to 'fileencoding'.
|
||
convert_setup(&vimconv, p_enc, curbuf->b_p_fenc);
|
||
}
|
||
|
||
curwin->w_cursor.coladd = 0;
|
||
for (;;) {
|
||
p = get_cursor_pos_ptr();
|
||
if (vimconv.vc_type != CONV_NONE) {
|
||
xfree(tofree);
|
||
tofree = string_convert(&vimconv, p, NULL);
|
||
if (tofree == NULL) {
|
||
break;
|
||
}
|
||
p = tofree;
|
||
}
|
||
|
||
while (*p != NUL) {
|
||
// Illegal means that there are not enough trail bytes (checked by
|
||
// utf_ptr2len()) or too many of them (overlong sequence).
|
||
len = utf_ptr2len((char *)p);
|
||
if (*p >= 0x80 && (len == 1
|
||
|| utf_char2len(utf_ptr2char((char *)p)) != len)) {
|
||
if (vimconv.vc_type == CONV_NONE) {
|
||
curwin->w_cursor.col += (colnr_T)(p - get_cursor_pos_ptr());
|
||
} else {
|
||
int l;
|
||
|
||
len = (int)(p - tofree);
|
||
for (p = get_cursor_pos_ptr(); *p != NUL && len-- > 0; p += l) {
|
||
l = utf_ptr2len((char *)p);
|
||
curwin->w_cursor.col += l;
|
||
}
|
||
}
|
||
goto theend;
|
||
}
|
||
p += len;
|
||
}
|
||
if (curwin->w_cursor.lnum == curbuf->b_ml.ml_line_count) {
|
||
break;
|
||
}
|
||
++curwin->w_cursor.lnum;
|
||
curwin->w_cursor.col = 0;
|
||
}
|
||
|
||
// didn't find it: don't move and beep
|
||
curwin->w_cursor = pos;
|
||
beep_flush();
|
||
|
||
theend:
|
||
xfree(tofree);
|
||
convert_setup(&vimconv, NULL, NULL);
|
||
}
|
||
|
||
/// @return true if string "s" is a valid utf-8 string.
|
||
/// When "end" is NULL stop at the first NUL.
|
||
/// When "end" is positive stop there.
|
||
bool utf_valid_string(const char_u *s, const char_u *end)
|
||
{
|
||
const char_u *p = s;
|
||
|
||
while (end == NULL ? *p != NUL : p < end) {
|
||
int l = utf8len_tab_zero[*p];
|
||
if (l == 0) {
|
||
return false; // invalid lead byte
|
||
}
|
||
if (end != NULL && p + l > end) {
|
||
return false; // incomplete byte sequence
|
||
}
|
||
p++;
|
||
while (--l > 0) {
|
||
if ((*p++ & 0xc0) != 0x80) {
|
||
return false; // invalid trail byte
|
||
}
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/*
|
||
* If the cursor moves on an trail byte, set the cursor on the lead byte.
|
||
* Thus it moves left if necessary.
|
||
*/
|
||
void mb_adjust_cursor(void)
|
||
{
|
||
mark_mb_adjustpos(curbuf, &curwin->w_cursor);
|
||
}
|
||
|
||
/// Checks and adjusts cursor column. Not mode-dependent.
|
||
/// @see check_cursor_col_win
|
||
///
|
||
/// @param win_ Places cursor on a valid column for this window.
|
||
void mb_check_adjust_col(void *win_)
|
||
{
|
||
win_T *win = (win_T *)win_;
|
||
colnr_T oldcol = win->w_cursor.col;
|
||
|
||
// Column 0 is always valid.
|
||
if (oldcol != 0) {
|
||
char *p = (char *)ml_get_buf(win->w_buffer, win->w_cursor.lnum, false);
|
||
colnr_T len = (colnr_T)STRLEN(p);
|
||
|
||
// Empty line or invalid column?
|
||
if (len == 0 || oldcol < 0) {
|
||
win->w_cursor.col = 0;
|
||
} else {
|
||
// Cursor column too big for line?
|
||
if (oldcol > len) {
|
||
win->w_cursor.col = len - 1;
|
||
}
|
||
// Move the cursor to the head byte.
|
||
win->w_cursor.col -= utf_head_off((char_u *)p, (char_u *)p + win->w_cursor.col);
|
||
}
|
||
|
||
// Reset `coladd` when the cursor would be on the right half of a
|
||
// double-wide character.
|
||
if (win->w_cursor.coladd == 1 && p[win->w_cursor.col] != TAB
|
||
&& vim_isprintc(utf_ptr2char(p + win->w_cursor.col))
|
||
&& ptr2cells(p + win->w_cursor.col) > 1) {
|
||
win->w_cursor.coladd = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// @param line start of the string
|
||
///
|
||
/// @return a pointer to the character before "*p", if there is one.
