Files
neovim/src/nvim/mbyte.c
zeertzjq 754892e59d vim-patch:8.2.{1536,1540}: charclass() (#19748)
vim-patch:8.2.1536: cannot get the class of a character; emoji widths are wrong

Problem:    Cannot get the class of a character; emoji widths are wrong in
            some environments.
Solution:   Add charclass(). Update some emoji widths.  Add script to check
            emoji widths.
4e4473c927

Use latest charclass() docs from Vim.
Rewrite DoIt() in emoji_list.vim in Lua.
Omit emoji table updates:
- emoji_width update looks wrong as these added ranges are only double-width when followed by 0xFE0F.
- Other updates are too old.

vim-patch:8.2.1540: the user cannot try out emoji character widths

Problem:    The user cannot try out emoji character widths.
Solution:   Move the emoji script to the runtime/tools directory.
98945560c1
2022-08-13 11:29:38 +08:00

2872 lines
82 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
/// mbyte.c: Code specifically for handling multi-byte characters.
/// Multibyte extensions partly by Sung-Hoon Baek
///
/// Strings internal to Nvim are always encoded as UTF-8 (thus the legacy
/// 'encoding' option is always "utf-8").
///
/// The cell width on the display needs to be determined from the character
/// value. Recognizing UTF-8 bytes is easy: 0xxx.xxxx is a single-byte char,
/// 10xx.xxxx is a trailing byte, 11xx.xxxx is a leading byte of a multi-byte
/// character. To make things complicated, up to six composing characters
/// are allowed. These are drawn on top of the first char. For most editing
/// the sequence of bytes with composing characters included is considered to
/// be one character.
///
/// UTF-8 is used everywhere in the core. This is in registers, text
/// manipulation, buffers, etc. Nvim core communicates with external plugins
/// and GUIs in this encoding.
///
/// The encoding of a file is specified with 'fileencoding'. Conversion
/// is to be done when it's different from "utf-8".
///
/// Vim scripts may contain an ":scriptencoding" command. This has an effect
/// for some commands, like ":menutrans".
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
#include <wchar.h>
#include <wctype.h>
#include "nvim/ascii.h"
#include "nvim/vim.h"
#ifdef HAVE_LOCALE_H
# include <locale.h>
#endif
#include "nvim/arabic.h"
#include "nvim/charset.h"
#include "nvim/cursor.h"
#include "nvim/eval.h"
#include "nvim/fileio.h"
#include "nvim/func_attr.h"
#include "nvim/getchar.h"
#include "nvim/iconv.h"
#include "nvim/mark.h"
#include "nvim/mbyte.h"
#include "nvim/memline.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/option.h"
#include "nvim/os/os.h"
#include "nvim/path.h"
#include "nvim/screen.h"
#include "nvim/spell.h"
#include "nvim/strings.h"
typedef struct {
int rangeStart;
int rangeEnd;
int step;
int offset;
} convertStruct;
struct interval {
long first;
long last;
};
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "mbyte.c.generated.h"
# include "unicode_tables.generated.h"
#endif
static char e_list_item_nr_is_not_list[]
= N_("E1109: List item %d is not a List");
static char e_list_item_nr_does_not_contain_3_numbers[]
= N_("E1110: List item %d does not contain 3 numbers");
static char e_list_item_nr_range_invalid[]
= N_("E1111: List item %d range invalid");
static char e_list_item_nr_cell_width_invalid[]
= N_("E1112: List item %d cell width invalid");
static char e_overlapping_ranges_for_nr[]
= N_("E1113: Overlapping ranges for 0x%lx");
static char e_only_values_of_0x100_and_higher_supported[]
= N_("E1114: Only values of 0x100 and higher supported");
// To speed up BYTELEN(); keep a lookup table to quickly get the length in
// bytes of a UTF-8 character from the first byte of a UTF-8 string. Bytes
// which are illegal when used as the first byte have a 1. The NUL byte has
// length 1.
const uint8_t utf8len_tab[] = {
// ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 ?A ?B ?C ?D ?E ?F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B?
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C?
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D?
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E?
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 1, 1, // F?
};
// Like utf8len_tab above, but using a zero for illegal lead bytes.
const uint8_t utf8len_tab_zero[] = {
// ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 ?A ?B ?C ?D ?E ?F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6?
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7?
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8?
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 9?
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A?
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B?
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C?
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D?
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E?
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 0, 0, // F?
};
/*
* Canonical encoding names and their properties.
* "iso-8859-n" is handled by enc_canonize() directly.
*/
static struct
{ const char *name; int prop; int codepage; }
enc_canon_table[] =
{
#define IDX_LATIN_1 0
{ "latin1", ENC_8BIT + ENC_LATIN1, 1252 },
#define IDX_ISO_2 1
{ "iso-8859-2", ENC_8BIT, 0 },
#define IDX_ISO_3 2
{ "iso-8859-3", ENC_8BIT, 0 },
#define IDX_ISO_4 3
{ "iso-8859-4", ENC_8BIT, 0 },
#define IDX_ISO_5 4
{ "iso-8859-5", ENC_8BIT, 0 },
#define IDX_ISO_6 5
{ "iso-8859-6", ENC_8BIT, 0 },
#define IDX_ISO_7 6
{ "iso-8859-7", ENC_8BIT, 0 },
#define IDX_ISO_8 7
{ "iso-8859-8", ENC_8BIT, 0 },
#define IDX_ISO_9 8
{ "iso-8859-9", ENC_8BIT, 0 },
#define IDX_ISO_10 9
{ "iso-8859-10", ENC_8BIT, 0 },
#define IDX_ISO_11 10
{ "iso-8859-11", ENC_8BIT, 0 },
#define IDX_ISO_13 11
{ "iso-8859-13", ENC_8BIT, 0 },
#define IDX_ISO_14 12
{ "iso-8859-14", ENC_8BIT, 0 },
#define IDX_ISO_15 13
{ "iso-8859-15", ENC_8BIT + ENC_LATIN9, 0 },
#define IDX_KOI8_R 14
{ "koi8-r", ENC_8BIT, 0 },
#define IDX_KOI8_U 15
{ "koi8-u", ENC_8BIT, 0 },
#define IDX_UTF8 16
{ "utf-8", ENC_UNICODE, 0 },
#define IDX_UCS2 17
{ "ucs-2", ENC_UNICODE + ENC_ENDIAN_B + ENC_2BYTE, 0 },
#define IDX_UCS2LE 18
{ "ucs-2le", ENC_UNICODE + ENC_ENDIAN_L + ENC_2BYTE, 0 },
#define IDX_UTF16 19
{ "utf-16", ENC_UNICODE + ENC_ENDIAN_B + ENC_2WORD, 0 },
#define IDX_UTF16LE 20
{ "utf-16le", ENC_UNICODE + ENC_ENDIAN_L + ENC_2WORD, 0 },
#define IDX_UCS4 21
{ "ucs-4", ENC_UNICODE + ENC_ENDIAN_B + ENC_4BYTE, 0 },
#define IDX_UCS4LE 22
{ "ucs-4le", ENC_UNICODE + ENC_ENDIAN_L + ENC_4BYTE, 0 },
// For debugging DBCS encoding on Unix.
#define IDX_DEBUG 23
{ "debug", ENC_DBCS, DBCS_DEBUG },
#define IDX_EUC_JP 24
{ "euc-jp", ENC_DBCS, DBCS_JPNU },
#define IDX_SJIS 25
{ "sjis", ENC_DBCS, DBCS_JPN },
#define IDX_EUC_KR 26
{ "euc-kr", ENC_DBCS, DBCS_KORU },
#define IDX_EUC_CN 27
{ "euc-cn", ENC_DBCS, DBCS_CHSU },
#define IDX_EUC_TW 28
{ "euc-tw", ENC_DBCS, DBCS_CHTU },
#define IDX_BIG5 29
{ "big5", ENC_DBCS, DBCS_CHT },
// MS-DOS and MS-Windows codepages are included here, so that they can be
// used on Unix too. Most of them are similar to ISO-8859 encodings, but
// not exactly the same.
#define IDX_CP437 30
{ "cp437", ENC_8BIT, 437 }, // like iso-8859-1
#define IDX_CP737 31
{ "cp737", ENC_8BIT, 737 }, // like iso-8859-7
#define IDX_CP775 32
{ "cp775", ENC_8BIT, 775 }, // Baltic
#define IDX_CP850 33
{ "cp850", ENC_8BIT, 850 }, // like iso-8859-4
#define IDX_CP852 34
{ "cp852", ENC_8BIT, 852 }, // like iso-8859-1
#define IDX_CP855 35
{ "cp855", ENC_8BIT, 855 }, // like iso-8859-2
#define IDX_CP857 36
{ "cp857", ENC_8BIT, 857 }, // like iso-8859-5
#define IDX_CP860 37
{ "cp860", ENC_8BIT, 860 }, // like iso-8859-9
#define IDX_CP861 38
{ "cp861", ENC_8BIT, 861 }, // like iso-8859-1
#define IDX_CP862 39
{ "cp862", ENC_8BIT, 862 }, // like iso-8859-1
#define IDX_CP863 40
{ "cp863", ENC_8BIT, 863 }, // like iso-8859-8
#define IDX_CP865 41
{ "cp865", ENC_8BIT, 865 }, // like iso-8859-1
#define IDX_CP866 42
{ "cp866", ENC_8BIT, 866 }, // like iso-8859-5
#define IDX_CP869 43
{ "cp869", ENC_8BIT, 869 }, // like iso-8859-7
#define IDX_CP874 44
{ "cp874", ENC_8BIT, 874 }, // Thai
#define IDX_CP932 45
{ "cp932", ENC_DBCS, DBCS_JPN },
#define IDX_CP936 46
{ "cp936", ENC_DBCS, DBCS_CHS },
#define IDX_CP949 47
{ "cp949", ENC_DBCS, DBCS_KOR },
#define IDX_CP950 48
{ "cp950", ENC_DBCS, DBCS_CHT },
#define IDX_CP1250 49
{ "cp1250", ENC_8BIT, 1250 }, // Czech, Polish, etc.
#define IDX_CP1251 50
{ "cp1251", ENC_8BIT, 1251 }, // Cyrillic
// cp1252 is considered to be equal to latin1
#define IDX_CP1253 51
{ "cp1253", ENC_8BIT, 1253 }, // Greek
#define IDX_CP1254 52
{ "cp1254", ENC_8BIT, 1254 }, // Turkish
#define IDX_CP1255 53
{ "cp1255", ENC_8BIT, 1255 }, // Hebrew
#define IDX_CP1256 54
{ "cp1256", ENC_8BIT, 1256 }, // Arabic
#define IDX_CP1257 55
{ "cp1257", ENC_8BIT, 1257 }, // Baltic
#define IDX_CP1258 56
{ "cp1258", ENC_8BIT, 1258 }, // Vietnamese
#define IDX_MACROMAN 57
{ "macroman", ENC_8BIT + ENC_MACROMAN, 0 }, // Mac OS
#define IDX_HPROMAN8 58
{ "hp-roman8", ENC_8BIT, 0 }, // HP Roman8
#define IDX_COUNT 59
};
/*
* Aliases for encoding names.
