Files
neovim/src/nvim/spell.c
2023-01-18 21:17:11 +08:00

3662 lines
107 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// spell.c: code for spell checking
//
// See spellfile.c for the Vim spell file format.
//
// The spell checking mechanism uses a tree (aka trie). Each node in the tree
// has a list of bytes that can appear (siblings). For each byte there is a
// pointer to the node with the byte that follows in the word (child).
//
// A NUL byte is used where the word may end. The bytes are sorted, so that
// binary searching can be used and the NUL bytes are at the start. The
// number of possible bytes is stored before the list of bytes.
//
// The tree uses two arrays: "byts" stores the characters, "idxs" stores
// either the next index or flags. The tree starts at index 0. For example,
// to lookup "vi" this sequence is followed:
// i = 0
// len = byts[i]
// n = where "v" appears in byts[i + 1] to byts[i + len]
// i = idxs[n]
// len = byts[i]
// n = where "i" appears in byts[i + 1] to byts[i + len]
// i = idxs[n]
// len = byts[i]
// find that byts[i + 1] is 0, idxs[i + 1] has flags for "vi".
//
// There are two word trees: one with case-folded words and one with words in
// original case. The second one is only used for keep-case words and is
// usually small.
//
// There is one additional tree for when not all prefixes are applied when
// generating the .spl file. This tree stores all the possible prefixes, as
// if they were words. At each word (prefix) end the prefix nr is stored, the
// following word must support this prefix nr. And the condition nr is
// stored, used to lookup the condition that the word must match with.
//
// Thanks to Olaf Seibert for providing an example implementation of this tree
// and the compression mechanism.
// LZ trie ideas:
// http://www.irb.hr/hr/home/ristov/papers/RistovLZtrieRevision1.pdf
// More papers: http://www-igm.univ-mlv.fr/~laporte/publi_en.html
//
// Matching involves checking the caps type: Onecap ALLCAP KeepCap.
//
// Why doesn't Vim use aspell/ispell/myspell/etc.?
// See ":help develop-spell".
// Use SPELL_PRINTTREE for debugging: dump the word tree after adding a word.
// Only use it for small word lists!
// Use SPELL_COMPRESS_ALWAYS for debugging: compress the word tree after
// adding a word. Only use it for small word lists!
// Use DEBUG_TRIEWALK to print the changes made in suggest_trie_walk() for a
// specific word.
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include "nvim/ascii.h"
#include "nvim/autocmd.h"
#include "nvim/buffer.h"
#include "nvim/change.h"
#include "nvim/charset.h"
#include "nvim/cursor.h"
#include "nvim/decoration.h"
#include "nvim/decoration_provider.h"
#include "nvim/drawscreen.h"
#include "nvim/ex_cmds.h"
#include "nvim/ex_cmds_defs.h"
#include "nvim/ex_docmd.h"
#include "nvim/garray.h"
#include "nvim/gettext.h"
#include "nvim/globals.h"
#include "nvim/hashtab.h"
#include "nvim/highlight_defs.h"
#include "nvim/insexpand.h"
#include "nvim/log.h"
#include "nvim/macros.h"
#include "nvim/mark.h"
#include "nvim/mbyte.h"
#include "nvim/memline.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/option.h"
#include "nvim/os/fs.h"
#include "nvim/os/input.h"
#include "nvim/os/os_defs.h"
#include "nvim/path.h"
#include "nvim/pos.h"
#include "nvim/regexp.h"
#include "nvim/runtime.h"
#include "nvim/search.h"
#include "nvim/spell.h"
#include "nvim/spell_defs.h"
#include "nvim/spellfile.h"
#include "nvim/spellsuggest.h"
#include "nvim/strings.h"
#include "nvim/syntax.h"
#include "nvim/types.h"
#include "nvim/undo.h"
#include "nvim/vim.h"
#include "nvim/window.h"
// Result values. Lower number is accepted over higher one.
enum {
SP_BANNED = -1,
SP_RARE = 0,
SP_OK = 1,
SP_LOCAL = 2,
SP_BAD = 3,
};
// First language that is loaded, start of the linked list of loaded
// languages.
slang_T *first_lang = NULL;
// file used for "zG" and "zW"
char *int_wordlist = NULL;
// Structure to store info for word matching.
typedef struct matchinf_S {
langp_T *mi_lp; // info for language and region
// pointers to original text to be checked
char *mi_word; // start of word being checked
char *mi_end; // end of matching word so far
char *mi_fend; // next char to be added to mi_fword
char *mi_cend; // char after what was used for
// mi_capflags
// case-folded text
char mi_fword[MAXWLEN + 1]; // mi_word case-folded
int mi_fwordlen; // nr of valid bytes in mi_fword
// for when checking word after a prefix
int mi_prefarridx; // index in sl_pidxs with list of
// affixID/condition
int mi_prefcnt; // number of entries at mi_prefarridx
int mi_prefixlen; // byte length of prefix
int mi_cprefixlen; // byte length of prefix in original
// case
// for when checking a compound word
int mi_compoff; // start of following word offset
char_u mi_compflags[MAXWLEN]; // flags for compound words used
int mi_complen; // nr of compound words used
int mi_compextra; // nr of COMPOUNDROOT words
// others
int mi_result; // result so far: SP_BAD, SP_OK, etc.
int mi_capflags; // WF_ONECAP WF_ALLCAP WF_KEEPCAP
win_T *mi_win; // buffer being checked
// for NOBREAK
int mi_result2; // "mi_result" without following word
char *mi_end2; // "mi_end" without following word
} matchinf_T;
// Structure used for the cookie argument of do_in_runtimepath().
typedef struct spelload_S {
char sl_lang[MAXWLEN + 1]; // language name
slang_T *sl_slang; // resulting slang_T struct
int sl_nobreak; // NOBREAK language found
} spelload_T;
#define SY_MAXLEN 30
typedef struct syl_item_S {
char sy_chars[SY_MAXLEN]; // the sequence of chars
int sy_len;
} syl_item_T;
spelltab_T spelltab;
int did_set_spelltab;
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "spell.c.generated.h"
#endif
// mode values for find_word
#define FIND_FOLDWORD 0 // find word case-folded
#define FIND_KEEPWORD 1 // find keep-case word
#define FIND_PREFIX 2 // find word after prefix
#define FIND_COMPOUND 3 // find case-folded compound word
#define FIND_KEEPCOMPOUND 4 // find keep-case compound word
char *e_format = N_("E759: Format error in spell file");
// Remember what "z?" replaced.
char *repl_from = NULL;
char *repl_to = NULL;
/// Main spell-checking function.
/// "ptr" points to a character that could be the start of a word.
/// "*attrp" is set to the highlight index for a badly spelled word. For a
/// non-word or when it's OK it remains unchanged.
/// This must only be called when 'spelllang' is not empty.
///
/// "capcol" is used to check for a Capitalised word after the end of a
/// sentence. If it's zero then perform the check. Return the column where to
/// check next, or -1 when no sentence end was found. If it's NULL then don't
/// worry.
///
/// @param wp current window
/// @param capcol column to check for Capital
/// @param docount count good words
///
/// @return the length of the word in bytes, also when it's OK, so that the
/// caller can skip over the word.
size_t spell_check(win_T *wp, char *ptr, hlf_T *attrp, int *capcol, bool docount)
{
matchinf_T mi; // Most things are put in "mi" so that it can
// be passed to functions quickly.
size_t nrlen = 0; // found a number first
size_t wrongcaplen = 0;
bool count_word = docount;
bool use_camel_case = (wp->w_s->b_p_spo_flags & SPO_CAMEL) != 0;
bool camel_case = false;
// A word never starts at a space or a control character. Return quickly
// then, skipping over the character.
if ((uint8_t)(*ptr) <= ' ') {
return 1;
}
// Return here when loading language files failed.
if (GA_EMPTY(&wp->w_s->b_langp)) {
return 1;
}
CLEAR_FIELD(mi);
// A number is always OK. Also skip hexadecimal numbers 0xFF99 and
// 0X99FF. But always do check spelling to find "3GPP" and "11
// julifeest".
if (*ptr >= '0' && *ptr <= '9') {
if (*ptr == '0' && (ptr[1] == 'b' || ptr[1] == 'B')) {
mi.mi_end = (char *)skipbin(ptr + 2);
} else if (*ptr == '0' && (ptr[1] == 'x' || ptr[1] == 'X')) {
mi.mi_end = skiphex(ptr + 2);
} else {
mi.mi_end = skipdigits(ptr);
}
nrlen = (size_t)(mi.mi_end - ptr);
}
// Find the normal end of the word (until the next non-word character).
mi.mi_word = ptr;
mi.mi_fend = ptr;
if (spell_iswordp(mi.mi_fend, wp)) {
bool this_upper = false; // init for gcc
if (use_camel_case) {
int c = utf_ptr2char(mi.mi_fend);
this_upper = SPELL_ISUPPER(c);
}
do {
MB_PTR_ADV(mi.mi_fend);
if (use_camel_case) {
const bool prev_upper = this_upper;
int c = utf_ptr2char(mi.mi_fend);
this_upper = SPELL_ISUPPER(c);
camel_case = !prev_upper && this_upper;
}
} while (*mi.mi_fend != NUL && spell_iswordp(mi.mi_fend, wp)
&& !camel_case);
if (capcol != NULL && *capcol == 0 && wp->w_s->b_cap_prog != NULL) {
// Check word starting with capital letter.
int c = utf_ptr2char(ptr);
if (!SPELL_ISUPPER(c)) {
wrongcaplen = (size_t)(mi.mi_fend - ptr);
}
}
}
if (capcol != NULL) {
*capcol = -1;
}
// We always use the characters up to the next non-word character,
// also for bad words.
mi.mi_end = mi.mi_fend;
// Check caps type later.
mi.mi_capflags = 0;
mi.mi_cend = NULL;
mi.mi_win = wp;
// case-fold the word with one non-word character, so that we can check
// for the word end.
if (*mi.mi_fend != NUL) {
MB_PTR_ADV(mi.mi_fend);
}
(void)spell_casefold(wp, ptr, (int)(mi.mi_fend - ptr), mi.mi_fword,
MAXWLEN + 1);
mi.mi_fwordlen = (int)strlen(mi.mi_fword);
if (camel_case && mi.mi_fwordlen > 0) {
// introduce a fake word end space into the folded word.
mi.mi_fword[mi.mi_fwordlen - 1] = ' ';
}
// The word is bad unless we recognize it.
mi.mi_result = SP_BAD;
mi.mi_result2 = SP_BAD;
// Loop over the languages specified in 'spelllang'.