|
||
char_u *mb_prevptr(char_u *line, char_u *p)
|
||
{
|
||
if (p > line) {
|
||
MB_PTR_BACK(line, p);
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/// Return the character length of "str". Each multi-byte character (with
|
||
/// following composing characters) counts as one.
|
||
int mb_charlen(const char_u *str)
|
||
{
|
||
const char_u *p = str;
|
||
int count;
|
||
|
||
if (p == NULL) {
|
||
return 0;
|
||
}
|
||
|
||
for (count = 0; *p != NUL; count++) {
|
||
p += utfc_ptr2len((char *)p);
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
/// Like mb_charlen() but for a string with specified length.
|
||
int mb_charlen_len(const char_u *str, int len)
|
||
{
|
||
const char_u *p = str;
|
||
int count;
|
||
|
||
for (count = 0; *p != NUL && p < str + len; count++) {
|
||
p += utfc_ptr2len((char *)p);
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
/// Try to unescape a multibyte character
|
||
///
|
||
/// Used for the rhs and lhs of the mappings.
|
||
///
|
||
/// @param[in,out] pp String to unescape. Is advanced to just after the bytes
|
||
/// that form a multibyte character.
|
||
///
|
||
/// @return Unescaped string if it is a multibyte character, NULL if no
|
||
/// multibyte character was found. Returns a static buffer, always one
|
||
/// and the same.
|
||
const char *mb_unescape(const char **const pp)
|
||
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
|
||
{
|
||
static char buf[6];
|
||
size_t buf_idx = 0;
|
||
uint8_t *str = (uint8_t *)(*pp);
|
||
|
||
// Must translate K_SPECIAL KS_SPECIAL KE_FILLER to K_SPECIAL.
|
||
// Maximum length of a utf-8 character is 4 bytes.
|
||
for (size_t str_idx = 0; str[str_idx] != NUL && buf_idx < 4; str_idx++) {
|
||
if (str[str_idx] == K_SPECIAL
|
||
&& str[str_idx + 1] == KS_SPECIAL
|
||
&& str[str_idx + 2] == KE_FILLER) {
|
||
buf[buf_idx++] = (char)K_SPECIAL;
|
||
str_idx += 2;
|
||
} else if (str[str_idx] == K_SPECIAL) {
|
||
break; // A special key can't be a multibyte char.
|
||
} else {
|
||
buf[buf_idx++] = (char)str[str_idx];
|
||
}
|
||
buf[buf_idx] = NUL;
|
||
|
||
// Return a multi-byte character if it's found. An illegal sequence
|
||
// will result in a 1 here.
|
||
if (utf_ptr2len(buf) > 1) {
|
||
*pp = (const char *)str + str_idx + 1;
|
||
return buf;
|
||
}
|
||
|
||
// Bail out quickly for ASCII.
|
||
if ((uint8_t)buf[0] < 128) {
|
||
break;
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
* Skip the Vim specific head of a 'encoding' name.
|
||
*/
|
||
char_u *enc_skip(char_u *p)
|
||
{
|
||
if (STRNCMP(p, "2byte-", 6) == 0) {
|
||
return p + 6;
|
||
}
|
||
if (STRNCMP(p, "8bit-", 5) == 0) {
|
||
return p + 5;
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/*
|
||
* Find the canonical name for encoding "enc".
|
||
* When the name isn't recognized, returns "enc" itself, but with all lower
|
||
* case characters and '_' replaced with '-'.
|
||
* Returns an allocated string.
|
||
*/
|
||
char_u *enc_canonize(char_u *enc) FUNC_ATTR_NONNULL_RET
|
||
{
|
||
char_u *p, *s;
|
||
int i;
|
||
|
||
if (STRCMP(enc, "default") == 0) {
|
||
// Use the default encoding as found by set_init_1().
|
||
return vim_strsave(fenc_default);
|
||
}
|
||
|
||
// copy "enc" to allocated memory, with room for two '-'
|
||
char_u *r = xmalloc(STRLEN(enc) + 3);
|
||
// Make it all lower case and replace '_' with '-'.
|
||
p = r;
|
||
for (s = enc; *s != NUL; ++s) {
|
||
if (*s == '_') {
|
||
*p++ = '-';
|
||
} else {
|
||
*p++ = (char_u)TOLOWER_ASC(*s);
|
||
}
|
||
}
|
||
*p = NUL;
|
||
|
||
// Skip "2byte-" and "8bit-".
|
||
p = enc_skip(r);
|
||
|
||
// Change "microsoft-cp" to "cp". Used in some spell files.