*/
static struct
{ const char *name; int canon; }
enc_alias_table[] =
{
{ "ansi", IDX_LATIN_1 },
{ "iso-8859-1", IDX_LATIN_1 },
{ "latin2", IDX_ISO_2 },
{ "latin3", IDX_ISO_3 },
{ "latin4", IDX_ISO_4 },
{ "cyrillic", IDX_ISO_5 },
{ "arabic", IDX_ISO_6 },
{ "greek", IDX_ISO_7 },
{ "hebrew", IDX_ISO_8 },
{ "latin5", IDX_ISO_9 },
{ "turkish", IDX_ISO_9 }, // ?
{ "latin6", IDX_ISO_10 },
{ "nordic", IDX_ISO_10 }, // ?
{ "thai", IDX_ISO_11 }, // ?
{ "latin7", IDX_ISO_13 },
{ "latin8", IDX_ISO_14 },
{ "latin9", IDX_ISO_15 },
{ "utf8", IDX_UTF8 },
{ "unicode", IDX_UCS2 },
{ "ucs2", IDX_UCS2 },
{ "ucs2be", IDX_UCS2 },
{ "ucs-2be", IDX_UCS2 },
{ "ucs2le", IDX_UCS2LE },
{ "utf16", IDX_UTF16 },
{ "utf16be", IDX_UTF16 },
{ "utf-16be", IDX_UTF16 },
{ "utf16le", IDX_UTF16LE },
{ "ucs4", IDX_UCS4 },
{ "ucs4be", IDX_UCS4 },
{ "ucs-4be", IDX_UCS4 },
{ "ucs4le", IDX_UCS4LE },
{ "utf32", IDX_UCS4 },
{ "utf-32", IDX_UCS4 },
{ "utf32be", IDX_UCS4 },
{ "utf-32be", IDX_UCS4 },
{ "utf32le", IDX_UCS4LE },
{ "utf-32le", IDX_UCS4LE },
{ "932", IDX_CP932 },
{ "949", IDX_CP949 },
{ "936", IDX_CP936 },
{ "gbk", IDX_CP936 },
{ "950", IDX_CP950 },
{ "eucjp", IDX_EUC_JP },
{ "unix-jis", IDX_EUC_JP },
{ "ujis", IDX_EUC_JP },
{ "shift-jis", IDX_SJIS },
{ "pck", IDX_SJIS }, // Sun: PCK
{ "euckr", IDX_EUC_KR },
{ "5601", IDX_EUC_KR }, // Sun: KS C 5601
{ "euccn", IDX_EUC_CN },
{ "gb2312", IDX_EUC_CN },
{ "euctw", IDX_EUC_TW },
{ "japan", IDX_EUC_JP },
{ "korea", IDX_EUC_KR },
{ "prc", IDX_EUC_CN },
{ "zh-cn", IDX_EUC_CN },
{ "chinese", IDX_EUC_CN },
{ "zh-tw", IDX_EUC_TW },
{ "taiwan", IDX_EUC_TW },
{ "cp950", IDX_BIG5 },
{ "950", IDX_BIG5 },
{ "mac", IDX_MACROMAN },
{ "mac-roman", IDX_MACROMAN },
{ NULL, 0 }
};
/*
* Find encoding "name" in the list of canonical encoding names.
* Returns -1 if not found.
*/
static int enc_canon_search(const char_u *name)
FUNC_ATTR_PURE
{
for (int i = 0; i < IDX_COUNT; i++) {
if (STRCMP(name, enc_canon_table[i].name) == 0) {
return i;
}
}
return -1;
}
/*
* Find canonical encoding "name" in the list and return its properties.
* Returns 0 if not found.
*/
int enc_canon_props(const char_u *name)
FUNC_ATTR_PURE
{
int i = enc_canon_search(name);
if (i >= 0) {
return enc_canon_table[i].prop;
} else if (STRNCMP(name, "2byte-", 6) == 0) {
return ENC_DBCS;
} else if (STRNCMP(name, "8bit-", 5) == 0 || STRNCMP(name, "iso-8859-", 9) == 0) {
return ENC_8BIT;
}
return 0;
}
/*
* Return the size of the BOM for the current buffer:
* 0 - no BOM
* 2 - UCS-2 or UTF-16 BOM
* 4 - UCS-4 BOM
* 3 - UTF-8 BOM
*/
int bomb_size(void)
FUNC_ATTR_PURE
{
int n = 0;
if (curbuf->b_p_bomb && !curbuf->b_p_bin) {
if (*curbuf->b_p_fenc == NUL
|| STRCMP(curbuf->b_p_fenc, "utf-8") == 0) {
n = 3;
} else if (STRNCMP(curbuf->b_p_fenc, "ucs-2", 5) == 0
|| STRNCMP(curbuf->b_p_fenc, "utf-16", 6) == 0) {
n = 2;
} else if (STRNCMP(curbuf->b_p_fenc, "ucs-4", 5) == 0) {
n = 4;
}
}
return n;
}
/*
* Remove all BOM from "s" by moving remaining text.
*/
void remove_bom(char_u *s)
{
char *p = (char *)s;
while ((p = strchr(p, 0xef)) != NULL) {
if ((uint8_t)p[1] == 0xbb && (uint8_t)p[2] == 0xbf) {
STRMOVE(p, p + 3);
} else {
p++;
}
}
}
/*
* Get class of pointer:
* 0 for blank or NUL
* 1 for punctuation
* 2 for an (ASCII) word character
* >2 for other word characters
*/
int mb_get_class(const char_u *p)
FUNC_ATTR_PURE
{
return mb_get_class_tab(p, curbuf->b_chartab);
}
int mb_get_class_tab(const char_u *p, const uint64_t *const chartab)
FUNC_ATTR_PURE
{
if (MB_BYTE2LEN(p[0]) == 1) {
if (p[0] == NUL || ascii_iswhite(p[0])) {
return 0;
}
if (vim_iswordc_tab(p[0], chartab)) {
return 2;
}
return 1;
}
return utf_class_tab(utf_ptr2char((char *)p), chartab);
}
/*
* Return true if "c" is in "table".
*/
static bool intable(const struct interval *table, size_t n_items, int c)
FUNC_ATTR_PURE
{
int mid, bot, top;
// first quick check for Latin1 etc. characters
if (c < table[0].first) {
return false;
}
// binary search in table
bot = 0;
top = (int)(n_items - 1);
while (top >= bot) {
mid = (bot + top) / 2;
if (table[mid].last < c) {
bot = mid + 1;
} else if (table[mid].first > c) {
top = mid - 1;
} else {
return true;
}
}
return false;
}
/// For UTF-8 character "c" return 2 for a double-width character, 1 for others.
/// Returns 4 or 6 for an unprintable character.
/// Is only correct for characters >= 0x80.
/// When p_ambw is "double", return 2 for a character with East Asian Width
/// class 'A'(mbiguous).
///
/// @note Tables `doublewidth` and `ambiguous` are generated by
/// gen_unicode_tables.lua, which must be manually invoked as needed.
int utf_char2cells(int c)
{
if (c >= 0x100) {
int n = cw_value(c);
if (n != 0) {
return n;
}
if (!utf_printable(c)) {
return 6; // unprintable, displays <xxxx>
}
if (intable(doublewidth, ARRAY_SIZE(doublewidth), c)) {
return 2;
}
if (p_emoji && intable(emoji_wide, ARRAY_SIZE(emoji_wide), c)) {
return 2;
}
} else if (c >= 0x80 && !vim_isprintc(c)) {
// Characters below 0x100 are influenced by 'isprint' option.
return 4; // unprintable, displays <xx>
}
if (c >= 0x80 && *p_ambw == 'd'
&& intable(ambiguous, ARRAY_SIZE(ambiguous), c)) {
return 2;
}
return 1;
}
/// Return the number of display cells character at "*p" occupies.
/// This doesn't take care of unprintable characters, use ptr2cells() for that.
int utf_ptr2cells(const char *p)
{
int c;
// Need to convert to a character number.
if ((uint8_t)(*p) >= 0x80) {
c = utf_ptr2char(p);
// An illegal byte is displayed as <xx>.
if (utf_ptr2len(p) == 1 || c == NUL) {
return 4;
}
// If the char is ASCII it must be an overlong sequence.
if (c < 0x80) {
return char2cells(c);
}
return utf_char2cells(c);
}
return 1;
}
/// Like utf_ptr2cells(), but limit string length to "size".
/// For an empty string or truncated character returns 1.
int utf_ptr2cells_len(const char_u *p, int size)
{
int c;
// Need to convert to a wide character.
if (size > 0 && *p >= 0x80) {
if (utf_ptr2len_len(p, size) < utf8len_tab[*p]) {
return 1; // truncated
}
c = utf_ptr2char((char *)p);
// An illegal byte is displayed as <xx>.
if (utf_ptr2len((char *)p) == 1 || c == NUL) {
return 4;
}
// If the char is ASCII it must be an overlong sequence.
if (c < 0x80) {
return char2cells(c);
}
return utf_char2cells(c);
}
return 1;
}
/// Calculate the number of cells occupied by string `str`.
///
/// @param str The source string, may not be NULL, must be a NUL-terminated
/// string.
/// @return The number of cells occupied by string `str`
size_t mb_string2cells(const char *str)
{
size_t clen = 0;
for (const char_u *p = (char_u *)str; *p != NUL; p += utfc_ptr2len((char *)p)) {
clen += (size_t)utf_ptr2cells((char *)p);
}
return clen;
}
/// Get the number of cells occupied by string `str` with maximum length `size`
///
/// @param str The source string, may not be NULL, must be a NUL-terminated
/// string.
/// @param size maximum length of string. It will terminate on earlier NUL.
/// @return The number of cells occupied by string `str`
size_t mb_string2cells_len(const char *str, size_t size)
FUNC_ATTR_NONNULL_ARG(1)
{
size_t clen = 0;
for (const char_u *p = (char_u *)str; *p != NUL && p < (char_u *)str + size;
p += utfc_ptr2len_len(p, (int)size + (int)(p - (char_u *)str))) {
clen += (size_t)utf_ptr2cells((char *)p);
}
return clen;
}
/// Convert a UTF-8 byte sequence to a character number.
///
/// If the sequence is illegal or truncated by a NUL then the first byte is
/// returned.
/// For an overlong sequence this may return zero.
/// Does not include composing characters for obvious reasons.
///
/// @param[in] p String to convert.
///
/// @return Unicode codepoint or byte value.
int utf_ptr2char(const char *const p_in)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
uint8_t *p = (uint8_t *)p_in;
if (p[0] < 0x80) { // Be quick for ASCII.
return p[0];
}
const uint8_t len = utf8len_tab_zero[p[0]];
if (len > 1 && (p[1] & 0xc0) == 0x80) {
if (len == 2) {
return ((p[0] & 0x1f) << 6) + (p[1] & 0x3f);
}
if ((p[2] & 0xc0) == 0x80) {
if (len == 3) {
return (((p[0] & 0x0f) << 12) + ((p[1] & 0x3f) << 6)
+ (p[2] & 0x3f));
}
if ((p[3] & 0xc0) == 0x80) {
if (len == 4) {
return (((p[0] & 0x07) << 18) + ((p[1] & 0x3f) << 12)
+ ((p[2] & 0x3f) << 6) + (p[3] & 0x3f));
}
if ((p[4] & 0xc0) == 0x80) {
if (len == 5) {
return (((p[0] & 0x03) << 24) + ((p[1] & 0x3f) << 18)
+ ((p[2] & 0x3f) << 12) + ((p[3] & 0x3f) << 6)
+ (p[4] & 0x3f));
}
if ((p[5] & 0xc0) == 0x80 && len == 6) {
return (((p[0] & 0x01) << 30) + ((p[1] & 0x3f) << 24)
+ ((p[2] & 0x3f) << 18) + ((p[3] & 0x3f) << 12)
+ ((p[4] & 0x3f) << 6) + (p[5] & 0x3f));
}
}
}
}
}
// Illegal value: just return the first byte.
return p[0];
}
/*
* Convert a UTF-8 byte sequence to a wide character.
