mirror of
https://github.com/neovim/neovim.git
synced 2025-10-03 16:36:30 +00:00
3662 lines
107 KiB
C
3662 lines
107 KiB
C
// This is an open source non-commercial project. Dear PVS-Studio, please check
|
|
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
|
|
|
|
// spell.c: code for spell checking
|
|
//
|
|
// See spellfile.c for the Vim spell file format.
|
|
//
|
|
// The spell checking mechanism uses a tree (aka trie). Each node in the tree
|
|
// has a list of bytes that can appear (siblings). For each byte there is a
|
|
// pointer to the node with the byte that follows in the word (child).
|
|
//
|
|
// A NUL byte is used where the word may end. The bytes are sorted, so that
|
|
// binary searching can be used and the NUL bytes are at the start. The
|
|
// number of possible bytes is stored before the list of bytes.
|
|
//
|
|
// The tree uses two arrays: "byts" stores the characters, "idxs" stores
|
|
// either the next index or flags. The tree starts at index 0. For example,
|
|
// to lookup "vi" this sequence is followed:
|
|
// i = 0
|
|
// len = byts[i]
|
|
// n = where "v" appears in byts[i + 1] to byts[i + len]
|
|
// i = idxs[n]
|
|
// len = byts[i]
|
|
// n = where "i" appears in byts[i + 1] to byts[i + len]
|
|
// i = idxs[n]
|
|
// len = byts[i]
|
|
// find that byts[i + 1] is 0, idxs[i + 1] has flags for "vi".
|
|
//
|
|
// There are two word trees: one with case-folded words and one with words in
|
|
// original case. The second one is only used for keep-case words and is
|
|
// usually small.
|
|
//
|
|
// There is one additional tree for when not all prefixes are applied when
|
|
// generating the .spl file. This tree stores all the possible prefixes, as
|
|
// if they were words. At each word (prefix) end the prefix nr is stored, the
|
|
// following word must support this prefix nr. And the condition nr is
|
|
// stored, used to lookup the condition that the word must match with.
|
|
//
|
|
// Thanks to Olaf Seibert for providing an example implementation of this tree
|
|
// and the compression mechanism.
|
|
// LZ trie ideas:
|
|
// http://www.irb.hr/hr/home/ristov/papers/RistovLZtrieRevision1.pdf
|
|
// More papers: http://www-igm.univ-mlv.fr/~laporte/publi_en.html
|
|
//
|
|
// Matching involves checking the caps type: Onecap ALLCAP KeepCap.
|
|
//
|
|
// Why doesn't Vim use aspell/ispell/myspell/etc.?
|
|
// See ":help develop-spell".
|
|
|
|
// Use SPELL_PRINTTREE for debugging: dump the word tree after adding a word.
|
|
// Only use it for small word lists!
|
|
|
|
// Use SPELL_COMPRESS_ALWAYS for debugging: compress the word tree after
|
|
// adding a word. Only use it for small word lists!
|
|
|
|
// Use DEBUG_TRIEWALK to print the changes made in suggest_trie_walk() for a
|
|
// specific word.
|
|
|
|
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "nvim/ascii.h"
|
|
#include "nvim/autocmd.h"
|
|
#include "nvim/buffer.h"
|
|
#include "nvim/change.h"
|
|
#include "nvim/charset.h"
|
|
#include "nvim/cursor.h"
|
|
#include "nvim/decoration.h"
|
|
#include "nvim/decoration_provider.h"
|
|
#include "nvim/drawscreen.h"
|
|
#include "nvim/ex_cmds.h"
|
|
#include "nvim/ex_cmds_defs.h"
|
|
#include "nvim/ex_docmd.h"
|
|
#include "nvim/garray.h"
|
|
#include "nvim/gettext.h"
|
|
#include "nvim/globals.h"
|
|
#include "nvim/hashtab.h"
|
|
#include "nvim/highlight_defs.h"
|
|
#include "nvim/insexpand.h"
|
|
#include "nvim/log.h"
|
|
#include "nvim/macros.h"
|
|
#include "nvim/mark.h"
|
|
#include "nvim/mbyte.h"
|
|
#include "nvim/memline.h"
|
|
#include "nvim/memory.h"
|
|
#include "nvim/message.h"
|
|
#include "nvim/option.h"
|
|
#include "nvim/os/fs.h"
|
|
#include "nvim/os/input.h"
|
|
#include "nvim/os/os_defs.h"
|
|
#include "nvim/path.h"
|
|
#include "nvim/pos.h"
|
|
#include "nvim/regexp.h"
|
|
#include "nvim/runtime.h"
|
|
#include "nvim/search.h"
|
|
#include "nvim/spell.h"
|
|
#include "nvim/spell_defs.h"
|
|
#include "nvim/spellfile.h"
|
|
#include "nvim/spellsuggest.h"
|
|
#include "nvim/strings.h"
|
|
#include "nvim/syntax.h"
|
|
#include "nvim/types.h"
|
|
#include "nvim/undo.h"
|
|
#include "nvim/vim.h"
|
|
#include "nvim/window.h"
|
|
|
|
// Result values. Lower number is accepted over higher one.
|
|
enum {
|
|
SP_BANNED = -1,
|
|
SP_RARE = 0,
|
|
SP_OK = 1,
|
|
SP_LOCAL = 2,
|
|
SP_BAD = 3,
|
|
};
|
|
|
|
// First language that is loaded, start of the linked list of loaded
|
|
// languages.
|
|
slang_T *first_lang = NULL;
|
|
|
|
// file used for "zG" and "zW"
|
|
char *int_wordlist = NULL;
|
|
|
|
// Structure to store info for word matching.
|
|
typedef struct matchinf_S {
|
|
langp_T *mi_lp; // info for language and region
|
|
|
|
// pointers to original text to be checked
|
|
char *mi_word; // start of word being checked
|
|
char *mi_end; // end of matching word so far
|
|
char *mi_fend; // next char to be added to mi_fword
|
|
char *mi_cend; // char after what was used for
|
|
// mi_capflags
|
|
|
|
// case-folded text
|
|
char mi_fword[MAXWLEN + 1]; // mi_word case-folded
|
|
int mi_fwordlen; // nr of valid bytes in mi_fword
|
|
|
|
// for when checking word after a prefix
|
|
int mi_prefarridx; // index in sl_pidxs with list of
|
|
// affixID/condition
|
|
int mi_prefcnt; // number of entries at mi_prefarridx
|
|
int mi_prefixlen; // byte length of prefix
|
|
int mi_cprefixlen; // byte length of prefix in original
|
|
// case
|
|
|
|
// for when checking a compound word
|
|
int mi_compoff; // start of following word offset
|
|
char_u mi_compflags[MAXWLEN]; // flags for compound words used
|
|
int mi_complen; // nr of compound words used
|
|
int mi_compextra; // nr of COMPOUNDROOT words
|
|
|
|
// others
|
|
int mi_result; // result so far: SP_BAD, SP_OK, etc.
|
|
int mi_capflags; // WF_ONECAP WF_ALLCAP WF_KEEPCAP
|
|
win_T *mi_win; // buffer being checked
|
|
|
|
// for NOBREAK
|
|
int mi_result2; // "mi_result" without following word
|
|
char *mi_end2; // "mi_end" without following word
|
|
} matchinf_T;
|
|
|
|
// Structure used for the cookie argument of do_in_runtimepath().
|
|
typedef struct spelload_S {
|
|
char sl_lang[MAXWLEN + 1]; // language name
|
|
slang_T *sl_slang; // resulting slang_T struct
|
|
int sl_nobreak; // NOBREAK language found
|
|
} spelload_T;
|
|
|
|
#define SY_MAXLEN 30
|
|
typedef struct syl_item_S {
|
|
char sy_chars[SY_MAXLEN]; // the sequence of chars
|
|
int sy_len;
|
|
} syl_item_T;
|
|
|
|
spelltab_T spelltab;
|
|
int did_set_spelltab;
|
|
|
|
#ifdef INCLUDE_GENERATED_DECLARATIONS
|
|
# include "spell.c.generated.h"
|
|
#endif
|
|
|
|
// mode values for find_word
|
|
#define FIND_FOLDWORD 0 // find word case-folded
|
|
#define FIND_KEEPWORD 1 // find keep-case word
|
|
#define FIND_PREFIX 2 // find word after prefix
|
|
#define FIND_COMPOUND 3 // find case-folded compound word
|
|
#define FIND_KEEPCOMPOUND 4 // find keep-case compound word
|
|
|
|
char *e_format = N_("E759: Format error in spell file");
|
|
|
|
// Remember what "z?" replaced.
|
|
char *repl_from = NULL;
|
|
char *repl_to = NULL;
|
|
|
|
/// Main spell-checking function.
|
|
/// "ptr" points to a character that could be the start of a word.
|
|
/// "*attrp" is set to the highlight index for a badly spelled word. For a
|
|
/// non-word or when it's OK it remains unchanged.
|
|
/// This must only be called when 'spelllang' is not empty.
|
|
///
|
|
/// "capcol" is used to check for a Capitalised word after the end of a
|
|
/// sentence. If it's zero then perform the check. Return the column where to
|
|
/// check next, or -1 when no sentence end was found. If it's NULL then don't
|
|
/// worry.
|
|
///
|
|
/// @param wp current window
|
|
/// @param capcol column to check for Capital
|
|
/// @param docount count good words
|
|
///
|
|
/// @return the length of the word in bytes, also when it's OK, so that the
|
|
/// caller can skip over the word.
|
|
size_t spell_check(win_T *wp, char *ptr, hlf_T *attrp, int *capcol, bool docount)
|
|
{
|
|
matchinf_T mi; // Most things are put in "mi" so that it can
|
|
// be passed to functions quickly.
|
|
size_t nrlen = 0; // found a number first
|
|
size_t wrongcaplen = 0;
|
|
bool count_word = docount;
|
|
bool use_camel_case = (wp->w_s->b_p_spo_flags & SPO_CAMEL) != 0;
|
|
bool camel_case = false;
|
|
|
|
// A word never starts at a space or a control character. Return quickly
|
|
// then, skipping over the character.
|
|
if ((uint8_t)(*ptr) <= ' ') {
|
|
return 1;
|
|
}
|
|
|
|
// Return here when loading language files failed.
|
|
if (GA_EMPTY(&wp->w_s->b_langp)) {
|
|
return 1;
|
|
}
|
|
|
|
CLEAR_FIELD(mi);
|
|
|
|
// A number is always OK. Also skip hexadecimal numbers 0xFF99 and
|
|
// 0X99FF. But always do check spelling to find "3GPP" and "11
|
|
// julifeest".
|
|
if (*ptr >= '0' && *ptr <= '9') {
|
|
if (*ptr == '0' && (ptr[1] == 'b' || ptr[1] == 'B')) {
|
|
mi.mi_end = (char *)skipbin(ptr + 2);
|
|
} else if (*ptr == '0' && (ptr[1] == 'x' || ptr[1] == 'X')) {
|
|
mi.mi_end = skiphex(ptr + 2);
|
|
} else {
|
|
mi.mi_end = skipdigits(ptr);
|
|
}
|
|
nrlen = (size_t)(mi.mi_end - ptr);
|
|
}
|
|
|
|
// Find the normal end of the word (until the next non-word character).
|
|
mi.mi_word = ptr;
|
|
mi.mi_fend = ptr;
|
|
if (spell_iswordp(mi.mi_fend, wp)) {
|
|
bool this_upper = false; // init for gcc
|
|
|
|
if (use_camel_case) {
|
|
int c = utf_ptr2char(mi.mi_fend);
|
|
this_upper = SPELL_ISUPPER(c);
|
|
}
|
|
|
|
do {
|
|
MB_PTR_ADV(mi.mi_fend);
|
|
if (use_camel_case) {
|
|
const bool prev_upper = this_upper;
|
|
int c = utf_ptr2char(mi.mi_fend);
|
|
this_upper = SPELL_ISUPPER(c);
|
|
camel_case = !prev_upper && this_upper;
|
|
}
|
|
} while (*mi.mi_fend != NUL && spell_iswordp(mi.mi_fend, wp)
|
|
&& !camel_case);
|
|
|
|
if (capcol != NULL && *capcol == 0 && wp->w_s->b_cap_prog != NULL) {
|
|
// Check word starting with capital letter.
|
|
int c = utf_ptr2char(ptr);
|
|
if (!SPELL_ISUPPER(c)) {
|
|
wrongcaplen = (size_t)(mi.mi_fend - ptr);
|
|
}
|
|
}
|
|
}
|
|
if (capcol != NULL) {
|
|
*capcol = -1;
|
|
}
|
|
|
|
// We always use the characters up to the next non-word character,
|
|
// also for bad words.
|
|
mi.mi_end = mi.mi_fend;
|
|
|
|
// Check caps type later.
|
|
mi.mi_capflags = 0;
|
|
mi.mi_cend = NULL;
|
|
mi.mi_win = wp;
|
|
|
|
// case-fold the word with one non-word character, so that we can check
|
|
// for the word end.
|
|
if (*mi.mi_fend != NUL) {
|
|
MB_PTR_ADV(mi.mi_fend);
|
|
}
|
|
|
|
(void)spell_casefold(wp, ptr, (int)(mi.mi_fend - ptr), mi.mi_fword,
|
|
MAXWLEN + 1);
|
|
mi.mi_fwordlen = (int)strlen(mi.mi_fword);
|
|
|
|
if (camel_case && mi.mi_fwordlen > 0) {
|
|
// introduce a fake word end space into the folded word.
|
|
mi.mi_fword[mi.mi_fwordlen - 1] = ' ';
|
|
}
|
|
|
|
// The word is bad unless we recognize it.
|
|
mi.mi_result = SP_BAD;
|
|
mi.mi_result2 = SP_BAD;
|
|
|
|
// Loop over the languages specified in 'spelllang'.
|
|
// We check them all, because a word may be matched longer in another
|
|
// language.
|
|
for (int lpi = 0; lpi < wp->w_s->b_langp.ga_len; lpi++) {
|
|
mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, lpi);
|
|
|
|
// If reloading fails the language is still in the list but everything
|
|
// has been cleared.
|
|
if (mi.mi_lp->lp_slang->sl_fidxs == NULL) {
|
|
continue;
|
|
}
|
|
|
|
// Check for a matching word in case-folded words.
|
|
find_word(&mi, FIND_FOLDWORD);
|
|
|
|
// Check for a matching word in keep-case words.
|
|
find_word(&mi, FIND_KEEPWORD);
|
|
|
|
// Check for matching prefixes.
|
|
find_prefix(&mi, FIND_FOLDWORD);
|
|
|
|
// For a NOBREAK language, may want to use a word without a following
|
|
// word as a backup.
|
|
if (mi.mi_lp->lp_slang->sl_nobreak && mi.mi_result == SP_BAD
|
|
&& mi.mi_result2 != SP_BAD) {
|
|
mi.mi_result = mi.mi_result2;
|
|
mi.mi_end = mi.mi_end2;
|
|
}
|
|
|
|
// Count the word in the first language where it's found to be OK.
|
|
if (count_word && mi.mi_result == SP_OK) {
|
|
count_common_word(mi.mi_lp->lp_slang, ptr,
|
|
(int)(mi.mi_end - ptr), 1);
|
|
count_word = false;
|
|
}
|
|
}
|
|
|
|
if (mi.mi_result != SP_OK) {
|
|
// If we found a number skip over it. Allows for "42nd". Do flag
|
|
// rare and local words, e.g., "3GPP".
|
|
if (nrlen > 0) {
|
|
if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) {
|
|
return nrlen;
|
|
}
|
|
} else if (!spell_iswordp_nmw(ptr, wp)) {
|
|
// When we are at a non-word character there is no error, just
|
|
// skip over the character (try looking for a word after it).
|
|
if (capcol != NULL && wp->w_s->b_cap_prog != NULL) {
|
|
regmatch_T regmatch;
|
|
|
|
// Check for end of sentence.
|
|
regmatch.regprog = wp->w_s->b_cap_prog;
|
|
regmatch.rm_ic = false;
|
|
int r = vim_regexec(®match, ptr, 0);
|
|
wp->w_s->b_cap_prog = regmatch.regprog;
|
|
if (r) {
|
|
*capcol = (int)(regmatch.endp[0] - ptr);
|
|
}
|
|
}
|
|
|
|
return (size_t)(utfc_ptr2len(ptr));
|
|
} else if (mi.mi_end == ptr) {
|
|
// Always include at least one character. Required for when there
|
|
// is a mixup in "midword".
|
|
MB_PTR_ADV(mi.mi_end);
|
|
} else if (mi.mi_result == SP_BAD
|
|
&& LANGP_ENTRY(wp->w_s->b_langp, 0)->lp_slang->sl_nobreak) {
|
|
char *p, *fp;
|
|
int save_result = mi.mi_result;
|
|
|
|
// First language in 'spelllang' is NOBREAK. Find first position
|
|
// at which any word would be valid.