|
||
if (STRNCMP(p, "microsoft-cp", 12) == 0) {
|
||
STRMOVE(p, p + 10);
|
||
}
|
||
|
||
// "iso8859" -> "iso-8859"
|
||
if (STRNCMP(p, "iso8859", 7) == 0) {
|
||
STRMOVE(p + 4, p + 3);
|
||
p[3] = '-';
|
||
}
|
||
|
||
// "iso-8859n" -> "iso-8859-n"
|
||
if (STRNCMP(p, "iso-8859", 8) == 0 && p[8] != '-') {
|
||
STRMOVE(p + 9, p + 8);
|
||
p[8] = '-';
|
||
}
|
||
|
||
// "latin-N" -> "latinN"
|
||
if (STRNCMP(p, "latin-", 6) == 0) {
|
||
STRMOVE(p + 5, p + 6);
|
||
}
|
||
|
||
if (enc_canon_search(p) >= 0) {
|
||
// canonical name can be used unmodified
|
||
if (p != r) {
|
||
STRMOVE(r, p);
|
||
}
|
||
} else if ((i = enc_alias_search(p)) >= 0) {
|
||
// alias recognized, get canonical name
|
||
xfree(r);
|
||
r = vim_strsave((char_u *)enc_canon_table[i].name);
|
||
}
|
||
return r;
|
||
}
|
||
|
||
/// Search for an encoding alias of "name".
|
||
/// Returns -1 when not found.
|
||
static int enc_alias_search(const char_u *name)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; enc_alias_table[i].name != NULL; ++i) {
|
||
if (STRCMP(name, enc_alias_table[i].name) == 0) {
|
||
return enc_alias_table[i].canon;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
#ifdef HAVE_LANGINFO_H
|
||
# include <langinfo.h>
|
||
#endif
|
||
|
||
/*
|
||
* Get the canonicalized encoding of the current locale.
|
||
* Returns an allocated string when successful, NULL when not.
|
||
*/
|
||
char_u *enc_locale(void)
|
||
{
|
||
int i;
|
||
char buf[50];
|
||
|
||
const char *s;
|
||
#ifdef HAVE_NL_LANGINFO_CODESET
|
||
if (!(s = nl_langinfo(CODESET)) || *s == NUL)
|
||
#endif
|
||
{
|
||
#if defined(HAVE_LOCALE_H)
|
||
if (!(s = setlocale(LC_CTYPE, NULL)) || *s == NUL)
|
||
#endif
|
||
{
|
||
if ((s = os_getenv("LC_ALL"))) {
|
||
if ((s = os_getenv("LC_CTYPE"))) {
|
||
s = os_getenv("LANG");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!s) {
|
||
return NULL;
|
||
}
|
||
|
||
// The most generic locale format is:
|
||
// language[_territory][.codeset][@modifier][+special][,[sponsor][_revision]]
|
||
// If there is a '.' remove the part before it.
|
||
// if there is something after the codeset, remove it.
|
||
// Make the name lowercase and replace '_' with '-'.
|
||
// Exception: "ja_JP.EUC" == "euc-jp", "zh_CN.EUC" = "euc-cn",
|
||
// "ko_KR.EUC" == "euc-kr"
|
||
const char *p = vim_strchr(s, '.');
|
||
if (p != NULL) {
|
||
if (p > s + 2 && !STRNICMP(p + 1, "EUC", 3)
|
||
&& !isalnum((int)p[4]) && p[4] != '-' && p[-3] == '_') {
|
||
// Copy "XY.EUC" to "euc-XY" to buf[10].
|
||
memmove(buf, "euc-", 4);
|
||
buf[4] = (char)(ASCII_ISALNUM(p[-2]) ? TOLOWER_ASC(p[-2]) : 0);
|
||
buf[5] = (char)(ASCII_ISALNUM(p[-1]) ? TOLOWER_ASC(p[-1]) : 0);
|
||
buf[6] = NUL;
|
||
} else {
|
||
s = p + 1;
|
||
goto enc_locale_copy_enc;
|
||
}
|
||
} else {
|
||
enc_locale_copy_enc:
|
||
for (i = 0; i < (int)sizeof(buf) - 1 && s[i] != NUL; i++) {
|
||
if (s[i] == '_' || s[i] == '-') {
|
||
buf[i] = '-';
|
||
} else if (ASCII_ISALNUM((uint8_t)s[i])) {
|
||
buf[i] = (char)TOLOWER_ASC(s[i]);
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
buf[i] = NUL;
|
||
}
|
||
|
||
return enc_canonize((char_u *)buf);
|
||
}
|
||
|
||
#if defined(HAVE_ICONV)
|
||
|
||
/*
|
||
* Call iconv_open() with a check if iconv() works properly (there are broken
|
||
* versions).