* String is assumed to be terminated by NUL or after "n" bytes, whichever
* comes first.
* The function is safe in the sense that it never accesses memory beyond the
* first "n" bytes of "s".
*
* On success, returns decoded codepoint, advances "s" to the beginning of
* next character and decreases "n" accordingly.
*
* If end of string was reached, returns 0 and, if "n" > 0, advances "s" past
* NUL byte.
*
* If byte sequence is illegal or incomplete, returns -1 and does not advance
* "s".
*/
static int utf_safe_read_char_adv(const char_u **s, size_t *n)
{
int c;
if (*n == 0) { // end of buffer
return 0;
}
uint8_t k = utf8len_tab_zero[**s];
if (k == 1) {
// ASCII character or NUL
(*n)--;
return *(*s)++;
}
if (k <= *n) {
// We have a multibyte sequence and it isn't truncated by buffer
// limits so utf_ptr2char() is safe to use. Or the first byte is
// illegal (k=0), and it's also safe to use utf_ptr2char().
c = utf_ptr2char((char *)(*s));
// On failure, utf_ptr2char() returns the first byte, so here we
// check equality with the first byte. The only non-ASCII character
// which equals the first byte of its own UTF-8 representation is
// U+00C3 (UTF-8: 0xC3 0x83), so need to check that special case too.
// It's safe even if n=1, else we would have k=2 > n.
if (c != (int)(**s) || (c == 0xC3 && (*s)[1] == 0x83)) {
// byte sequence was successfully decoded
*s += k;
*n -= k;
return c;
}
}
// byte sequence is incomplete or illegal
return -1;
}
/*
* Get character at **pp and advance *pp to the next character.
* Note: composing characters are skipped!
*/
int mb_ptr2char_adv(const char_u **const pp)
{
int c;
c = utf_ptr2char((char *)(*pp));
*pp += utfc_ptr2len((char *)(*pp));
return c;
}
/*
* Get character at **pp and advance *pp to the next character.
* Note: composing characters are returned as separate characters.
*/
int mb_cptr2char_adv(const char_u **pp)
{
int c;
c = utf_ptr2char((char *)(*pp));
*pp += utf_ptr2len((char *)(*pp));
return c;
}
/*
* Check if the character pointed to by "p2" is a composing character when it
* comes after "p1". For Arabic sometimes "ab" is replaced with "c", which
* behaves like a composing character.
*/
bool utf_composinglike(const char_u *p1, const char_u *p2)
{
int c2;
c2 = utf_ptr2char((char *)p2);
if (utf_iscomposing(c2)) {
return true;
}
if (!arabic_maycombine(c2)) {
return false;
}
return arabic_combine(utf_ptr2char((char *)p1), c2);
}
/// Convert a UTF-8 string to a wide character
///
/// Also gets up to #MAX_MCO composing characters.
///
/// @param[out] pcc Location where to store composing characters. Must have
/// space at least for #MAX_MCO + 1 elements.
///
/// @return leading character.
int utfc_ptr2char(const char_u *p, int *pcc)
{
int len;
int c;
int cc;
int i = 0;
c = utf_ptr2char((char *)p);
len = utf_ptr2len((char *)p);
// Only accept a composing char when the first char isn't illegal.
if ((len > 1 || *p < 0x80)
&& p[len] >= 0x80
&& utf_composinglike(p, p + len)) {
cc = utf_ptr2char((char *)p + len);
for (;;) {
pcc[i++] = cc;
if (i == MAX_MCO) {
break;
}
len += utf_ptr2len((char *)p + len);
if (p[len] < 0x80 || !utf_iscomposing(cc = utf_ptr2char((char *)p + len))) {
break;
}
}
}
if (i < MAX_MCO) { // last composing char must be 0
pcc[i] = 0;
}
return c;
}
/*
* Convert a UTF-8 byte string to a wide character. Also get up to MAX_MCO
* composing characters. Use no more than p[maxlen].
*
* @param [out] pcc: composing chars, last one is 0
*/
int utfc_ptr2char_len(const char_u *p, int *pcc, int maxlen)
{
assert(maxlen > 0);
int i = 0;
int len = utf_ptr2len_len(p, maxlen);
// Is it safe to use utf_ptr2char()?
bool safe = len > 1 && len <= maxlen;
int c = safe ? utf_ptr2char((char *)p) : *p;
// Only accept a composing char when the first char isn't illegal.
if ((safe || c < 0x80) && len < maxlen && p[len] >= 0x80) {
for (; i < MAX_MCO; i++) {
int len_cc = utf_ptr2len_len(p + len, maxlen - len);
safe = len_cc > 1 && len_cc <= maxlen - len;
if (!safe || (pcc[i] = utf_ptr2char((char *)p + len)) < 0x80
|| !(i == 0 ? utf_composinglike(p, p + len) : utf_iscomposing(pcc[i]))) {
break;
}
len += len_cc;
}
}
if (i < MAX_MCO) {
// last composing char must be 0
pcc[i] = 0;
}
return c;
#undef ISCOMPOSING
}
/// Get the length of a UTF-8 byte sequence representing a single codepoint
///
/// @param[in] p UTF-8 string.
///
/// @return Sequence length, 0 for empty string and 1 for non-UTF-8 byte
/// sequence.
int utf_ptr2len(const char *const p_in)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
uint8_t *p = (uint8_t *)p_in;
if (*p == NUL) {
return 0;
}
const int len = utf8len_tab[*p];
for (int i = 1; i < len; i++) {
if ((p[i] & 0xc0) != 0x80) {
return 1;
}
}
return len;
}
/*
* Return length of UTF-8 character, obtained from the first byte.
* "b" must be between 0 and 255!
* Returns 1 for an invalid first byte value.
*/
int utf_byte2len(int b)
{
return utf8len_tab[b];
}
/*
* Get the length of UTF-8 byte sequence "p[size]". Does not include any
* following composing characters.
* Returns 1 for "".
* Returns 1 for an illegal byte sequence (also in incomplete byte seq.).
* Returns number > "size" for an incomplete byte sequence.
* Never returns zero.
*/
int utf_ptr2len_len(const char_u *p, int size)
{
int len;
int i;
int m;
len = utf8len_tab[*p];
if (len == 1) {
return 1; // NUL, ascii or illegal lead byte
}
if (len > size) {
m = size; // incomplete byte sequence.
} else {
m = len;
}
for (i = 1; i < m; ++i) {
if ((p[i] & 0xc0) != 0x80) {
return 1;
}
}
return len;
}
/// Return the number of bytes occupied by a UTF-8 character in a string
///
/// This includes following composing characters.
int utfc_ptr2len(const char *const p_in)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
uint8_t *p = (uint8_t *)p_in;
uint8_t b0 = *p;
if (b0 == NUL) {
return 0;
}
if (b0 < 0x80 && p[1] < 0x80) { // be quick for ASCII
return 1;
}
// Skip over first UTF-8 char, stopping at a NUL byte.
int len = utf_ptr2len((char *)p);
// Check for illegal byte.
if (len == 1 && b0 >= 0x80) {
return 1;
}
// Check for composing characters. We can handle only the first six, but
// skip all of them (otherwise the cursor would get stuck).
int prevlen = 0;
for (;;) {
if (p[len] < 0x80 || !utf_composinglike(p + prevlen, p + len)) {
return len;
}
// Skip over composing char.
prevlen = len;
len += utf_ptr2len((char *)p + len);
}
}
/*
* Return the number of bytes the UTF-8 encoding of the character at "p[size]"
* takes. This includes following composing characters.
* Returns 0 for an empty string.
* Returns 1 for an illegal char or an incomplete byte sequence.
*/
int utfc_ptr2len_len(const char_u *p, int size)
{
int len;
int prevlen;
if (size < 1 || *p == NUL) {
return 0;
}
if (p[0] < 0x80 && (size == 1 || p[1] < 0x80)) { // be quick for ASCII
return 1;
}
// Skip over first UTF-8 char, stopping at a NUL byte.
len = utf_ptr2len_len(p, size);
// Check for illegal byte and incomplete byte sequence.
if ((len == 1 && p[0] >= 0x80) || len > size) {
return 1;
}
/*
* Check for composing characters. We can handle only the first six, but
* skip all of them (otherwise the cursor would get stuck).
*/
prevlen = 0;
while (len < size) {
int len_next_char;
if (p[len] < 0x80) {
break;
}
/*
* Next character length should not go beyond size to ensure that
* utf_composinglike(...) does not read beyond size.
*/
len_next_char = utf_ptr2len_len(p + len, size - len);
if (len_next_char > size - len) {
break;
}
if (!utf_composinglike(p + prevlen, p + len)) {
break;
}
// Skip over composing char
prevlen = len;
len += len_next_char;
}
return len;
}
/// Determine how many bytes certain unicode codepoint will occupy
int utf_char2len(const int c)
{
if (c < 0x80) {
return 1;
} else if (c < 0x800) {
return 2;
} else if (c < 0x10000) {
return 3;
} else if (c < 0x200000) {
return 4;
} else if (c < 0x4000000) {
return 5;
} else {
return 6;
}
}
/// Convert Unicode character to UTF-8 string
///
/// @param c character to convert to \p buf
/// @param[out] buf UTF-8 string generated from \p c, does not add \0
/// @return Number of bytes (1-6).
int utf_char2bytes(const int c, char *const buf)
{
if (c < 0x80) { // 7 bits
buf[0] = (char)c;
return 1;
} else if (c < 0x800) { // 11 bits
buf[0] = (char)(0xc0 + ((unsigned)c >> 6));
buf[1] = (char)(0x80 + ((unsigned)c & 0x3f));
return 2;
} else if (c < 0x10000) { // 16 bits
buf[0] = (char)(0xe0 + ((unsigned)c >> 12));
buf[1] = (char)(0x80 + (((unsigned)c >> 6) & 0x3f));
buf[2] = (char)(0x80 + ((unsigned)c & 0x3f));
return 3;
} else if (c < 0x200000) { // 21 bits
buf[0] = (char)(0xf0 + ((unsigned)c >> 18));
buf[1] = (char)(0x80 + (((unsigned)c >> 12) & 0x3f));
buf[2] = (char)(0x80 + (((unsigned)c >> 6) & 0x3f));
buf[3] = (char)(0x80 + ((unsigned)c & 0x3f));
return 4;
} else if (c < 0x4000000) { // 26 bits
buf[0] = (char)(0xf8 + ((unsigned)c >> 24));
buf[1] = (char)(0x80 + (((unsigned)c >> 18) & 0x3f));
buf[2] = (char)(0x80 + (((unsigned)c >> 12) & 0x3f));
buf[3] = (char)(0x80 + (((unsigned)c >> 6) & 0x3f));
buf[4] = (char)(0x80 + ((unsigned)c & 0x3f));
return 5;
} else { // 31 bits
buf[0] = (char)(0xfc + ((unsigned)c >> 30));
buf[1] = (char)(0x80 + (((unsigned)c >> 24) & 0x3f));
buf[2] = (char)(0x80 + (((unsigned)c >> 18) & 0x3f));
buf[3] = (char)(0x80 + (((unsigned)c >> 12) & 0x3f));
buf[4] = (char)(0x80 + (((unsigned)c >> 6) & 0x3f));
buf[5] = (char)(0x80 + ((unsigned)c & 0x3f));
return 6;
}
}
/*
* Return true if "c" is a composing UTF-8 character. This means it will be
* drawn on top of the preceding character.