// We check them all, because a word may be matched longer in another
// language.
for (int lpi = 0; lpi < wp->w_s->b_langp.ga_len; lpi++) {
mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, lpi);
// If reloading fails the language is still in the list but everything
// has been cleared.
if (mi.mi_lp->lp_slang->sl_fidxs == NULL) {
continue;
}
// Check for a matching word in case-folded words.
find_word(&mi, FIND_FOLDWORD);
// Check for a matching word in keep-case words.
find_word(&mi, FIND_KEEPWORD);
// Check for matching prefixes.
find_prefix(&mi, FIND_FOLDWORD);
// For a NOBREAK language, may want to use a word without a following
// word as a backup.
if (mi.mi_lp->lp_slang->sl_nobreak && mi.mi_result == SP_BAD
&& mi.mi_result2 != SP_BAD) {
mi.mi_result = mi.mi_result2;
mi.mi_end = mi.mi_end2;
}
// Count the word in the first language where it's found to be OK.
if (count_word && mi.mi_result == SP_OK) {
count_common_word(mi.mi_lp->lp_slang, ptr,
(int)(mi.mi_end - ptr), 1);
count_word = false;
}
}
if (mi.mi_result != SP_OK) {
// If we found a number skip over it. Allows for "42nd". Do flag
// rare and local words, e.g., "3GPP".
if (nrlen > 0) {
if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) {
return nrlen;
}
} else if (!spell_iswordp_nmw(ptr, wp)) {
// When we are at a non-word character there is no error, just
// skip over the character (try looking for a word after it).
if (capcol != NULL && wp->w_s->b_cap_prog != NULL) {
regmatch_T regmatch;
// Check for end of sentence.
regmatch.regprog = wp->w_s->b_cap_prog;
regmatch.rm_ic = false;
int r = vim_regexec(&regmatch, ptr, 0);
wp->w_s->b_cap_prog = regmatch.regprog;
if (r) {
*capcol = (int)(regmatch.endp[0] - ptr);
}
}
return (size_t)(utfc_ptr2len(ptr));
} else if (mi.mi_end == ptr) {
// Always include at least one character. Required for when there
// is a mixup in "midword".
MB_PTR_ADV(mi.mi_end);
} else if (mi.mi_result == SP_BAD
&& LANGP_ENTRY(wp->w_s->b_langp, 0)->lp_slang->sl_nobreak) {
char *p, *fp;
int save_result = mi.mi_result;
// First language in 'spelllang' is NOBREAK. Find first position
// at which any word would be valid.
mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, 0);
if (mi.mi_lp->lp_slang->sl_fidxs != NULL) {
p = mi.mi_word;
fp = mi.mi_fword;
for (;;) {
MB_PTR_ADV(p);
MB_PTR_ADV(fp);
if (p >= mi.mi_end) {
break;
}
mi.mi_compoff = (int)(fp - mi.mi_fword);
find_word(&mi, FIND_COMPOUND);
if (mi.mi_result != SP_BAD) {
mi.mi_end = p;
break;
}
}
mi.mi_result = save_result;
}
}
if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) {
*attrp = HLF_SPB;
} else if (mi.mi_result == SP_RARE) {
*attrp = HLF_SPR;
} else {
*attrp = HLF_SPL;
}
}
if (wrongcaplen > 0 && (mi.mi_result == SP_OK || mi.mi_result == SP_RARE)) {
// Report SpellCap only when the word isn't badly spelled.
*attrp = HLF_SPC;
return wrongcaplen;
}
return (size_t)(mi.mi_end - ptr);
}
// Check if the word at "mip->mi_word" is in the tree.
// When "mode" is FIND_FOLDWORD check in fold-case word tree.
// When "mode" is FIND_KEEPWORD check in keep-case word tree.
// When "mode" is FIND_PREFIX check for word after prefix in fold-case word
// tree.
//
// For a match mip->mi_result is updated.
static void find_word(matchinf_T *mip, int mode)
{
int wlen = 0;
int flen;
char *ptr;
slang_T *slang = mip->mi_lp->lp_slang;
char_u *byts;
idx_T *idxs;
if (mode == FIND_KEEPWORD || mode == FIND_KEEPCOMPOUND) {
// Check for word with matching case in keep-case tree.
ptr = mip->mi_word;
flen = 9999; // no case folding, always enough bytes
byts = (char_u *)slang->sl_kbyts;
idxs = slang->sl_kidxs;
if (mode == FIND_KEEPCOMPOUND) {
// Skip over the previously found word(s).
wlen += mip->mi_compoff;
}
} else {
// Check for case-folded in case-folded tree.
ptr = mip->mi_fword;
flen = mip->mi_fwordlen; // available case-folded bytes
byts = (char_u *)slang->sl_fbyts;
idxs = slang->sl_fidxs;
if (mode == FIND_PREFIX) {
// Skip over the prefix.
wlen = mip->mi_prefixlen;
flen -= mip->mi_prefixlen;
} else if (mode == FIND_COMPOUND) {
// Skip over the previously found word(s).
wlen = mip->mi_compoff;
flen -= mip->mi_compoff;
}
}
if (byts == NULL) {
return; // array is empty
}
idx_T arridx = 0;
int endlen[MAXWLEN]; // length at possible word endings
idx_T endidx[MAXWLEN]; // possible word endings
int endidxcnt = 0;
int c;
// Repeat advancing in the tree until:
// - there is a byte that doesn't match,
// - we reach the end of the tree,
// - or we reach the end of the line.
for (;;) {
if (flen <= 0 && *mip->mi_fend != NUL) {
flen = fold_more(mip);
}
int len = byts[arridx++];
// If the first possible byte is a zero the word could end here.
// Remember this index, we first check for the longest word.
if (byts[arridx] == 0) {
if (endidxcnt == MAXWLEN) {
// Must be a corrupted spell file.
emsg(_(e_format));
return;
}
endlen[endidxcnt] = wlen;
endidx[endidxcnt++] = arridx++;
len--;
// Skip over the zeros, there can be several flag/region
// combinations.
while (len > 0 && byts[arridx] == 0) {
arridx++;
len--;
}
if (len == 0) {
break; // no children, word must end here
}
}
// Stop looking at end of the line.
if (ptr[wlen] == NUL) {
break;
}
// Perform a binary search in the list of accepted bytes.
c = (uint8_t)ptr[wlen];
if (c == TAB) { // <Tab> is handled like <Space>
c = ' ';
}
idx_T lo = arridx;
idx_T hi = arridx + len - 1;
while (lo < hi) {
idx_T m = (lo + hi) / 2;
if (byts[m] > c) {
hi = m - 1;
} else if (byts[m] < c) {
lo = m + 1;
} else {
lo = hi = m;
break;
}
}
// Stop if there is no matching byte.
if (hi < lo || byts[lo] != c) {
break;
}
// Continue at the child (if there is one).
arridx = idxs[lo];
wlen++;
flen--;
// One space in the good word may stand for several spaces in the
// checked word.
if (c == ' ') {
for (;;) {
if (flen <= 0 && *mip->mi_fend != NUL) {
flen = fold_more(mip);
}
if (ptr[wlen] != ' ' && ptr[wlen] != TAB) {
break;
}
wlen++;
flen--;
}
}
}
char *p;
bool word_ends;
// Verify that one of the possible endings is valid. Try the longest
// first.
while (endidxcnt > 0) {
endidxcnt--;
arridx = endidx[endidxcnt];
wlen = endlen[endidxcnt];
if (utf_head_off(ptr, ptr + wlen) > 0) {
continue; // not at first byte of character
}
if (spell_iswordp(ptr + wlen, mip->mi_win)) {
if (slang->sl_compprog == NULL && !slang->sl_nobreak) {
continue; // next char is a word character
}
word_ends = false;
} else {
word_ends = true;
}
// The prefix flag is before compound flags. Once a valid prefix flag
// has been found we try compound flags.
bool prefix_found = false;
if (mode != FIND_KEEPWORD) {
// Compute byte length in original word, length may change
// when folding case. This can be slow, take a shortcut when the
// case-folded word is equal to the keep-case word.
p = mip->mi_word;
if (strncmp(ptr, p, (size_t)wlen) != 0) {
for (char *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) {
MB_PTR_ADV(p);
}
wlen = (int)(p - mip->mi_word);
}
}
// Check flags and region. For FIND_PREFIX check the condition and
// prefix ID.
// Repeat this if there are more flags/region alternatives until there
// is a match.
for (int len = byts[arridx - 1]; len > 0 && byts[arridx] == 0; len--, arridx++) {
uint32_t flags = (uint32_t)idxs[arridx];
// For the fold-case tree check that the case of the checked word
// matches with what the word in the tree requires.
// For keep-case tree the case is always right. For prefixes we
// don't bother to check.
if (mode == FIND_FOLDWORD) {
if (mip->mi_cend != mip->mi_word + wlen) {
// mi_capflags was set for a different word length, need
// to do it again.
mip->mi_cend = mip->mi_word + wlen;
mip->mi_capflags = captype(mip->mi_word, mip->mi_cend);
}
if (mip->mi_capflags == WF_KEEPCAP
|| !spell_valid_case(mip->mi_capflags, (int)flags)) {
continue;
}
} else if (mode == FIND_PREFIX && !prefix_found) {
// When mode is FIND_PREFIX the word must support the prefix:
// check the prefix ID and the condition. Do that for the list at
// mip->mi_prefarridx that find_prefix() filled.
c = valid_word_prefix(mip->mi_prefcnt, mip->mi_prefarridx,
(int)flags,
mip->mi_word + mip->mi_cprefixlen, slang,
false);
if (c == 0) {
continue;
}
// Use the WF_RARE flag for a rare prefix.
if (c & WF_RAREPFX) {
flags |= WF_RARE;
}
prefix_found = true;
}
if (slang->sl_nobreak) {
if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND)
&& (flags & WF_BANNED) == 0) {
// NOBREAK: found a valid following word. That's all we
// need to know, so return.
mip->mi_result = SP_OK;
break;
}
} else if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND
|| !word_ends)) {
// If there is no compound flag or the word is shorter than
// COMPOUNDMIN reject it quickly.
// Makes you wonder why someone puts a compound flag on a word
// that's too short... Myspell compatibility requires this
// anyway.
if (((unsigned)flags >> 24) == 0
|| wlen - mip->mi_compoff < slang->sl_compminlen) {
continue;
}
// For multi-byte chars check character length against
// COMPOUNDMIN.
if (slang->sl_compminlen > 0
&& mb_charlen_len((char_u *)mip->mi_word + mip->mi_compoff,
wlen - mip->mi_compoff) < slang->sl_compminlen) {
continue;
}
// Limit the number of compound words to COMPOUNDWORDMAX if no
// maximum for syllables is specified.
if (!word_ends && mip->mi_complen + mip->mi_compextra + 2
> slang->sl_compmax
&& slang->sl_compsylmax == MAXWLEN) {
continue;
}
// Don't allow compounding on a side where an affix was added,
// unless COMPOUNDPERMITFLAG was used.
if (mip->mi_complen > 0 && (flags & WF_NOCOMPBEF)) {
continue;
}
if (!word_ends && (flags & WF_NOCOMPAFT)) {
continue;
}
// Quickly check if compounding is possible with this flag.
if (!byte_in_str(mip->mi_complen ==
0 ? slang->sl_compstartflags : slang->sl_compallflags,
(int)((unsigned)flags >> 24))) {
continue;
}
// If there is a match with a CHECKCOMPOUNDPATTERN rule
// discard the compound word.
if (match_checkcompoundpattern(ptr, wlen, &slang->sl_comppat)) {
continue;
}
if (mode == FIND_COMPOUND) {
int capflags;
// Need to check the caps type of the appended compound
// word.
if (strncmp(ptr, mip->mi_word, (size_t)mip->mi_compoff) != 0) {
// case folding may have changed the length
p = mip->mi_word;
for (char *s = ptr; s < ptr + mip->mi_compoff; MB_PTR_ADV(s)) {
MB_PTR_ADV(p);
}
} else {
p = mip->mi_word + mip->mi_compoff;
}
capflags = captype(p, mip->mi_word + wlen);
if (capflags == WF_KEEPCAP || (capflags == WF_ALLCAP
&& (flags & WF_FIXCAP) != 0)) {
continue;
}
if (capflags != WF_ALLCAP) {
// When the character before the word is a word
// character we do not accept a Onecap word. We do
// accept a no-caps word, even when the dictionary
// word specifies ONECAP.