|
||
* Returns (void *)-1 if failed.
|
||
* (should return iconv_t, but that causes problems with prototypes).
|
||
*/
|
||
void *my_iconv_open(char_u *to, char_u *from)
|
||
{
|
||
iconv_t fd;
|
||
# define ICONV_TESTLEN 400
|
||
char_u tobuf[ICONV_TESTLEN];
|
||
char *p;
|
||
size_t tolen;
|
||
static WorkingStatus iconv_working = kUnknown;
|
||
|
||
if (iconv_working == kBroken) {
|
||
return (void *)-1; // detected a broken iconv() previously
|
||
}
|
||
fd = iconv_open((char *)enc_skip(to), (char *)enc_skip(from));
|
||
|
||
if (fd != (iconv_t)-1 && iconv_working == kUnknown) {
|
||
/*
|
||
* Do a dummy iconv() call to check if it actually works. There is a
|
||
* version of iconv() on Linux that is broken. We can't ignore it,
|
||
* because it's wide-spread. The symptoms are that after outputting
|
||
* the initial shift state the "to" pointer is NULL and conversion
|
||
* stops for no apparent reason after about 8160 characters.
|
||
*/
|
||
p = (char *)tobuf;
|
||
tolen = ICONV_TESTLEN;
|
||
(void)iconv(fd, NULL, NULL, &p, &tolen);
|
||
if (p == NULL) {
|
||
iconv_working = kBroken;
|
||
iconv_close(fd);
|
||
fd = (iconv_t)-1;
|
||
} else {
|
||
iconv_working = kWorking;
|
||
}
|
||
}
|
||
|
||
return (void *)fd;
|
||
}
|
||
|
||
/*
|
||
* Convert the string "str[slen]" with iconv().
|
||
* If "unconvlenp" is not NULL handle the string ending in an incomplete
|
||
* sequence and set "*unconvlenp" to the length of it.
|
||
* Returns the converted string in allocated memory. NULL for an error.
|
||
* If resultlenp is not NULL, sets it to the result length in bytes.
|
||
*/
|
||
static char_u *iconv_string(const vimconv_T *const vcp, char_u *str, size_t slen,
|
||
size_t *unconvlenp, size_t *resultlenp)
|
||
{
|
||
const char *from;
|
||
size_t fromlen;
|
||
char *to;
|
||
size_t tolen;
|
||
size_t len = 0;
|
||
size_t done = 0;
|
||
char_u *result = NULL;
|
||
char_u *p;
|
||
int l;
|
||
|
||
from = (char *)str;
|
||
fromlen = slen;
|
||
for (;;) {
|
||
if (len == 0 || ICONV_ERRNO == ICONV_E2BIG) {
|
||
// Allocate enough room for most conversions. When re-allocating
|
||
// increase the buffer size.
|
||
len = len + fromlen * 2 + 40;
|
||
p = xmalloc(len);
|
||
if (done > 0) {
|
||
memmove(p, result, done);
|
||
}
|
||
xfree(result);
|
||
result = p;
|
||
}
|
||
|
||
to = (char *)result + done;
|
||
tolen = len - done - 2;
|
||
// Avoid a warning for systems with a wrong iconv() prototype by
|
||
// casting the second argument to void *.
|
||
if (iconv(vcp->vc_fd, (void *)&from, &fromlen, &to, &tolen) != SIZE_MAX) {
|
||
// Finished, append a NUL.
|
||
*to = NUL;
|
||
break;
|
||
}
|
||
|
||
// Check both ICONV_EINVAL and EINVAL, because the dynamically loaded
|
||
// iconv library may use one of them.
|
||
if (!vcp->vc_fail && unconvlenp != NULL
|
||
&& (ICONV_ERRNO == ICONV_EINVAL || ICONV_ERRNO == EINVAL)) {
|
||
// Handle an incomplete sequence at the end.
|
||
*to = NUL;
|
||
*unconvlenp = fromlen;
|
||
break;
|
||
} else if (!vcp->vc_fail
|
||
&& (ICONV_ERRNO == ICONV_EILSEQ || ICONV_ERRNO == EILSEQ
|
||
|| ICONV_ERRNO == ICONV_EINVAL || ICONV_ERRNO == EINVAL)) {
|
||
// Check both ICONV_EILSEQ and EILSEQ, because the dynamically loaded
|
||
// iconv library may use one of them.
|
||
|
||
// Can't convert: insert a '?' and skip a character. This assumes
|
||
// conversion from 'encoding' to something else. In other
|
||
// situations we don't know what to skip anyway.