* Based on code from Markus Kuhn.
*/
bool utf_iscomposing(int c)
{
return intable(combining, ARRAY_SIZE(combining), c);
}
/*
* Return true for characters that can be displayed in a normal way.
* Only for characters of 0x100 and above!
*/
bool utf_printable(int c)
{
// Sorted list of non-overlapping intervals.
// 0xd800-0xdfff is reserved for UTF-16, actually illegal.
static struct interval nonprint[] =
{
{ 0x070f, 0x070f }, { 0x180b, 0x180e }, { 0x200b, 0x200f }, { 0x202a, 0x202e },
{ 0x2060, 0x206f }, { 0xd800, 0xdfff }, { 0xfeff, 0xfeff }, { 0xfff9, 0xfffb },
{ 0xfffe, 0xffff }
};
return !intable(nonprint, ARRAY_SIZE(nonprint), c);
}
/*
* Get class of a Unicode character.
* 0: white space
* 1: punctuation
* 2 or bigger: some class of word character.
*/
int utf_class(const int c)
{
return utf_class_tab(c, curbuf->b_chartab);
}
int utf_class_tab(const int c, const uint64_t *const chartab)
FUNC_ATTR_PURE
{
// sorted list of non-overlapping intervals
static struct clinterval {
unsigned int first;
unsigned int last;
unsigned int class;
} classes[] = {
{ 0x037e, 0x037e, 1 }, // Greek question mark
{ 0x0387, 0x0387, 1 }, // Greek ano teleia
{ 0x055a, 0x055f, 1 }, // Armenian punctuation
{ 0x0589, 0x0589, 1 }, // Armenian full stop
{ 0x05be, 0x05be, 1 },
{ 0x05c0, 0x05c0, 1 },
{ 0x05c3, 0x05c3, 1 },
{ 0x05f3, 0x05f4, 1 },
{ 0x060c, 0x060c, 1 },
{ 0x061b, 0x061b, 1 },
{ 0x061f, 0x061f, 1 },
{ 0x066a, 0x066d, 1 },
{ 0x06d4, 0x06d4, 1 },
{ 0x0700, 0x070d, 1 }, // Syriac punctuation
{ 0x0964, 0x0965, 1 },
{ 0x0970, 0x0970, 1 },
{ 0x0df4, 0x0df4, 1 },
{ 0x0e4f, 0x0e4f, 1 },
{ 0x0e5a, 0x0e5b, 1 },
{ 0x0f04, 0x0f12, 1 },
{ 0x0f3a, 0x0f3d, 1 },
{ 0x0f85, 0x0f85, 1 },
{ 0x104a, 0x104f, 1 }, // Myanmar punctuation
{ 0x10fb, 0x10fb, 1 }, // Georgian punctuation
{ 0x1361, 0x1368, 1 }, // Ethiopic punctuation
{ 0x166d, 0x166e, 1 }, // Canadian Syl. punctuation
{ 0x1680, 0x1680, 0 },
{ 0x169b, 0x169c, 1 },
{ 0x16eb, 0x16ed, 1 },
{ 0x1735, 0x1736, 1 },
{ 0x17d4, 0x17dc, 1 }, // Khmer punctuation
{ 0x1800, 0x180a, 1 }, // Mongolian punctuation
{ 0x2000, 0x200b, 0 }, // spaces
{ 0x200c, 0x2027, 1 }, // punctuation and symbols
{ 0x2028, 0x2029, 0 },
{ 0x202a, 0x202e, 1 }, // punctuation and symbols
{ 0x202f, 0x202f, 0 },
{ 0x2030, 0x205e, 1 }, // punctuation and symbols
{ 0x205f, 0x205f, 0 },
{ 0x2060, 0x27ff, 1 }, // punctuation and symbols
{ 0x2070, 0x207f, 0x2070 }, // superscript
{ 0x2080, 0x2094, 0x2080 }, // subscript
{ 0x20a0, 0x27ff, 1 }, // all kinds of symbols
{ 0x2800, 0x28ff, 0x2800 }, // braille
{ 0x2900, 0x2998, 1 }, // arrows, brackets, etc.
{ 0x29d8, 0x29db, 1 },
{ 0x29fc, 0x29fd, 1 },
{ 0x2e00, 0x2e7f, 1 }, // supplemental punctuation
{ 0x3000, 0x3000, 0 }, // ideographic space
{ 0x3001, 0x3020, 1 }, // ideographic punctuation
{ 0x3030, 0x3030, 1 },
{ 0x303d, 0x303d, 1 },
{ 0x3040, 0x309f, 0x3040 }, // Hiragana
{ 0x30a0, 0x30ff, 0x30a0 }, // Katakana
{ 0x3300, 0x9fff, 0x4e00 }, // CJK Ideographs
{ 0xac00, 0xd7a3, 0xac00 }, // Hangul Syllables
{ 0xf900, 0xfaff, 0x4e00 }, // CJK Ideographs
{ 0xfd3e, 0xfd3f, 1 },
{ 0xfe30, 0xfe6b, 1 }, // punctuation forms
{ 0xff00, 0xff0f, 1 }, // half/fullwidth ASCII
{ 0xff1a, 0xff20, 1 }, // half/fullwidth ASCII
{ 0xff3b, 0xff40, 1 }, // half/fullwidth ASCII
{ 0xff5b, 0xff65, 1 }, // half/fullwidth ASCII
{ 0x1d000, 0x1d24f, 1 }, // Musical notation
{ 0x1d400, 0x1d7ff, 1 }, // Mathematical Alphanumeric Symbols
{ 0x1f000, 0x1f2ff, 1 }, // Game pieces; enclosed characters
{ 0x1f300, 0x1f9ff, 1 }, // Many symbol blocks
{ 0x20000, 0x2a6df, 0x4e00 }, // CJK Ideographs
{ 0x2a700, 0x2b73f, 0x4e00 }, // CJK Ideographs
{ 0x2b740, 0x2b81f, 0x4e00 }, // CJK Ideographs
{ 0x2f800, 0x2fa1f, 0x4e00 }, // CJK Ideographs
};
int bot = 0;
int top = ARRAY_SIZE(classes) - 1;
int mid;
// First quick check for Latin1 characters, use 'iskeyword'.
if (c < 0x100) {
if (c == ' ' || c == '\t' || c == NUL || c == 0xa0) {
return 0; // blank
}
if (vim_iswordc_tab(c, chartab)) {
return 2; // word character
}
return 1; // punctuation
}
// emoji
if (intable(emoji_all, ARRAY_SIZE(emoji_all), c)) {
return 3;
}
// binary search in table
while (top >= bot) {
mid = (bot + top) / 2;
if (classes[mid].last < (unsigned int)c) {
bot = mid + 1;
} else if (classes[mid].first > (unsigned int)c) {
top = mid - 1;
} else {
return (int)classes[mid].class;
}
}
// most other characters are "word" characters
return 2;
}
bool utf_ambiguous_width(int c)
{
return c >= 0x80 && (intable(ambiguous, ARRAY_SIZE(ambiguous), c)
|| intable(emoji_all, ARRAY_SIZE(emoji_all), c));
}
/*
* Generic conversion function for case operations.
* Return the converted equivalent of "a", which is a UCS-4 character. Use
* the given conversion "table". Uses binary search on "table".
*/
static int utf_convert(int a, const convertStruct *const table, size_t n_items)
{
size_t start, mid, end; // indices into table
start = 0;
end = n_items;
while (start < end) {
// need to search further
mid = (end + start) / 2;
if (table[mid].rangeEnd < a) {
start = mid + 1;
} else {
end = mid;
}
}
if (start < n_items
&& table[start].rangeStart <= a
&& a <= table[start].rangeEnd
&& (a - table[start].rangeStart) % table[start].step == 0) {
return a + table[start].offset;
} else {
return a;
}
}
/*
* Return the folded-case equivalent of "a", which is a UCS-4 character. Uses
* simple case folding.
*/
int utf_fold(int a)
{
if (a < 0x80) {
// be fast for ASCII
return a >= 0x41 && a <= 0x5a ? a + 32 : a;
}
return utf_convert(a, foldCase, ARRAY_SIZE(foldCase));
}
// Vim's own character class functions. These exist because many library
// islower()/toupper() etc. do not work properly: they crash when used with
// invalid values or can't handle latin1 when the locale is C.
// Speed is most important here.
/// Return the upper-case equivalent of "a", which is a UCS-4 character. Use
/// simple case folding.
int mb_toupper(int a)
{
// If 'casemap' contains "keepascii" use ASCII style toupper().
if (a < 128 && (cmp_flags & CMP_KEEPASCII)) {
return TOUPPER_ASC(a);
}
#if defined(__STDC_ISO_10646__)
// If towupper() is available and handles Unicode, use it.
if (!(cmp_flags & CMP_INTERNAL)) {
return (int)towupper((wint_t)a);
}
#endif
// For characters below 128 use locale sensitive toupper().
if (a < 128) {
return TOUPPER_LOC(a);
}
// For any other characters use the above mapping table.
return utf_convert(a, toUpper, ARRAY_SIZE(toUpper));
}
bool mb_islower(int a)
{
// German sharp s is lower case but has no upper case equivalent.
return (mb_toupper(a) != a) || a == 0xdf;
}
/// Return the lower-case equivalent of "a", which is a UCS-4 character. Use
/// simple case folding.
int mb_tolower(int a)
{
// If 'casemap' contains "keepascii" use ASCII style tolower().
if (a < 128 && (cmp_flags & CMP_KEEPASCII)) {
return TOLOWER_ASC(a);
}
#if defined(__STDC_ISO_10646__)
// If towlower() is available and handles Unicode, use it.
if (!(cmp_flags & CMP_INTERNAL)) {
return (int)towlower((wint_t)a);
}
#endif
// For characters below 128 use locale sensitive tolower().
if (a < 128) {
return TOLOWER_LOC(a);
}
// For any other characters use the above mapping table.
return utf_convert(a, toLower, ARRAY_SIZE(toLower));
}
bool mb_isupper(int a)
{
return mb_tolower(a) != a;
}
bool mb_isalpha(int a)
FUNC_ATTR_WARN_UNUSED_RESULT
{
return mb_islower(a) || mb_isupper(a);
}
static int utf_strnicmp(const char_u *s1, const char_u *s2, size_t n1, size_t n2)
{
int c1, c2, cdiff;
char buffer[6];
for (;;) {
c1 = utf_safe_read_char_adv(&s1, &n1);
c2 = utf_safe_read_char_adv(&s2, &n2);
if (c1 <= 0 || c2 <= 0) {
break;
}
if (c1 == c2) {
continue;
}
cdiff = utf_fold(c1) - utf_fold(c2);
if (cdiff != 0) {
return cdiff;
}
}
// some string ended or has an incomplete/illegal character sequence
if (c1 == 0 || c2 == 0) {
// some string ended. shorter string is smaller
if (c1 == 0 && c2 == 0) {
return 0;
}
return c1 == 0 ? -1 : 1;
}
// Continue with bytewise comparison to produce some result that
// would make comparison operations involving this function transitive.