MB_PTR_BACK(mip->mi_word, p);
if (spell_iswordp_nmw(p, mip->mi_win)
? capflags == WF_ONECAP
: (flags & WF_ONECAP) != 0
&& capflags != WF_ONECAP) {
continue;
}
}
}
// If the word ends the sequence of compound flags of the
// words must match with one of the COMPOUNDRULE items and
// the number of syllables must not be too large.
mip->mi_compflags[mip->mi_complen] = (char_u)((unsigned)flags >> 24);
mip->mi_compflags[mip->mi_complen + 1] = NUL;
if (word_ends) {
char fword[MAXWLEN] = { 0 };
if (slang->sl_compsylmax < MAXWLEN) {
// "fword" is only needed for checking syllables.
if (ptr == mip->mi_word) {
(void)spell_casefold(mip->mi_win, ptr, wlen, fword, MAXWLEN);
} else {
xstrlcpy(fword, ptr, (size_t)endlen[endidxcnt] + 1);
}
}
if (!can_compound(slang, fword, mip->mi_compflags)) {
continue;
}
} else if (slang->sl_comprules != NULL
&& !match_compoundrule(slang, mip->mi_compflags)) {
// The compound flags collected so far do not match any
// COMPOUNDRULE, discard the compounded word.
continue;
}
} else if (flags & WF_NEEDCOMP) {
// skip if word is only valid in a compound
continue;
}
int nobreak_result = SP_OK;
if (!word_ends) {
int save_result = mip->mi_result;
char *save_end = mip->mi_end;
langp_T *save_lp = mip->mi_lp;
// Check that a valid word follows. If there is one and we
// are compounding, it will set "mi_result", thus we are
// always finished here. For NOBREAK we only check that a
// valid word follows.
// Recursive!
if (slang->sl_nobreak) {
mip->mi_result = SP_BAD;
}
// Find following word in case-folded tree.
mip->mi_compoff = endlen[endidxcnt];
if (mode == FIND_KEEPWORD) {
// Compute byte length in case-folded word from "wlen":
// byte length in keep-case word. Length may change when
// folding case. This can be slow, take a shortcut when
// the case-folded word is equal to the keep-case word.
p = mip->mi_fword;
if (strncmp(ptr, p, (size_t)wlen) != 0) {
for (char *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) {
MB_PTR_ADV(p);
}
mip->mi_compoff = (int)(p - mip->mi_fword);
}
}
#if 0
c = mip->mi_compoff;
#endif
mip->mi_complen++;
if (flags & WF_COMPROOT) {
mip->mi_compextra++;
}
// For NOBREAK we need to try all NOBREAK languages, at least
// to find the ".add" file(s).
for (int lpi = 0; lpi < mip->mi_win->w_s->b_langp.ga_len; lpi++) {
if (slang->sl_nobreak) {
mip->mi_lp = LANGP_ENTRY(mip->mi_win->w_s->b_langp, lpi);
if (mip->mi_lp->lp_slang->sl_fidxs == NULL
|| !mip->mi_lp->lp_slang->sl_nobreak) {
continue;
}
}
find_word(mip, FIND_COMPOUND);
// When NOBREAK any word that matches is OK. Otherwise we
// need to find the longest match, thus try with keep-case
// and prefix too.
if (!slang->sl_nobreak || mip->mi_result == SP_BAD) {
// Find following word in keep-case tree.
mip->mi_compoff = wlen;
find_word(mip, FIND_KEEPCOMPOUND);
#if 0 // Disabled, a prefix must not appear halfway through a compound
// word, unless the COMPOUNDPERMITFLAG is used, in which case it
// can't be a postponed prefix.
if (!slang->sl_nobreak || mip->mi_result == SP_BAD) {
// Check for following word with prefix.
mip->mi_compoff = c;
find_prefix(mip, FIND_COMPOUND);
}
#endif
}
if (!slang->sl_nobreak) {
break;
}
}
mip->mi_complen--;
if (flags & WF_COMPROOT) {
mip->mi_compextra--;
}
mip->mi_lp = save_lp;
if (slang->sl_nobreak) {
nobreak_result = mip->mi_result;
mip->mi_result = save_result;
mip->mi_end = save_end;
} else {
if (mip->mi_result == SP_OK) {
break;
}
continue;
}
}
int res = SP_BAD;
if (flags & WF_BANNED) {
res = SP_BANNED;
} else if (flags & WF_REGION) {
// Check region.
if (((unsigned)mip->mi_lp->lp_region & (flags >> 16)) != 0) {
res = SP_OK;
} else {
res = SP_LOCAL;
}
} else if (flags & WF_RARE) {
res = SP_RARE;
} else {
res = SP_OK;
}
// Always use the longest match and the best result. For NOBREAK
// we separately keep the longest match without a following good
// word as a fall-back.
if (nobreak_result == SP_BAD) {
if (mip->mi_result2 > res) {
mip->mi_result2 = res;
mip->mi_end2 = mip->mi_word + wlen;
} else if (mip->mi_result2 == res
&& mip->mi_end2 < mip->mi_word + wlen) {
mip->mi_end2 = mip->mi_word + wlen;
}
} else if (mip->mi_result > res) {
mip->mi_result = res;
mip->mi_end = mip->mi_word + wlen;
} else if (mip->mi_result == res && mip->mi_end < mip->mi_word + wlen) {
mip->mi_end = mip->mi_word + wlen;
}
if (mip->mi_result == SP_OK) {
break;
}
}
if (mip->mi_result == SP_OK) {
break;
}
}
}
/// Returns true if there is a match between the word ptr[wlen] and
/// CHECKCOMPOUNDPATTERN rules, assuming that we will concatenate with another
/// word.
/// A match means that the first part of CHECKCOMPOUNDPATTERN matches at the
/// end of ptr[wlen] and the second part matches after it.
///
/// @param gap &sl_comppat
bool match_checkcompoundpattern(char *ptr, int wlen, garray_T *gap)
{
for (int i = 0; i + 1 < gap->ga_len; i += 2) {
char *p = ((char **)gap->ga_data)[i + 1];
if (strncmp(ptr + wlen, p, strlen(p)) == 0) {
// Second part matches at start of following compound word, now
// check if first part matches at end of previous word.
p = ((char **)gap->ga_data)[i];
int len = (int)strlen(p);
if (len <= wlen && strncmp(ptr + wlen - len, p, (size_t)len) == 0) {
return true;
}
}
}
return false;
}
/// @return true if "flags" is a valid sequence of compound flags and "word"
/// does not have too many syllables.
bool can_compound(slang_T *slang, const char *word, const uint8_t *flags)
FUNC_ATTR_NONNULL_ALL
{
char uflags[MAXWLEN * 2] = { 0 };
if (slang->sl_compprog == NULL) {
return false;
}
// Need to convert the single byte flags to utf8 characters.
char *p = uflags;
for (int i = 0; flags[i] != NUL; i++) {
p += utf_char2bytes(flags[i], p);
}
*p = NUL;
p = uflags;
if (!vim_regexec_prog(&slang->sl_compprog, false, p, 0)) {
return false;
}
// Count the number of syllables. This may be slow, do it last. If there
// are too many syllables AND the number of compound words is above
// COMPOUNDWORDMAX then compounding is not allowed.
if (slang->sl_compsylmax < MAXWLEN
&& count_syllables(slang, word) > slang->sl_compsylmax) {
return (int)strlen((char *)flags) < slang->sl_compmax;
}
return true;
}
// Returns true if the compound flags in compflags[] match the start of any
// compound rule. This is used to stop trying a compound if the flags
// collected so far can't possibly match any compound rule.
// Caller must check that slang->sl_comprules is not NULL.
bool match_compoundrule(slang_T *slang, const char_u *compflags)
{
// loop over all the COMPOUNDRULE entries
for (char_u *p = (char_u *)slang->sl_comprules; *p != NUL; p++) {
// loop over the flags in the compound word we have made, match
// them against the current rule entry
for (int i = 0;; i++) {
int c = compflags[i];
if (c == NUL) {
// found a rule that matches for the flags we have so far
return true;
}
if (*p == '/' || *p == NUL) {
break; // end of rule, it's too short
}
if (*p == '[') {
bool match = false;
// compare against all the flags in []
p++;
while (*p != ']' && *p != NUL) {
if (*p++ == c) {
match = true;
}
}
if (!match) {
break; // none matches
}
} else if (*p != c) {
break; // flag of word doesn't match flag in pattern
}
p++;
}
// Skip to the next "/", where the next pattern starts.
p = (char_u *)vim_strchr((char *)p, '/');
if (p == NULL) {
break;
}
}
// Checked all the rules and none of them match the flags, so there
// can't possibly be a compound starting with these flags.
return false;
}
/// Return non-zero if the prefix indicated by "arridx" matches with the prefix
/// ID in "flags" for the word "word".
/// The WF_RAREPFX flag is included in the return value for a rare prefix.
///
/// @param totprefcnt nr of prefix IDs
/// @param arridx idx in sl_pidxs[]
/// @param cond_req only use prefixes with a condition
int valid_word_prefix(int totprefcnt, int arridx, int flags, char *word, slang_T *slang,
bool cond_req)
{
int prefid = (int)((unsigned)flags >> 24);
for (int prefcnt = totprefcnt - 1; prefcnt >= 0; prefcnt--) {
int pidx = slang->sl_pidxs[arridx + prefcnt];
// Check the prefix ID.
if (prefid != (pidx & 0xff)) {
continue;
}
// Check if the prefix doesn't combine and the word already has a
// suffix.
if ((flags & WF_HAS_AFF) && (pidx & WF_PFX_NC)) {
continue;
}
// Check the condition, if there is one. The condition index is
// stored in the two bytes above the prefix ID byte.
regprog_T **rp = &slang->sl_prefprog[((unsigned)pidx >> 8) & 0xffff];
if (*rp != NULL) {
if (!vim_regexec_prog(rp, false, word, 0)) {
continue;
}
} else if (cond_req) {
continue;
}
// It's a match! Return the WF_ flags.
return pidx;
}
return 0;
}
// Check if the word at "mip->mi_word" has a matching prefix.
// If it does, then check the following word.