|
||
*to++ = '?';
|
||
if (utf_ptr2cells(from) > 1) {
|
||
*to++ = '?';
|
||
}
|
||
l = utfc_ptr2len_len((const char_u *)from, (int)fromlen);
|
||
from += l;
|
||
fromlen -= (size_t)l;
|
||
} else if (ICONV_ERRNO != ICONV_E2BIG) {
|
||
// conversion failed
|
||
XFREE_CLEAR(result);
|
||
break;
|
||
}
|
||
// Not enough room or skipping illegal sequence.
|
||
done = (size_t)(to - (char *)result);
|
||
}
|
||
|
||
if (resultlenp != NULL && result != NULL) {
|
||
*resultlenp = (size_t)(to - (char *)result);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
#endif // HAVE_ICONV
|
||
|
||
/*
|
||
* Setup "vcp" for conversion from "from" to "to".
|
||
* The names must have been made canonical with enc_canonize().
|
||
* vcp->vc_type must have been initialized to CONV_NONE.
|
||
* Note: cannot be used for conversion from/to ucs-2 and ucs-4 (will use utf-8
|
||
* instead).
|
||
* Afterwards invoke with "from" and "to" equal to NULL to cleanup.
|
||
* Return FAIL when conversion is not supported, OK otherwise.
|
||
*/
|
||
int convert_setup(vimconv_T *vcp, char_u *from, char_u *to)
|
||
{
|
||
return convert_setup_ext(vcp, from, true, to, true);
|
||
}
|
||
|
||
/// As convert_setup(), but only when from_unicode_is_utf8 is true will all
|
||
/// "from" unicode charsets be considered utf-8. Same for "to".
|
||
int convert_setup_ext(vimconv_T *vcp, char_u *from, bool from_unicode_is_utf8, char_u *to,
|
||
bool to_unicode_is_utf8)
|
||
{
|
||
int from_prop;
|
||
int to_prop;
|
||
int from_is_utf8;
|
||
int to_is_utf8;
|
||
|
||
// Reset to no conversion.
|
||
#ifdef HAVE_ICONV
|
||
if (vcp->vc_type == CONV_ICONV && vcp->vc_fd != (iconv_t)-1) {
|
||
iconv_close(vcp->vc_fd);
|
||
}
|
||
#endif
|
||
*vcp = (vimconv_T)MBYTE_NONE_CONV;
|
||
|
||
// No conversion when one of the names is empty or they are equal.
|
||
if (from == NULL || *from == NUL || to == NULL || *to == NUL
|
||
|| STRCMP(from, to) == 0) {
|
||
return OK;
|
||
}
|
||
|
||
from_prop = enc_canon_props(from);
|
||
to_prop = enc_canon_props(to);
|
||
if (from_unicode_is_utf8) {
|
||
from_is_utf8 = from_prop & ENC_UNICODE;
|
||
} else {
|
||
from_is_utf8 = from_prop == ENC_UNICODE;
|
||
}
|
||
if (to_unicode_is_utf8) {
|
||
to_is_utf8 = to_prop & ENC_UNICODE;
|
||
} else {
|
||
to_is_utf8 = to_prop == ENC_UNICODE;
|
||
}
|
||
|
||
if ((from_prop & ENC_LATIN1) && to_is_utf8) {
|
||
// Internal latin1 -> utf-8 conversion.
|
||
vcp->vc_type = CONV_TO_UTF8;
|
||
vcp->vc_factor = 2; // up to twice as long
|
||
} else if ((from_prop & ENC_LATIN9) && to_is_utf8) {
|
||
// Internal latin9 -> utf-8 conversion.
|
||
vcp->vc_type = CONV_9_TO_UTF8;
|
||
vcp->vc_factor = 3; // up to three as long (euro sign)
|
||
} else if (from_is_utf8 && (to_prop & ENC_LATIN1)) {
|
||
// Internal utf-8 -> latin1 conversion.
|
||
vcp->vc_type = CONV_TO_LATIN1;
|
||
} else if (from_is_utf8 && (to_prop & ENC_LATIN9)) {
|
||
// Internal utf-8 -> latin9 conversion.
|
||
vcp->vc_type = CONV_TO_LATIN9;
|
||
}
|
||
#ifdef HAVE_ICONV
|
||
else { // NOLINT(readability/braces)
|
||
// Use iconv() for conversion.
|
||
vcp->vc_fd = (iconv_t)my_iconv_open(to_is_utf8 ? (char_u *)"utf-8" : to,
|
||
from_is_utf8 ? (char_u *)"utf-8" : from);
|
||
if (vcp->vc_fd != (iconv_t)-1) {
|
||
vcp->vc_type = CONV_ICONV;
|
||
vcp->vc_factor = 4; // could be longer too...