//
// If only one string had an error, comparison should be made with
// folded version of the other string. In this case it is enough
// to fold just one character to determine the result of comparison.
if (c1 != -1 && c2 == -1) {
n1 = (size_t)utf_char2bytes(utf_fold(c1), (char *)buffer);
s1 = (char_u *)buffer;
} else if (c2 != -1 && c1 == -1) {
n2 = (size_t)utf_char2bytes(utf_fold(c2), (char *)buffer);
s2 = (char_u *)buffer;
}
while (n1 > 0 && n2 > 0 && *s1 != NUL && *s2 != NUL) {
cdiff = (int)(*s1) - (int)(*s2);
if (cdiff != 0) {
return cdiff;
}
s1++;
s2++;
n1--;
n2--;
}
if (n1 > 0 && *s1 == NUL) {
n1 = 0;
}
if (n2 > 0 && *s2 == NUL) {
n2 = 0;
}
if (n1 == 0 && n2 == 0) {
return 0;
}
return n1 == 0 ? -1 : 1;
}
#ifdef WIN32
# ifndef CP_UTF8
# define CP_UTF8 65001 // magic number from winnls.h
# endif
/// Converts string from UTF-8 to UTF-16.
///
/// @param utf8 UTF-8 string.
/// @param utf8len Length of `utf8`. May be -1 if `utf8` is NUL-terminated.
/// @param utf16[out,allocated] NUL-terminated UTF-16 string, or NULL on error
/// @return 0 on success, or libuv error code
int utf8_to_utf16(const char *utf8, int utf8len, wchar_t **utf16)
FUNC_ATTR_NONNULL_ALL
{
// Compute the length needed for the converted UTF-16 string.
int bufsize = MultiByteToWideChar(CP_UTF8,
0, // dwFlags: must be 0 for UTF-8
utf8, // -1: process up to NUL
utf8len,
NULL,
0); // 0: get length, don't convert
if (bufsize == 0) {
*utf16 = NULL;
return uv_translate_sys_error(GetLastError());
}
// Allocate the destination buffer adding an extra byte for the terminating
// NULL. If `utf8len` is not -1 MultiByteToWideChar will not add it, so
// we do it ourselves always, just in case.
*utf16 = xmalloc(sizeof(wchar_t) * (bufsize + 1));
// Convert to UTF-16.
bufsize = MultiByteToWideChar(CP_UTF8, 0, utf8, utf8len, *utf16, bufsize);
if (bufsize == 0) {
XFREE_CLEAR(*utf16);
return uv_translate_sys_error(GetLastError());
}
(*utf16)[bufsize] = L'\0';
return 0;
}
/// Converts string from UTF-16 to UTF-8.
///
/// @param utf16 UTF-16 string.
/// @param utf16len Length of `utf16`. May be -1 if `utf16` is NUL-terminated.
/// @param utf8[out,allocated] NUL-terminated UTF-8 string, or NULL on error
/// @return 0 on success, or libuv error code
int utf16_to_utf8(const wchar_t *utf16, int utf16len, char **utf8)
FUNC_ATTR_NONNULL_ALL
{
// Compute the space needed for the converted UTF-8 string.
DWORD bufsize = WideCharToMultiByte(CP_UTF8,
0,
utf16,
utf16len,
NULL,
0,
NULL,
NULL);
if (bufsize == 0) {
*utf8 = NULL;
return uv_translate_sys_error(GetLastError());
}
// Allocate the destination buffer adding an extra byte for the terminating
// NULL. If `utf16len` is not -1 WideCharToMultiByte will not add it, so
// we do it ourselves always, just in case.
*utf8 = xmalloc(bufsize + 1);
// Convert to UTF-8.
bufsize = WideCharToMultiByte(CP_UTF8,
0,
utf16,
utf16len,
*utf8,
bufsize,
NULL,
NULL);
if (bufsize == 0) {
XFREE_CLEAR(*utf8);
return uv_translate_sys_error(GetLastError());
}
(*utf8)[bufsize] = '\0';
return 0;
}
#endif
/// Measure the length of a string in corresponding UTF-32 and UTF-16 units.
///
/// Invalid UTF-8 bytes, or embedded surrogates, count as one code point/unit
/// each.
///
/// The out parameters are incremented. This is used to measure the size of
/// a buffer region consisting of multiple line segments.
///
/// @param s the string
/// @param len maximum length (an earlier NUL terminates)
/// @param[out] codepoints incremented with UTF-32 code point size
/// @param[out] codeunits incremented with UTF-16 code unit size
void mb_utflen(const char_u *s, size_t len, size_t *codepoints, size_t *codeunits)
FUNC_ATTR_NONNULL_ALL
{
size_t count = 0, extra = 0;
size_t clen;
for (size_t i = 0; i < len && s[i] != NUL; i += clen) {
clen = (size_t)utf_ptr2len_len(s + i, (int)(len - i));
// NB: gets the byte value of invalid sequence bytes.
// we only care whether the char fits in the BMP or not
int c = (clen > 1) ? utf_ptr2char((char *)s + i) : s[i];
count++;
if (c > 0xFFFF) {
extra++;
}
}
*codepoints += count;
*codeunits += count + extra;
}
ssize_t mb_utf_index_to_bytes(const char_u *s, size_t len, size_t index, bool use_utf16_units)
FUNC_ATTR_NONNULL_ALL
{
size_t count = 0;
size_t clen, i;
if (index == 0) {
return 0;
}
for (i = 0; i < len && s[i] != NUL; i += clen) {
clen = (size_t)utf_ptr2len_len(s + i, (int)(len - i));
// NB: gets the byte value of invalid sequence bytes.
// we only care whether the char fits in the BMP or not
int c = (clen > 1) ? utf_ptr2char((char *)s + i) : s[i];
count++;
if (use_utf16_units && c > 0xFFFF) {
count++;
}
if (count >= index) {
return (ssize_t)(i + clen);
}
}
return -1;
}
/*
* Version of strnicmp() that handles multi-byte characters.
* Needed for Big5, Shift-JIS and UTF-8 encoding. Other DBCS encodings can
* probably use strnicmp(), because there are no ASCII characters in the
* second byte.
* Returns zero if s1 and s2 are equal (ignoring case), the difference between
* two characters otherwise.
*/
int mb_strnicmp(const char_u *s1, const char_u *s2, const size_t nn)
{
return utf_strnicmp(s1, s2, nn, nn);
}
/// Compare strings case-insensitively
///
/// @note We need to call mb_stricmp() even when we aren't dealing with
/// a multi-byte encoding because mb_stricmp() takes care of all ASCII and
/// non-ascii encodings, including characters with umlauts in latin1,
/// etc., while STRICMP() only handles the system locale version, which
/// often does not handle non-ascii properly.
///
/// @param[in] s1 First string to compare, not more then #MAXCOL characters.
/// @param[in] s2 Second string to compare, not more then #MAXCOL characters.
///
/// @return 0 if strings are equal, <0 if s1 < s2, >0 if s1 > s2.
int mb_stricmp(const char *s1, const char *s2)
{
return mb_strnicmp((const char_u *)s1, (const char_u *)s2, MAXCOL);
}
/*
* "g8": show bytes of the UTF-8 char under the cursor. Doesn't matter what
* 'encoding' has been set to.
*/
void show_utf8(void)
{
int len;
int rlen = 0;
char_u *line;
int clen;
int i;
// Get the byte length of the char under the cursor, including composing
// characters.
line = get_cursor_pos_ptr();
len = utfc_ptr2len((char *)line);
if (len == 0) {
msg("NUL");
return;
}
clen = 0;
for (i = 0; i < len; ++i) {
if (clen == 0) {
// start of (composing) character, get its length
if (i > 0) {
STRCPY(IObuff + rlen, "+ ");
rlen += 2;
}
clen = utf_ptr2len((char *)line + i);
}
sprintf((char *)IObuff + rlen, "%02x ",
(line[i] == NL) ? NUL : line[i]); // NUL is stored as NL
--clen;
rlen += (int)STRLEN(IObuff + rlen);
if (rlen > IOSIZE - 20) {
break;
}
}
msg((char *)IObuff);
}
/// Return offset from "p" to the start of a character, including composing characters.
/// "base" must be the start of the string, which must be NUL terminated.
/// If "p" points to the NUL at the end of the string return 0.
/// Returns 0 when already at the first byte of a character.
int utf_head_off(const char_u *base, const char_u *p)
{
int c;
int len;
if (*p < 0x80) { // be quick for ASCII
return 0;
}
// Skip backwards over trailing bytes: 10xx.xxxx
// Skip backwards again if on a composing char.
const char_u *q;
for (q = p;; --q) {
// Move s to the last byte of this char.
const char_u *s;
for (s = q; (s[1] & 0xc0) == 0x80; ++s) {}
// Move q to the first byte of this char.
while (q > base && (*q & 0xc0) == 0x80) {
--q;
}
// Check for illegal sequence. Do allow an illegal byte after where we
// started.
len = utf8len_tab[*q];
if (len != (int)(s - q + 1) && len != (int)(p - q + 1)) {
return 0;
}
if (q <= base) {
break;
}
c = utf_ptr2char((char *)q);
if (utf_iscomposing(c)) {
continue;
}
if (arabic_maycombine(c)) {
// Advance to get a sneak-peak at the next char
const char_u *j = q;
--j;
// Move j to the first byte of this char.
while (j > base && (*j & 0xc0) == 0x80) {
--j;
}
if (arabic_combine(utf_ptr2char((char *)j), c)) {
continue;
}
}
break;
}
return (int)(p - q);
}
// Whether space is NOT allowed before/after 'c'.
bool utf_eat_space(int cc)
FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT
{
return (cc >= 0x2000 && cc <= 0x206F) // General punctuations
|| (cc >= 0x2e00 && cc <= 0x2e7f) // Supplemental punctuations
|| (cc >= 0x3000 && cc <= 0x303f) // CJK symbols and punctuations
|| (cc >= 0xff01 && cc <= 0xff0f) // Full width ASCII punctuations
|| (cc >= 0xff1a && cc <= 0xff20) // ..
|| (cc >= 0xff3b && cc <= 0xff40) // ..
|| (cc >= 0xff5b && cc <= 0xff65); // ..