//
// If "mode" is "FIND_COMPOUND" then do the same after another word, find a
// prefix in a compound word.
//
// For a match mip->mi_result is updated.
static void find_prefix(matchinf_T *mip, int mode)
{
idx_T arridx = 0;
int wlen = 0;
slang_T *slang = mip->mi_lp->lp_slang;
char_u *byts = (char_u *)slang->sl_pbyts;
if (byts == NULL) {
return; // array is empty
}
// We use the case-folded word here, since prefixes are always
// case-folded.
char_u *ptr = (char_u *)mip->mi_fword;
int flen = mip->mi_fwordlen; // available case-folded bytes
if (mode == FIND_COMPOUND) {
// Skip over the previously found word(s).
ptr += mip->mi_compoff;
flen -= mip->mi_compoff;
}
idx_T *idxs = slang->sl_pidxs;
// Repeat advancing in the tree until:
// - there is a byte that doesn't match,
// - we reach the end of the tree,
// - or we reach the end of the line.
for (;;) {
if (flen == 0 && *mip->mi_fend != NUL) {
flen = fold_more(mip);
}
int len = byts[arridx++];
// If the first possible byte is a zero the prefix could end here.
// Check if the following word matches and supports the prefix.
if (byts[arridx] == 0) {
// There can be several prefixes with different conditions. We
// try them all, since we don't know which one will give the
// longest match. The word is the same each time, pass the list
// of possible prefixes to find_word().
mip->mi_prefarridx = arridx;
mip->mi_prefcnt = len;
while (len > 0 && byts[arridx] == 0) {
arridx++;
len--;
}
mip->mi_prefcnt -= len;
// Find the word that comes after the prefix.
mip->mi_prefixlen = wlen;
if (mode == FIND_COMPOUND) {
// Skip over the previously found word(s).
mip->mi_prefixlen += mip->mi_compoff;
}
// Case-folded length may differ from original length.
mip->mi_cprefixlen = nofold_len(mip->mi_fword, mip->mi_prefixlen,
mip->mi_word);
find_word(mip, FIND_PREFIX);
if (len == 0) {
break; // no children, word must end here
}
}
// Stop looking at end of the line.
if (ptr[wlen] == NUL) {
break;
}
// Perform a binary search in the list of accepted bytes.
int c = ptr[wlen];
idx_T lo = arridx;
idx_T hi = arridx + len - 1;
while (lo < hi) {
idx_T m = (lo + hi) / 2;
if (byts[m] > c) {
hi = m - 1;
} else if (byts[m] < c) {
lo = m + 1;
} else {
lo = hi = m;
break;
}
}
// Stop if there is no matching byte.
if (hi < lo || byts[lo] != c) {
break;
}
// Continue at the child (if there is one).
arridx = idxs[lo];
wlen++;
flen--;
}
}
// Need to fold at least one more character. Do until next non-word character
// for efficiency. Include the non-word character too.
// Return the length of the folded chars in bytes.
static int fold_more(matchinf_T *mip)
{
char *p = mip->mi_fend;
do {
MB_PTR_ADV(mip->mi_fend);
} while (*mip->mi_fend != NUL && spell_iswordp(mip->mi_fend, mip->mi_win));
// Include the non-word character so that we can check for the word end.
if (*mip->mi_fend != NUL) {
MB_PTR_ADV(mip->mi_fend);
}
(void)spell_casefold(mip->mi_win, p, (int)(mip->mi_fend - p),
mip->mi_fword + mip->mi_fwordlen,
MAXWLEN - mip->mi_fwordlen);
int flen = (int)strlen(mip->mi_fword + mip->mi_fwordlen);
mip->mi_fwordlen += flen;
return flen;
}
/// Checks case flags for a word. Returns true, if the word has the requested
/// case.
///
/// @param wordflags Flags for the checked word.
/// @param treeflags Flags for the word in the spell tree.
bool spell_valid_case(int wordflags, int treeflags)
{
return (wordflags == WF_ALLCAP && (treeflags & WF_FIXCAP) == 0)
|| ((treeflags & (WF_ALLCAP | WF_KEEPCAP)) == 0
&& ((treeflags & WF_ONECAP) == 0
|| (wordflags & WF_ONECAP) != 0));
}
// Returns true if spell checking is not enabled.
bool no_spell_checking(win_T *wp)
{
if (!wp->w_p_spell || *wp->w_s->b_p_spl == NUL
|| GA_EMPTY(&wp->w_s->b_langp)) {
emsg(_(e_no_spell));
return true;
}
return false;
}
static void decor_spell_nav_start(win_T *wp)
{
decor_state = (DecorState){ 0 };
decor_redraw_reset(wp->w_buffer, &decor_state);
}
static bool decor_spell_nav_col(win_T *wp, linenr_T lnum, linenr_T *decor_lnum, int col,
char **decor_error)
{
if (*decor_lnum != lnum) {
decor_providers_invoke_spell(wp, lnum - 1, col, lnum - 1, -1, decor_error);
decor_redraw_line(wp->w_buffer, lnum - 1, &decor_state);
*decor_lnum = lnum;
}
decor_redraw_col(wp->w_buffer, col, col, false, &decor_state);
return decor_state.spell == kTrue;
}
static inline bool can_syn_spell(win_T *wp, linenr_T lnum, int col)
{
bool can_spell;
(void)syn_get_id(wp, lnum, col, false, &can_spell, false);
return can_spell;
}
/// Moves to the next spell error.
/// "curline" is false for "[s", "]s", "[S" and "]S".
/// "curline" is true to find word under/after cursor in the same line.
/// For Insert mode completion "dir" is BACKWARD and "curline" is true: move
/// to after badly spelled word before the cursor.
///
/// @param dir FORWARD or BACKWARD
/// @param allwords true for "[s"/"]s", false for "[S"/"]S"
/// @param attrp return: attributes of bad word or NULL (only when "dir" is FORWARD)
///
/// @return 0 if not found, length of the badly spelled word otherwise.
size_t spell_move_to(win_T *wp, int dir, bool allwords, bool curline, hlf_T *attrp)
{
pos_T found_pos;
size_t found_len = 0;
hlf_T attr = HLF_COUNT;
size_t len;
int has_syntax = syntax_present(wp);
colnr_T col;
char *buf = NULL;
size_t buflen = 0;
int skip = 0;
colnr_T capcol = -1;
bool found_one = false;
bool wrapped = false;
if (no_spell_checking(wp)) {
return 0;
}
size_t ret = 0;
// Start looking for bad word at the start of the line, because we can't
// start halfway through a word, we don't know where it starts or ends.
//
// When searching backwards, we continue in the line to find the last
// bad word (in the cursor line: before the cursor).
//
// We concatenate the start of the next line, so that wrapped words work
// (e.g. "et<line-break>cetera"). Doesn't work when searching backwards
// though...
linenr_T lnum = wp->w_cursor.lnum;
clearpos(&found_pos);
char *decor_error = NULL;
// Ephemeral extmarks are currently stored in the global decor_state.
// When looking for spell errors, we need to:
// - temporarily reset decor_state
// - run the _on_spell_nav decor callback for each line we look at
// - detect if any spell marks are present
// - restore decor_state to the value saved here.
// TODO(lewis6991): un-globalize decor_state and allow ephemeral marks to be stored into a
// temporary DecorState.
DecorState saved_decor_start = decor_state;
linenr_T decor_lnum = -1;
decor_spell_nav_start(wp);
while (!got_int) {
char *line = ml_get_buf(wp->w_buffer, lnum, false);
len = strlen(line);
if (buflen < len + MAXWLEN + 2) {
xfree(buf);
buflen = len + MAXWLEN + 2;
buf = xmalloc(buflen);
}
assert(buf && buflen >= len + MAXWLEN + 2);
// In first line check first word for Capital.
if (lnum == 1) {
capcol = 0;
}
// For checking first word with a capital skip white space.
if (capcol == 0) {
capcol = (colnr_T)getwhitecols(line);
} else if (curline && wp == curwin) {
// For spellbadword(): check if first word needs a capital.
col = (colnr_T)getwhitecols(line);
if (check_need_cap(lnum, col)) {
capcol = col;
}
// Need to get the line again, may have looked at the previous
// one.
line = ml_get_buf(wp->w_buffer, lnum, false);
}
// Copy the line into "buf" and append the start of the next line if
// possible. Note: this ml_get_buf() may make "line" invalid, check
// for empty line first.
bool empty_line = *skipwhite((const char *)line) == NUL;
STRCPY(buf, line);
if (lnum < wp->w_buffer->b_ml.ml_line_count) {
spell_cat_line(buf + strlen(buf),
ml_get_buf(wp->w_buffer, lnum + 1, false),
MAXWLEN);
}
char *p = buf + skip;
char *endp = buf + len;
while (p < endp) {
// When searching backward don't search after the cursor. Unless
// we wrapped around the end of the buffer.
if (dir == BACKWARD
&& lnum == wp->w_cursor.lnum
&& !wrapped
&& (colnr_T)(p - buf) >= wp->w_cursor.col) {
break;
}
// start of word
attr = HLF_COUNT;
len = spell_check(wp, p, &attr, &capcol, false);
if (attr != HLF_COUNT) {
// We found a bad word. Check the attribute.
if (allwords || attr == HLF_SPB) {
// When searching forward only accept a bad word after
// the cursor.
if (dir == BACKWARD
|| lnum != wp->w_cursor.lnum
|| wrapped
|| ((colnr_T)(curline
? p - buf + (ptrdiff_t)len
: p - buf) > wp->w_cursor.col)) {
col = (colnr_T)(p - buf);
bool can_spell = (!has_syntax && (wp->w_s->b_p_spo_flags & SPO_NPBUFFER) == 0)
|| decor_spell_nav_col(wp, lnum, &decor_lnum, col, &decor_error)
|| (has_syntax && can_syn_spell(wp, lnum, col));
if (!can_spell) {
attr = HLF_COUNT;
}
if (can_spell) {
found_one = true;
found_pos = (pos_T) {
.lnum = lnum,
.col = col,
.coladd = 0
};
if (dir == FORWARD) {
// No need to search further.
wp->w_cursor = found_pos;
if (attrp != NULL) {
*attrp = attr;
}
ret = len;
goto theend;
} else if (curline) {
// Insert mode completion: put cursor after
// the bad word.
assert(len <= INT_MAX);
found_pos.col += (int)len;
}
found_len = len;
}
} else {
found_one = true;
}
}
}
// advance to character after the word
p += len;
assert(len <= INT_MAX);
capcol -= (int)len;
}
if (dir == BACKWARD && found_pos.lnum != 0) {
// Use the last match in the line (before the cursor).
wp->w_cursor = found_pos;
ret = found_len;
goto theend;
}
if (curline) {
break; // only check cursor line
}
// If we are back at the starting line and searched it again there
// is no match, give up.
if (lnum == wp->w_cursor.lnum && wrapped) {
break;
}
// Advance to next line.
if (dir == BACKWARD) {
if (lnum > 1) {
lnum--;
} else if (!p_ws) {
break; // at first line and 'nowrapscan'
} else {
// Wrap around to the end of the buffer. May search the
// starting line again and accept the last match.
lnum = wp->w_buffer->b_ml.ml_line_count;
wrapped = true;
if (!shortmess(SHM_SEARCH)) {
give_warning(_(top_bot_msg), true);
}
}
capcol = -1;
} else {
if (lnum < wp->w_buffer->b_ml.ml_line_count) {
lnum++;
} else if (!p_ws) {
break; // at first line and 'nowrapscan'
} else {
// Wrap around to the start of the buffer. May search the
// starting line again and accept the first match.
lnum = 1;
wrapped = true;
if (!shortmess(SHM_SEARCH)) {
give_warning(_(bot_top_msg), true);
}
}
// If we are back at the starting line and there is no match then
// give up.
if (lnum == wp->w_cursor.lnum && !found_one) {
break;
}
// Skip the characters at the start of the next line that were
// included in a match crossing line boundaries.
if (attr == HLF_COUNT) {
skip = (int)(p - endp);
} else {
skip = 0;
}
// Capcol skips over the inserted space.
capcol--;
// But after empty line check first word in next line
if (empty_line) {
capcol = 0;
}
}
line_breakcheck();
}
theend:
decor_state_free(&decor_state);
xfree(decor_error);
decor_state = saved_decor_start;
xfree(buf);
return ret;
}
// For spell checking: concatenate the start of the following line "line" into
// "buf", blanking-out special characters. Copy less than "maxlen" bytes.