|
||
}
|
||
}
|
||
#endif
|
||
if (vcp->vc_type == CONV_NONE) {
|
||
return FAIL;
|
||
}
|
||
|
||
return OK;
|
||
}
|
||
|
||
/*
|
||
* Convert text "ptr[*lenp]" according to "vcp".
|
||
* Returns the result in allocated memory and sets "*lenp".
|
||
* When "lenp" is NULL, use NUL terminated strings.
|
||
* Illegal chars are often changed to "?", unless vcp->vc_fail is set.
|
||
* When something goes wrong, NULL is returned and "*lenp" is unchanged.
|
||
*/
|
||
char_u *string_convert(const vimconv_T *const vcp, char_u *ptr, size_t *lenp)
|
||
{
|
||
return string_convert_ext(vcp, ptr, lenp, NULL);
|
||
}
|
||
|
||
/*
|
||
* Like string_convert(), but when "unconvlenp" is not NULL and there are is
|
||
* an incomplete sequence at the end it is not converted and "*unconvlenp" is
|
||
* set to the number of remaining bytes.
|
||
*/
|
||
char_u *string_convert_ext(const vimconv_T *const vcp, char_u *ptr, size_t *lenp,
|
||
size_t *unconvlenp)
|
||
{
|
||
char_u *retval = NULL;
|
||
char_u *d;
|
||
int l;
|
||
int c;
|
||
|
||
size_t len;
|
||
if (lenp == NULL) {
|
||
len = STRLEN(ptr);
|
||
} else {
|
||
len = *lenp;
|
||
}
|
||
if (len == 0) {
|
||
return vim_strsave((char_u *)"");
|
||
}
|
||
|
||
switch (vcp->vc_type) {
|
||
case CONV_TO_UTF8: // latin1 to utf-8 conversion
|
||
retval = xmalloc(len * 2 + 1);
|
||
d = retval;
|
||
for (size_t i = 0; i < len; ++i) {
|
||
c = ptr[i];
|
||
if (c < 0x80) {
|
||
*d++ = (char_u)c;
|
||
} else {
|
||
*d++ = (char_u)(0xc0 + (char_u)((unsigned)c >> 6));
|
||
*d++ = (char_u)(0x80 + (c & 0x3f));
|
||
}
|
||
}
|
||
*d = NUL;
|
||
if (lenp != NULL) {
|
||
*lenp = (size_t)(d - retval);
|
||
}
|
||
break;
|
||
|
||
case CONV_9_TO_UTF8: // latin9 to utf-8 conversion
|
||
retval = xmalloc(len * 3 + 1);
|
||
d = retval;
|
||
for (size_t i = 0; i < len; ++i) {
|
||
c = ptr[i];
|
||
switch (c) {
|
||
case 0xa4:
|
||
c = 0x20ac; break; // euro
|
||
case 0xa6:
|
||
c = 0x0160; break; // S hat
|
||
case 0xa8:
|
||
c = 0x0161; break; // S -hat
|
||
case 0xb4:
|
||
c = 0x017d; break; // Z hat
|
||
case 0xb8:
|
||
c = 0x017e; break; // Z -hat
|
||
case 0xbc:
|
||
c = 0x0152; break; // OE
|
||
case 0xbd:
|
||
c = 0x0153; break; // oe
|
||
case 0xbe:
|
||
c = 0x0178; break; // Y
|
||
}
|
||
d += utf_char2bytes(c, (char *)d);
|
||
}
|
||
*d = NUL;
|
||
if (lenp != NULL) {
|
||
*lenp = (size_t)(d - retval);
|
||
}
|
||
break;
|
||
|
||
case CONV_TO_LATIN1: // utf-8 to latin1 conversion
|
||
case CONV_TO_LATIN9: // utf-8 to latin9 conversion
|
||
retval = xmalloc(len + 1);
|
||
d = retval;
|
||
for (size_t i = 0; i < len; i++) {
|
||
l = utf_ptr2len_len(ptr + i, (int)(len - i));
|
||
if (l == 0) {
|
||
*d++ = NUL;
|
||
} else if (l == 1) {
|
||
uint8_t l_w = utf8len_tab_zero[ptr[i]];
|
||
|
||
if (l_w == 0) {
|
||
// Illegal utf-8 byte cannot be converted
|
||
xfree(retval);
|
||
return NULL;
|
||
}
|
||
if (unconvlenp != NULL && l_w > len - i) {
|
||
// Incomplete sequence at the end.