}
// Whether line break is allowed before "cc".
bool utf_allow_break_before(int cc)
FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT
{
static const int BOL_prohibition_punct[] = {
'!',
'%',
')',
',',
':',
';',
'>',
'?',
']',
'}',
0x2019, // right single quotation mark
0x201d, // ” right double quotation mark
0x2020, // † dagger
0x2021, // ‡ double dagger
0x2026, // … horizontal ellipsis
0x2030, // ‰ per mille sign
0x2031, // ‱ per then thousand sign
0x203c, // ‼ double exclamation mark
0x2047, // ⁇ double question mark
0x2048, // ⁈ question exclamation mark
0x2049, // ⁉ exclamation question mark
0x2103, // ℃ degree celsius
0x2109, // ℉ degree fahrenheit
0x3001, // 、 ideographic comma
0x3002, // 。 ideographic full stop
0x3009, // 〉 right angle bracket
0x300b, // 》 right double angle bracket
0x300d, // 」 right corner bracket
0x300f, // 』 right white corner bracket
0x3011, // 】 right black lenticular bracket
0x3015, // right tortoise shell bracket
0x3017, // 〗 right white lenticular bracket
0x3019, // 〙 right white tortoise shell bracket
0x301b, // 〛 right white square bracket
0xff01, // fullwidth exclamation mark
0xff09, // fullwidth right parenthesis
0xff0c, // fullwidth comma
0xff0e, // fullwidth full stop
0xff1a, // fullwidth colon
0xff1b, // fullwidth semicolon
0xff1f, // fullwidth question mark
0xff3d, // fullwidth right square bracket
0xff5d, // fullwidth right curly bracket
};
int first = 0;
int last = ARRAY_SIZE(BOL_prohibition_punct) - 1;
while (first < last) {
const int mid = (first + last) / 2;
if (cc == BOL_prohibition_punct[mid]) {
return false;
} else if (cc > BOL_prohibition_punct[mid]) {
first = mid + 1;
} else {
last = mid - 1;
}
}
return cc != BOL_prohibition_punct[first];
}
// Whether line break is allowed after "cc".
bool utf_allow_break_after(int cc)
FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT
{
static const int EOL_prohibition_punct[] = {
'(',
'<',
'[',
'`',
'{',
// 0x2014, // — em dash
0x2018, // left single quotation mark
0x201c, // “ left double quotation mark
// 0x2053, // swung dash
0x3008, // 〈 left angle bracket
0x300a, // 《 left double angle bracket
0x300c, // 「 left corner bracket
0x300e, // 『 left white corner bracket
0x3010, // 【 left black lenticular bracket
0x3014, // left tortoise shell bracket
0x3016, // 〖 left white lenticular bracket
0x3018, // 〘 left white tortoise shell bracket
0x301a, // 〚 left white square bracket
0xff08, // fullwidth left parenthesis
0xff3b, // fullwidth left square bracket
0xff5b, // fullwidth left curly bracket
};
int first = 0;
int last = ARRAY_SIZE(EOL_prohibition_punct) - 1;
while (first < last) {
const int mid = (first + last)/2;
if (cc == EOL_prohibition_punct[mid]) {
return false;
} else if (cc > EOL_prohibition_punct[mid]) {
first = mid + 1;
} else {
last = mid - 1;
}
}
return cc != EOL_prohibition_punct[first];
}
// Whether line break is allowed between "cc" and "ncc".
bool utf_allow_break(int cc, int ncc)
FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT
{
// don't break between two-letter punctuations
if (cc == ncc
&& (cc == 0x2014 // em dash
|| cc == 0x2026)) { // horizontal ellipsis
return false;
}
return utf_allow_break_after(cc) && utf_allow_break_before(ncc);
}
/// Copy a character, advancing the pointers
///
/// @param[in,out] fp Source of the character to copy.
/// @param[in,out] tp Destination to copy to.
void mb_copy_char(const char **const fp, char **const tp)
{
const size_t l = (size_t)utfc_ptr2len(*fp);
memmove(*tp, *fp, l);
*tp += l;
*fp += l;
}
/// Return the offset from "p" to the first byte of a character. When "p" is
/// at the start of a character 0 is returned, otherwise the offset to the next
/// character. Can start anywhere in a stream of bytes.
int mb_off_next(const char_u *base, const char_u *p)
{
int i;
int j;
if (*p < 0x80) { // be quick for ASCII
return 0;
}
// Find the next character that isn't 10xx.xxxx
for (i = 0; (p[i] & 0xc0) == 0x80; i++) {}
if (i > 0) {
// Check for illegal sequence.
for (j = 0; p - j > base; j++) {
if ((p[-j] & 0xc0) != 0x80) {
break;
}
}
if (utf8len_tab[p[-j]] != i + j) {
return 0;
}
}
return i;
}
/// Return the offset from `p_in` to the last byte of the codepoint it points
/// to. Can start anywhere in a stream of bytes.
/// Note: Counts individual codepoints of composed characters separately.
int utf_cp_tail_off(const char *base, const char *p_in)
{
const uint8_t *p = (uint8_t *)p_in;
int i;
int j;
if (*p == NUL) {
return 0;
}
// Find the last character that is 10xx.xxxx
for (i = 0; (p[i + 1] & 0xc0) == 0x80; i++) {}
// Check for illegal sequence.
for (j = 0; p_in - j > base; j++) {
if ((p[-j] & 0xc0) != 0x80) {
break;
}
}
if (utf8len_tab[p[-j]] != i + j + 1) {
return 0;
}
return i;
}
/// Return the offset from "p" to the first byte of the codepoint it points
/// to. Can start anywhere in a stream of bytes.
/// Note: Unlike `utf_head_off`, this counts individual codepoints of composed characters
/// separately and returns a negative offset.
///
/// @param[in] base Pointer to start of string
/// @param[in] p Pointer to byte for which to return the offset to the previous codepoint
//
/// @return 0 if invalid sequence, else offset to previous codepoint
int utf_cp_head_off(const char_u *base, const char_u *p)
{
int i;
int j;
if (*p == NUL) {
return 0;
}
// Find the first character that is not 10xx.xxxx
for (i = 0; p - i > base; i--) {
if ((p[i] & 0xc0) != 0x80) {
break;
}
}
// Find the last character that is 10xx.xxxx
for (j = 0; (p[j + 1] & 0xc0) == 0x80; j++) {}
// Check for illegal sequence.
if (utf8len_tab[p[i]] == 1) {
return 0;
}
return i;
}
/*
* Find the next illegal byte sequence.
*/
void utf_find_illegal(void)
{
pos_T pos = curwin->w_cursor;
char_u *p;
int len;
vimconv_T vimconv;
char_u *tofree = NULL;
vimconv.vc_type = CONV_NONE;
if (enc_canon_props(curbuf->b_p_fenc) & ENC_8BIT) {
// 'encoding' is "utf-8" but we are editing a 8-bit encoded file,
// possibly a utf-8 file with illegal bytes. Setup for conversion
// from utf-8 to 'fileencoding'.
convert_setup(&vimconv, p_enc, curbuf->b_p_fenc);
}
curwin->w_cursor.coladd = 0;
for (;;) {
p = get_cursor_pos_ptr();
if (vimconv.vc_type != CONV_NONE) {
xfree(tofree);
tofree = string_convert(&vimconv, p, NULL);
if (tofree == NULL) {
break;
}
p = tofree;
}
while (*p != NUL) {
// Illegal means that there are not enough trail bytes (checked by
// utf_ptr2len()) or too many of them (overlong sequence).
len = utf_ptr2len((char *)p);
if (*p >= 0x80 && (len == 1
|| utf_char2len(utf_ptr2char((char *)p)) != len)) {
if (vimconv.vc_type == CONV_NONE) {
curwin->w_cursor.col += (colnr_T)(p - get_cursor_pos_ptr());
} else {
int l;
len = (int)(p - tofree);
for (p = get_cursor_pos_ptr(); *p != NUL && len-- > 0; p += l) {
l = utf_ptr2len((char *)p);
curwin->w_cursor.col += l;
}
}
goto theend;
}
p += len;
}
if (curwin->w_cursor.lnum == curbuf->b_ml.ml_line_count) {
break;
}
++curwin->w_cursor.lnum;
curwin->w_cursor.col = 0;
}
// didn't find it: don't move and beep
curwin->w_cursor = pos;
beep_flush();
theend:
xfree(tofree);
convert_setup(&vimconv, NULL, NULL);
}
/// @return true if string "s" is a valid utf-8 string.
/// When "end" is NULL stop at the first NUL.
/// When "end" is positive stop there.
bool utf_valid_string(const char_u *s, const char_u *end)
{
const char_u *p = s;
while (end == NULL ? *p != NUL : p < end) {
int l = utf8len_tab_zero[*p];
if (l == 0) {
return false; // invalid lead byte
}
if (end != NULL && p + l > end) {
return false; // incomplete byte sequence
}
p++;
while (--l > 0) {
if ((*p++ & 0xc0) != 0x80) {
return false; // invalid trail byte
}
}
}
return true;
}
/*
* If the cursor moves on an trail byte, set the cursor on the lead byte.
* Thus it moves left if necessary.
*/
void mb_adjust_cursor(void)
{
mark_mb_adjustpos(curbuf, &curwin->w_cursor);
}
/// Checks and adjusts cursor column. Not mode-dependent.
/// @see check_cursor_col_win
///
/// @param win_ Places cursor on a valid column for this window.
void mb_check_adjust_col(void *win_)
{
win_T *win = (win_T *)win_;
colnr_T oldcol = win->w_cursor.col;
// Column 0 is always valid.
if (oldcol != 0) {
char *p = (char *)ml_get_buf(win->w_buffer, win->w_cursor.lnum, false);
colnr_T len = (colnr_T)STRLEN(p);
// Empty line or invalid column?
if (len == 0 || oldcol < 0) {
win->w_cursor.col = 0;
} else {
// Cursor column too big for line?
if (oldcol > len) {
win->w_cursor.col = len - 1;
}
// Move the cursor to the head byte.
win->w_cursor.col -= utf_head_off((char_u *)p, (char_u *)p + win->w_cursor.col);
}
// Reset `coladd` when the cursor would be on the right half of a
// double-wide character.
if (win->w_cursor.coladd == 1 && p[win->w_cursor.col] != TAB
&& vim_isprintc(utf_ptr2char(p + win->w_cursor.col))
&& ptr2cells(p + win->w_cursor.col) > 1) {
win->w_cursor.coladd = 0;
}
}
}
/// @param line start of the string
///
/// @return a pointer to the character before "*p", if there is one.
char_u *mb_prevptr(char_u *line, char_u *p)
{
if (p > line) {
MB_PTR_BACK(line, p);
}
return p;
}
/// Return the character length of "str". Each multi-byte character (with
/// following composing characters) counts as one.
int mb_charlen(const char_u *str)
{
const char_u *p = str;
int count;
if (p == NULL) {
return 0;
}
for (count = 0; *p != NUL; count++) {
p += utfc_ptr2len((char *)p);
}
return count;
}
/// Like mb_charlen() but for a string with specified length.
int mb_charlen_len(const char_u *str, int len)
{
const char_u *p = str;
int count;
for (count = 0; *p != NUL && p < str + len; count++) {
p += utfc_ptr2len((char *)p);
}
return count;
}
/// Try to unescape a multibyte character
///
/// Used for the rhs and lhs of the mappings.
///
/// @param[in,out] pp String to unescape. Is advanced to just after the bytes
/// that form a multibyte character.
///
/// @return Unescaped string if it is a multibyte character, NULL if no
/// multibyte character was found. Returns a static buffer, always one
/// and the same.
const char *mb_unescape(const char **const pp)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
static char buf[6];
size_t buf_idx = 0;
uint8_t *str = (uint8_t *)(*pp);
// Must translate K_SPECIAL KS_SPECIAL KE_FILLER to K_SPECIAL.
// Maximum length of a utf-8 character is 4 bytes.
for (size_t str_idx = 0; str[str_idx] != NUL && buf_idx < 4; str_idx++) {
if (str[str_idx] == K_SPECIAL
&& str[str_idx + 1] == KS_SPECIAL
&& str[str_idx + 2] == KE_FILLER) {
buf[buf_idx++] = (char)K_SPECIAL;
str_idx += 2;
} else if (str[str_idx] == K_SPECIAL) {
break; // A special key can't be a multibyte char.