// Keep the blanks at the start of the next line, this is used in win_line()
// to skip those bytes if the word was OK.
void spell_cat_line(char *buf, char *line, int maxlen)
{
char_u *p = (char_u *)skipwhite(line);
while (vim_strchr("*#/\"\t", (uint8_t)(*p)) != NULL) {
p = (char_u *)skipwhite((char *)p + 1);
}
if (*p != NUL) {
// Only worth concatenating if there is something else than spaces to
// concatenate.
int n = (int)(p - (char_u *)line) + 1;
if (n < maxlen - 1) {
memset(buf, ' ', (size_t)n);
xstrlcpy(buf + n, (char *)p, (size_t)(maxlen - n));
}
}
}
// Load word list(s) for "lang" from Vim spell file(s).
// "lang" must be the language without the region: e.g., "en".
static void spell_load_lang(char *lang)
{
char fname_enc[85];
int r;
spelload_T sl;
// Copy the language name to pass it to spell_load_cb() as a cookie.
// It's truncated when an error is detected.
STRCPY(sl.sl_lang, lang);
sl.sl_slang = NULL;
sl.sl_nobreak = false;
// Disallow deleting the current buffer. Autocommands can do weird things
// and cause "lang" to be freed.
curbuf->b_locked++;
// We may retry when no spell file is found for the language, an
// autocommand may load it then.
for (int round = 1; round <= 2; round++) {
// Find the first spell file for "lang" in 'runtimepath' and load it.
vim_snprintf(fname_enc, sizeof(fname_enc) - 5,
"spell/%s.%s.spl", lang, spell_enc());
r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl);
if (r == FAIL && *sl.sl_lang != NUL) {
// Try loading the ASCII version.
vim_snprintf(fname_enc, sizeof(fname_enc) - 5,
"spell/%s.ascii.spl", lang);
r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl);
if (r == FAIL && *sl.sl_lang != NUL && round == 1
&& apply_autocmds(EVENT_SPELLFILEMISSING, lang,
curbuf->b_fname, false, curbuf)) {
continue;
}
break;
}
break;
}
if (r == FAIL) {
if (starting) {
// Prompt the user at VimEnter if spell files are missing. #3027
// Plugins aren't loaded yet, so spellfile.vim cannot handle this case.
char autocmd_buf[512] = { 0 };
snprintf(autocmd_buf, sizeof(autocmd_buf),
"autocmd VimEnter * call spellfile#LoadFile('%s')|set spell",
lang);
do_cmdline_cmd(autocmd_buf);
} else {
smsg(_("Warning: Cannot find word list \"%s.%s.spl\" or \"%s.ascii.spl\""),
lang, spell_enc(), lang);
}
} else if (sl.sl_slang != NULL) {
// At least one file was loaded, now load ALL the additions.
STRCPY(fname_enc + strlen(fname_enc) - 3, "add.spl");
do_in_runtimepath(fname_enc, DIP_ALL, spell_load_cb, &sl);
}
curbuf->b_locked--;
}
// Return the encoding used for spell checking: Use 'encoding', except that we
// use "latin1" for "latin9". And limit to 60 characters (just in case).
char *spell_enc(void)
{
if (strlen(p_enc) < 60 && strcmp(p_enc, "iso-8859-15") != 0) {
return p_enc;
}
return "latin1";
}
// Get the name of the .spl file for the internal wordlist into
// "fname[MAXPATHL]".
static void int_wordlist_spl(char *fname)
{
vim_snprintf(fname, MAXPATHL, SPL_FNAME_TMPL,
int_wordlist, spell_enc());
}
/// Allocate a new slang_T for language "lang". "lang" can be NULL.
/// Caller must fill "sl_next".
slang_T *slang_alloc(char *lang)
FUNC_ATTR_NONNULL_RET
{
slang_T *lp = xcalloc(1, sizeof(slang_T));
if (lang != NULL) {
lp->sl_name = xstrdup(lang);
}
ga_init(&lp->sl_rep, sizeof(fromto_T), 10);
ga_init(&lp->sl_repsal, sizeof(fromto_T), 10);
lp->sl_compmax = MAXWLEN;
lp->sl_compsylmax = MAXWLEN;
hash_init(&lp->sl_wordcount);
return lp;
}
// Free the contents of an slang_T and the structure itself.
void slang_free(slang_T *lp)
{
xfree(lp->sl_name);
xfree(lp->sl_fname);
slang_clear(lp);
xfree(lp);
}
/// Frees a salitem_T
static void free_salitem(salitem_T *smp)
{
xfree(smp->sm_lead);
// Don't free sm_oneof and sm_rules, they point into sm_lead.
xfree(smp->sm_to);
xfree(smp->sm_lead_w);
xfree(smp->sm_oneof_w);
xfree(smp->sm_to_w);
}
/// Frees a fromto_T
static void free_fromto(fromto_T *ftp)
{
xfree(ftp->ft_from);
xfree(ftp->ft_to);
}
// Clear an slang_T so that the file can be reloaded.
void slang_clear(slang_T *lp)
{
garray_T *gap;
XFREE_CLEAR(lp->sl_fbyts);
XFREE_CLEAR(lp->sl_kbyts);
XFREE_CLEAR(lp->sl_pbyts);
XFREE_CLEAR(lp->sl_fidxs);
XFREE_CLEAR(lp->sl_kidxs);
XFREE_CLEAR(lp->sl_pidxs);
GA_DEEP_CLEAR(&lp->sl_rep, fromto_T, free_fromto);
GA_DEEP_CLEAR(&lp->sl_repsal, fromto_T, free_fromto);
gap = &lp->sl_sal;
if (lp->sl_sofo) {
// "ga_len" is set to 1 without adding an item for latin1
GA_DEEP_CLEAR_PTR(gap);
} else {
// SAL items: free salitem_T items
GA_DEEP_CLEAR(gap, salitem_T, free_salitem);
}
for (int i = 0; i < lp->sl_prefixcnt; i++) {
vim_regfree(lp->sl_prefprog[i]);
}
lp->sl_prefixcnt = 0;
XFREE_CLEAR(lp->sl_prefprog);
XFREE_CLEAR(lp->sl_info);
XFREE_CLEAR(lp->sl_midword);
vim_regfree(lp->sl_compprog);
lp->sl_compprog = NULL;
XFREE_CLEAR(lp->sl_comprules);
XFREE_CLEAR(lp->sl_compstartflags);
XFREE_CLEAR(lp->sl_compallflags);
XFREE_CLEAR(lp->sl_syllable);
ga_clear(&lp->sl_syl_items);
ga_clear_strings(&lp->sl_comppat);
hash_clear_all(&lp->sl_wordcount, WC_KEY_OFF);
hash_init(&lp->sl_wordcount);
hash_clear_all(&lp->sl_map_hash, 0);
// Clear info from .sug file.
slang_clear_sug(lp);
lp->sl_compmax = MAXWLEN;
lp->sl_compminlen = 0;
lp->sl_compsylmax = MAXWLEN;
lp->sl_regions[0] = NUL;
}
// Clear the info from the .sug file in "lp".
void slang_clear_sug(slang_T *lp)
{
XFREE_CLEAR(lp->sl_sbyts);
XFREE_CLEAR(lp->sl_sidxs);
close_spellbuf(lp->sl_sugbuf);
lp->sl_sugbuf = NULL;
lp->sl_sugloaded = false;
lp->sl_sugtime = 0;
}
// Load one spell file and store the info into a slang_T.
// Invoked through do_in_runtimepath().
static void spell_load_cb(char *fname, void *cookie)
{
spelload_T *slp = (spelload_T *)cookie;
slang_T *slang = spell_load_file(fname, slp->sl_lang, NULL, false);
if (slang != NULL) {
// When a previously loaded file has NOBREAK also use it for the
// ".add" files.
if (slp->sl_nobreak && slang->sl_add) {
slang->sl_nobreak = true;
} else if (slang->sl_nobreak) {
slp->sl_nobreak = true;
}
slp->sl_slang = slang;
}
}
/// Add a word to the hashtable of common words.
/// If it's already there then the counter is increased.
///
/// @param[in] lp
/// @param[in] word added to common words hashtable
/// @param[in] len length of word or -1 for NUL terminated
/// @param[in] count 1 to count once, 10 to init
void count_common_word(slang_T *lp, char *word, int len, uint8_t count)
{
char buf[MAXWLEN];
char *p;
if (len == -1) {
p = word;
} else if (len >= MAXWLEN) {
return;
} else {
xstrlcpy(buf, word, (size_t)len + 1);
p = buf;
}
wordcount_T *wc;
hash_T hash = hash_hash(p);
const size_t p_len = strlen(p);
hashitem_T *hi = hash_lookup(&lp->sl_wordcount, (const char *)p, p_len, hash);
if (HASHITEM_EMPTY(hi)) {
wc = xmalloc(sizeof(wordcount_T) + p_len);
memcpy(wc->wc_word, p, p_len + 1);
wc->wc_count = count;
hash_add_item(&lp->sl_wordcount, hi, (char *)wc->wc_word, hash);
} else {
wc = HI2WC(hi);
wc->wc_count = (uint16_t)(wc->wc_count + count);
if (wc->wc_count < count) { // check for overflow
wc->wc_count = MAXWORDCOUNT;
}
}
}
// Returns true if byte "n" appears in "str".