|
||
*unconvlenp = len - i;
|
||
break;
|
||
}
|
||
*d++ = ptr[i];
|
||
} else {
|
||
c = utf_ptr2char((char *)ptr + i);
|
||
if (vcp->vc_type == CONV_TO_LATIN9) {
|
||
switch (c) {
|
||
case 0x20ac:
|
||
c = 0xa4; break; // euro
|
||
case 0x0160:
|
||
c = 0xa6; break; // S hat
|
||
case 0x0161:
|
||
c = 0xa8; break; // S -hat
|
||
case 0x017d:
|
||
c = 0xb4; break; // Z hat
|
||
case 0x017e:
|
||
c = 0xb8; break; // Z -hat
|
||
case 0x0152:
|
||
c = 0xbc; break; // OE
|
||
case 0x0153:
|
||
c = 0xbd; break; // oe
|
||
case 0x0178:
|
||
c = 0xbe; break; // Y
|
||
case 0xa4:
|
||
case 0xa6:
|
||
case 0xa8:
|
||
case 0xb4:
|
||
case 0xb8:
|
||
case 0xbc:
|
||
case 0xbd:
|
||
case 0xbe:
|
||
c = 0x100; break; // not in latin9
|
||
}
|
||
}
|
||
if (!utf_iscomposing(c)) { // skip composing chars
|
||
if (c < 0x100) {
|
||
*d++ = (char_u)c;
|
||
} else if (vcp->vc_fail) {
|
||
xfree(retval);
|
||
return NULL;
|
||
} else {
|
||
*d++ = 0xbf;
|
||
if (utf_char2cells(c) > 1) {
|
||
*d++ = '?';
|
||
}
|
||
}
|
||
}
|
||
i += (size_t)l - 1;
|
||
}
|
||
}
|
||
*d = NUL;
|
||
if (lenp != NULL) {
|
||
*lenp = (size_t)(d - retval);
|
||
}
|
||
break;
|
||
|
||
#ifdef HAVE_ICONV
|
||
case CONV_ICONV: // conversion with vcp->vc_fd
|
||
retval = iconv_string(vcp, ptr, len, unconvlenp, lenp);
|
||
break;
|
||
#endif
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
/// Table set by setcellwidths().
|
||
typedef struct {
|
||
long first;
|
||
long last;
|
||
char width;
|
||
} cw_interval_T;
|
||
|
||
static cw_interval_T *cw_table = NULL;
|
||
static size_t cw_table_size = 0;
|
||
|
||
/// Return the value of the cellwidth table for the character `c`.
|
||
///
|
||
/// @param c The source character.
|
||
/// @return 1 or 2 when `c` is in the cellwidth table, 0 if not.
|
||
static int cw_value(int c)
|
||
{
|
||
if (cw_table == NULL) {
|
||
return 0;
|
||
}
|
||
|
||
// first quick check for Latin1 etc. characters
|
||
if (c < cw_table[0].first) {
|
||
return 0;
|
||
}
|
||
|
||
// binary search in table
|
||
int bot = 0;
|
||
int top = (int)cw_table_size - 1;
|
||
while (top >= bot) {
|
||
int mid = (bot + top) / 2;
|
||
if (cw_table[mid].last < c) {
|
||
bot = mid + 1;
|
||
} else if (cw_table[mid].first > c) {
|
||
top = mid - 1;
|
||
} else {
|
||
return cw_table[mid].width;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static int tv_nr_compare(const void *a1, const void *a2)
|
||
{
|
||
const listitem_T *const li1 = tv_list_first(*(const list_T **)a1);
|
||
const listitem_T *const li2 = tv_list_first(*(const list_T **)a2);
|
||
|
||
return (int)(TV_LIST_ITEM_TV(li1)->vval.v_number - TV_LIST_ITEM_TV(li2)->vval.v_number);
|
||
}
|
||
|
||
/// "setcellwidths()" function
|
||
void f_setcellwidths(typval_T *argvars, typval_T *rettv, FunPtr fptr)
|
||
{
|
||
if (argvars[0].v_type != VAR_LIST || argvars[0].vval.v_list == NULL) {
|
||
emsg(_(e_listreq));
|
||
return;
|
||
}
|
||
const list_T *const l = argvars[0].vval.v_list;
|
||
if (tv_list_len(l) == 0) {
|
||
// Clearing the table.
|
||
xfree(cw_table);
|
||
cw_table = NULL;
|
||
cw_table_size = 0;
|
||
return;
|
||
}
|
||
|
||
// Note: use list_T instead of listitem_T so that TV_LIST_ITEM_NEXT can be used properly below.