|
|
mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, 0);
|
|
if (mi.mi_lp->lp_slang->sl_fidxs != NULL) {
|
|
p = mi.mi_word;
|
|
fp = mi.mi_fword;
|
|
for (;;) {
|
|
MB_PTR_ADV(p);
|
|
MB_PTR_ADV(fp);
|
|
if (p >= mi.mi_end) {
|
|
break;
|
|
}
|
|
mi.mi_compoff = (int)(fp - mi.mi_fword);
|
|
find_word(&mi, FIND_COMPOUND);
|
|
if (mi.mi_result != SP_BAD) {
|
|
mi.mi_end = p;
|
|
break;
|
|
}
|
|
}
|
|
mi.mi_result = save_result;
|
|
}
|
|
}
|
|
|
|
if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) {
|
|
*attrp = HLF_SPB;
|
|
} else if (mi.mi_result == SP_RARE) {
|
|
*attrp = HLF_SPR;
|
|
} else {
|
|
*attrp = HLF_SPL;
|
|
}
|
|
}
|
|
|
|
if (wrongcaplen > 0 && (mi.mi_result == SP_OK || mi.mi_result == SP_RARE)) {
|
|
// Report SpellCap only when the word isn't badly spelled.
|
|
*attrp = HLF_SPC;
|
|
return wrongcaplen;
|
|
}
|
|
|
|
return (size_t)(mi.mi_end - ptr);
|
|
}
|
|
|
|
// Check if the word at "mip->mi_word" is in the tree.
|
|
// When "mode" is FIND_FOLDWORD check in fold-case word tree.
|
|
// When "mode" is FIND_KEEPWORD check in keep-case word tree.
|
|
// When "mode" is FIND_PREFIX check for word after prefix in fold-case word
|
|
// tree.
|
|
//
|
|
// For a match mip->mi_result is updated.
|
|
static void find_word(matchinf_T *mip, int mode)
|
|
{
|
|
int wlen = 0;
|
|
int flen;
|
|
char *ptr;
|
|
slang_T *slang = mip->mi_lp->lp_slang;
|
|
char_u *byts;
|
|
idx_T *idxs;
|
|
|
|
if (mode == FIND_KEEPWORD || mode == FIND_KEEPCOMPOUND) {
|
|
// Check for word with matching case in keep-case tree.
|
|
ptr = mip->mi_word;
|
|
flen = 9999; // no case folding, always enough bytes
|
|
byts = (char_u *)slang->sl_kbyts;
|
|
idxs = slang->sl_kidxs;
|
|
|
|
if (mode == FIND_KEEPCOMPOUND) {
|
|
// Skip over the previously found word(s).
|
|
wlen += mip->mi_compoff;
|
|
}
|
|
} else {
|
|
// Check for case-folded in case-folded tree.
|
|
ptr = mip->mi_fword;
|
|
flen = mip->mi_fwordlen; // available case-folded bytes
|
|
byts = (char_u *)slang->sl_fbyts;
|
|
idxs = slang->sl_fidxs;
|
|
|
|
if (mode == FIND_PREFIX) {
|
|
// Skip over the prefix.
|
|
wlen = mip->mi_prefixlen;
|
|
flen -= mip->mi_prefixlen;
|
|
} else if (mode == FIND_COMPOUND) {
|
|
// Skip over the previously found word(s).
|
|
wlen = mip->mi_compoff;
|
|
flen -= mip->mi_compoff;
|
|
}
|
|
}
|
|
|
|
if (byts == NULL) {
|
|
return; // array is empty
|
|
}
|
|
idx_T arridx = 0;
|
|
int endlen[MAXWLEN]; // length at possible word endings
|
|
idx_T endidx[MAXWLEN]; // possible word endings
|
|
int endidxcnt = 0;
|
|
int c;
|
|
|
|
// Repeat advancing in the tree until:
|
|
// - there is a byte that doesn't match,
|
|
// - we reach the end of the tree,
|
|
// - or we reach the end of the line.
|
|
for (;;) {
|
|
if (flen <= 0 && *mip->mi_fend != NUL) {
|
|
flen = fold_more(mip);
|
|
}
|
|
|
|
int len = byts[arridx++];
|
|
|
|
// If the first possible byte is a zero the word could end here.
|
|
// Remember this index, we first check for the longest word.
|
|
if (byts[arridx] == 0) {
|
|
if (endidxcnt == MAXWLEN) {
|
|
// Must be a corrupted spell file.
|
|
emsg(_(e_format));
|
|
return;
|
|
}
|
|
endlen[endidxcnt] = wlen;
|
|
endidx[endidxcnt++] = arridx++;
|
|
len--;
|
|
|
|
// Skip over the zeros, there can be several flag/region
|
|
// combinations.
|
|
while (len > 0 && byts[arridx] == 0) {
|
|
arridx++;
|
|
len--;
|
|
}
|
|
if (len == 0) {
|
|
break; // no children, word must end here
|
|
}
|
|
}
|
|
|
|
// Stop looking at end of the line.
|
|
if (ptr[wlen] == NUL) {
|
|
break;
|
|
}
|
|
|
|
// Perform a binary search in the list of accepted bytes.
|
|
c = (uint8_t)ptr[wlen];
|
|
if (c == TAB) { // <Tab> is handled like <Space>
|
|
c = ' ';
|
|
}
|
|
idx_T lo = arridx;
|
|
idx_T hi = arridx + len - 1;
|
|
while (lo < hi) {
|
|
idx_T m = (lo + hi) / 2;
|
|
if (byts[m] > c) {
|
|
hi = m - 1;
|
|
} else if (byts[m] < c) {
|
|
lo = m + 1;
|
|
} else {
|
|
lo = hi = m;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Stop if there is no matching byte.
|
|
if (hi < lo || byts[lo] != c) {
|
|
break;
|
|
}
|
|
|
|
// Continue at the child (if there is one).
|
|
arridx = idxs[lo];
|
|
wlen++;
|
|
flen--;
|
|
|
|
// One space in the good word may stand for several spaces in the
|
|
// checked word.
|
|
if (c == ' ') {
|
|
for (;;) {
|
|
if (flen <= 0 && *mip->mi_fend != NUL) {
|
|
flen = fold_more(mip);
|
|
}
|
|
if (ptr[wlen] != ' ' && ptr[wlen] != TAB) {
|
|
break;
|
|
}
|
|
wlen++;
|
|
flen--;
|
|
}
|
|
}
|
|
}
|
|
|
|
char *p;
|
|
bool word_ends;
|
|
|
|
// Verify that one of the possible endings is valid. Try the longest
|
|
// first.
|
|
while (endidxcnt > 0) {
|
|
endidxcnt--;
|
|
arridx = endidx[endidxcnt];
|
|
wlen = endlen[endidxcnt];
|
|
|
|
if (utf_head_off(ptr, ptr + wlen) > 0) {
|
|
continue; // not at first byte of character
|
|
}
|
|
if (spell_iswordp(ptr + wlen, mip->mi_win)) {
|
|
if (slang->sl_compprog == NULL && !slang->sl_nobreak) {
|
|
continue; // next char is a word character
|
|
}
|
|
word_ends = false;
|
|
} else {
|
|
word_ends = true;
|
|
}
|
|
// The prefix flag is before compound flags. Once a valid prefix flag
|
|
// has been found we try compound flags.
|
|
bool prefix_found = false;
|
|
|
|
if (mode != FIND_KEEPWORD) {
|
|
// Compute byte length in original word, length may change
|
|
// when folding case. This can be slow, take a shortcut when the
|
|
// case-folded word is equal to the keep-case word.
|
|
p = mip->mi_word;
|
|
if (strncmp(ptr, p, (size_t)wlen) != 0) {
|
|
for (char *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) {
|
|
MB_PTR_ADV(p);
|
|
}
|
|
wlen = (int)(p - mip->mi_word);
|
|
}
|
|
}
|
|
|
|
// Check flags and region. For FIND_PREFIX check the condition and
|
|
// prefix ID.
|
|
// Repeat this if there are more flags/region alternatives until there
|
|
// is a match.
|
|
for (int len = byts[arridx - 1]; len > 0 && byts[arridx] == 0; len--, arridx++) {
|
|
uint32_t flags = (uint32_t)idxs[arridx];
|
|
|
|
// For the fold-case tree check that the case of the checked word
|
|
// matches with what the word in the tree requires.
|
|
// For keep-case tree the case is always right. For prefixes we
|
|
// don't bother to check.
|
|
if (mode == FIND_FOLDWORD) {
|
|
if (mip->mi_cend != mip->mi_word + wlen) {
|
|
// mi_capflags was set for a different word length, need
|
|
// to do it again.
|
|
mip->mi_cend = mip->mi_word + wlen;
|
|
mip->mi_capflags = captype(mip->mi_word, mip->mi_cend);
|
|
}
|
|
|
|
if (mip->mi_capflags == WF_KEEPCAP
|
|
|| !spell_valid_case(mip->mi_capflags, (int)flags)) {
|
|
continue;
|
|
}
|
|
} else if (mode == FIND_PREFIX && !prefix_found) {
|
|
// When mode is FIND_PREFIX the word must support the prefix:
|
|
// check the prefix ID and the condition. Do that for the list at
|
|
// mip->mi_prefarridx that find_prefix() filled.
|
|
c = valid_word_prefix(mip->mi_prefcnt, mip->mi_prefarridx,
|
|
(int)flags,
|
|
mip->mi_word + mip->mi_cprefixlen, slang,
|
|
false);
|
|
if (c == 0) {
|
|
continue;
|
|
}
|
|
|
|
// Use the WF_RARE flag for a rare prefix.
|
|
if (c & WF_RAREPFX) {
|
|
flags |= WF_RARE;
|
|
}
|
|
prefix_found = true;
|
|
}
|
|
|
|
if (slang->sl_nobreak) {
|
|
if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND)
|
|
&& (flags & WF_BANNED) == 0) {
|
|
// NOBREAK: found a valid following word. That's all we
|
|
// need to know, so return.
|
|
mip->mi_result = SP_OK;
|
|
break;
|
|
}
|
|
} else if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND
|
|
|| !word_ends)) {
|
|
// If there is no compound flag or the word is shorter than
|
|
// COMPOUNDMIN reject it quickly.
|
|
// Makes you wonder why someone puts a compound flag on a word
|
|
// that's too short... Myspell compatibility requires this
|
|
// anyway.
|
|
if (((unsigned)flags >> 24) == 0
|
|
|| wlen - mip->mi_compoff < slang->sl_compminlen) {
|
|
continue;
|
|
}
|
|
// For multi-byte chars check character length against
|
|
// COMPOUNDMIN.
|
|
if (slang->sl_compminlen > 0
|
|
&& mb_charlen_len((char_u *)mip->mi_word + mip->mi_compoff,
|
|
wlen - mip->mi_compoff) < slang->sl_compminlen) {
|
|
continue;
|
|
}
|
|
|
|
// Limit the number of compound words to COMPOUNDWORDMAX if no
|
|
// maximum for syllables is specified.
|
|
if (!word_ends && mip->mi_complen + mip->mi_compextra + 2
|
|
> slang->sl_compmax
|
|
&& slang->sl_compsylmax == MAXWLEN) {
|
|
continue;
|
|
}
|
|
|
|
// Don't allow compounding on a side where an affix was added,
|
|
// unless COMPOUNDPERMITFLAG was used.
|
|
if (mip->mi_complen > 0 && (flags & WF_NOCOMPBEF)) {
|
|
continue;
|
|
}
|
|
if (!word_ends && (flags & WF_NOCOMPAFT)) {
|
|
continue;
|
|
}
|
|
|
|
// Quickly check if compounding is possible with this flag.
|
|
if (!byte_in_str(mip->mi_complen ==
|
|
0 ? slang->sl_compstartflags : slang->sl_compallflags,
|
|
(int)((unsigned)flags >> 24))) {
|
|
continue;
|
|
}
|
|
|
|
// If there is a match with a CHECKCOMPOUNDPATTERN rule
|
|
// discard the compound word.
|
|
if (match_checkcompoundpattern(ptr, wlen, &slang->sl_comppat)) {
|
|
continue;
|
|
}
|
|
|
|
if (mode == FIND_COMPOUND) {
|
|
int capflags;
|
|
|
|
// Need to check the caps type of the appended compound
|
|
// word.
|
|
if (strncmp(ptr, mip->mi_word, (size_t)mip->mi_compoff) != 0) {
|
|
// case folding may have changed the length
|
|
p = mip->mi_word;
|
|
for (char *s = ptr; s < ptr + mip->mi_compoff; MB_PTR_ADV(s)) {
|
|
MB_PTR_ADV(p);
|
|
}
|
|
} else {
|
|
p = mip->mi_word + mip->mi_compoff;
|
|
}
|
|
capflags = captype(p, mip->mi_word + wlen);
|
|
if (capflags == WF_KEEPCAP || (capflags == WF_ALLCAP
|
|
&& (flags & WF_FIXCAP) != 0)) {
|
|
continue;
|
|
}
|
|
|
|
if (capflags != WF_ALLCAP) {
|
|
// When the character before the word is a word
|
|
// character we do not accept a Onecap word. We do
|
|
// accept a no-caps word, even when the dictionary
|
|
// word specifies ONECAP.
|
|
MB_PTR_BACK(mip->mi_word, p);
|
|
if (spell_iswordp_nmw(p, mip->mi_win)
|
|
? capflags == WF_ONECAP
|
|
: (flags & WF_ONECAP) != 0
|
|
&& capflags != WF_ONECAP) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the word ends the sequence of compound flags of the
|
|
// words must match with one of the COMPOUNDRULE items and
|
|
// the number of syllables must not be too large.
|
|
mip->mi_compflags[mip->mi_complen] = (char_u)((unsigned)flags >> 24);
|
|
mip->mi_compflags[mip->mi_complen + 1] = NUL;
|
|
if (word_ends) {
|
|
char fword[MAXWLEN] = { 0 };
|
|
|
|
if (slang->sl_compsylmax < MAXWLEN) {
|
|
// "fword" is only needed for checking syllables.
|
|
if (ptr == mip->mi_word) {
|
|
(void)spell_casefold(mip->mi_win, ptr, wlen, fword, MAXWLEN);
|
|
} else {
|
|
xstrlcpy(fword, ptr, (size_t)endlen[endidxcnt] + 1);
|
|
}
|
|
}
|
|
if (!can_compound(slang, fword, mip->mi_compflags)) {
|
|
continue;
|
|
}
|
|
} else if (slang->sl_comprules != NULL
|
|
&& !match_compoundrule(slang, mip->mi_compflags)) {
|
|
// The compound flags collected so far do not match any
|
|
// COMPOUNDRULE, discard the compounded word.
|
|
continue;
|
|
}
|
|
} else if (flags & WF_NEEDCOMP) {
|
|
// skip if word is only valid in a compound
|
|
continue;
|
|
}
|
|
|
|
int nobreak_result = SP_OK;
|
|
|
|
if (!word_ends) {
|
|
int save_result = mip->mi_result;
|
|
char *save_end = mip->mi_end;
|
|
langp_T *save_lp = mip->mi_lp;
|
|
|
|
// Check that a valid word follows. If there is one and we
|
|
// are compounding, it will set "mi_result", thus we are
|
|
// always finished here. For NOBREAK we only check that a
|
|
// valid word follows.
|
|
// Recursive!
|
|
if (slang->sl_nobreak) {
|
|
mip->mi_result = SP_BAD;
|
|
}
|
|
|
|
// Find following word in case-folded tree.
|
|
mip->mi_compoff = endlen[endidxcnt];
|
|
if (mode == FIND_KEEPWORD) {
|
|
// Compute byte length in case-folded word from "wlen":
|
|
// byte length in keep-case word. Length may change when
|
|
// folding case. This can be slow, take a shortcut when
|
|
// the case-folded word is equal to the keep-case word.
|
|
p = mip->mi_fword;
|
|
if (strncmp(ptr, p, (size_t)wlen) != 0) {
|
|
for (char *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) {
|
|
MB_PTR_ADV(p);
|
|
}
|
|
mip->mi_compoff = (int)(p - mip->mi_fword);
|
|
}
|
|
}
|
|
#if 0
|
|
c = mip->mi_compoff;
|
|
#endif
|
|
mip->mi_complen++;
|
|
if (flags & WF_COMPROOT) {
|
|
mip->mi_compextra++;
|
|
}
|
|
|
|
// For NOBREAK we need to try all NOBREAK languages, at least
|
|
// to find the ".add" file(s).
|
|
for (int lpi = 0; lpi < mip->mi_win->w_s->b_langp.ga_len; lpi++) {
|
|
if (slang->sl_nobreak) {
|
|
mip->mi_lp = LANGP_ENTRY(mip->mi_win->w_s->b_langp, lpi);
|
|
if (mip->mi_lp->lp_slang->sl_fidxs == NULL
|
|
|| !mip->mi_lp->lp_slang->sl_nobreak) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
find_word(mip, FIND_COMPOUND);
|
|
|
|
// When NOBREAK any word that matches is OK. Otherwise we
|
|
// need to find the longest match, thus try with keep-case
|
|
// and prefix too.
|
|
if (!slang->sl_nobreak || mip->mi_result == SP_BAD) {
|
|
// Find following word in keep-case tree.
|
|
mip->mi_compoff = wlen;
|
|
find_word(mip, FIND_KEEPCOMPOUND);
|
|
|
|
#if 0 // Disabled, a prefix must not appear halfway through a compound
|
|
// word, unless the COMPOUNDPERMITFLAG is used, in which case it
|
|
// can't be a postponed prefix.
|
|
if (!slang->sl_nobreak || mip->mi_result == SP_BAD) {
|
|
// Check for following word with prefix.