// Like strchr() but independent of locale.
bool byte_in_str(uint8_t *str, int n)
{
for (uint8_t *p = str; *p != NUL; p++) {
if (*p == n) {
return true;
}
}
return false;
}
// Truncate "slang->sl_syllable" at the first slash and put the following items
// in "slang->sl_syl_items".
int init_syl_tab(slang_T *slang)
{
ga_init(&slang->sl_syl_items, sizeof(syl_item_T), 4);
char *p = vim_strchr((char *)slang->sl_syllable, '/');
while (p != NULL) {
*p++ = NUL;
if (*p == NUL) { // trailing slash
break;
}
char *s = p;
p = vim_strchr(p, '/');
int l;
if (p == NULL) {
l = (int)strlen(s);
} else {
l = (int)(p - s);
}
if (l >= SY_MAXLEN) {
return SP_FORMERROR;
}
syl_item_T *syl = GA_APPEND_VIA_PTR(syl_item_T, &slang->sl_syl_items);
xstrlcpy(syl->sy_chars, s, (size_t)l + 1);
syl->sy_len = l;
}
return OK;
}
// Count the number of syllables in "word".
// When "word" contains spaces the syllables after the last space are counted.
// Returns zero if syllables are not defines.
static int count_syllables(slang_T *slang, const char *word)
FUNC_ATTR_NONNULL_ALL
{
int cnt = 0;
bool skip = false;
int len;
if (slang->sl_syllable == NULL) {
return 0;
}
for (const char *p = word; *p != NUL; p += len) {
// When running into a space reset counter.
if (*p == ' ') {
len = 1;
cnt = 0;
continue;
}
// Find longest match of syllable items.
len = 0;
for (int i = 0; i < slang->sl_syl_items.ga_len; i++) {
syl_item_T *syl = ((syl_item_T *)slang->sl_syl_items.ga_data) + i;
if (syl->sy_len > len
&& strncmp(p, syl->sy_chars, (size_t)syl->sy_len) == 0) {
len = syl->sy_len;
}
}
if (len != 0) { // found a match, count syllable
cnt++;
skip = false;
} else {
// No recognized syllable item, at least a syllable char then?
int c = utf_ptr2char(p);
len = utfc_ptr2len(p);
if (vim_strchr((char *)slang->sl_syllable, c) == NULL) {
skip = false; // No, search for next syllable
} else if (!skip) {
cnt++; // Yes, count it
skip = true; // don't count following syllable chars
}
}
}
return cnt;
}
/// Parse 'spelllang' and set w_s->b_langp accordingly.
/// @return NULL if it's OK, an untranslated error message otherwise.
char *did_set_spelllang(win_T *wp)
{
garray_T ga;
char *splp;
char *region;
char region_cp[3];
bool filename;
int region_mask;
slang_T *slang;
int c;
char lang[MAXWLEN + 1];
char spf_name[MAXPATHL];
int len;
char *p;
int round;
char *spf;
char *use_region = NULL;
bool dont_use_region = false;
bool nobreak = false;
langp_T *lp, *lp2;
static bool recursive = false;
char *ret_msg = NULL;
char *spl_copy;
bufref_T bufref;
set_bufref(&bufref, wp->w_buffer);
// We don't want to do this recursively. May happen when a language is
// not available and the SpellFileMissing autocommand opens a new buffer
// in which 'spell' is set.
if (recursive) {
return NULL;
}
recursive = true;
ga_init(&ga, sizeof(langp_T), 2);
clear_midword(wp);
// Make a copy of 'spelllang', the SpellFileMissing autocommands may change
// it under our fingers.
spl_copy = xstrdup(wp->w_s->b_p_spl);
wp->w_s->b_cjk = 0;
// Loop over comma separated language names.
for (splp = spl_copy; *splp != NUL;) {
// Get one language name.
copy_option_part(&splp, lang, MAXWLEN, ",");
region = NULL;
len = (int)strlen(lang);
if (!valid_spelllang(lang)) {
continue;
}
if (strcmp(lang, "cjk") == 0) {
wp->w_s->b_cjk = 1;
continue;
}
// If the name ends in ".spl" use it as the name of the spell file.
// If there is a region name let "region" point to it and remove it
// from the name.
if (len > 4 && path_fnamecmp(lang + len - 4, ".spl") == 0) {
filename = true;
// Locate a region and remove it from the file name.
p = vim_strchr(path_tail(lang), '_');
if (p != NULL && ASCII_ISALPHA(p[1]) && ASCII_ISALPHA(p[2])
&& !ASCII_ISALPHA(p[3])) {
xstrlcpy(region_cp, p + 1, 3);
memmove(p, p + 3, (size_t)(len - (p - lang) - 2));
region = region_cp;
} else {
dont_use_region = true;
}
// Check if we loaded this language before.
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (path_full_compare(lang, slang->sl_fname, false, true)
== kEqualFiles) {
break;
}
}
} else {
filename = false;
if (len > 3 && lang[len - 3] == '_') {
region = lang + len - 2;
lang[len - 3] = NUL;
} else {
dont_use_region = true;
}
// Check if we loaded this language before.
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (STRICMP(lang, slang->sl_name) == 0) {
break;
}
}
}
if (region != NULL) {
// If the region differs from what was used before then don't
// use it for 'spellfile'.
if (use_region != NULL && strcmp(region, use_region) != 0) {
dont_use_region = true;
}
use_region = region;
}
// If not found try loading the language now.
if (slang == NULL) {
if (filename) {
(void)spell_load_file(lang, lang, NULL, false);
} else {
spell_load_lang(lang);
// SpellFileMissing autocommands may do anything, including
// destroying the buffer we are using or closing the window.
if (!bufref_valid(&bufref) || !win_valid_any_tab(wp)) {
ret_msg = N_("E797: SpellFileMissing autocommand deleted buffer");
goto theend;
}
}
}
// Loop over the languages, there can be several files for "lang".
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (filename
? path_full_compare(lang, slang->sl_fname, false, true) == kEqualFiles
: STRICMP(lang, slang->sl_name) == 0) {
region_mask = REGION_ALL;
if (!filename && region != NULL) {
// find region in sl_regions
c = find_region(slang->sl_regions, region);
if (c == REGION_ALL) {
if (slang->sl_add) {
if (*slang->sl_regions != NUL) {
// This addition file is for other regions.
region_mask = 0;
}
} else {
// This is probably an error. Give a warning and
// accept the words anyway.
smsg(_("Warning: region %s not supported"),
region);
}
} else {
region_mask = 1 << c;
}
}
if (region_mask != 0) {
langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga);
p_->lp_slang = slang;
p_->lp_region = region_mask;
use_midword(slang, wp);
if (slang->sl_nobreak) {
nobreak = true;
}
}
}
}
}
// round 0: load int_wordlist, if possible.
// round 1: load first name in 'spellfile'.
// round 2: load second name in 'spellfile.
// etc.
spf = curwin->w_s->b_p_spf;
for (round = 0; round == 0 || *spf != NUL; round++) {
if (round == 0) {
// Internal wordlist, if there is one.
if (int_wordlist == NULL) {
continue;
}
int_wordlist_spl(spf_name);
} else {
// One entry in 'spellfile'.
copy_option_part(&spf, spf_name, MAXPATHL - 5, ",");
STRCAT(spf_name, ".spl");
// If it was already found above then skip it.
for (c = 0; c < ga.ga_len; c++) {
p = LANGP_ENTRY(ga, c)->lp_slang->sl_fname;
if (p != NULL
&& path_full_compare(spf_name, p, false, true) == kEqualFiles) {
break;
}
}
if (c < ga.ga_len) {
continue;
}
}
// Check if it was loaded already.
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (path_full_compare(spf_name, slang->sl_fname, false, true)
== kEqualFiles) {
break;
}
}
if (slang == NULL) {
// Not loaded, try loading it now. The language name includes the
// region name, the region is ignored otherwise. for int_wordlist
// use an arbitrary name.
if (round == 0) {
STRCPY(lang, "internal wordlist");
} else {
xstrlcpy(lang, path_tail(spf_name), MAXWLEN + 1);
p = vim_strchr(lang, '.');
if (p != NULL) {
*p = NUL; // truncate at ".encoding.add"
}
}
slang = spell_load_file(spf_name, lang, NULL, true);
// If one of the languages has NOBREAK we assume the addition
// files also have this.
if (slang != NULL && nobreak) {
slang->sl_nobreak = true;
}
}
if (slang != NULL) {
region_mask = REGION_ALL;
if (use_region != NULL && !dont_use_region) {
// find region in sl_regions
c = find_region(slang->sl_regions, use_region);
if (c != REGION_ALL) {
region_mask = 1 << c;
} else if (*slang->sl_regions != NUL) {
// This spell file is for other regions.
region_mask = 0;
}
}
if (region_mask != 0) {
langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga);
p_->lp_slang = slang;
p_->lp_sallang = NULL;
p_->lp_replang = NULL;
p_->lp_region = region_mask;
use_midword(slang, wp);
}
}
}
// Everything is fine, store the new b_langp value.
ga_clear(&wp->w_s->b_langp);
wp->w_s->b_langp = ga;
// For each language figure out what language to use for sound folding and
// REP items. If the language doesn't support it itself use another one
// with the same name. E.g. for "en-math" use "en".
for (int i = 0; i < ga.ga_len; i++) {
lp = LANGP_ENTRY(ga, i);
// sound folding
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
// language does sound folding itself
lp->lp_sallang = lp->lp_slang;
} else {
// find first similar language that does sound folding
for (int j = 0; j < ga.ga_len; j++) {
lp2 = LANGP_ENTRY(ga, j);
if (!GA_EMPTY(&lp2->lp_slang->sl_sal)
&& strncmp(lp->lp_slang->sl_name,
lp2->lp_slang->sl_name, 2) == 0) {
lp->lp_sallang = lp2->lp_slang;
break;
}
}
}
// REP items
if (!GA_EMPTY(&lp->lp_slang->sl_rep)) {
// language has REP items itself
lp->lp_replang = lp->lp_slang;
} else {
// find first similar language that has REP items
for (int j = 0; j < ga.ga_len; j++) {
lp2 = LANGP_ENTRY(ga, j);
if (!GA_EMPTY(&lp2->lp_slang->sl_rep)
&& strncmp(lp->lp_slang->sl_name,
lp2->lp_slang->sl_name, 2) == 0) {
lp->lp_replang = lp2->lp_slang;
break;
}
}
}
}
redraw_later(wp, UPD_NOT_VALID);
theend:
xfree(spl_copy);
recursive = false;
return ret_msg;
}
// Clear the midword characters for buffer "buf".
static void clear_midword(win_T *wp)
{
CLEAR_FIELD(wp->w_s->b_spell_ismw);
XFREE_CLEAR(wp->w_s->b_spell_ismw_mb);
}
/// Use the "sl_midword" field of language "lp" for buffer "buf".