|
||
const list_T **ptrs = xmalloc(sizeof(const list_T *) * (size_t)tv_list_len(l));
|
||
|
||
// Check that all entries are a list with three numbers, the range is
|
||
// valid and the cell width is valid.
|
||
int item = 0;
|
||
TV_LIST_ITER_CONST(l, li, {
|
||
const typval_T *const li_tv = TV_LIST_ITEM_TV(li);
|
||
|
||
if (li_tv->v_type != VAR_LIST || li_tv->vval.v_list == NULL) {
|
||
semsg(_(e_list_item_nr_is_not_list), item);
|
||
xfree(ptrs);
|
||
return;
|
||
}
|
||
|
||
const list_T *const li_l = li_tv->vval.v_list;
|
||
ptrs[item] = li_l;
|
||
const listitem_T *lili = tv_list_first(li_l);
|
||
int i;
|
||
varnumber_T n1;
|
||
for (i = 0; lili != NULL; lili = TV_LIST_ITEM_NEXT(li_l, lili), i++) {
|
||
const typval_T *const lili_tv = TV_LIST_ITEM_TV(lili);
|
||
if (lili_tv->v_type != VAR_NUMBER) {
|
||
break;
|
||
}
|
||
if (i == 0) {
|
||
n1 = lili_tv->vval.v_number;
|
||
if (n1 < 0x100) {
|
||
emsg(_(e_only_values_of_0x100_and_higher_supported));
|
||
xfree(ptrs);
|
||
return;
|
||
}
|
||
} else if (i == 1 && lili_tv->vval.v_number < n1) {
|
||
semsg(_(e_list_item_nr_range_invalid), item);
|
||
xfree(ptrs);
|
||
return;
|
||
} else if (i == 2 && (lili_tv->vval.v_number < 1 || lili_tv->vval.v_number > 2)) {
|
||
semsg(_(e_list_item_nr_cell_width_invalid), item);
|
||
xfree(ptrs);
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (i != 3) {
|
||
semsg(_(e_list_item_nr_does_not_contain_3_numbers), item);
|
||
xfree(ptrs);
|
||
return;
|
||
}
|
||
|
||
item++;
|
||
});
|
||
|
||
// Sort the list on the first number.
|
||
qsort((void *)ptrs, (size_t)tv_list_len(l), sizeof(const list_T *), tv_nr_compare);
|
||
|
||
cw_interval_T *table = xmalloc(sizeof(cw_interval_T) * (size_t)tv_list_len(l));
|
||
|
||
// Store the items in the new table.
|
||
for (item = 0; item < tv_list_len(l); item++) {
|
||
const list_T *const li_l = ptrs[item];
|
||
const listitem_T *lili = tv_list_first(li_l);
|
||
const varnumber_T n1 = TV_LIST_ITEM_TV(lili)->vval.v_number;
|
||
if (item > 0 && n1 <= table[item - 1].last) {
|
||
semsg(_(e_overlapping_ranges_for_nr), (long)n1);
|
||
xfree(ptrs);
|
||
xfree(table);
|
||
return;
|
||
}
|
||
table[item].first = n1;
|
||
lili = TV_LIST_ITEM_NEXT(li_l, lili);
|
||
table[item].last = TV_LIST_ITEM_TV(lili)->vval.v_number;
|
||
lili = TV_LIST_ITEM_NEXT(li_l, lili);
|
||
table[item].width = (char)TV_LIST_ITEM_TV(lili)->vval.v_number;
|
||
}
|
||
|
||
xfree(ptrs);
|
||
|
||
cw_interval_T *const cw_table_save = cw_table;
|
||
const size_t cw_table_size_save = cw_table_size;
|
||
cw_table = table;
|
||
cw_table_size = (size_t)tv_list_len(l);
|
||
|
||
// Check that the new value does not conflict with 'listchars' or
|
||
// 'fillchars'.
|
||
const char *const error = check_chars_options();
|
||
if (error != NULL) {
|
||
emsg(_(error));
|
||
cw_table = cw_table_save;
|
||
cw_table_size = cw_table_size_save;
|
||
xfree(table);
|
||
return;
|
||
}
|
||
|
||
xfree(cw_table_save);
|
||
redraw_all_later(NOT_VALID);
|
||
}
|
||
|
||
void f_charclass(typval_T *argvars, typval_T *rettv, FunPtr fptr)
|
||
{
|
||
if (argvars[0].v_type != VAR_STRING
|
||
|| argvars[0].vval.v_string == NULL
|
||
|| *argvars[0].vval.v_string == NUL) {
|
||
emsg(_(e_stringreq));
|
||
return;
|
||
}
|
||
rettv->vval.v_number = mb_get_class((const char_u *)argvars[0].vval.v_string);
|
||
}
|