|
|
mip->mi_compoff = c;
|
|
find_prefix(mip, FIND_COMPOUND);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (!slang->sl_nobreak) {
|
|
break;
|
|
}
|
|
}
|
|
mip->mi_complen--;
|
|
if (flags & WF_COMPROOT) {
|
|
mip->mi_compextra--;
|
|
}
|
|
mip->mi_lp = save_lp;
|
|
|
|
if (slang->sl_nobreak) {
|
|
nobreak_result = mip->mi_result;
|
|
mip->mi_result = save_result;
|
|
mip->mi_end = save_end;
|
|
} else {
|
|
if (mip->mi_result == SP_OK) {
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
int res = SP_BAD;
|
|
if (flags & WF_BANNED) {
|
|
res = SP_BANNED;
|
|
} else if (flags & WF_REGION) {
|
|
// Check region.
|
|
if (((unsigned)mip->mi_lp->lp_region & (flags >> 16)) != 0) {
|
|
res = SP_OK;
|
|
} else {
|
|
res = SP_LOCAL;
|
|
}
|
|
} else if (flags & WF_RARE) {
|
|
res = SP_RARE;
|
|
} else {
|
|
res = SP_OK;
|
|
}
|
|
|
|
// Always use the longest match and the best result. For NOBREAK
|
|
// we separately keep the longest match without a following good
|
|
// word as a fall-back.
|
|
if (nobreak_result == SP_BAD) {
|
|
if (mip->mi_result2 > res) {
|
|
mip->mi_result2 = res;
|
|
mip->mi_end2 = mip->mi_word + wlen;
|
|
} else if (mip->mi_result2 == res
|
|
&& mip->mi_end2 < mip->mi_word + wlen) {
|
|
mip->mi_end2 = mip->mi_word + wlen;
|
|
}
|
|
} else if (mip->mi_result > res) {
|
|
mip->mi_result = res;
|
|
mip->mi_end = mip->mi_word + wlen;
|
|
} else if (mip->mi_result == res && mip->mi_end < mip->mi_word + wlen) {
|
|
mip->mi_end = mip->mi_word + wlen;
|
|
}
|
|
|
|
if (mip->mi_result == SP_OK) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mip->mi_result == SP_OK) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns true if there is a match between the word ptr[wlen] and
|
|
/// CHECKCOMPOUNDPATTERN rules, assuming that we will concatenate with another
|
|
/// word.
|
|
/// A match means that the first part of CHECKCOMPOUNDPATTERN matches at the
|
|
/// end of ptr[wlen] and the second part matches after it.
|
|
///
|
|
/// @param gap &sl_comppat
|
|
bool match_checkcompoundpattern(char *ptr, int wlen, garray_T *gap)
|
|
{
|
|
for (int i = 0; i + 1 < gap->ga_len; i += 2) {
|
|
char *p = ((char **)gap->ga_data)[i + 1];
|
|
if (strncmp(ptr + wlen, p, strlen(p)) == 0) {
|
|
// Second part matches at start of following compound word, now
|
|
// check if first part matches at end of previous word.
|
|
p = ((char **)gap->ga_data)[i];
|
|
int len = (int)strlen(p);
|
|
if (len <= wlen && strncmp(ptr + wlen - len, p, (size_t)len) == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// @return true if "flags" is a valid sequence of compound flags and "word"
|
|
/// does not have too many syllables.
|
|
bool can_compound(slang_T *slang, const char *word, const uint8_t *flags)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
char uflags[MAXWLEN * 2] = { 0 };
|
|
|
|
if (slang->sl_compprog == NULL) {
|
|
return false;
|
|
}
|
|
// Need to convert the single byte flags to utf8 characters.
|
|
char *p = uflags;
|
|
for (int i = 0; flags[i] != NUL; i++) {
|
|
p += utf_char2bytes(flags[i], p);
|
|
}
|
|
*p = NUL;
|
|
p = uflags;
|
|
if (!vim_regexec_prog(&slang->sl_compprog, false, p, 0)) {
|
|
return false;
|
|
}
|
|
|
|
// Count the number of syllables. This may be slow, do it last. If there
|
|
// are too many syllables AND the number of compound words is above
|
|
// COMPOUNDWORDMAX then compounding is not allowed.
|
|
if (slang->sl_compsylmax < MAXWLEN
|
|
&& count_syllables(slang, word) > slang->sl_compsylmax) {
|
|
return (int)strlen((char *)flags) < slang->sl_compmax;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true if the compound flags in compflags[] match the start of any
|
|
// compound rule. This is used to stop trying a compound if the flags
|
|
// collected so far can't possibly match any compound rule.
|
|
// Caller must check that slang->sl_comprules is not NULL.
|
|
bool match_compoundrule(slang_T *slang, const char_u *compflags)
|
|
{
|
|
// loop over all the COMPOUNDRULE entries
|
|
for (char_u *p = (char_u *)slang->sl_comprules; *p != NUL; p++) {
|
|
// loop over the flags in the compound word we have made, match
|
|
// them against the current rule entry
|
|
for (int i = 0;; i++) {
|
|
int c = compflags[i];
|
|
if (c == NUL) {
|
|
// found a rule that matches for the flags we have so far
|
|
return true;
|
|
}
|
|
if (*p == '/' || *p == NUL) {
|
|
break; // end of rule, it's too short
|
|
}
|
|
if (*p == '[') {
|
|
bool match = false;
|
|
|
|
// compare against all the flags in []
|
|
p++;
|
|
while (*p != ']' && *p != NUL) {
|
|
if (*p++ == c) {
|
|
match = true;
|
|
}
|
|
}
|
|
if (!match) {
|
|
break; // none matches
|
|
}
|
|
} else if (*p != c) {
|
|
break; // flag of word doesn't match flag in pattern
|
|
}
|
|
p++;
|
|
}
|
|
|
|
// Skip to the next "/", where the next pattern starts.
|
|
p = (char_u *)vim_strchr((char *)p, '/');
|
|
if (p == NULL) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Checked all the rules and none of them match the flags, so there
|
|
// can't possibly be a compound starting with these flags.
|
|
return false;
|
|
}
|
|
|
|
/// Return non-zero if the prefix indicated by "arridx" matches with the prefix
|
|
/// ID in "flags" for the word "word".
|
|
/// The WF_RAREPFX flag is included in the return value for a rare prefix.
|
|
///
|
|
/// @param totprefcnt nr of prefix IDs
|
|
/// @param arridx idx in sl_pidxs[]
|
|
/// @param cond_req only use prefixes with a condition
|
|
int valid_word_prefix(int totprefcnt, int arridx, int flags, char *word, slang_T *slang,
|
|
bool cond_req)
|
|
{
|
|
int prefid = (int)((unsigned)flags >> 24);
|
|
for (int prefcnt = totprefcnt - 1; prefcnt >= 0; prefcnt--) {
|
|
int pidx = slang->sl_pidxs[arridx + prefcnt];
|
|
|
|
// Check the prefix ID.
|
|
if (prefid != (pidx & 0xff)) {
|
|
continue;
|
|
}
|
|
|
|
// Check if the prefix doesn't combine and the word already has a
|
|
// suffix.
|
|
if ((flags & WF_HAS_AFF) && (pidx & WF_PFX_NC)) {
|
|
continue;
|
|
}
|
|
|
|
// Check the condition, if there is one. The condition index is
|
|
// stored in the two bytes above the prefix ID byte.
|
|
regprog_T **rp = &slang->sl_prefprog[((unsigned)pidx >> 8) & 0xffff];
|
|
if (*rp != NULL) {
|
|
if (!vim_regexec_prog(rp, false, word, 0)) {
|
|
continue;
|
|
}
|
|
} else if (cond_req) {
|
|
continue;
|
|
}
|
|
|
|
// It's a match! Return the WF_ flags.
|
|
return pidx;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Check if the word at "mip->mi_word" has a matching prefix.
|
|
// If it does, then check the following word.
|
|
//
|
|
// If "mode" is "FIND_COMPOUND" then do the same after another word, find a
|
|
// prefix in a compound word.
|
|
//
|
|
// For a match mip->mi_result is updated.
|
|
static void find_prefix(matchinf_T *mip, int mode)
|
|
{
|
|
idx_T arridx = 0;
|
|
int wlen = 0;
|
|
slang_T *slang = mip->mi_lp->lp_slang;
|
|
|
|
char_u *byts = (char_u *)slang->sl_pbyts;
|
|
if (byts == NULL) {
|
|
return; // array is empty
|
|
}
|
|
// We use the case-folded word here, since prefixes are always
|
|
// case-folded.
|
|
char_u *ptr = (char_u *)mip->mi_fword;
|
|
int flen = mip->mi_fwordlen; // available case-folded bytes
|
|
if (mode == FIND_COMPOUND) {
|
|
// Skip over the previously found word(s).
|
|
ptr += mip->mi_compoff;
|
|
flen -= mip->mi_compoff;
|
|
}
|
|
idx_T *idxs = slang->sl_pidxs;
|
|
|
|
// Repeat advancing in the tree until:
|
|
// - there is a byte that doesn't match,
|
|
// - we reach the end of the tree,
|
|
// - or we reach the end of the line.
|
|
for (;;) {
|
|
if (flen == 0 && *mip->mi_fend != NUL) {
|
|
flen = fold_more(mip);
|
|
}
|
|
|
|
int len = byts[arridx++];
|
|
|
|
// If the first possible byte is a zero the prefix could end here.
|
|
// Check if the following word matches and supports the prefix.
|
|
if (byts[arridx] == 0) {
|
|
// There can be several prefixes with different conditions. We
|
|
// try them all, since we don't know which one will give the
|
|
// longest match. The word is the same each time, pass the list
|
|
// of possible prefixes to find_word().
|
|
mip->mi_prefarridx = arridx;
|
|
mip->mi_prefcnt = len;
|
|
while (len > 0 && byts[arridx] == 0) {
|
|
arridx++;
|
|
len--;
|
|
}
|
|
mip->mi_prefcnt -= len;
|
|
|
|
// Find the word that comes after the prefix.
|
|
mip->mi_prefixlen = wlen;
|
|
if (mode == FIND_COMPOUND) {
|
|
// Skip over the previously found word(s).
|
|
mip->mi_prefixlen += mip->mi_compoff;
|
|
}
|
|
|
|
// Case-folded length may differ from original length.
|
|
mip->mi_cprefixlen = nofold_len(mip->mi_fword, mip->mi_prefixlen,
|
|
mip->mi_word);
|
|
find_word(mip, FIND_PREFIX);
|
|
|
|
if (len == 0) {
|
|
break; // no children, word must end here
|
|
}
|
|
}
|
|
|
|
// Stop looking at end of the line.
|
|
if (ptr[wlen] == NUL) {
|
|
break;
|
|
}
|
|
|
|
// Perform a binary search in the list of accepted bytes.
|
|
int c = ptr[wlen];
|
|
idx_T lo = arridx;
|
|
idx_T hi = arridx + len - 1;
|
|
while (lo < hi) {
|
|
idx_T m = (lo + hi) / 2;
|
|
if (byts[m] > c) {
|
|
hi = m - 1;
|
|
} else if (byts[m] < c) {
|
|
lo = m + 1;
|
|
} else {
|
|
lo = hi = m;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Stop if there is no matching byte.
|
|
if (hi < lo || byts[lo] != c) {
|
|
break;
|
|
}
|
|
|
|
// Continue at the child (if there is one).
|
|
arridx = idxs[lo];
|
|
wlen++;
|
|
flen--;
|
|
}
|
|
}
|
|
|
|
// Need to fold at least one more character. Do until next non-word character
|
|
// for efficiency. Include the non-word character too.
|
|
// Return the length of the folded chars in bytes.
|
|
static int fold_more(matchinf_T *mip)
|
|
{
|
|
char *p = mip->mi_fend;
|
|
do {
|
|
MB_PTR_ADV(mip->mi_fend);
|
|
} while (*mip->mi_fend != NUL && spell_iswordp(mip->mi_fend, mip->mi_win));
|
|
|
|
// Include the non-word character so that we can check for the word end.
|
|
if (*mip->mi_fend != NUL) {
|
|
MB_PTR_ADV(mip->mi_fend);
|
|
}
|
|
|
|
(void)spell_casefold(mip->mi_win, p, (int)(mip->mi_fend - p),
|
|
mip->mi_fword + mip->mi_fwordlen,
|
|
MAXWLEN - mip->mi_fwordlen);
|
|
int flen = (int)strlen(mip->mi_fword + mip->mi_fwordlen);
|
|
mip->mi_fwordlen += flen;
|
|
return flen;
|
|
}
|
|
|
|
/// Checks case flags for a word. Returns true, if the word has the requested
|
|
/// case.
|
|
///
|
|
/// @param wordflags Flags for the checked word.
|
|
/// @param treeflags Flags for the word in the spell tree.
|
|
bool spell_valid_case(int wordflags, int treeflags)
|
|
{
|
|
return (wordflags == WF_ALLCAP && (treeflags & WF_FIXCAP) == 0)
|
|
|| ((treeflags & (WF_ALLCAP | WF_KEEPCAP)) == 0
|
|
&& ((treeflags & WF_ONECAP) == 0
|
|
|| (wordflags & WF_ONECAP) != 0));
|
|
}
|
|
|
|
// Returns true if spell checking is not enabled.
|
|
bool no_spell_checking(win_T *wp)
|
|
{
|
|
if (!wp->w_p_spell || *wp->w_s->b_p_spl == NUL
|
|
|| GA_EMPTY(&wp->w_s->b_langp)) {
|
|
emsg(_(e_no_spell));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void decor_spell_nav_start(win_T *wp)
|
|
{
|
|
decor_state = (DecorState){ 0 };
|
|
decor_redraw_reset(wp->w_buffer, &decor_state);
|
|
}
|
|
|
|
static bool decor_spell_nav_col(win_T *wp, linenr_T lnum, linenr_T *decor_lnum, int col,
|
|
char **decor_error)
|
|
{
|
|
if (*decor_lnum != lnum) {
|
|
decor_providers_invoke_spell(wp, lnum - 1, col, lnum - 1, -1, decor_error);
|
|
decor_redraw_line(wp->w_buffer, lnum - 1, &decor_state);
|
|
*decor_lnum = lnum;
|
|
}
|
|
decor_redraw_col(wp->w_buffer, col, col, false, &decor_state);
|
|
return decor_state.spell == kTrue;
|
|
}
|
|
|
|
static inline bool can_syn_spell(win_T *wp, linenr_T lnum, int col)
|
|
{
|
|
bool can_spell;
|
|
(void)syn_get_id(wp, lnum, col, false, &can_spell, false);
|
|
return can_spell;
|
|
}
|
|
|
|
/// Moves to the next spell error.
|
|
/// "curline" is false for "[s", "]s", "[S" and "]S".
|
|
/// "curline" is true to find word under/after cursor in the same line.
|
|
/// For Insert mode completion "dir" is BACKWARD and "curline" is true: move
|
|
/// to after badly spelled word before the cursor.
|
|
///
|
|
/// @param dir FORWARD or BACKWARD
|
|
/// @param allwords true for "[s"/"]s", false for "[S"/"]S"
|
|
/// @param attrp return: attributes of bad word or NULL (only when "dir" is FORWARD)
|
|
///
|
|
/// @return 0 if not found, length of the badly spelled word otherwise.
|
|
size_t spell_move_to(win_T *wp, int dir, bool allwords, bool curline, hlf_T *attrp)
|
|
{
|
|
pos_T found_pos;
|
|
size_t found_len = 0;
|
|
hlf_T attr = HLF_COUNT;
|
|
size_t len;
|
|
int has_syntax = syntax_present(wp);
|
|
colnr_T col;
|
|
char *buf = NULL;
|
|
size_t buflen = 0;
|
|
int skip = 0;
|
|
colnr_T capcol = -1;
|
|
bool found_one = false;
|
|
bool wrapped = false;
|
|
|
|
if (no_spell_checking(wp)) {
|
|
return 0;
|
|
}
|
|
|
|
size_t ret = 0;
|
|
|
|
// Start looking for bad word at the start of the line, because we can't
|
|
// start halfway through a word, we don't know where it starts or ends.
|
|
//
|
|
// When searching backwards, we continue in the line to find the last
|
|
// bad word (in the cursor line: before the cursor).
|
|
//
|
|
// We concatenate the start of the next line, so that wrapped words work
|
|
// (e.g. "et<line-break>cetera"). Doesn't work when searching backwards
|
|
// though...
|
|
linenr_T lnum = wp->w_cursor.lnum;
|
|
clearpos(&found_pos);
|
|
|
|
char *decor_error = NULL;
|
|
// Ephemeral extmarks are currently stored in the global decor_state.
|
|
// When looking for spell errors, we need to:
|
|
// - temporarily reset decor_state
|
|
// - run the _on_spell_nav decor callback for each line we look at
|
|
// - detect if any spell marks are present
|
|
// - restore decor_state to the value saved here.
|
|
// TODO(lewis6991): un-globalize decor_state and allow ephemeral marks to be stored into a
|
|
// temporary DecorState.
|
|
DecorState saved_decor_start = decor_state;
|
|
linenr_T decor_lnum = -1;
|
|
decor_spell_nav_start(wp);
|
|
|
|
while (!got_int) {
|
|
char *line = ml_get_buf(wp->w_buffer, lnum, false);
|
|
|
|
len = strlen(line);
|
|
if (buflen < len + MAXWLEN + 2) {
|
|
xfree(buf);
|
|
buflen = len + MAXWLEN + 2;
|
|
buf = xmalloc(buflen);
|
|
}
|
|
assert(buf && buflen >= len + MAXWLEN + 2);
|
|
|
|
// In first line check first word for Capital.