} else {
buf[buf_idx++] = (char)str[str_idx];
}
buf[buf_idx] = NUL;
// Return a multi-byte character if it's found. An illegal sequence
// will result in a 1 here.
if (utf_ptr2len(buf) > 1) {
*pp = (const char *)str + str_idx + 1;
return buf;
}
// Bail out quickly for ASCII.
if ((uint8_t)buf[0] < 128) {
break;
}
}
return NULL;
}
/*
* Skip the Vim specific head of a 'encoding' name.
*/
char_u *enc_skip(char_u *p)
{
if (STRNCMP(p, "2byte-", 6) == 0) {
return p + 6;
}
if (STRNCMP(p, "8bit-", 5) == 0) {
return p + 5;
}
return p;
}
/*
* Find the canonical name for encoding "enc".
* When the name isn't recognized, returns "enc" itself, but with all lower
* case characters and '_' replaced with '-'.
* Returns an allocated string.
*/
char_u *enc_canonize(char_u *enc) FUNC_ATTR_NONNULL_RET
{
char_u *p, *s;
int i;
if (STRCMP(enc, "default") == 0) {
// Use the default encoding as found by set_init_1().
return vim_strsave(fenc_default);
}
// copy "enc" to allocated memory, with room for two '-'
char_u *r = xmalloc(STRLEN(enc) + 3);
// Make it all lower case and replace '_' with '-'.
p = r;
for (s = enc; *s != NUL; ++s) {
if (*s == '_') {
*p++ = '-';
} else {
*p++ = (char_u)TOLOWER_ASC(*s);
}
}
*p = NUL;
// Skip "2byte-" and "8bit-".
p = enc_skip(r);
// Change "microsoft-cp" to "cp". Used in some spell files.
if (STRNCMP(p, "microsoft-cp", 12) == 0) {
STRMOVE(p, p + 10);
}
// "iso8859" -> "iso-8859"
if (STRNCMP(p, "iso8859", 7) == 0) {
STRMOVE(p + 4, p + 3);
p[3] = '-';
}
// "iso-8859n" -> "iso-8859-n"
if (STRNCMP(p, "iso-8859", 8) == 0 && p[8] != '-') {
STRMOVE(p + 9, p + 8);
p[8] = '-';
}
// "latin-N" -> "latinN"
if (STRNCMP(p, "latin-", 6) == 0) {
STRMOVE(p + 5, p + 6);
}
if (enc_canon_search(p) >= 0) {
// canonical name can be used unmodified
if (p != r) {
STRMOVE(r, p);
}
} else if ((i = enc_alias_search(p)) >= 0) {
// alias recognized, get canonical name
xfree(r);
r = vim_strsave((char_u *)enc_canon_table[i].name);
}
return r;
}
/// Search for an encoding alias of "name".
/// Returns -1 when not found.
static int enc_alias_search(const char_u *name)
{
int i;
for (i = 0; enc_alias_table[i].name != NULL; ++i) {
if (STRCMP(name, enc_alias_table[i].name) == 0) {
return enc_alias_table[i].canon;
}
}
return -1;
}
#ifdef HAVE_LANGINFO_H
# include <langinfo.h>
#endif
/*
* Get the canonicalized encoding of the current locale.
* Returns an allocated string when successful, NULL when not.
*/
char_u *enc_locale(void)
{
int i;
char buf[50];
const char *s;
#ifdef HAVE_NL_LANGINFO_CODESET
if (!(s = nl_langinfo(CODESET)) || *s == NUL)
#endif
{
#if defined(HAVE_LOCALE_H)
if (!(s = setlocale(LC_CTYPE, NULL)) || *s == NUL)
#endif
{
if ((s = os_getenv("LC_ALL"))) {
if ((s = os_getenv("LC_CTYPE"))) {
s = os_getenv("LANG");
}
}
}
}
if (!s) {
return NULL;
}
// The most generic locale format is:
// language[_territory][.codeset][@modifier][+special][,[sponsor][_revision]]
// If there is a '.' remove the part before it.
// if there is something after the codeset, remove it.
// Make the name lowercase and replace '_' with '-'.
// Exception: "ja_JP.EUC" == "euc-jp", "zh_CN.EUC" = "euc-cn",
// "ko_KR.EUC" == "euc-kr"
const char *p = vim_strchr(s, '.');
if (p != NULL) {
if (p > s + 2 && !STRNICMP(p + 1, "EUC", 3)
&& !isalnum((int)p[4]) && p[4] != '-' && p[-3] == '_') {
// Copy "XY.EUC" to "euc-XY" to buf[10].
memmove(buf, "euc-", 4);
buf[4] = (char)(ASCII_ISALNUM(p[-2]) ? TOLOWER_ASC(p[-2]) : 0);
buf[5] = (char)(ASCII_ISALNUM(p[-1]) ? TOLOWER_ASC(p[-1]) : 0);
buf[6] = NUL;
} else {
s = p + 1;
goto enc_locale_copy_enc;
}
} else {
enc_locale_copy_enc:
for (i = 0; i < (int)sizeof(buf) - 1 && s[i] != NUL; i++) {
if (s[i] == '_' || s[i] == '-') {
buf[i] = '-';
} else if (ASCII_ISALNUM((uint8_t)s[i])) {
buf[i] = (char)TOLOWER_ASC(s[i]);
} else {
break;
}
}
buf[i] = NUL;
}
return enc_canonize((char_u *)buf);
}
#if defined(HAVE_ICONV)
/*
* Call iconv_open() with a check if iconv() works properly (there are broken
* versions).
* Returns (void *)-1 if failed.
* (should return iconv_t, but that causes problems with prototypes).
*/
void *my_iconv_open(char_u *to, char_u *from)
{
iconv_t fd;
# define ICONV_TESTLEN 400
char_u tobuf[ICONV_TESTLEN];
char *p;
size_t tolen;
static WorkingStatus iconv_working = kUnknown;
if (iconv_working == kBroken) {
return (void *)-1; // detected a broken iconv() previously
}
fd = iconv_open((char *)enc_skip(to), (char *)enc_skip(from));
if (fd != (iconv_t)-1 && iconv_working == kUnknown) {
/*
* Do a dummy iconv() call to check if it actually works. There is a
* version of iconv() on Linux that is broken. We can't ignore it,
* because it's wide-spread. The symptoms are that after outputting
* the initial shift state the "to" pointer is NULL and conversion
* stops for no apparent reason after about 8160 characters.
*/
p = (char *)tobuf;
tolen = ICONV_TESTLEN;
(void)iconv(fd, NULL, NULL, &p, &tolen);
if (p == NULL) {
iconv_working = kBroken;
iconv_close(fd);
fd = (iconv_t)-1;
} else {
iconv_working = kWorking;
}
}
return (void *)fd;
}
/*
* Convert the string "str[slen]" with iconv().
* If "unconvlenp" is not NULL handle the string ending in an incomplete
* sequence and set "*unconvlenp" to the length of it.
* Returns the converted string in allocated memory. NULL for an error.
* If resultlenp is not NULL, sets it to the result length in bytes.
*/
static char_u *iconv_string(const vimconv_T *const vcp, char_u *str, size_t slen,
size_t *unconvlenp, size_t *resultlenp)
{
const char *from;
size_t fromlen;
char *to;
size_t tolen;
size_t len = 0;
size_t done = 0;
char_u *result = NULL;
char_u *p;
int l;
from = (char *)str;
fromlen = slen;
for (;;) {
if (len == 0 || ICONV_ERRNO == ICONV_E2BIG) {
// Allocate enough room for most conversions. When re-allocating
// increase the buffer size.
len = len + fromlen * 2 + 40;
p = xmalloc(len);
if (done > 0) {
memmove(p, result, done);
}
xfree(result);
result = p;
}
to = (char *)result + done;
tolen = len - done - 2;
// Avoid a warning for systems with a wrong iconv() prototype by
// casting the second argument to void *.
if (iconv(vcp->vc_fd, (void *)&from, &fromlen, &to, &tolen) != SIZE_MAX) {
// Finished, append a NUL.
*to = NUL;
break;
}
// Check both ICONV_EINVAL and EINVAL, because the dynamically loaded
// iconv library may use one of them.
if (!vcp->vc_fail && unconvlenp != NULL
&& (ICONV_ERRNO == ICONV_EINVAL || ICONV_ERRNO == EINVAL)) {
// Handle an incomplete sequence at the end.
*to = NUL;
*unconvlenp = fromlen;
break;
} else if (!vcp->vc_fail
&& (ICONV_ERRNO == ICONV_EILSEQ || ICONV_ERRNO == EILSEQ
|| ICONV_ERRNO == ICONV_EINVAL || ICONV_ERRNO == EINVAL)) {
// Check both ICONV_EILSEQ and EILSEQ, because the dynamically loaded
// iconv library may use one of them.
// Can't convert: insert a '?' and skip a character. This assumes
// conversion from 'encoding' to something else. In other
// situations we don't know what to skip anyway.
*to++ = '?';
if (utf_ptr2cells(from) > 1) {
*to++ = '?';
}
l = utfc_ptr2len_len((const char_u *)from, (int)fromlen);
from += l;
fromlen -= (size_t)l;
} else if (ICONV_ERRNO != ICONV_E2BIG) {
// conversion failed
XFREE_CLEAR(result);
break;
}
// Not enough room or skipping illegal sequence.
done = (size_t)(to - (char *)result);
}
if (resultlenp != NULL && result != NULL) {
*resultlenp = (size_t)(to - (char *)result);
}
return result;
}
#endif // HAVE_ICONV
/*
* Setup "vcp" for conversion from "from" to "to".
* The names must have been made canonical with enc_canonize().
* vcp->vc_type must have been initialized to CONV_NONE.
* Note: cannot be used for conversion from/to ucs-2 and ucs-4 (will use utf-8
* instead).
* Afterwards invoke with "from" and "to" equal to NULL to cleanup.
* Return FAIL when conversion is not supported, OK otherwise.
*/
int convert_setup(vimconv_T *vcp, char_u *from, char_u *to)
{
return convert_setup_ext(vcp, from, true, to, true);
}
/// As convert_setup(), but only when from_unicode_is_utf8 is true will all
/// "from" unicode charsets be considered utf-8. Same for "to".
int convert_setup_ext(vimconv_T *vcp, char_u *from, bool from_unicode_is_utf8, char_u *to,
bool to_unicode_is_utf8)
{
int from_prop;
int to_prop;
int from_is_utf8;
int to_is_utf8;
// Reset to no conversion.