/// They add up to any currently used midword characters.
static void use_midword(slang_T *lp, win_T *wp)
FUNC_ATTR_NONNULL_ALL
{
if (lp->sl_midword == NULL) { // there aren't any
return;
}
for (char *p = (char *)lp->sl_midword; *p != NUL;) {
const int c = utf_ptr2char(p);
const int l = utfc_ptr2len(p);
if (c < 256 && l <= 2) {
wp->w_s->b_spell_ismw[c] = true;
} else if (wp->w_s->b_spell_ismw_mb == NULL) {
// First multi-byte char in "b_spell_ismw_mb".
wp->w_s->b_spell_ismw_mb = xstrnsave(p, (size_t)l);
} else {
// Append multi-byte chars to "b_spell_ismw_mb".
const int n = (int)strlen(wp->w_s->b_spell_ismw_mb);
char *bp = xstrnsave(wp->w_s->b_spell_ismw_mb, (size_t)n + (size_t)l);
xfree(wp->w_s->b_spell_ismw_mb);
wp->w_s->b_spell_ismw_mb = bp;
xstrlcpy(bp + n, p, (size_t)l + 1);
}
p += l;
}
}
// Find the region "region[2]" in "rp" (points to "sl_regions").
// Each region is simply stored as the two characters of its name.
// Returns the index if found (first is 0), REGION_ALL if not found.
static int find_region(const char *rp, const char *region)
{
int i;
for (i = 0;; i += 2) {
if (rp[i] == NUL) {
return REGION_ALL;
}
if (rp[i] == region[0] && rp[i + 1] == region[1]) {
break;
}
}
return i / 2;
}
/// Return case type of word:
/// w word 0
/// Word WF_ONECAP
/// W WORD WF_ALLCAP
/// WoRd wOrd WF_KEEPCAP
///
/// @param[in] word
/// @param[in] end End of word or NULL for NUL delimited string
///
/// @returns Case type of word
int captype(char *word, const char *end)
FUNC_ATTR_NONNULL_ARG(1)
{
char *p;
// find first letter
for (p = word; !spell_iswordp_nmw(p, curwin); MB_PTR_ADV(p)) {
if (end == NULL ? *p == NUL : p >= end) {
return 0; // only non-word characters, illegal word
}
}
int c = mb_ptr2char_adv((const char **)&p);
bool allcap;
bool firstcap = allcap = SPELL_ISUPPER(c);
bool past_second = false; // past second word char
// Need to check all letters to find a word with mixed upper/lower.
// But a word with an upper char only at start is a ONECAP.
for (; end == NULL ? *p != NUL : p < end; MB_PTR_ADV(p)) {
if (spell_iswordp_nmw(p, curwin)) {
c = utf_ptr2char(p);
if (!SPELL_ISUPPER(c)) {
// UUl -> KEEPCAP
if (past_second && allcap) {
return WF_KEEPCAP;
}
allcap = false;
} else if (!allcap) {
// UlU -> KEEPCAP
return WF_KEEPCAP;
}
past_second = true;
}
}
if (allcap) {
return WF_ALLCAP;
}
if (firstcap) {
return WF_ONECAP;
}
return 0;
}
// Delete the internal wordlist and its .spl file.
void spell_delete_wordlist(void)
{
if (int_wordlist != NULL) {
char fname[MAXPATHL] = { 0 };
os_remove(int_wordlist);
int_wordlist_spl(fname);
os_remove(fname);
XFREE_CLEAR(int_wordlist);
}
}
// Free all languages.
void spell_free_all(void)
{
// Go through all buffers and handle 'spelllang'. <VN>
FOR_ALL_BUFFERS(buf) {
ga_clear(&buf->b_s.b_langp);
}
while (first_lang != NULL) {
slang_T *slang = first_lang;
first_lang = slang->sl_next;
slang_free(slang);
}
spell_delete_wordlist();
XFREE_CLEAR(repl_to);
XFREE_CLEAR(repl_from);
}
// Clear all spelling tables and reload them.
// Used after 'encoding' is set and when ":mkspell" was used.
void spell_reload(void)
{
// Initialize the table for spell_iswordp().
init_spell_chartab();
// Unload all allocated memory.
spell_free_all();
// Go through all buffers and handle 'spelllang'.
FOR_ALL_WINDOWS_IN_TAB(wp, curtab) {
// Only load the wordlists when 'spelllang' is set and there is a
// window for this buffer in which 'spell' is set.
if (*wp->w_s->b_p_spl != NUL) {
if (wp->w_p_spell) {
(void)did_set_spelllang(wp);
break;
}
}
}
}
// Open a spell buffer. This is a nameless buffer that is not in the buffer
// list and only contains text lines. Can use a swapfile to reduce memory
// use.
// Most other fields are invalid! Esp. watch out for string options being
// NULL and there is no undo info.
buf_T *open_spellbuf(void)
{
buf_T *buf = xcalloc(1, sizeof(buf_T));
buf->b_spell = true;
buf->b_p_swf = true; // may create a swap file
if (ml_open(buf) == FAIL) {
ELOG("Error opening a new memline");
}
ml_open_file(buf); // create swap file now
return buf;
}
// Close the buffer used for spell info.
void close_spellbuf(buf_T *buf)
{
if (buf != NULL) {
ml_close(buf, true);
xfree(buf);
}
}
// Init the chartab used for spelling for ASCII.
void clear_spell_chartab(spelltab_T *sp)
{
// Init everything to false (zero).
CLEAR_FIELD(sp->st_isw);
CLEAR_FIELD(sp->st_isu);
for (int i = 0; i < 256; i++) {
sp->st_fold[i] = (char_u)i;
sp->st_upper[i] = (char_u)i;
}
// We include digits. A word shouldn't start with a digit, but handling
// that is done separately.
for (int i = '0'; i <= '9'; i++) {
sp->st_isw[i] = true;
}
for (int i = 'A'; i <= 'Z'; i++) {
sp->st_isw[i] = true;
sp->st_isu[i] = true;
sp->st_fold[i] = (char_u)(i + 0x20);
}
for (int i = 'a'; i <= 'z'; i++) {
sp->st_isw[i] = true;
sp->st_upper[i] = (char_u)(i - 0x20);
}
}
// Init the chartab used for spelling. Called once while starting up.
// The default is to use isalpha(), but the spell file should define the word
// characters to make it possible that 'encoding' differs from the current
// locale. For utf-8 we don't use isalpha() but our own functions.
void init_spell_chartab(void)
{
did_set_spelltab = false;
clear_spell_chartab(&spelltab);
for (int i = 128; i < 256; i++) {
int f = utf_fold(i);
int u = mb_toupper(i);
spelltab.st_isu[i] = mb_isupper(i);
spelltab.st_isw[i] = spelltab.st_isu[i] || mb_islower(i);
// The folded/upper-cased value is different between latin1 and
// utf8 for 0xb5, causing E763 for no good reason. Use the latin1
// value for utf-8 to avoid this.
spelltab.st_fold[i] = (f < 256) ? (char_u)f : (char_u)i;
spelltab.st_upper[i] = (u < 256) ? (char_u)u : (char_u)i;
}
}
/// Returns true if "p" points to a word character.
/// As a special case we see "midword" characters as word character when it is
/// followed by a word character. This finds they'there but not 'they there'.
/// Thus this only works properly when past the first character of the word.
///
/// @param wp Buffer used.
bool spell_iswordp(const char *p, const win_T *wp)
FUNC_ATTR_NONNULL_ALL
{
const int l = utfc_ptr2len(p);
const char *s = p;
if (l == 1) {
// be quick for ASCII
if (wp->w_s->b_spell_ismw[(uint8_t)(*p)]) {
s = p + 1; // skip a mid-word character
}
} else {
int c = utf_ptr2char(p);
if (c < 256
? wp->w_s->b_spell_ismw[c]
: (wp->w_s->b_spell_ismw_mb != NULL
&& vim_strchr(wp->w_s->b_spell_ismw_mb, c) != NULL)) {
s = p + l;
}
}
int c = utf_ptr2char(s);
if (c > 255) {
return spell_mb_isword_class(mb_get_class(s), wp);
}
return spelltab.st_isw[c];
}
// Returns true if "p" points to a word character.
// Unlike spell_iswordp() this doesn't check for "midword" characters.
bool spell_iswordp_nmw(const char *p, win_T *wp)
{
int c = utf_ptr2char(p);
if (c > 255) {
return spell_mb_isword_class(mb_get_class(p), wp);
}
return spelltab.st_isw[c];
}
// Returns true if word class indicates a word character.
// Only for characters above 255.
// Unicode subscript and superscript are not considered word characters.
// See also utf_class() in mbyte.c.
static bool spell_mb_isword_class(int cl, const win_T *wp)
FUNC_ATTR_PURE FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
if (wp->w_s->b_cjk) {
// East Asian characters are not considered word characters.
return cl == 2 || cl == 0x2800;
}
return cl >= 2 && cl != 0x2070 && cl != 0x2080 && cl != 3;
}
// Returns true if "p" points to a word character.
// Wide version of spell_iswordp().
static bool spell_iswordp_w(const int *p, const win_T *wp)
FUNC_ATTR_NONNULL_ALL
{
const int *s;
if (*p <
256 ? wp->w_s->b_spell_ismw[*p] : (wp->w_s->b_spell_ismw_mb != NULL
&& vim_strchr(wp->w_s->b_spell_ismw_mb,
*p) != NULL)) {
s = p + 1;
} else {
s = p;
}
if (*s > 255) {
return spell_mb_isword_class(utf_class(*s), wp);
}
return spelltab.st_isw[*s];
}
// Case-fold "str[len]" into "buf[buflen]". The result is NUL terminated.
// Uses the character definitions from the .spl file.
// When using a multi-byte 'encoding' the length may change!
// Returns FAIL when something wrong.
int spell_casefold(const win_T *wp, char *str, int len, char *buf, int buflen)
FUNC_ATTR_NONNULL_ALL
{
if (len >= buflen) {
buf[0] = NUL;
return FAIL; // result will not fit
}
int outi = 0;
// Fold one character at a time.
for (char *p = str; p < str + len;) {
if (outi + MB_MAXBYTES > buflen) {
buf[outi] = NUL;
return FAIL;
}
int c = mb_cptr2char_adv((const char **)&p);
// Exception: greek capital sigma 0x03A3 folds to 0x03C3, except
// when it is the last character in a word, then it folds to
// 0x03C2.
if (c == 0x03a3 || c == 0x03c2) {
if (p == str + len || !spell_iswordp(p, wp)) {
c = 0x03c2;
} else {
c = 0x03c3;
}
} else {
c = SPELL_TOFOLD(c);
}
outi += utf_char2bytes(c, buf + outi);
}
buf[outi] = NUL;
return OK;
}
// Check if the word at line "lnum" column "col" is required to start with a
// capital. This uses 'spellcapcheck' of the current buffer.
bool check_need_cap(linenr_T lnum, colnr_T col)
{
bool need_cap = false;
if (curwin->w_s->b_cap_prog == NULL) {
return false;
}
char *line = get_cursor_line_ptr();
char *line_copy = NULL;
colnr_T endcol = 0;
if (getwhitecols(line) >= (int)col) {
// At start of line, check if previous line is empty or sentence
// ends there.
if (lnum == 1) {
need_cap = true;
} else {
line = ml_get(lnum - 1);
if (*skipwhite(line) == NUL) {
need_cap = true;
} else {
// Append a space in place of the line break.