|
|
if (lnum == 1) {
|
|
capcol = 0;
|
|
}
|
|
|
|
// For checking first word with a capital skip white space.
|
|
if (capcol == 0) {
|
|
capcol = (colnr_T)getwhitecols(line);
|
|
} else if (curline && wp == curwin) {
|
|
// For spellbadword(): check if first word needs a capital.
|
|
col = (colnr_T)getwhitecols(line);
|
|
if (check_need_cap(lnum, col)) {
|
|
capcol = col;
|
|
}
|
|
|
|
// Need to get the line again, may have looked at the previous
|
|
// one.
|
|
line = ml_get_buf(wp->w_buffer, lnum, false);
|
|
}
|
|
|
|
// Copy the line into "buf" and append the start of the next line if
|
|
// possible. Note: this ml_get_buf() may make "line" invalid, check
|
|
// for empty line first.
|
|
bool empty_line = *skipwhite((const char *)line) == NUL;
|
|
STRCPY(buf, line);
|
|
if (lnum < wp->w_buffer->b_ml.ml_line_count) {
|
|
spell_cat_line(buf + strlen(buf),
|
|
ml_get_buf(wp->w_buffer, lnum + 1, false),
|
|
MAXWLEN);
|
|
}
|
|
char *p = buf + skip;
|
|
char *endp = buf + len;
|
|
while (p < endp) {
|
|
// When searching backward don't search after the cursor. Unless
|
|
// we wrapped around the end of the buffer.
|
|
if (dir == BACKWARD
|
|
&& lnum == wp->w_cursor.lnum
|
|
&& !wrapped
|
|
&& (colnr_T)(p - buf) >= wp->w_cursor.col) {
|
|
break;
|
|
}
|
|
|
|
// start of word
|
|
attr = HLF_COUNT;
|
|
len = spell_check(wp, p, &attr, &capcol, false);
|
|
|
|
if (attr != HLF_COUNT) {
|
|
// We found a bad word. Check the attribute.
|
|
if (allwords || attr == HLF_SPB) {
|
|
// When searching forward only accept a bad word after
|
|
// the cursor.
|
|
if (dir == BACKWARD
|
|
|| lnum != wp->w_cursor.lnum
|
|
|| wrapped
|
|
|| ((colnr_T)(curline
|
|
? p - buf + (ptrdiff_t)len
|
|
: p - buf) > wp->w_cursor.col)) {
|
|
col = (colnr_T)(p - buf);
|
|
|
|
bool can_spell = (!has_syntax && (wp->w_s->b_p_spo_flags & SPO_NPBUFFER) == 0)
|
|
|| decor_spell_nav_col(wp, lnum, &decor_lnum, col, &decor_error)
|
|
|| (has_syntax && can_syn_spell(wp, lnum, col));
|
|
|
|
if (!can_spell) {
|
|
attr = HLF_COUNT;
|
|
}
|
|
|
|
if (can_spell) {
|
|
found_one = true;
|
|
found_pos = (pos_T) {
|
|
.lnum = lnum,
|
|
.col = col,
|
|
.coladd = 0
|
|
};
|
|
if (dir == FORWARD) {
|
|
// No need to search further.
|
|
wp->w_cursor = found_pos;
|
|
if (attrp != NULL) {
|
|
*attrp = attr;
|
|
}
|
|
ret = len;
|
|
goto theend;
|
|
} else if (curline) {
|
|
// Insert mode completion: put cursor after
|
|
// the bad word.
|
|
assert(len <= INT_MAX);
|
|
found_pos.col += (int)len;
|
|
}
|
|
found_len = len;
|
|
}
|
|
} else {
|
|
found_one = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// advance to character after the word
|
|
p += len;
|
|
assert(len <= INT_MAX);
|
|
capcol -= (int)len;
|
|
}
|
|
|
|
if (dir == BACKWARD && found_pos.lnum != 0) {
|
|
// Use the last match in the line (before the cursor).
|
|
wp->w_cursor = found_pos;
|
|
ret = found_len;
|
|
goto theend;
|
|
}
|
|
|
|
if (curline) {
|
|
break; // only check cursor line
|
|
}
|
|
|
|
// If we are back at the starting line and searched it again there
|
|
// is no match, give up.
|
|
if (lnum == wp->w_cursor.lnum && wrapped) {
|
|
break;
|
|
}
|
|
|
|
// Advance to next line.
|
|
if (dir == BACKWARD) {
|
|
if (lnum > 1) {
|
|
lnum--;
|
|
} else if (!p_ws) {
|
|
break; // at first line and 'nowrapscan'
|
|
} else {
|
|
// Wrap around to the end of the buffer. May search the
|
|
// starting line again and accept the last match.
|
|
lnum = wp->w_buffer->b_ml.ml_line_count;
|
|
wrapped = true;
|
|
if (!shortmess(SHM_SEARCH)) {
|
|
give_warning(_(top_bot_msg), true);
|
|
}
|
|
}
|
|
capcol = -1;
|
|
} else {
|
|
if (lnum < wp->w_buffer->b_ml.ml_line_count) {
|
|
lnum++;
|
|
} else if (!p_ws) {
|
|
break; // at first line and 'nowrapscan'
|
|
} else {
|
|
// Wrap around to the start of the buffer. May search the
|
|
// starting line again and accept the first match.
|
|
lnum = 1;
|
|
wrapped = true;
|
|
if (!shortmess(SHM_SEARCH)) {
|
|
give_warning(_(bot_top_msg), true);
|
|
}
|
|
}
|
|
|
|
// If we are back at the starting line and there is no match then
|
|
// give up.
|
|
if (lnum == wp->w_cursor.lnum && !found_one) {
|
|
break;
|
|
}
|
|
|
|
// Skip the characters at the start of the next line that were
|
|
// included in a match crossing line boundaries.
|
|
if (attr == HLF_COUNT) {
|
|
skip = (int)(p - endp);
|
|
} else {
|
|
skip = 0;
|
|
}
|
|
|
|
// Capcol skips over the inserted space.
|
|
capcol--;
|
|
|
|
// But after empty line check first word in next line
|
|
if (empty_line) {
|
|
capcol = 0;
|
|
}
|
|
}
|
|
|
|
line_breakcheck();
|
|
}
|
|
|
|
theend:
|
|
decor_state_free(&decor_state);
|
|
xfree(decor_error);
|
|
decor_state = saved_decor_start;
|
|
xfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
// For spell checking: concatenate the start of the following line "line" into
|
|
// "buf", blanking-out special characters. Copy less than "maxlen" bytes.
|
|
// Keep the blanks at the start of the next line, this is used in win_line()
|
|
// to skip those bytes if the word was OK.
|
|
void spell_cat_line(char *buf, char *line, int maxlen)
|
|
{
|
|
char_u *p = (char_u *)skipwhite(line);
|
|
while (vim_strchr("*#/\"\t", (uint8_t)(*p)) != NULL) {
|
|
p = (char_u *)skipwhite((char *)p + 1);
|
|
}
|
|
|
|
if (*p != NUL) {
|
|
// Only worth concatenating if there is something else than spaces to
|
|
// concatenate.
|
|
int n = (int)(p - (char_u *)line) + 1;
|
|
if (n < maxlen - 1) {
|
|
memset(buf, ' ', (size_t)n);
|
|
xstrlcpy(buf + n, (char *)p, (size_t)(maxlen - n));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Load word list(s) for "lang" from Vim spell file(s).
|
|
// "lang" must be the language without the region: e.g., "en".
|
|
static void spell_load_lang(char *lang)
|
|
{
|
|
char fname_enc[85];
|
|
int r;
|
|
spelload_T sl;
|
|
|
|
// Copy the language name to pass it to spell_load_cb() as a cookie.
|
|
// It's truncated when an error is detected.
|
|
STRCPY(sl.sl_lang, lang);
|
|
sl.sl_slang = NULL;
|
|
sl.sl_nobreak = false;
|
|
|
|
// Disallow deleting the current buffer. Autocommands can do weird things
|
|
// and cause "lang" to be freed.
|
|
curbuf->b_locked++;
|
|
|
|
// We may retry when no spell file is found for the language, an
|
|
// autocommand may load it then.
|
|
for (int round = 1; round <= 2; round++) {
|
|
// Find the first spell file for "lang" in 'runtimepath' and load it.
|
|
vim_snprintf(fname_enc, sizeof(fname_enc) - 5,
|
|
"spell/%s.%s.spl", lang, spell_enc());
|
|
r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl);
|
|
|
|
if (r == FAIL && *sl.sl_lang != NUL) {
|
|
// Try loading the ASCII version.
|
|
vim_snprintf(fname_enc, sizeof(fname_enc) - 5,
|
|
"spell/%s.ascii.spl", lang);
|
|
r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl);
|
|
|
|
if (r == FAIL && *sl.sl_lang != NUL && round == 1
|
|
&& apply_autocmds(EVENT_SPELLFILEMISSING, lang,
|
|
curbuf->b_fname, false, curbuf)) {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (r == FAIL) {
|
|
if (starting) {
|
|
// Prompt the user at VimEnter if spell files are missing. #3027
|
|
// Plugins aren't loaded yet, so spellfile.vim cannot handle this case.
|
|
char autocmd_buf[512] = { 0 };
|
|
snprintf(autocmd_buf, sizeof(autocmd_buf),
|
|
"autocmd VimEnter * call spellfile#LoadFile('%s')|set spell",
|
|
lang);
|
|
do_cmdline_cmd(autocmd_buf);
|
|
} else {
|
|
smsg(_("Warning: Cannot find word list \"%s.%s.spl\" or \"%s.ascii.spl\""),
|
|
lang, spell_enc(), lang);
|
|
}
|
|
} else if (sl.sl_slang != NULL) {
|
|
// At least one file was loaded, now load ALL the additions.
|
|
STRCPY(fname_enc + strlen(fname_enc) - 3, "add.spl");
|
|
do_in_runtimepath(fname_enc, DIP_ALL, spell_load_cb, &sl);
|
|
}
|
|
|
|
curbuf->b_locked--;
|
|
}
|
|
|
|
// Return the encoding used for spell checking: Use 'encoding', except that we
|
|
// use "latin1" for "latin9". And limit to 60 characters (just in case).
|
|
char *spell_enc(void)
|
|
{
|
|
if (strlen(p_enc) < 60 && strcmp(p_enc, "iso-8859-15") != 0) {
|
|
return p_enc;
|
|
}
|
|
return "latin1";
|
|
}
|
|
|
|
// Get the name of the .spl file for the internal wordlist into
|
|
// "fname[MAXPATHL]".
|
|
static void int_wordlist_spl(char *fname)
|
|
{
|
|
vim_snprintf(fname, MAXPATHL, SPL_FNAME_TMPL,
|
|
int_wordlist, spell_enc());
|
|
}
|
|
|
|
/// Allocate a new slang_T for language "lang". "lang" can be NULL.
|
|
/// Caller must fill "sl_next".
|
|
slang_T *slang_alloc(char *lang)
|
|
FUNC_ATTR_NONNULL_RET
|
|
{
|
|
slang_T *lp = xcalloc(1, sizeof(slang_T));
|
|
|
|
if (lang != NULL) {
|
|
lp->sl_name = xstrdup(lang);
|
|
}
|
|
ga_init(&lp->sl_rep, sizeof(fromto_T), 10);
|
|
ga_init(&lp->sl_repsal, sizeof(fromto_T), 10);
|
|
lp->sl_compmax = MAXWLEN;
|
|
lp->sl_compsylmax = MAXWLEN;
|
|
hash_init(&lp->sl_wordcount);
|
|
|
|
return lp;
|
|
}
|
|
|
|
// Free the contents of an slang_T and the structure itself.
|
|
void slang_free(slang_T *lp)
|
|
{
|
|
xfree(lp->sl_name);
|
|
xfree(lp->sl_fname);
|
|
slang_clear(lp);
|
|
xfree(lp);
|
|
}
|
|
|
|
/// Frees a salitem_T
|
|
static void free_salitem(salitem_T *smp)
|
|
{
|
|
xfree(smp->sm_lead);
|
|
// Don't free sm_oneof and sm_rules, they point into sm_lead.
|
|
xfree(smp->sm_to);
|
|
xfree(smp->sm_lead_w);
|
|
xfree(smp->sm_oneof_w);
|
|
xfree(smp->sm_to_w);
|
|
}
|
|
|
|
/// Frees a fromto_T
|
|
static void free_fromto(fromto_T *ftp)
|
|
{
|
|
xfree(ftp->ft_from);
|
|
xfree(ftp->ft_to);
|
|
}
|
|
|
|
// Clear an slang_T so that the file can be reloaded.
|
|
void slang_clear(slang_T *lp)
|
|
{
|
|
garray_T *gap;
|
|
|
|
XFREE_CLEAR(lp->sl_fbyts);
|
|
XFREE_CLEAR(lp->sl_kbyts);
|
|
XFREE_CLEAR(lp->sl_pbyts);
|
|
|
|
XFREE_CLEAR(lp->sl_fidxs);
|
|
XFREE_CLEAR(lp->sl_kidxs);
|
|
XFREE_CLEAR(lp->sl_pidxs);
|
|
|
|
GA_DEEP_CLEAR(&lp->sl_rep, fromto_T, free_fromto);
|
|
GA_DEEP_CLEAR(&lp->sl_repsal, fromto_T, free_fromto);
|
|
|
|
gap = &lp->sl_sal;
|
|
if (lp->sl_sofo) {
|
|
// "ga_len" is set to 1 without adding an item for latin1
|
|
GA_DEEP_CLEAR_PTR(gap);
|
|
} else {
|
|
// SAL items: free salitem_T items
|
|
GA_DEEP_CLEAR(gap, salitem_T, free_salitem);
|
|
}
|
|
|
|
for (int i = 0; i < lp->sl_prefixcnt; i++) {
|
|
vim_regfree(lp->sl_prefprog[i]);
|
|
}
|
|
lp->sl_prefixcnt = 0;
|
|
XFREE_CLEAR(lp->sl_prefprog);
|
|
XFREE_CLEAR(lp->sl_info);
|
|
XFREE_CLEAR(lp->sl_midword);
|
|
|
|
vim_regfree(lp->sl_compprog);
|
|
lp->sl_compprog = NULL;
|
|
XFREE_CLEAR(lp->sl_comprules);
|
|
XFREE_CLEAR(lp->sl_compstartflags);
|
|
XFREE_CLEAR(lp->sl_compallflags);
|
|
|
|
XFREE_CLEAR(lp->sl_syllable);
|
|
ga_clear(&lp->sl_syl_items);
|
|
|
|
ga_clear_strings(&lp->sl_comppat);
|
|
|
|
hash_clear_all(&lp->sl_wordcount, WC_KEY_OFF);
|
|
hash_init(&lp->sl_wordcount);
|
|
|
|
hash_clear_all(&lp->sl_map_hash, 0);
|
|
|
|
// Clear info from .sug file.
|
|
slang_clear_sug(lp);
|
|
|
|
lp->sl_compmax = MAXWLEN;
|
|
lp->sl_compminlen = 0;
|
|
lp->sl_compsylmax = MAXWLEN;
|
|
lp->sl_regions[0] = NUL;
|
|
}
|
|
|
|
// Clear the info from the .sug file in "lp".
|
|
void slang_clear_sug(slang_T *lp)
|
|
{
|
|
XFREE_CLEAR(lp->sl_sbyts);
|
|
XFREE_CLEAR(lp->sl_sidxs);
|
|
close_spellbuf(lp->sl_sugbuf);
|
|
lp->sl_sugbuf = NULL;
|
|
lp->sl_sugloaded = false;
|
|
lp->sl_sugtime = 0;
|
|
}
|
|
|
|
// Load one spell file and store the info into a slang_T.
|
|
// Invoked through do_in_runtimepath().
|
|
static void spell_load_cb(char *fname, void *cookie)
|
|
{
|
|
spelload_T *slp = (spelload_T *)cookie;
|
|
slang_T *slang = spell_load_file(fname, slp->sl_lang, NULL, false);
|
|
if (slang != NULL) {
|
|
// When a previously loaded file has NOBREAK also use it for the
|
|
// ".add" files.
|
|
if (slp->sl_nobreak && slang->sl_add) {
|
|
slang->sl_nobreak = true;
|
|
} else if (slang->sl_nobreak) {
|
|
slp->sl_nobreak = true;
|
|
}
|
|
|
|
slp->sl_slang = slang;
|
|
}
|
|
}
|
|
|
|
/// Add a word to the hashtable of common words.
|
|
/// If it's already there then the counter is increased.