#ifdef HAVE_ICONV
if (vcp->vc_type == CONV_ICONV && vcp->vc_fd != (iconv_t)-1) {
iconv_close(vcp->vc_fd);
}
#endif
*vcp = (vimconv_T)MBYTE_NONE_CONV;
// No conversion when one of the names is empty or they are equal.
if (from == NULL || *from == NUL || to == NULL || *to == NUL
|| STRCMP(from, to) == 0) {
return OK;
}
from_prop = enc_canon_props(from);
to_prop = enc_canon_props(to);
if (from_unicode_is_utf8) {
from_is_utf8 = from_prop & ENC_UNICODE;
} else {
from_is_utf8 = from_prop == ENC_UNICODE;
}
if (to_unicode_is_utf8) {
to_is_utf8 = to_prop & ENC_UNICODE;
} else {
to_is_utf8 = to_prop == ENC_UNICODE;
}
if ((from_prop & ENC_LATIN1) && to_is_utf8) {
// Internal latin1 -> utf-8 conversion.
vcp->vc_type = CONV_TO_UTF8;
vcp->vc_factor = 2; // up to twice as long
} else if ((from_prop & ENC_LATIN9) && to_is_utf8) {
// Internal latin9 -> utf-8 conversion.
vcp->vc_type = CONV_9_TO_UTF8;
vcp->vc_factor = 3; // up to three as long (euro sign)
} else if (from_is_utf8 && (to_prop & ENC_LATIN1)) {
// Internal utf-8 -> latin1 conversion.
vcp->vc_type = CONV_TO_LATIN1;
} else if (from_is_utf8 && (to_prop & ENC_LATIN9)) {
// Internal utf-8 -> latin9 conversion.
vcp->vc_type = CONV_TO_LATIN9;
}
#ifdef HAVE_ICONV
else { // NOLINT(readability/braces)
// Use iconv() for conversion.
vcp->vc_fd = (iconv_t)my_iconv_open(to_is_utf8 ? (char_u *)"utf-8" : to,
from_is_utf8 ? (char_u *)"utf-8" : from);
if (vcp->vc_fd != (iconv_t)-1) {
vcp->vc_type = CONV_ICONV;
vcp->vc_factor = 4; // could be longer too...
}
}
#endif
if (vcp->vc_type == CONV_NONE) {
return FAIL;
}
return OK;
}
/*
* Convert text "ptr[*lenp]" according to "vcp".
* Returns the result in allocated memory and sets "*lenp".
* When "lenp" is NULL, use NUL terminated strings.
* Illegal chars are often changed to "?", unless vcp->vc_fail is set.
* When something goes wrong, NULL is returned and "*lenp" is unchanged.
*/
char_u *string_convert(const vimconv_T *const vcp, char_u *ptr, size_t *lenp)
{
return string_convert_ext(vcp, ptr, lenp, NULL);
}
/*
* Like string_convert(), but when "unconvlenp" is not NULL and there are is
* an incomplete sequence at the end it is not converted and "*unconvlenp" is
* set to the number of remaining bytes.
*/
char_u *string_convert_ext(const vimconv_T *const vcp, char_u *ptr, size_t *lenp,
size_t *unconvlenp)
{
char_u *retval = NULL;
char_u *d;
int l;
int c;
size_t len;
if (lenp == NULL) {
len = STRLEN(ptr);
} else {
len = *lenp;
}
if (len == 0) {
return vim_strsave((char_u *)"");
}
switch (vcp->vc_type) {
case CONV_TO_UTF8: // latin1 to utf-8 conversion
retval = xmalloc(len * 2 + 1);
d = retval;
for (size_t i = 0; i < len; ++i) {
c = ptr[i];
if (c < 0x80) {
*d++ = (char_u)c;
} else {
*d++ = (char_u)(0xc0 + (char_u)((unsigned)c >> 6));
*d++ = (char_u)(0x80 + (c & 0x3f));
}
}
*d = NUL;
if (lenp != NULL) {
*lenp = (size_t)(d - retval);
}
break;
case CONV_9_TO_UTF8: // latin9 to utf-8 conversion
retval = xmalloc(len * 3 + 1);
d = retval;
for (size_t i = 0; i < len; ++i) {
c = ptr[i];
switch (c) {
case 0xa4:
c = 0x20ac; break; // euro
case 0xa6:
c = 0x0160; break; // S hat
case 0xa8:
c = 0x0161; break; // S -hat
case 0xb4:
c = 0x017d; break; // Z hat
case 0xb8:
c = 0x017e; break; // Z -hat
case 0xbc:
c = 0x0152; break; // OE
case 0xbd:
c = 0x0153; break; // oe
case 0xbe:
c = 0x0178; break; // Y
}
d += utf_char2bytes(c, (char *)d);
}
*d = NUL;
if (lenp != NULL) {
*lenp = (size_t)(d - retval);
}
break;
case CONV_TO_LATIN1: // utf-8 to latin1 conversion
case CONV_TO_LATIN9: // utf-8 to latin9 conversion
retval = xmalloc(len + 1);
d = retval;
for (size_t i = 0; i < len; i++) {
l = utf_ptr2len_len(ptr + i, (int)(len - i));
if (l == 0) {
*d++ = NUL;
} else if (l == 1) {
uint8_t l_w = utf8len_tab_zero[ptr[i]];
if (l_w == 0) {
// Illegal utf-8 byte cannot be converted
xfree(retval);
return NULL;
}
if (unconvlenp != NULL && l_w > len - i) {
// Incomplete sequence at the end.
*unconvlenp = len - i;
break;
}
*d++ = ptr[i];
} else {
c = utf_ptr2char((char *)ptr + i);
if (vcp->vc_type == CONV_TO_LATIN9) {
switch (c) {
case 0x20ac:
c = 0xa4; break; // euro
case 0x0160:
c = 0xa6; break; // S hat
case 0x0161:
c = 0xa8; break; // S -hat
case 0x017d:
c = 0xb4; break; // Z hat
case 0x017e:
c = 0xb8; break; // Z -hat
case 0x0152:
c = 0xbc; break; // OE
case 0x0153:
c = 0xbd; break; // oe
case 0x0178:
c = 0xbe; break; // Y
case 0xa4:
case 0xa6:
case 0xa8:
case 0xb4:
case 0xb8:
case 0xbc:
case 0xbd:
case 0xbe:
c = 0x100; break; // not in latin9
}
}
if (!utf_iscomposing(c)) { // skip composing chars
if (c < 0x100) {
*d++ = (char_u)c;
} else if (vcp->vc_fail) {
xfree(retval);
return NULL;
} else {
*d++ = 0xbf;
if (utf_char2cells(c) > 1) {
*d++ = '?';
}
}
}
i += (size_t)l - 1;
}
}
*d = NUL;
if (lenp != NULL) {
*lenp = (size_t)(d - retval);
}
break;
#ifdef HAVE_ICONV
case CONV_ICONV: // conversion with vcp->vc_fd
retval = iconv_string(vcp, ptr, len, unconvlenp, lenp);
break;
#endif
}
return retval;
}
/// Table set by setcellwidths().
typedef struct {
long first;
long last;
char width;
} cw_interval_T;
static cw_interval_T *cw_table = NULL;
static size_t cw_table_size = 0;
/// Return the value of the cellwidth table for the character `c`.
///
/// @param c The source character.
/// @return 1 or 2 when `c` is in the cellwidth table, 0 if not.
static int cw_value(int c)
{
if (cw_table == NULL) {
return 0;
}
// first quick check for Latin1 etc. characters
if (c < cw_table[0].first) {
return 0;
}
// binary search in table
int bot = 0;
int top = (int)cw_table_size - 1;
while (top >= bot) {
int mid = (bot + top) / 2;
if (cw_table[mid].last < c) {
bot = mid + 1;
} else if (cw_table[mid].first > c) {
top = mid - 1;
} else {
return cw_table[mid].width;
}
}
return 0;
}
static int tv_nr_compare(const void *a1, const void *a2)
{
const listitem_T *const li1 = tv_list_first(*(const list_T **)a1);
const listitem_T *const li2 = tv_list_first(*(const list_T **)a2);
return (int)(TV_LIST_ITEM_TV(li1)->vval.v_number - TV_LIST_ITEM_TV(li2)->vval.v_number);
}
/// "setcellwidths()" function
void f_setcellwidths(typval_T *argvars, typval_T *rettv, FunPtr fptr)
{
if (argvars[0].v_type != VAR_LIST || argvars[0].vval.v_list == NULL) {
emsg(_(e_listreq));
return;
}
const list_T *const l = argvars[0].vval.v_list;
if (tv_list_len(l) == 0) {
// Clearing the table.
xfree(cw_table);
cw_table = NULL;
cw_table_size = 0;
return;
}
// Note: use list_T instead of listitem_T so that TV_LIST_ITEM_NEXT can be used properly below.
const list_T **ptrs = xmalloc(sizeof(const list_T *) * (size_t)tv_list_len(l));
// Check that all entries are a list with three numbers, the range is
// valid and the cell width is valid.
int item = 0;
TV_LIST_ITER_CONST(l, li, {
const typval_T *const li_tv = TV_LIST_ITEM_TV(li);
if (li_tv->v_type != VAR_LIST || li_tv->vval.v_list == NULL) {
semsg(_(e_list_item_nr_is_not_list), item);
xfree(ptrs);
return;
}
const list_T *const li_l = li_tv->vval.v_list;
ptrs[item] = li_l;
const listitem_T *lili = tv_list_first(li_l);
int i;
varnumber_T n1;
for (i = 0; lili != NULL; lili = TV_LIST_ITEM_NEXT(li_l, lili), i++) {
const typval_T *const lili_tv = TV_LIST_ITEM_TV(lili);
if (lili_tv->v_type != VAR_NUMBER) {
break;
}
if (i == 0) {
n1 = lili_tv->vval.v_number;
if (n1 < 0x100) {
emsg(_(e_only_values_of_0x100_and_higher_supported));
xfree(ptrs);
return;
}
} else if (i == 1 && lili_tv->vval.v_number < n1) {
semsg(_(e_list_item_nr_range_invalid), item);
xfree(ptrs);
return;
} else if (i == 2 && (lili_tv->vval.v_number < 1 || lili_tv->vval.v_number > 2)) {
semsg(_(e_list_item_nr_cell_width_invalid), item);
xfree(ptrs);
return;
}
}
if (i != 3) {
semsg(_(e_list_item_nr_does_not_contain_3_numbers), item);
xfree(ptrs);
return;
}
item++;
});
// Sort the list on the first number.
qsort((void *)ptrs, (size_t)tv_list_len(l), sizeof(const list_T *), tv_nr_compare);
cw_interval_T *table = xmalloc(sizeof(cw_interval_T) * (size_t)tv_list_len(l));
// Store the items in the new table.
for (item = 0; item < tv_list_len(l); item++) {
const list_T *const li_l = ptrs[item];
const listitem_T *lili = tv_list_first(li_l);
const varnumber_T n1 = TV_LIST_ITEM_TV(lili)->vval.v_number;
if (item > 0 && n1 <= table[item - 1].last) {
semsg(_(e_overlapping_ranges_for_nr), (long)n1);
xfree(ptrs);
xfree(table);
return;
}
table[item].first = n1;
lili = TV_LIST_ITEM_NEXT(li_l, lili);
table[item].last = TV_LIST_ITEM_TV(lili)->vval.v_number;
lili = TV_LIST_ITEM_NEXT(li_l, lili);
table[item].width = (char)TV_LIST_ITEM_TV(lili)->vval.v_number;
}
xfree(ptrs);
cw_interval_T *const cw_table_save = cw_table;
const size_t cw_table_size_save = cw_table_size;
cw_table = table;
cw_table_size = (size_t)tv_list_len(l);
// Check that the new value does not conflict with 'listchars' or
// 'fillchars'.
const char *const error = check_chars_options();
if (error != NULL) {
emsg(_(error));
cw_table = cw_table_save;
cw_table_size = cw_table_size_save;
xfree(table);
return;
}
xfree(cw_table_save);
redraw_all_later(NOT_VALID);
}
void f_charclass(typval_T *argvars, typval_T *rettv, FunPtr fptr)
{
if (argvars[0].v_type != VAR_STRING
|| argvars[0].vval.v_string == NULL
|| *argvars[0].vval.v_string == NUL) {
emsg(_(e_stringreq));
return;
}
rettv->vval.v_number = mb_get_class((const char_u *)argvars[0].vval.v_string);
}