|
|
///
|
|
/// @param[in] lp
|
|
/// @param[in] word added to common words hashtable
|
|
/// @param[in] len length of word or -1 for NUL terminated
|
|
/// @param[in] count 1 to count once, 10 to init
|
|
void count_common_word(slang_T *lp, char *word, int len, uint8_t count)
|
|
{
|
|
char buf[MAXWLEN];
|
|
char *p;
|
|
|
|
if (len == -1) {
|
|
p = word;
|
|
} else if (len >= MAXWLEN) {
|
|
return;
|
|
} else {
|
|
xstrlcpy(buf, word, (size_t)len + 1);
|
|
p = buf;
|
|
}
|
|
|
|
wordcount_T *wc;
|
|
hash_T hash = hash_hash(p);
|
|
const size_t p_len = strlen(p);
|
|
hashitem_T *hi = hash_lookup(&lp->sl_wordcount, (const char *)p, p_len, hash);
|
|
if (HASHITEM_EMPTY(hi)) {
|
|
wc = xmalloc(sizeof(wordcount_T) + p_len);
|
|
memcpy(wc->wc_word, p, p_len + 1);
|
|
wc->wc_count = count;
|
|
hash_add_item(&lp->sl_wordcount, hi, (char *)wc->wc_word, hash);
|
|
} else {
|
|
wc = HI2WC(hi);
|
|
wc->wc_count = (uint16_t)(wc->wc_count + count);
|
|
if (wc->wc_count < count) { // check for overflow
|
|
wc->wc_count = MAXWORDCOUNT;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns true if byte "n" appears in "str".
|
|
// Like strchr() but independent of locale.
|
|
bool byte_in_str(uint8_t *str, int n)
|
|
{
|
|
for (uint8_t *p = str; *p != NUL; p++) {
|
|
if (*p == n) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Truncate "slang->sl_syllable" at the first slash and put the following items
|
|
// in "slang->sl_syl_items".
|
|
int init_syl_tab(slang_T *slang)
|
|
{
|
|
ga_init(&slang->sl_syl_items, sizeof(syl_item_T), 4);
|
|
char *p = vim_strchr((char *)slang->sl_syllable, '/');
|
|
while (p != NULL) {
|
|
*p++ = NUL;
|
|
if (*p == NUL) { // trailing slash
|
|
break;
|
|
}
|
|
char *s = p;
|
|
p = vim_strchr(p, '/');
|
|
int l;
|
|
if (p == NULL) {
|
|
l = (int)strlen(s);
|
|
} else {
|
|
l = (int)(p - s);
|
|
}
|
|
if (l >= SY_MAXLEN) {
|
|
return SP_FORMERROR;
|
|
}
|
|
|
|
syl_item_T *syl = GA_APPEND_VIA_PTR(syl_item_T, &slang->sl_syl_items);
|
|
xstrlcpy(syl->sy_chars, s, (size_t)l + 1);
|
|
syl->sy_len = l;
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
// Count the number of syllables in "word".
|
|
// When "word" contains spaces the syllables after the last space are counted.
|
|
// Returns zero if syllables are not defines.
|
|
static int count_syllables(slang_T *slang, const char *word)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
int cnt = 0;
|
|
bool skip = false;
|
|
int len;
|
|
|
|
if (slang->sl_syllable == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
for (const char *p = word; *p != NUL; p += len) {
|
|
// When running into a space reset counter.
|
|
if (*p == ' ') {
|
|
len = 1;
|
|
cnt = 0;
|
|
continue;
|
|
}
|
|
|
|
// Find longest match of syllable items.
|
|
len = 0;
|
|
for (int i = 0; i < slang->sl_syl_items.ga_len; i++) {
|
|
syl_item_T *syl = ((syl_item_T *)slang->sl_syl_items.ga_data) + i;
|
|
if (syl->sy_len > len
|
|
&& strncmp(p, syl->sy_chars, (size_t)syl->sy_len) == 0) {
|
|
len = syl->sy_len;
|
|
}
|
|
}
|
|
if (len != 0) { // found a match, count syllable
|
|
cnt++;
|
|
skip = false;
|
|
} else {
|
|
// No recognized syllable item, at least a syllable char then?
|
|
int c = utf_ptr2char(p);
|
|
len = utfc_ptr2len(p);
|
|
if (vim_strchr((char *)slang->sl_syllable, c) == NULL) {
|
|
skip = false; // No, search for next syllable
|
|
} else if (!skip) {
|
|
cnt++; // Yes, count it
|
|
skip = true; // don't count following syllable chars
|
|
}
|
|
}
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
/// Parse 'spelllang' and set w_s->b_langp accordingly.
|
|
/// @return NULL if it's OK, an untranslated error message otherwise.
|
|
char *did_set_spelllang(win_T *wp)
|
|
{
|
|
garray_T ga;
|
|
char *splp;
|
|
char *region;
|
|
char region_cp[3];
|
|
bool filename;
|
|
int region_mask;
|
|
slang_T *slang;
|
|
int c;
|
|
char lang[MAXWLEN + 1];
|
|
char spf_name[MAXPATHL];
|
|
int len;
|
|
char *p;
|
|
int round;
|
|
char *spf;
|
|
char *use_region = NULL;
|
|
bool dont_use_region = false;
|
|
bool nobreak = false;
|
|
langp_T *lp, *lp2;
|
|
static bool recursive = false;
|
|
char *ret_msg = NULL;
|
|
char *spl_copy;
|
|
|
|
bufref_T bufref;
|
|
set_bufref(&bufref, wp->w_buffer);
|
|
|
|
// We don't want to do this recursively. May happen when a language is
|
|
// not available and the SpellFileMissing autocommand opens a new buffer
|
|
// in which 'spell' is set.
|
|
if (recursive) {
|
|
return NULL;
|
|
}
|
|
recursive = true;
|
|
|
|
ga_init(&ga, sizeof(langp_T), 2);
|
|
clear_midword(wp);
|
|
|
|
// Make a copy of 'spelllang', the SpellFileMissing autocommands may change
|
|
// it under our fingers.
|
|
spl_copy = xstrdup(wp->w_s->b_p_spl);
|
|
|
|
wp->w_s->b_cjk = 0;
|
|
|
|
// Loop over comma separated language names.
|
|
for (splp = spl_copy; *splp != NUL;) {
|
|
// Get one language name.
|
|
copy_option_part(&splp, lang, MAXWLEN, ",");
|
|
region = NULL;
|
|
len = (int)strlen(lang);
|
|
|
|
if (!valid_spelllang(lang)) {
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(lang, "cjk") == 0) {
|
|
wp->w_s->b_cjk = 1;
|
|
continue;
|
|
}
|
|
|
|
// If the name ends in ".spl" use it as the name of the spell file.
|
|
// If there is a region name let "region" point to it and remove it
|
|
// from the name.
|
|
if (len > 4 && path_fnamecmp(lang + len - 4, ".spl") == 0) {
|
|
filename = true;
|
|
|
|
// Locate a region and remove it from the file name.
|
|
p = vim_strchr(path_tail(lang), '_');
|
|
if (p != NULL && ASCII_ISALPHA(p[1]) && ASCII_ISALPHA(p[2])
|
|
&& !ASCII_ISALPHA(p[3])) {
|
|
xstrlcpy(region_cp, p + 1, 3);
|
|
memmove(p, p + 3, (size_t)(len - (p - lang) - 2));
|
|
region = region_cp;
|
|
} else {
|
|
dont_use_region = true;
|
|
}
|
|
|
|
// Check if we loaded this language before.
|
|
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
|
|
if (path_full_compare(lang, slang->sl_fname, false, true)
|
|
== kEqualFiles) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
filename = false;
|
|
if (len > 3 && lang[len - 3] == '_') {
|
|
region = lang + len - 2;
|
|
lang[len - 3] = NUL;
|
|
} else {
|
|
dont_use_region = true;
|
|
}
|
|
|
|
// Check if we loaded this language before.
|
|
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
|
|
if (STRICMP(lang, slang->sl_name) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (region != NULL) {
|
|
// If the region differs from what was used before then don't
|
|
// use it for 'spellfile'.
|
|
if (use_region != NULL && strcmp(region, use_region) != 0) {
|
|
dont_use_region = true;
|
|
}
|
|
use_region = region;
|
|
}
|
|
|
|
// If not found try loading the language now.
|
|
if (slang == NULL) {
|
|
if (filename) {
|
|
(void)spell_load_file(lang, lang, NULL, false);
|
|
} else {
|
|
spell_load_lang(lang);
|
|
// SpellFileMissing autocommands may do anything, including
|
|
// destroying the buffer we are using or closing the window.
|
|
if (!bufref_valid(&bufref) || !win_valid_any_tab(wp)) {
|
|
ret_msg = N_("E797: SpellFileMissing autocommand deleted buffer");
|
|
goto theend;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loop over the languages, there can be several files for "lang".
|
|
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
|
|
if (filename
|
|
? path_full_compare(lang, slang->sl_fname, false, true) == kEqualFiles
|
|
: STRICMP(lang, slang->sl_name) == 0) {
|
|
region_mask = REGION_ALL;
|
|
if (!filename && region != NULL) {
|
|
// find region in sl_regions
|
|
c = find_region(slang->sl_regions, region);
|
|
if (c == REGION_ALL) {
|
|
if (slang->sl_add) {
|
|
if (*slang->sl_regions != NUL) {
|
|
// This addition file is for other regions.
|
|
region_mask = 0;
|
|
}
|
|
} else {
|
|
// This is probably an error. Give a warning and
|
|
// accept the words anyway.
|
|
smsg(_("Warning: region %s not supported"),
|
|
region);
|
|
}
|
|
} else {
|
|
region_mask = 1 << c;
|
|
}
|
|
}
|
|
|
|
if (region_mask != 0) {
|
|
langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga);
|
|
p_->lp_slang = slang;
|
|
p_->lp_region = region_mask;
|
|
|
|
use_midword(slang, wp);
|
|
if (slang->sl_nobreak) {
|
|
nobreak = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// round 0: load int_wordlist, if possible.
|
|
// round 1: load first name in 'spellfile'.
|
|
// round 2: load second name in 'spellfile.
|
|
// etc.
|
|
spf = curwin->w_s->b_p_spf;
|
|
for (round = 0; round == 0 || *spf != NUL; round++) {
|
|
if (round == 0) {
|
|
// Internal wordlist, if there is one.
|
|
if (int_wordlist == NULL) {
|
|
continue;
|
|
}
|
|
int_wordlist_spl(spf_name);
|
|
} else {
|
|
// One entry in 'spellfile'.
|
|
copy_option_part(&spf, spf_name, MAXPATHL - 5, ",");
|
|
STRCAT(spf_name, ".spl");
|
|
|
|
// If it was already found above then skip it.
|
|
for (c = 0; c < ga.ga_len; c++) {
|
|
p = LANGP_ENTRY(ga, c)->lp_slang->sl_fname;
|
|
if (p != NULL
|
|
&& path_full_compare(spf_name, p, false, true) == kEqualFiles) {
|
|
break;
|
|
}
|
|
}
|
|
if (c < ga.ga_len) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check if it was loaded already.
|
|
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
|
|
if (path_full_compare(spf_name, slang->sl_fname, false, true)
|
|
== kEqualFiles) {
|
|
break;
|
|
}
|
|
}
|
|
if (slang == NULL) {
|
|
// Not loaded, try loading it now. The language name includes the
|
|
// region name, the region is ignored otherwise. for int_wordlist
|
|
// use an arbitrary name.
|
|
if (round == 0) {
|
|
STRCPY(lang, "internal wordlist");
|
|
} else {
|
|
xstrlcpy(lang, path_tail(spf_name), MAXWLEN + 1);
|
|
p = vim_strchr(lang, '.');
|
|
if (p != NULL) {
|
|
*p = NUL; // truncate at ".encoding.add"
|
|
}
|
|
}
|
|
slang = spell_load_file(spf_name, lang, NULL, true);
|
|
|
|
// If one of the languages has NOBREAK we assume the addition
|
|
// files also have this.
|
|
if (slang != NULL && nobreak) {
|
|
slang->sl_nobreak = true;
|
|
}
|
|
}
|
|
if (slang != NULL) {
|
|
region_mask = REGION_ALL;
|
|
if (use_region != NULL && !dont_use_region) {
|
|
// find region in sl_regions
|
|
c = find_region(slang->sl_regions, use_region);
|
|
if (c != REGION_ALL) {
|
|
region_mask = 1 << c;
|
|
} else if (*slang->sl_regions != NUL) {
|
|
// This spell file is for other regions.
|
|
region_mask = 0;
|
|
}
|
|
}
|
|
|
|
if (region_mask != 0) {
|
|
langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga);
|
|
p_->lp_slang = slang;
|
|
p_->lp_sallang = NULL;
|
|
p_->lp_replang = NULL;
|
|
p_->lp_region = region_mask;
|
|
|
|
use_midword(slang, wp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Everything is fine, store the new b_langp value.
|
|
ga_clear(&wp->w_s->b_langp);
|
|
wp->w_s->b_langp = ga;
|
|
|
|
// For each language figure out what language to use for sound folding and
|
|
// REP items. If the language doesn't support it itself use another one
|
|
// with the same name. E.g. for "en-math" use "en".
|
|
for (int i = 0; i < ga.ga_len; i++) {
|
|
lp = LANGP_ENTRY(ga, i);
|
|
|
|
// sound folding
|
|
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
|
|
// language does sound folding itself
|
|
lp->lp_sallang = lp->lp_slang;
|
|
} else {
|
|
// find first similar language that does sound folding
|
|
for (int j = 0; j < ga.ga_len; j++) {
|
|
lp2 = LANGP_ENTRY(ga, j);
|
|
if (!GA_EMPTY(&lp2->lp_slang->sl_sal)
|
|
&& strncmp(lp->lp_slang->sl_name,
|
|
lp2->lp_slang->sl_name, 2) == 0) {
|
|
lp->lp_sallang = lp2->lp_slang;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// REP items
|
|
if (!GA_EMPTY(&lp->lp_slang->sl_rep)) {
|
|
// language has REP items itself
|
|
lp->lp_replang = lp->lp_slang;
|
|
} else {
|
|
// find first similar language that has REP items
|
|
for (int j = 0; j < ga.ga_len; j++) {
|
|
lp2 = LANGP_ENTRY(ga, j);
|
|
if (!GA_EMPTY(&lp2->lp_slang->sl_rep)
|
|
&& strncmp(lp->lp_slang->sl_name,
|
|
lp2->lp_slang->sl_name, 2) == 0) {
|
|
lp->lp_replang = lp2->lp_slang;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
redraw_later(wp, UPD_NOT_VALID);
|
|
|
|
theend:
|
|
xfree(spl_copy);
|
|
recursive = false;
|
|
return ret_msg;
|
|
}
|
|
|
|
// Clear the midword characters for buffer "buf".
|
|
static void clear_midword(win_T *wp)
|
|
{
|
|
CLEAR_FIELD(wp->w_s->b_spell_ismw);
|
|
XFREE_CLEAR(wp->w_s->b_spell_ismw_mb);
|
|
}
|
|
|
|
/// Use the "sl_midword" field of language "lp" for buffer "buf".
|
|
/// They add up to any currently used midword characters.
|
|
static void use_midword(slang_T *lp, win_T *wp)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
if (lp->sl_midword == NULL) { // there aren't any
|
|
return;
|
|
}
|
|
|
|
for (char *p = (char *)lp->sl_midword; *p != NUL;) {
|
|
const int c = utf_ptr2char(p);
|
|
const int l = utfc_ptr2len(p);
|
|
if (c < 256 && l <= 2) {
|
|
wp->w_s->b_spell_ismw[c] = true;
|
|
} else if (wp->w_s->b_spell_ismw_mb == NULL) {
|
|
// First multi-byte char in "b_spell_ismw_mb".
|
|
wp->w_s->b_spell_ismw_mb = xstrnsave(p, (size_t)l);
|
|
} else {
|
|
// Append multi-byte chars to "b_spell_ismw_mb".
|
|
const int n = (int)strlen(wp->w_s->b_spell_ismw_mb);
|
|
char *bp = xstrnsave(wp->w_s->b_spell_ismw_mb, (size_t)n + (size_t)l);
|
|
xfree(wp->w_s->b_spell_ismw_mb);
|
|
wp->w_s->b_spell_ismw_mb = bp;
|
|
xstrlcpy(bp + n, p, (size_t)l + 1);
|
|
}
|
|
p += l;
|
|
}
|
|
}
|
|
|
|
// Find the region "region[2]" in "rp" (points to "sl_regions").
|
|
// Each region is simply stored as the two characters of its name.
|
|
// Returns the index if found (first is 0), REGION_ALL if not found.
|
|
static int find_region(const char *rp, const char *region)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0;; i += 2) {
|
|
if (rp[i] == NUL) {
|
|
return REGION_ALL;
|
|
}
|
|
if (rp[i] == region[0] && rp[i + 1] == region[1]) {
|
|
break;
|
|
}
|
|
}
|
|
return i / 2;
|
|
}
|
|
|
|
/// Return case type of word:
|
|
/// w word 0
|
|
/// Word WF_ONECAP
|
|
/// W WORD WF_ALLCAP
|
|
/// WoRd wOrd WF_KEEPCAP
|
|
///
|
|
/// @param[in] word
|
|
/// @param[in] end End of word or NULL for NUL delimited string
|
|
///
|
|
/// @returns Case type of word
|
|
int captype(char *word, const char *end)
|
|
FUNC_ATTR_NONNULL_ARG(1)
|
|
{
|
|
char *p;
|
|
|
|
// find first letter
|
|
for (p = word; !spell_iswordp_nmw(p, curwin); MB_PTR_ADV(p)) {
|
|
if (end == NULL ? *p == NUL : p >= end) {
|
|
return 0; // only non-word characters, illegal word
|
|
}
|
|
}
|
|
int c = mb_ptr2char_adv((const char **)&p);
|
|
bool allcap;
|
|
bool firstcap = allcap = SPELL_ISUPPER(c);
|
|
bool past_second = false; // past second word char
|
|
|
|
// Need to check all letters to find a word with mixed upper/lower.
|
|
// But a word with an upper char only at start is a ONECAP.
|
|
for (; end == NULL ? *p != NUL : p < end; MB_PTR_ADV(p)) {
|
|
if (spell_iswordp_nmw(p, curwin)) {
|
|
c = utf_ptr2char(p);
|
|
if (!SPELL_ISUPPER(c)) {
|
|
// UUl -> KEEPCAP
|
|
if (past_second && allcap) {
|
|
return WF_KEEPCAP;
|
|
}
|
|
allcap = false;
|
|
} else if (!allcap) {
|
|
// UlU -> KEEPCAP
|
|
return WF_KEEPCAP;
|
|
}
|
|
past_second = true;
|
|
}
|
|
}
|
|
|
|
if (allcap) {
|
|
return WF_ALLCAP;
|
|
}
|
|
if (firstcap) {
|
|
return WF_ONECAP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Delete the internal wordlist and its .spl file.
|
|
void spell_delete_wordlist(void)
|
|
{
|
|
if (int_wordlist != NULL) {
|
|
char fname[MAXPATHL] = { 0 };
|
|
os_remove(int_wordlist);
|
|
int_wordlist_spl(fname);
|
|
os_remove(fname);
|
|
XFREE_CLEAR(int_wordlist);
|
|
}
|
|
}
|
|
|
|
// Free all languages.
|
|
void spell_free_all(void)
|
|
{
|
|
// Go through all buffers and handle 'spelllang'. <VN>
|
|
FOR_ALL_BUFFERS(buf) {
|
|
ga_clear(&buf->b_s.b_langp);
|
|
}
|
|
|
|
while (first_lang != NULL) {
|
|
slang_T *slang = first_lang;
|
|
first_lang = slang->sl_next;
|
|
slang_free(slang);
|
|
}
|
|
|
|
spell_delete_wordlist();
|
|
|
|
XFREE_CLEAR(repl_to);
|
|
XFREE_CLEAR(repl_from);
|
|
}
|
|
|
|
// Clear all spelling tables and reload them.
|
|
// Used after 'encoding' is set and when ":mkspell" was used.
|
|
void spell_reload(void)
|
|
{
|
|
// Initialize the table for spell_iswordp().
|
|
init_spell_chartab();
|
|
|
|
// Unload all allocated memory.
|
|
spell_free_all();
|
|
|
|
// Go through all buffers and handle 'spelllang'.
|
|
FOR_ALL_WINDOWS_IN_TAB(wp, curtab) {
|
|
// Only load the wordlists when 'spelllang' is set and there is a
|
|
// window for this buffer in which 'spell' is set.
|
|
if (*wp->w_s->b_p_spl != NUL) {
|
|
if (wp->w_p_spell) {
|
|
(void)did_set_spelllang(wp);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Open a spell buffer. This is a nameless buffer that is not in the buffer
|
|
// list and only contains text lines. Can use a swapfile to reduce memory
|
|
// use.
|
|
// Most other fields are invalid! Esp. watch out for string options being
|
|
// NULL and there is no undo info.
|
|
buf_T *open_spellbuf(void)
|
|
{
|
|
buf_T *buf = xcalloc(1, sizeof(buf_T));
|
|
|
|
buf->b_spell = true;
|
|
buf->b_p_swf = true; // may create a swap file
|
|
if (ml_open(buf) == FAIL) {
|
|
ELOG("Error opening a new memline");
|
|
}
|
|
ml_open_file(buf); // create swap file now
|
|
|
|
return buf;
|
|
}
|
|
|
|
// Close the buffer used for spell info.
|
|
void close_spellbuf(buf_T *buf)
|
|
{
|
|
if (buf != NULL) {
|
|
ml_close(buf, true);
|
|
xfree(buf);
|
|
}
|
|
}
|
|
|
|
// Init the chartab used for spelling for ASCII.
|
|
void clear_spell_chartab(spelltab_T *sp)
|
|
{
|
|
// Init everything to false (zero).
|
|
CLEAR_FIELD(sp->st_isw);
|
|
CLEAR_FIELD(sp->st_isu);
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
sp->st_fold[i] = (char_u)i;
|
|
sp->st_upper[i] = (char_u)i;
|
|
}
|
|
|
|
// We include digits. A word shouldn't start with a digit, but handling
|
|
// that is done separately.
|
|
for (int i = '0'; i <= '9'; i++) {
|
|
sp->st_isw[i] = true;
|
|
}
|
|
for (int i = 'A'; i <= 'Z'; i++) {
|
|
sp->st_isw[i] = true;
|
|
sp->st_isu[i] = true;
|
|
sp->st_fold[i] = (char_u)(i + 0x20);
|
|
}
|
|
for (int i = 'a'; i <= 'z'; i++) {
|
|
sp->st_isw[i] = true;
|
|
sp->st_upper[i] = (char_u)(i - 0x20);
|
|
}
|
|
}
|
|
|
|
// Init the chartab used for spelling. Called once while starting up.
|
|
// The default is to use isalpha(), but the spell file should define the word
|
|
// characters to make it possible that 'encoding' differs from the current
|
|
// locale. For utf-8 we don't use isalpha() but our own functions.
|
|
void init_spell_chartab(void)
|
|
{
|
|
did_set_spelltab = false;
|
|
clear_spell_chartab(&spelltab);
|
|
for (int i = 128; i < 256; i++) {
|
|
int f = utf_fold(i);
|
|
int u = mb_toupper(i);
|
|
|
|
spelltab.st_isu[i] = mb_isupper(i);
|
|
spelltab.st_isw[i] = spelltab.st_isu[i] || mb_islower(i);
|
|
// The folded/upper-cased value is different between latin1 and
|
|
// utf8 for 0xb5, causing E763 for no good reason. Use the latin1
|
|
// value for utf-8 to avoid this.
|
|
spelltab.st_fold[i] = (f < 256) ? (char_u)f : (char_u)i;
|
|
spelltab.st_upper[i] = (u < 256) ? (char_u)u : (char_u)i;
|
|
}
|
|
}
|
|
|
|
/// Returns true if "p" points to a word character.
|
|
/// As a special case we see "midword" characters as word character when it is
|
|
/// followed by a word character. This finds they'there but not 'they there'.
|
|
/// Thus this only works properly when past the first character of the word.
|
|
///
|
|
/// @param wp Buffer used.
|
|
bool spell_iswordp(const char *p, const win_T *wp)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
const int l = utfc_ptr2len(p);
|
|
const char *s = p;
|
|
if (l == 1) {
|
|
// be quick for ASCII
|
|
if (wp->w_s->b_spell_ismw[(uint8_t)(*p)]) {
|
|
s = p + 1; // skip a mid-word character
|
|
}
|
|
} else {
|
|
int c = utf_ptr2char(p);
|
|
if (c < 256
|
|
? wp->w_s->b_spell_ismw[c]
|
|
: (wp->w_s->b_spell_ismw_mb != NULL
|
|
&& vim_strchr(wp->w_s->b_spell_ismw_mb, c) != NULL)) {
|
|
s = p + l;
|
|
}
|
|
}
|
|
|
|
int c = utf_ptr2char(s);
|
|
if (c > 255) {
|
|
return spell_mb_isword_class(mb_get_class(s), wp);
|
|
}
|
|
return spelltab.st_isw[c];
|
|
}
|
|
|
|
// Returns true if "p" points to a word character.
|
|
// Unlike spell_iswordp() this doesn't check for "midword" characters.
|
|
bool spell_iswordp_nmw(const char *p, win_T *wp)
|
|
{
|
|
int c = utf_ptr2char(p);
|
|
if (c > 255) {
|
|
return spell_mb_isword_class(mb_get_class(p), wp);
|
|
}
|
|
return spelltab.st_isw[c];
|
|
}
|
|
|
|
// Returns true if word class indicates a word character.
|
|
// Only for characters above 255.
|
|
// Unicode subscript and superscript are not considered word characters.
|
|
// See also utf_class() in mbyte.c.
|
|
static bool spell_mb_isword_class(int cl, const win_T *wp)
|
|
FUNC_ATTR_PURE FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
|
|
{
|
|
if (wp->w_s->b_cjk) {
|
|
// East Asian characters are not considered word characters.
|
|
return cl == 2 || cl == 0x2800;
|
|
}
|
|
return cl >= 2 && cl != 0x2070 && cl != 0x2080 && cl != 3;
|
|
}
|
|
|
|
// Returns true if "p" points to a word character.
|
|
// Wide version of spell_iswordp().
|
|
static bool spell_iswordp_w(const int *p, const win_T *wp)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
const int *s;
|
|
|
|
if (*p <
|
|
256 ? wp->w_s->b_spell_ismw[*p] : (wp->w_s->b_spell_ismw_mb != NULL
|
|
&& vim_strchr(wp->w_s->b_spell_ismw_mb,
|
|
*p) != NULL)) {
|
|
s = p + 1;
|
|
} else {
|
|
s = p;
|
|
}
|
|
|
|
if (*s > 255) {
|
|
return spell_mb_isword_class(utf_class(*s), wp);
|
|
}
|
|
return spelltab.st_isw[*s];
|
|
}
|
|
|
|
// Case-fold "str[len]" into "buf[buflen]". The result is NUL terminated.
|
|
// Uses the character definitions from the .spl file.
|
|
// When using a multi-byte 'encoding' the length may change!
|
|
// Returns FAIL when something wrong.
|
|
int spell_casefold(const win_T *wp, char *str, int len, char *buf, int buflen)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
if (len >= buflen) {
|
|
buf[0] = NUL;
|
|
return FAIL; // result will not fit
|
|
}
|
|
|
|
int outi = 0;
|
|
|
|
// Fold one character at a time.
|
|
for (char *p = str; p < str + len;) {
|
|
if (outi + MB_MAXBYTES > buflen) {
|
|
buf[outi] = NUL;
|
|
return FAIL;
|
|
}
|
|
int c = mb_cptr2char_adv((const char **)&p);
|
|
|
|
// Exception: greek capital sigma 0x03A3 folds to 0x03C3, except
|
|
// when it is the last character in a word, then it folds to
|
|
// 0x03C2.
|
|
if (c == 0x03a3 || c == 0x03c2) {
|
|
if (p == str + len || !spell_iswordp(p, wp)) {
|
|
c = 0x03c2;
|
|
} else {
|
|
c = 0x03c3;
|
|
}
|
|
} else {
|
|
c = SPELL_TOFOLD(c);
|
|
}
|
|
|
|
outi += utf_char2bytes(c, buf + outi);
|
|
}
|
|
buf[outi] = NUL;
|
|
|
|
return OK;
|
|
}
|
|
|
|
// Check if the word at line "lnum" column "col" is required to start with a
|
|
// capital. This uses 'spellcapcheck' of the current buffer.
|
|
bool check_need_cap(linenr_T lnum, colnr_T col)
|
|
{
|
|
bool need_cap = false;
|
|
|
|
if (curwin->w_s->b_cap_prog == NULL) {
|
|
return false;
|
|
}
|
|
|
|
char *line = get_cursor_line_ptr();
|
|
char *line_copy = NULL;
|
|
colnr_T endcol = 0;
|
|
if (getwhitecols(line) >= (int)col) {
|
|
// At start of line, check if previous line is empty or sentence
|
|
// ends there.
|
|
if (lnum == 1) {
|
|
need_cap = true;
|
|
} else {
|
|
line = ml_get(lnum - 1);
|
|
if (*skipwhite(line) == NUL) {
|
|
need_cap = true;
|
|
} else {
|
|
// Append a space in place of the line break.
|
|
line_copy = concat_str(line, " ");
|
|
line = line_copy;
|
|
endcol = (colnr_T)strlen(line);
|
|
}
|
|
}
|
|
} else {
|
|
endcol = col;
|
|
}
|
|
|
|
if (endcol > 0) {
|
|
// Check if sentence ends before the bad word.
|
|
regmatch_T regmatch = {
|
|
.regprog = curwin->w_s->b_cap_prog,
|
|
.rm_ic = false
|
|
};
|
|
char *p = line + endcol;
|
|
for (;;) {
|
|
MB_PTR_BACK(line, p);
|
|
if (p == line || spell_iswordp_nmw(p, curwin)) {
|
|
break;
|
|
}
|
|
if (vim_regexec(®match, p, 0)
|
|
&& regmatch.endp[0] == line + endcol) {
|
|
need_cap = true;
|
|
break;
|
|
}
|
|
}
|
|
curwin->w_s->b_cap_prog = regmatch.regprog;
|
|
}
|
|
|
|
xfree(line_copy);
|
|
|
|
return need_cap;
|
|
}
|
|
|
|
// ":spellrepall"
|
|
void ex_spellrepall(exarg_T *eap)
|
|
{
|
|
pos_T pos = curwin->w_cursor;
|
|
bool save_ws = p_ws;
|
|
linenr_T prev_lnum = 0;
|
|
|
|
if (repl_from == NULL || repl_to == NULL) {
|
|
emsg(_("E752: No previous spell replacement"));
|
|
return;
|
|
}
|
|
int addlen = (int)(strlen(repl_to) - strlen(repl_from));
|
|
|
|
size_t frompatlen = strlen(repl_from) + 7;
|
|
char *frompat = xmalloc(frompatlen);
|
|
snprintf(frompat, frompatlen, "\\V\\<%s\\>", repl_from);
|
|
p_ws = false;
|
|
|
|
sub_nsubs = 0;
|
|
sub_nlines = 0;
|
|
curwin->w_cursor.lnum = 0;
|
|
while (!got_int) {
|
|
if (do_search(NULL, '/', '/', frompat, 1L, SEARCH_KEEP, NULL) == 0
|
|
|| u_save_cursor() == FAIL) {
|
|
break;
|
|
}
|
|
|
|
// Only replace when the right word isn't there yet. This happens
|
|
// when changing "etc" to "etc.".
|
|
char *line = get_cursor_line_ptr();
|
|
if (addlen <= 0 || strncmp(line + curwin->w_cursor.col,
|
|
repl_to, strlen(repl_to)) != 0) {
|
|
char *p = xmalloc(strlen(line) + (size_t)addlen + 1);
|
|
memmove(p, line, (size_t)curwin->w_cursor.col);
|
|
STRCPY(p + curwin->w_cursor.col, repl_to);
|
|
STRCAT(p, line + curwin->w_cursor.col + strlen(repl_from));
|
|
ml_replace(curwin->w_cursor.lnum, p, false);
|
|
changed_bytes(curwin->w_cursor.lnum, curwin->w_cursor.col);
|
|
|
|
if (curwin->w_cursor.lnum != prev_lnum) {
|
|
sub_nlines++;
|
|
prev_lnum = curwin->w_cursor.lnum;
|
|
}
|
|
sub_nsubs++;
|
|
}
|
|
curwin->w_cursor.col += (colnr_T)strlen(repl_to);
|
|
}
|
|
|
|
p_ws = save_ws;
|
|
curwin->w_cursor = pos;
|
|
xfree(frompat);
|
|
|
|
if (sub_nsubs == 0) {
|
|
semsg(_("E753: Not found: %s"), repl_from);
|
|
} else {
|
|
do_sub_msg(false);
|
|
}
|
|
}
|
|
|
|
/// Make a copy of "word", with the first letter upper or lower cased, to
|
|
/// "wcopy[MAXWLEN]". "word" must not be empty.
|
|
/// The result is NUL terminated.
|
|
///
|
|
/// @param[in] word source string to copy
|
|
/// @param[in,out] wcopy copied string, with case of first letter changed
|
|
/// @param[in] upper True to upper case, otherwise lower case
|
|
void onecap_copy(char *word, char *wcopy, bool upper)
|
|
{
|
|
char *p = word;
|
|
int c = mb_cptr2char_adv((const char **)&p);
|
|
if (upper) {
|
|
c = SPELL_TOUPPER(c);
|
|
} else {
|
|
c = SPELL_TOFOLD(c);
|
|
}
|
|
int l = utf_char2bytes(c, wcopy);
|
|
xstrlcpy(wcopy + l, p, (size_t)(MAXWLEN - l));
|
|
}
|
|
|
|
// Make a copy of "word" with all the letters upper cased into
|
|
// "wcopy[MAXWLEN]". The result is NUL terminated.
|
|
void allcap_copy(char *word, char *wcopy)
|
|
{
|
|
char_u *d = (char_u *)wcopy;
|
|
for (char *s = word; *s != NUL;) {
|
|
int c = mb_cptr2char_adv((const char **)&s);
|
|
|
|
if (c == 0xdf) {
|
|
c = 'S';
|
|
if (d - (char_u *)wcopy >= MAXWLEN - 1) {
|
|
break;
|
|
}
|
|
*d++ = (char_u)c;
|
|
} else {
|
|
c = SPELL_TOUPPER(c);
|
|
}
|
|
|
|
if (d - (char_u *)wcopy >= MAXWLEN - MB_MAXBYTES) {
|
|
break;
|
|
}
|
|
d += utf_char2bytes(c, (char *)d);
|
|
}
|
|
*d = NUL;
|
|
}
|
|
|
|
// Case-folding may change the number of bytes: Count nr of chars in
|
|
// fword[flen] and return the byte length of that many chars in "word".
|
|
int nofold_len(char *fword, int flen, char *word)
|
|
{
|
|
char *p;
|
|
int i = 0;
|
|
|
|
for (p = fword; p < fword + flen; MB_PTR_ADV(p)) {
|
|
i++;
|
|
}
|
|
for (p = word; i > 0; MB_PTR_ADV(p)) {
|
|
i--;
|
|
}
|
|
return (int)(p - word);
|
|
}
|
|
|
|
// Copy "fword" to "cword", fixing case according to "flags".
|
|
void make_case_word(char *fword, char *cword, int flags)
|
|
{
|
|
if (flags & WF_ALLCAP) {
|
|
// Make it all upper-case
|
|
allcap_copy(fword, cword);
|
|
} else if (flags & WF_ONECAP) {
|
|
// Make the first letter upper-case
|
|
onecap_copy(fword, cword, true);
|
|
} else {
|
|
// Use goodword as-is.
|
|
STRCPY(cword, fword);
|
|
}
|
|
}
|
|
|
|
/// Soundfold a string, for soundfold()
|
|
///
|
|
/// @param[in] word Word to soundfold.
|
|
///
|
|
/// @return [allocated] soundfolded string or NULL in case of error. May return
|
|
/// copy of the input string if soundfolding is not
|
|
/// supported by any of the languages in &spellang.
|
|
char *eval_soundfold(const char *const word)
|
|
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_MALLOC FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
if (curwin->w_p_spell && *curwin->w_s->b_p_spl != NUL) {
|
|
// Use the sound-folding of the first language that supports it.
|
|
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) {
|
|
langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
|
|
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
|
|
// soundfold the word
|
|
char sound[MAXWLEN];
|
|
spell_soundfold(lp->lp_slang, (char *)word, false, sound);
|
|
return xstrdup(sound);
|
|
}
|
|
}
|
|
}
|
|
|
|
// No language with sound folding, return word as-is.
|
|
return xstrdup(word);
|
|
}
|
|
|
|
/// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]".
|
|
///
|
|
/// There are many ways to turn a word into a sound-a-like representation. The
|
|
/// oldest is Soundex (1918!). A nice overview can be found in "Approximate
|
|
/// swedish name matching - survey and test of different algorithms" by Klas
|
|
/// Erikson.
|
|
///
|
|
/// We support two methods:
|
|
/// 1. SOFOFROM/SOFOTO do a simple character mapping.
|
|
/// 2. SAL items define a more advanced sound-folding (and much slower).
|
|
///
|
|
/// @param[in] slang
|
|
/// @param[in] inword word to soundfold
|
|
/// @param[in] folded whether inword is already case-folded
|
|
/// @param[in,out] res destination for soundfolded word
|
|
void spell_soundfold(slang_T *slang, char *inword, bool folded, char *res)
|
|
{
|
|
if (slang->sl_sofo) {
|
|
// SOFOFROM and SOFOTO used
|
|
spell_soundfold_sofo(slang, inword, res);
|
|
} else {
|
|
char fword[MAXWLEN];
|
|
char *word;
|
|
// SAL items used. Requires the word to be case-folded.
|
|
if (folded) {
|
|
word = inword;
|
|
} else {
|
|
(void)spell_casefold(curwin, inword, (int)strlen(inword), fword, MAXWLEN);
|
|
word = fword;
|
|
}
|
|
|
|
spell_soundfold_wsal(slang, word, res);
|
|
}
|
|
}
|
|
|
|
// Perform sound folding of "inword" into "res" according to SOFOFROM and
|
|
// SOFOTO lines.
|
|
static void spell_soundfold_sofo(slang_T *slang, char *inword, char *res)
|
|
{
|
|
int ri = 0;
|
|
|
|
int prevc = 0;
|
|
|
|
// The sl_sal_first[] table contains the translation for chars up to
|
|
// 255, sl_sal the rest.
|
|
for (char *s = inword; *s != NUL;) {
|
|
int c = mb_cptr2char_adv((const char **)&s);
|
|
if (utf_class(c) == 0) {
|
|
c = ' ';
|
|
} else if (c < 256) {
|
|
c = slang->sl_sal_first[c];
|
|
} else {
|
|
int *ip = ((int **)slang->sl_sal.ga_data)[c & 0xff];
|
|
if (ip == NULL) { // empty list, can't match
|
|
c = NUL;
|
|
} else {
|
|
for (;;) { // find "c" in the list
|
|
if (*ip == 0) { // not found
|
|
c = NUL;
|
|
break;
|
|
}
|
|
if (*ip == c) { // match!
|
|
c = ip[1];
|
|
break;
|
|
}
|
|
ip += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (c != NUL && c != prevc) {
|
|
ri += utf_char2bytes(c, res + ri);
|
|
if (ri + MB_MAXBYTES > MAXWLEN) {
|
|
break;
|
|
}
|
|
prevc = c;
|
|
}
|
|
}
|
|
|
|
res[ri] = NUL;
|
|
}
|
|
|
|
// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]".
|
|
// Multi-byte version of spell_soundfold().
|
|
static void spell_soundfold_wsal(slang_T *slang, const char *inword, char *res)
|
|
{
|
|
salitem_T *smp = (salitem_T *)slang->sl_sal.ga_data;
|
|
int word[MAXWLEN] = { 0 };
|
|
int wres[MAXWLEN] = { 0 };
|
|
int *ws;
|
|
int *pf;
|
|
int j, z;
|
|
int reslen;
|
|
int k = 0;
|
|
int z0;
|
|
int k0;
|
|
int n0;
|
|
int pri;
|
|
int p0 = -333;
|
|
int c0;
|
|
bool did_white = false;
|
|
|
|
// Convert the multi-byte string to a wide-character string.
|
|
// Remove accents, if wanted. We actually remove all non-word characters.
|
|
// But keep white space.
|
|
int wordlen = 0;
|
|
for (const char *s = (char *)inword; *s != NUL;) {
|
|
const char_u *t = (char_u *)s;
|
|
int c = mb_cptr2char_adv(&s);
|
|
if (slang->sl_rem_accents) {
|
|
if (utf_class(c) == 0) {
|
|
if (did_white) {
|
|
continue;
|
|
}
|
|
c = ' ';
|
|
did_white = true;
|
|
} else {
|
|
did_white = false;
|
|
if (!spell_iswordp_nmw((char *)t, curwin)) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
word[wordlen++] = c;
|
|
}
|
|
word[wordlen] = NUL;
|
|
|
|
int c;
|
|
// This algorithm comes from Aspell phonet.cpp.
|
|
// Converted from C++ to C. Added support for multi-byte chars.
|
|
// Changed to keep spaces.
|
|
int i = reslen = z = 0;
|
|
while ((c = word[i]) != NUL) {
|
|
// Start with the first rule that has the character in the word.
|
|
int n = slang->sl_sal_first[c & 0xff];
|
|
z0 = 0;
|
|
|
|
if (n >= 0) {
|
|
// Check all rules for the same index byte.
|
|
// If c is 0x300 need extra check for the end of the array, as
|
|
// (c & 0xff) is NUL.
|
|
for (; ((ws = smp[n].sm_lead_w)[0] & 0xff) == (c & 0xff)
|
|
&& ws[0] != NUL; n++) {
|
|
// Quickly skip entries that don't match the word. Most
|
|
// entries are less than three chars, optimize for that.
|
|
if (c != ws[0]) {
|
|
continue;
|
|
}
|
|
k = smp[n].sm_leadlen;
|
|
if (k > 1) {
|
|
if (word[i + 1] != ws[1]) {
|
|
continue;
|
|
}
|
|
if (k > 2) {
|
|
for (j = 2; j < k; j++) {
|
|
if (word[i + j] != ws[j]) {
|
|
break;
|
|
}
|
|
}
|
|
if (j < k) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((pf = smp[n].sm_oneof_w) != NULL) {
|
|
// Check for match with one of the chars in "sm_oneof".
|
|
while (*pf != NUL && *pf != word[i + k]) {
|
|
pf++;
|
|
}
|
|
if (*pf == NUL) {
|
|
continue;
|
|
}
|
|
k++;
|
|
}
|
|
char_u *s = (char_u *)smp[n].sm_rules;
|
|
pri = 5; // default priority
|
|
|
|
p0 = *s;
|
|
k0 = k;
|
|
while (*s == '-' && k > 1) {
|
|
k--;
|
|
s++;
|
|
}
|
|
if (*s == '<') {
|
|
s++;
|
|
}
|
|
if (ascii_isdigit(*s)) {
|
|
// determine priority
|
|
pri = *s - '0';
|
|
s++;
|
|
}
|
|
if (*s == '^' && *(s + 1) == '^') {
|
|
s++;
|
|
}
|
|
|
|
if (*s == NUL
|
|
|| (*s == '^'
|
|
&& (i == 0 || !(word[i - 1] == ' '
|
|
|| spell_iswordp_w(word + i - 1, curwin)))
|
|
&& (*(s + 1) != '$'
|
|
|| (!spell_iswordp_w(word + i + k0, curwin))))
|
|
|| (*s == '$' && i > 0
|
|
&& spell_iswordp_w(word + i - 1, curwin)
|
|
&& (!spell_iswordp_w(word + i + k0, curwin)))) {
|
|
// search for followup rules, if:
|
|
// followup and k > 1 and NO '-' in searchstring
|
|
c0 = word[i + k - 1];
|
|
n0 = slang->sl_sal_first[c0 & 0xff];
|
|
|
|
if (slang->sl_followup && k > 1 && n0 >= 0
|
|
&& p0 != '-' && word[i + k] != NUL) {
|
|
// Test follow-up rule for "word[i + k]"; loop over
|
|
// all entries with the same index byte.
|
|
for (; ((ws = smp[n0].sm_lead_w)[0] & 0xff)
|
|
== (c0 & 0xff); n0++) {
|
|
// Quickly skip entries that don't match the word.
|
|
if (c0 != ws[0]) {
|
|
continue;
|
|
}
|
|
k0 = smp[n0].sm_leadlen;
|
|
if (k0 > 1) {
|
|
if (word[i + k] != ws[1]) {
|
|
continue;
|
|
}
|
|
if (k0 > 2) {
|
|
pf = word + i + k + 1;
|
|
for (j = 2; j < k0; j++) {
|
|
if (*pf++ != ws[j]) {
|
|
break;
|
|
}
|
|
}
|
|
if (j < k0) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
k0 += k - 1;
|
|
|
|
if ((pf = smp[n0].sm_oneof_w) != NULL) {
|
|
// Check for match with one of the chars in
|
|
// "sm_oneof".
|
|
while (*pf != NUL && *pf != word[i + k0]) {
|
|
pf++;
|
|
}
|
|
if (*pf == NUL) {
|
|
continue;
|
|
}
|
|
k0++;
|
|
}
|
|
|
|
p0 = 5;
|
|
s = (char_u *)smp[n0].sm_rules;
|
|
while (*s == '-') {
|
|
// "k0" gets NOT reduced because
|
|
// "if (k0 == k)"
|
|
s++;
|
|
}
|
|
if (*s == '<') {
|
|
s++;
|
|
}
|
|
if (ascii_isdigit(*s)) {
|
|
p0 = *s - '0';
|
|
s++;
|
|
}
|
|
|
|
if (*s == NUL
|
|
// *s == '^' cuts
|
|
|| (*s == '$'
|
|
&& !spell_iswordp_w(word + i + k0,
|
|
curwin))) {
|
|
if (k0 == k) {
|
|
// this is just a piece of the string
|
|
continue;
|
|
}
|
|
|
|
if (p0 < pri) {
|
|
// priority too low
|
|
continue;
|
|
}
|
|
// rule fits; stop search
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (p0 >= pri && (smp[n0].sm_lead_w[0] & 0xff)
|
|
== (c0 & 0xff)) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// replace string
|
|
ws = smp[n].sm_to_w;
|
|
s = (char_u *)smp[n].sm_rules;
|
|
p0 = (vim_strchr((char *)s, '<') != NULL) ? 1 : 0;
|
|
if (p0 == 1 && z == 0) {
|
|
// rule with '<' is used
|
|
if (reslen > 0 && ws != NULL && *ws != NUL
|
|
&& (wres[reslen - 1] == c
|
|
|| wres[reslen - 1] == *ws)) {
|
|
reslen--;
|
|
}
|
|
z0 = 1;
|
|
z = 1;
|
|
k0 = 0;
|
|
if (ws != NULL) {
|
|
while (*ws != NUL && word[i + k0] != NUL) {
|
|
word[i + k0] = *ws;
|
|
k0++;
|
|
ws++;
|
|
}
|
|
}
|
|
if (k > k0) {
|
|
memmove(word + i + k0, word + i + k, sizeof(int) * (size_t)(wordlen - (i + k) + 1));
|
|
}
|
|
|
|
// new "actual letter"
|
|
c = word[i];
|
|
} else {
|
|
// no '<' rule used
|
|
i += k - 1;
|
|
z = 0;
|
|
if (ws != NULL) {
|
|
while (*ws != NUL && ws[1] != NUL
|
|
&& reslen < MAXWLEN) {
|
|
if (reslen == 0 || wres[reslen - 1] != *ws) {
|
|
wres[reslen++] = *ws;
|
|
}
|
|
ws++;
|
|
}
|
|
}
|
|
// new "actual letter"
|
|
if (ws == NULL) {
|
|
c = NUL;
|
|
} else {
|
|
c = *ws;
|
|
}
|
|
if (strstr((char *)s, "^^") != NULL) {
|
|
if (c != NUL) {
|
|
wres[reslen++] = c;
|
|
}
|
|
memmove(word, word + i + 1, sizeof(int) * (size_t)(wordlen - (i + 1) + 1));
|
|
i = 0;
|
|
z0 = 1;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
} else if (ascii_iswhite(c)) {
|
|
c = ' ';
|
|
k = 1;
|
|
}
|
|
|
|
if (z0 == 0) {
|
|
if (k && !p0 && reslen < MAXWLEN && c != NUL
|
|
&& (!slang->sl_collapse || reslen == 0
|
|
|| wres[reslen - 1] != c)) {
|
|
// condense only double letters
|
|
wres[reslen++] = c;
|
|
}
|
|
|
|
i++;
|
|
z = 0;
|
|
k = 0;
|
|
}
|
|
}
|
|
|
|
// Convert wide characters in "wres" to a multi-byte string in "res".
|
|
int l = 0;
|
|
for (int n = 0; n < reslen; n++) {
|
|
l += utf_char2bytes(wres[n], res + l);
|
|
if (l + MB_MAXBYTES > MAXWLEN) {
|
|
break;
|
|
}
|
|
}
|
|
res[l] = NUL;
|
|
}
|
|
|
|
// ":spellinfo"
|
|
void ex_spellinfo(exarg_T *eap)
|
|
{
|
|
if (no_spell_checking(curwin)) {
|
|
return;
|
|
}
|
|
|
|
msg_start();
|
|
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len && !got_int; lpi++) {
|
|
langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
|
|
msg_puts("file: ");
|
|
msg_puts((const char *)lp->lp_slang->sl_fname);
|
|
msg_putchar('\n');
|
|
const char *const p = (const char *)lp->lp_slang->sl_info;
|
|
if (p != NULL) {
|
|
msg_puts(p);
|
|
msg_putchar('\n');
|
|
}
|
|
}
|
|
msg_end();
|
|
}
|
|
|
|
#define DUMPFLAG_KEEPCASE 1 // round 2: keep-case tree
|
|
#define DUMPFLAG_COUNT 2 // include word count
|
|
#define DUMPFLAG_ICASE 4 // ignore case when finding matches
|
|
#define DUMPFLAG_ONECAP 8 // pattern starts with capital
|
|
#define DUMPFLAG_ALLCAP 16 // pattern is all capitals
|
|
|
|
// ":spelldump"
|
|
void ex_spelldump(exarg_T *eap)
|
|
{
|
|
if (no_spell_checking(curwin)) {
|
|
return;
|
|
}
|
|
char *spl;
|
|
long dummy;
|
|
(void)get_option_value("spl", &dummy, &spl, NULL, OPT_LOCAL);
|
|
|
|
// Create a new empty buffer in a new window.
|
|
do_cmdline_cmd("new");
|
|
|
|
// enable spelling locally in the new window
|
|
set_option_value_give_err("spell", true, "", OPT_LOCAL);
|
|
set_option_value_give_err("spl", dummy, spl, OPT_LOCAL);
|
|
xfree(spl);
|
|
|
|
if (!buf_is_empty(curbuf)) {
|
|
return;
|
|
}
|
|
|
|
spell_dump_compl(NULL, 0, NULL, eap->forceit ? DUMPFLAG_COUNT : 0);
|
|
|
|
// Delete the empty line that we started with.
|
|
if (curbuf->b_ml.ml_line_count > 1) {
|
|
ml_delete(curbuf->b_ml.ml_line_count, false);
|
|
}
|
|
redraw_later(curwin, UPD_NOT_VALID);
|
|
}
|
|
|
|
/// Go through all possible words and:
|
|
/// 1. When "pat" is NULL: dump a list of all words in the current buffer.
|
|
/// "ic" and "dir" are not used.
|
|
/// 2. When "pat" is not NULL: add matching words to insert mode completion.
|
|
///
|
|
/// @param pat leading part of the word
|
|
/// @param ic ignore case
|
|
/// @param dir direction for adding matches
|
|
/// @param dumpflags_arg DUMPFLAG_*
|
|
void spell_dump_compl(char *pat, int ic, Direction *dir, int dumpflags_arg)
|
|
{
|
|
langp_T *lp;
|
|
slang_T *slang;
|
|
idx_T arridx[MAXWLEN];
|
|
int curi[MAXWLEN];
|
|
char word[MAXWLEN];
|
|
int c;
|
|
char *byts;
|
|
idx_T *idxs;
|
|
linenr_T lnum = 0;
|
|
int depth;
|
|
int n;
|
|
int flags;
|
|
char *region_names = NULL; // region names being used
|
|
bool do_region = true; // dump region names and numbers
|
|
char *p;
|
|
int dumpflags = dumpflags_arg;
|
|
int patlen;
|
|
|
|
// When ignoring case or when the pattern starts with capital pass this on
|
|
// to dump_word().
|
|
if (pat != NULL) {
|
|
if (ic) {
|
|
dumpflags |= DUMPFLAG_ICASE;
|
|
} else {
|
|
n = captype(pat, NULL);
|
|
if (n == WF_ONECAP) {
|
|
dumpflags |= DUMPFLAG_ONECAP;
|
|
} else if (n == WF_ALLCAP
|
|
&& (int)strlen(pat) > utfc_ptr2len(pat)) {
|
|
dumpflags |= DUMPFLAG_ALLCAP;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find out if we can support regions: All languages must support the same
|
|
// regions or none at all.
|
|
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) {
|
|
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
|
|
p = lp->lp_slang->sl_regions;
|
|
if (p[0] != 0) {
|
|
if (region_names == NULL) { // first language with regions
|
|
region_names = p;
|
|
} else if (strcmp(region_names, p) != 0) {
|
|
do_region = false; // region names are different
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (do_region && region_names != NULL) {
|
|
if (pat == NULL) {
|
|
vim_snprintf(IObuff, IOSIZE, "/regions=%s", region_names);
|
|
ml_append(lnum++, IObuff, (colnr_T)0, false);
|
|
}
|
|
} else {
|
|
do_region = false;
|
|
}
|
|
|
|
// Loop over all files loaded for the entries in 'spelllang'.
|
|
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) {
|
|
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
|
|
slang = lp->lp_slang;
|
|
if (slang->sl_fbyts == NULL) { // reloading failed
|
|
continue;
|
|
}
|
|
|
|
if (pat == NULL) {
|
|
vim_snprintf(IObuff, IOSIZE, "# file: %s", slang->sl_fname);
|
|
ml_append(lnum++, IObuff, (colnr_T)0, false);
|
|
}
|
|
|
|
// When matching with a pattern and there are no prefixes only use
|
|
// parts of the tree that match "pat".
|
|
if (pat != NULL && slang->sl_pbyts == NULL) {
|
|
patlen = (int)strlen(pat);
|
|
} else {
|
|
patlen = -1;
|
|
}
|
|
|
|
// round 1: case-folded tree
|
|
// round 2: keep-case tree
|
|
for (int round = 1; round <= 2; round++) {
|
|
if (round == 1) {
|
|
dumpflags &= ~DUMPFLAG_KEEPCASE;
|
|
byts = slang->sl_fbyts;
|
|
idxs = slang->sl_fidxs;
|
|
} else {
|
|
dumpflags |= DUMPFLAG_KEEPCASE;
|
|
byts = slang->sl_kbyts;
|
|
idxs = slang->sl_kidxs;
|
|
}
|
|
if (byts == NULL) {
|
|
continue; // array is empty
|
|
}
|
|
depth = 0;
|
|
arridx[0] = 0;
|
|
curi[0] = 1;
|
|
while (depth >= 0 && !got_int
|
|
&& (pat == NULL || !ins_compl_interrupted())) {
|
|
if (curi[depth] > byts[arridx[depth]]) {
|
|
// Done all bytes at this node, go up one level.
|
|
depth--;
|
|
line_breakcheck();
|
|
ins_compl_check_keys(50, false);
|
|
} else {
|
|
// Do one more byte at this node.
|
|
n = arridx[depth] + curi[depth];
|
|
curi[depth]++;
|
|
c = (uint8_t)byts[n];
|
|
if (c == 0 || depth >= MAXWLEN - 1) {
|
|
// End of word or reached maximum length, deal with the
|
|
// word.
|
|
// Don't use keep-case words in the fold-case tree,
|
|
// they will appear in the keep-case tree.
|
|
// Only use the word when the region matches.
|
|
flags = (int)idxs[n];
|
|
if ((round == 2 || (flags & WF_KEEPCAP) == 0)
|
|
&& (flags & WF_NEEDCOMP) == 0
|
|
&& (do_region
|
|
|| (flags & WF_REGION) == 0
|
|
|| (((unsigned)flags >> 16)
|
|
& (unsigned)lp->lp_region) != 0)) {
|
|
word[depth] = NUL;
|
|
if (!do_region) {
|
|
flags &= ~WF_REGION;
|
|
}
|
|
|
|
// Dump the basic word if there is no prefix or
|
|
// when it's the first one.
|
|
c = (int)((unsigned)flags >> 24);
|
|
if (c == 0 || curi[depth] == 2) {
|
|
dump_word(slang, word, pat, dir, dumpflags, flags, lnum);
|
|
if (pat == NULL) {
|
|
lnum++;
|
|
}
|
|
}
|
|
|
|
// Apply the prefix, if there is one.
|
|
if (c != 0) {
|
|
lnum = dump_prefixes(slang, word, pat, dir,
|
|
dumpflags, flags, lnum);
|
|
}
|
|
}
|
|
} else {
|
|
// Normal char, go one level deeper.
|
|
word[depth++] = (char)c;
|
|
arridx[depth] = idxs[n];
|
|
curi[depth] = 1;
|
|
|
|
// Check if this character matches with the pattern.
|
|
// If not skip the whole tree below it.
|
|
// Always ignore case here, dump_word() will check
|
|
// proper case later. This isn't exactly right when
|
|
// length changes for multi-byte characters with
|
|
// ignore case...
|
|
assert(depth >= 0);
|
|
if (depth <= patlen
|
|
&& mb_strnicmp(word, pat, (size_t)depth) != 0) {
|
|
depth--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Dumps one word: apply case modifications and append a line to the buffer.
|
|
/// When "lnum" is zero add insert mode completion.
|
|
static void dump_word(slang_T *slang, char *word, char *pat, Direction *dir, int dumpflags,
|
|
int wordflags, linenr_T lnum)
|
|
{
|
|
bool keepcap = false;
|
|
char *p;
|
|
char cword[MAXWLEN];
|
|
char badword[MAXWLEN + 10];
|
|
int flags = wordflags;
|
|
|
|
if (dumpflags & DUMPFLAG_ONECAP) {
|
|
flags |= WF_ONECAP;
|
|
}
|
|
if (dumpflags & DUMPFLAG_ALLCAP) {
|
|
flags |= WF_ALLCAP;
|
|
}
|
|
|
|
if ((dumpflags & DUMPFLAG_KEEPCASE) == 0 && (flags & WF_CAPMASK) != 0) {
|
|
// Need to fix case according to "flags".
|
|
make_case_word(word, cword, flags);
|
|
p = cword;
|
|
} else {
|
|
p = word;
|
|
if ((dumpflags & DUMPFLAG_KEEPCASE)
|
|
&& ((captype(word, NULL) & WF_KEEPCAP) == 0
|
|
|| (flags & WF_FIXCAP) != 0)) {
|
|
keepcap = true;
|
|
}
|
|
}
|
|
char *tw = p;
|
|
|
|
if (pat == NULL) {
|
|
// Add flags and regions after a slash.
|
|
if ((flags & (WF_BANNED | WF_RARE | WF_REGION)) || keepcap) {
|
|
STRCPY(badword, p);
|
|
STRCAT(badword, "/");
|
|
if (keepcap) {
|
|
STRCAT(badword, "=");
|
|
}
|
|
if (flags & WF_BANNED) {
|
|
STRCAT(badword, "!");
|
|
} else if (flags & WF_RARE) {
|
|
STRCAT(badword, "?");
|
|
}
|
|
if (flags & WF_REGION) {
|
|
for (int i = 0; i < 7; i++) {
|
|
if (flags & (0x10000 << i)) {
|
|
const size_t badword_len = strlen(badword);
|
|
snprintf(badword + badword_len,
|
|
sizeof(badword) - badword_len,
|
|
"%d", i + 1);
|
|
}
|
|
}
|
|
}
|
|
p = badword;
|
|
}
|
|
|
|
if (dumpflags & DUMPFLAG_COUNT) {
|
|
hashitem_T *hi;
|
|
|
|
// Include the word count for ":spelldump!".
|
|
hi = hash_find(&slang->sl_wordcount, tw);
|
|
if (!HASHITEM_EMPTY(hi)) {
|
|
vim_snprintf(IObuff, IOSIZE, "%s\t%d",
|
|
tw, HI2WC(hi)->wc_count);
|
|
p = IObuff;
|
|
}
|
|
}
|
|
|
|
ml_append(lnum, p, (colnr_T)0, false);
|
|
} else if (((dumpflags & DUMPFLAG_ICASE)
|
|
? mb_strnicmp(p, pat, strlen(pat)) == 0
|
|
: strncmp(p, pat, strlen(pat)) == 0)
|
|
&& ins_compl_add_infercase(p, (int)strlen(p),
|
|
p_ic, NULL, *dir, false) == OK) {
|
|
// if dir was BACKWARD then honor it just once
|
|
*dir = FORWARD;
|
|
}
|
|
}
|
|
|
|
/// For ":spelldump": Find matching prefixes for "word". Prepend each to
|
|
/// "word" and append a line to the buffer.
|
|
/// When "lnum" is zero add insert mode completion.
|
|
///
|
|
/// @param word case-folded word
|
|
/// @param flags flags with prefix ID
|
|
///
|
|
/// @return the updated line number.
|
|
static linenr_T dump_prefixes(slang_T *slang, char *word, char *pat, Direction *dir, int dumpflags,
|
|
int flags, linenr_T startlnum)
|
|
{
|
|
idx_T arridx[MAXWLEN];
|
|
int curi[MAXWLEN];
|
|
char prefix[MAXWLEN];
|
|
char word_up[MAXWLEN];
|
|
bool has_word_up = false;
|
|
linenr_T lnum = startlnum;
|
|
|
|
// If the word starts with a lower-case letter make the word with an
|
|
// upper-case letter in word_up[].
|
|
int c = utf_ptr2char(word);
|
|
if (SPELL_TOUPPER(c) != c) {
|
|
onecap_copy(word, word_up, true);
|
|
has_word_up = true;
|
|
}
|
|
|
|
char_u *byts = (char_u *)slang->sl_pbyts;
|
|
idx_T *idxs = slang->sl_pidxs;
|
|
if (byts != NULL) { // array not is empty
|
|
// Loop over all prefixes, building them byte-by-byte in prefix[].
|
|
// When at the end of a prefix check that it supports "flags".
|
|
int depth = 0;
|
|
arridx[0] = 0;
|
|
curi[0] = 1;
|
|
while (depth >= 0 && !got_int) {
|
|
int n = arridx[depth];
|
|
int len = byts[n];
|
|
if (curi[depth] > len) {
|
|
// Done all bytes at this node, go up one level.
|
|
depth--;
|
|
line_breakcheck();
|
|
} else {
|
|
// Do one more byte at this node.
|
|
n += curi[depth];
|
|
curi[depth]++;
|
|
c = byts[n];
|
|
if (c == 0) {
|
|
// End of prefix, find out how many IDs there are.
|
|
int i;
|
|
for (i = 1; i < len; i++) {
|
|
if (byts[n + i] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
curi[depth] += i - 1;
|
|
|
|
c = valid_word_prefix(i, n, flags, word, slang, false);
|
|
if (c != 0) {
|
|
xstrlcpy(prefix + depth, word, (size_t)(MAXWLEN - depth));
|
|
dump_word(slang, prefix, pat, dir, dumpflags,
|
|
(c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum);
|
|
if (lnum != 0) {
|
|
lnum++;
|
|
}
|
|
}
|
|
|
|
// Check for prefix that matches the word when the
|
|
// first letter is upper-case, but only if the prefix has
|
|
// a condition.
|
|
if (has_word_up) {
|
|
c = valid_word_prefix(i, n, flags, word_up, slang, true);
|
|
if (c != 0) {
|
|
xstrlcpy(prefix + depth, word_up, (size_t)(MAXWLEN - depth));
|
|
dump_word(slang, prefix, pat, dir, dumpflags,
|
|
(c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum);
|
|
if (lnum != 0) {
|
|
lnum++;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Normal char, go one level deeper.
|
|
prefix[depth++] = (char)c;
|
|
arridx[depth] = idxs[n];
|
|
curi[depth] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return lnum;
|
|
}
|
|
|
|
// Move "p" to the end of word "start".
|
|
// Uses the spell-checking word characters.
|
|
char *spell_to_word_end(char *start, win_T *win)
|
|
{
|
|
char *p = start;
|
|
|
|
while (*p != NUL && spell_iswordp(p, win)) {
|
|
MB_PTR_ADV(p);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// For Insert mode completion CTRL-X s:
|
|
// Find start of the word in front of column "startcol".
|
|
// We don't check if it is badly spelled, with completion we can only change
|
|
// the word in front of the cursor.
|
|
// Returns the column number of the word.
|
|
int spell_word_start(int startcol)
|
|
{
|
|
if (no_spell_checking(curwin)) {
|
|
return startcol;
|
|
}
|
|
|
|
char *line = get_cursor_line_ptr();
|
|
char *p;
|
|
|
|
// Find a word character before "startcol".
|
|
for (p = line + startcol; p > line;) {
|
|
MB_PTR_BACK(line, p);
|
|
if (spell_iswordp_nmw(p, curwin)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
int col = 0;
|
|
|
|
// Go back to start of the word.
|
|
while (p > line) {
|
|
col = (int)(p - line);
|
|
MB_PTR_BACK(line, p);
|
|
if (!spell_iswordp(p, curwin)) {
|
|
break;
|
|
}
|
|
col = 0;
|
|
}
|
|
|
|
return col;
|
|
}
|
|
|
|
// Need to check for 'spellcapcheck' now, the word is removed before
|
|
// expand_spelling() is called. Therefore the ugly global variable.
|
|
static bool spell_expand_need_cap;
|
|
|
|
void spell_expand_check_cap(colnr_T col)
|
|
{
|
|
spell_expand_need_cap = check_need_cap(curwin->w_cursor.lnum, col);
|
|
}
|
|
|
|
// Get list of spelling suggestions.
|
|
// Used for Insert mode completion CTRL-X ?.
|
|
// Returns the number of matches. The matches are in "matchp[]", array of
|
|
// allocated strings.
|
|
int expand_spelling(linenr_T lnum, char *pat, char ***matchp)
|
|
{
|
|
garray_T ga;
|
|
|
|
spell_suggest_list(&ga, pat, 100, spell_expand_need_cap, true);
|
|
*matchp = ga.ga_data;
|
|
return ga.ga_len;
|
|
}
|
|
|
|
/// @return true if "val" is a valid 'spelllang' value.
|
|
bool valid_spelllang(const char *val)
|
|
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
|
|
{
|
|
return valid_name(val, ".-_,@");
|
|
}
|
|
|
|
/// @return true if "val" is a valid 'spellfile' value.
|
|
bool valid_spellfile(const char *val)
|
|
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
|
|
{
|
|
for (const char *s = val; *s != NUL; s++) {
|
|
if (!vim_isfilec((uint8_t)(*s)) && *s != ',' && *s != ' ') {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
char *did_set_spell_option(bool is_spellfile)
|
|
{
|
|
char *errmsg = NULL;
|
|
|
|
if (is_spellfile) {
|
|
int l = (int)strlen(curwin->w_s->b_p_spf);
|
|
if (l > 0
|
|
&& (l < 4 || strcmp(curwin->w_s->b_p_spf + l - 4, ".add") != 0)) {
|
|
errmsg = e_invarg;
|
|
}
|
|
}
|
|
|
|
if (errmsg == NULL) {
|
|
FOR_ALL_WINDOWS_IN_TAB(wp, curtab) {
|
|
if (wp->w_buffer == curbuf && wp->w_p_spell) {
|
|
errmsg = did_set_spelllang(wp);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return errmsg;
|
|
}
|
|
|
|
/// Set curbuf->b_cap_prog to the regexp program for 'spellcapcheck'.
|
|
/// Return error message when failed, NULL when OK.
|
|
char *compile_cap_prog(synblock_T *synblock)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
regprog_T *rp = synblock->b_cap_prog;
|
|
|
|
if (synblock->b_p_spc == NULL || *synblock->b_p_spc == NUL) {
|
|
synblock->b_cap_prog = NULL;
|
|
} else {
|
|
// Prepend a ^ so that we only match at one column
|
|
char *re = concat_str("^", synblock->b_p_spc);
|
|
synblock->b_cap_prog = vim_regcomp(re, RE_MAGIC);
|
|
xfree(re);
|
|
if (synblock->b_cap_prog == NULL) {
|
|
synblock->b_cap_prog = rp; // restore the previous program
|
|
return e_invarg;
|
|
}
|
|
}
|
|
|
|
vim_regfree(rp);
|
|
return NULL;
|
|
}
|