line_copy = concat_str(line, " ");
line = line_copy;
endcol = (colnr_T)strlen(line);
}
}
} else {
endcol = col;
}
if (endcol > 0) {
// Check if sentence ends before the bad word.
regmatch_T regmatch = {
.regprog = curwin->w_s->b_cap_prog,
.rm_ic = false
};
char *p = line + endcol;
for (;;) {
MB_PTR_BACK(line, p);
if (p == line || spell_iswordp_nmw(p, curwin)) {
break;
}
if (vim_regexec(&regmatch, p, 0)
&& regmatch.endp[0] == line + endcol) {
need_cap = true;
break;
}
}
curwin->w_s->b_cap_prog = regmatch.regprog;
}
xfree(line_copy);
return need_cap;
}
// ":spellrepall"
void ex_spellrepall(exarg_T *eap)
{
pos_T pos = curwin->w_cursor;
bool save_ws = p_ws;
linenr_T prev_lnum = 0;
if (repl_from == NULL || repl_to == NULL) {
emsg(_("E752: No previous spell replacement"));
return;
}
int addlen = (int)(strlen(repl_to) - strlen(repl_from));
size_t frompatlen = strlen(repl_from) + 7;
char *frompat = xmalloc(frompatlen);
snprintf(frompat, frompatlen, "\\V\\<%s\\>", repl_from);
p_ws = false;
sub_nsubs = 0;
sub_nlines = 0;
curwin->w_cursor.lnum = 0;
while (!got_int) {
if (do_search(NULL, '/', '/', frompat, 1L, SEARCH_KEEP, NULL) == 0
|| u_save_cursor() == FAIL) {
break;
}
// Only replace when the right word isn't there yet. This happens
// when changing "etc" to "etc.".
char *line = get_cursor_line_ptr();
if (addlen <= 0 || strncmp(line + curwin->w_cursor.col,
repl_to, strlen(repl_to)) != 0) {
char *p = xmalloc(strlen(line) + (size_t)addlen + 1);
memmove(p, line, (size_t)curwin->w_cursor.col);
STRCPY(p + curwin->w_cursor.col, repl_to);
STRCAT(p, line + curwin->w_cursor.col + strlen(repl_from));
ml_replace(curwin->w_cursor.lnum, p, false);
changed_bytes(curwin->w_cursor.lnum, curwin->w_cursor.col);
if (curwin->w_cursor.lnum != prev_lnum) {
sub_nlines++;
prev_lnum = curwin->w_cursor.lnum;
}
sub_nsubs++;
}
curwin->w_cursor.col += (colnr_T)strlen(repl_to);
}
p_ws = save_ws;
curwin->w_cursor = pos;
xfree(frompat);
if (sub_nsubs == 0) {
semsg(_("E753: Not found: %s"), repl_from);
} else {
do_sub_msg(false);
}
}
/// Make a copy of "word", with the first letter upper or lower cased, to
/// "wcopy[MAXWLEN]". "word" must not be empty.
/// The result is NUL terminated.
///
/// @param[in] word source string to copy
/// @param[in,out] wcopy copied string, with case of first letter changed
/// @param[in] upper True to upper case, otherwise lower case
void onecap_copy(char *word, char *wcopy, bool upper)
{
char *p = word;
int c = mb_cptr2char_adv((const char **)&p);
if (upper) {
c = SPELL_TOUPPER(c);
} else {
c = SPELL_TOFOLD(c);
}
int l = utf_char2bytes(c, wcopy);
xstrlcpy(wcopy + l, p, (size_t)(MAXWLEN - l));
}
// Make a copy of "word" with all the letters upper cased into
// "wcopy[MAXWLEN]". The result is NUL terminated.
void allcap_copy(char *word, char *wcopy)
{
char_u *d = (char_u *)wcopy;
for (char *s = word; *s != NUL;) {
int c = mb_cptr2char_adv((const char **)&s);
if (c == 0xdf) {
c = 'S';
if (d - (char_u *)wcopy >= MAXWLEN - 1) {
break;
}
*d++ = (char_u)c;
} else {
c = SPELL_TOUPPER(c);
}
if (d - (char_u *)wcopy >= MAXWLEN - MB_MAXBYTES) {
break;
}
d += utf_char2bytes(c, (char *)d);
}
*d = NUL;
}
// Case-folding may change the number of bytes: Count nr of chars in
// fword[flen] and return the byte length of that many chars in "word".
int nofold_len(char *fword, int flen, char *word)
{
char *p;
int i = 0;
for (p = fword; p < fword + flen; MB_PTR_ADV(p)) {
i++;
}
for (p = word; i > 0; MB_PTR_ADV(p)) {
i--;
}
return (int)(p - word);
}
// Copy "fword" to "cword", fixing case according to "flags".
void make_case_word(char *fword, char *cword, int flags)
{
if (flags & WF_ALLCAP) {
// Make it all upper-case
allcap_copy(fword, cword);
} else if (flags & WF_ONECAP) {
// Make the first letter upper-case
onecap_copy(fword, cword, true);
} else {
// Use goodword as-is.
STRCPY(cword, fword);
}
}
/// Soundfold a string, for soundfold()
///
/// @param[in] word Word to soundfold.
///
/// @return [allocated] soundfolded string or NULL in case of error. May return
/// copy of the input string if soundfolding is not
/// supported by any of the languages in &spellang.
char *eval_soundfold(const char *const word)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_MALLOC FUNC_ATTR_NONNULL_ALL
{
if (curwin->w_p_spell && *curwin->w_s->b_p_spl != NUL) {
// Use the sound-folding of the first language that supports it.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) {
langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
// soundfold the word
char sound[MAXWLEN];
spell_soundfold(lp->lp_slang, (char *)word, false, sound);
return xstrdup(sound);
}
}
}
// No language with sound folding, return word as-is.
return xstrdup(word);
}
/// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]".
///
/// There are many ways to turn a word into a sound-a-like representation. The
/// oldest is Soundex (1918!). A nice overview can be found in "Approximate
/// swedish name matching - survey and test of different algorithms" by Klas
/// Erikson.
///
/// We support two methods:
/// 1. SOFOFROM/SOFOTO do a simple character mapping.
/// 2. SAL items define a more advanced sound-folding (and much slower).
///
/// @param[in] slang
/// @param[in] inword word to soundfold
/// @param[in] folded whether inword is already case-folded
/// @param[in,out] res destination for soundfolded word
void spell_soundfold(slang_T *slang, char *inword, bool folded, char *res)
{
if (slang->sl_sofo) {
// SOFOFROM and SOFOTO used
spell_soundfold_sofo(slang, inword, res);
} else {
char fword[MAXWLEN];
char *word;
// SAL items used. Requires the word to be case-folded.
if (folded) {
word = inword;
} else {
(void)spell_casefold(curwin, inword, (int)strlen(inword), fword, MAXWLEN);
word = fword;
}
spell_soundfold_wsal(slang, word, res);
}
}
// Perform sound folding of "inword" into "res" according to SOFOFROM and
// SOFOTO lines.
static void spell_soundfold_sofo(slang_T *slang, char *inword, char *res)
{
int ri = 0;
int prevc = 0;
// The sl_sal_first[] table contains the translation for chars up to
// 255, sl_sal the rest.
for (char *s = inword; *s != NUL;) {
int c = mb_cptr2char_adv((const char **)&s);
if (utf_class(c) == 0) {
c = ' ';
} else if (c < 256) {
c = slang->sl_sal_first[c];
} else {
int *ip = ((int **)slang->sl_sal.ga_data)[c & 0xff];
if (ip == NULL) { // empty list, can't match
c = NUL;
} else {
for (;;) { // find "c" in the list
if (*ip == 0) { // not found
c = NUL;
break;
}
if (*ip == c) { // match!
c = ip[1];
break;
}
ip += 2;
}
}
}
if (c != NUL && c != prevc) {
ri += utf_char2bytes(c, res + ri);
if (ri + MB_MAXBYTES > MAXWLEN) {
break;
}
prevc = c;
}
}
res[ri] = NUL;
}
// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]".
// Multi-byte version of spell_soundfold().
static void spell_soundfold_wsal(slang_T *slang, const char *inword, char *res)
{
salitem_T *smp = (salitem_T *)slang->sl_sal.ga_data;
int word[MAXWLEN] = { 0 };
int wres[MAXWLEN] = { 0 };
int *ws;
int *pf;
int j, z;
int reslen;
int k = 0;
int z0;
int k0;
int n0;
int pri;
int p0 = -333;
int c0;
bool did_white = false;
// Convert the multi-byte string to a wide-character string.
// Remove accents, if wanted. We actually remove all non-word characters.
// But keep white space.
int wordlen = 0;
for (const char *s = (char *)inword; *s != NUL;) {
const char_u *t = (char_u *)s;
int c = mb_cptr2char_adv(&s);
if (slang->sl_rem_accents) {
if (utf_class(c) == 0) {
if (did_white) {
continue;
}
c = ' ';
did_white = true;
} else {
did_white = false;
if (!spell_iswordp_nmw((char *)t, curwin)) {
continue;
}
}
}
word[wordlen++] = c;
}
word[wordlen] = NUL;
int c;
// This algorithm comes from Aspell phonet.cpp.
// Converted from C++ to C. Added support for multi-byte chars.
// Changed to keep spaces.
int i = reslen = z = 0;
while ((c = word[i]) != NUL) {
// Start with the first rule that has the character in the word.
int n = slang->sl_sal_first[c & 0xff];
z0 = 0;
if (n >= 0) {
// Check all rules for the same index byte.
// If c is 0x300 need extra check for the end of the array, as
// (c & 0xff) is NUL.
for (; ((ws = smp[n].sm_lead_w)[0] & 0xff) == (c & 0xff)
&& ws[0] != NUL; n++) {
// Quickly skip entries that don't match the word. Most
// entries are less than three chars, optimize for that.
if (c != ws[0]) {
continue;
}
k = smp[n].sm_leadlen;
if (k > 1) {
if (word[i + 1] != ws[1]) {
continue;
}
if (k > 2) {
for (j = 2; j < k; j++) {
if (word[i + j] != ws[j]) {
break;
}
}
if (j < k) {
continue;
}
}
}
if ((pf = smp[n].sm_oneof_w) != NULL) {
// Check for match with one of the chars in "sm_oneof".
while (*pf != NUL && *pf != word[i + k]) {
pf++;
}
if (*pf == NUL) {
continue;
}
k++;
}
char_u *s = (char_u *)smp[n].sm_rules;
pri = 5; // default priority
p0 = *s;
k0 = k;
while (*s == '-' && k > 1) {
k--;
s++;
}
if (*s == '<') {
s++;
}
if (ascii_isdigit(*s)) {
// determine priority
pri = *s - '0';
s++;
}
if (*s == '^' && *(s + 1) == '^') {
s++;
}
if (*s == NUL
|| (*s == '^'
&& (i == 0 || !(word[i - 1] == ' '
|| spell_iswordp_w(word + i - 1, curwin)))
&& (*(s + 1) != '$'
|| (!spell_iswordp_w(word + i + k0, curwin))))
|| (*s == '$' && i > 0
&& spell_iswordp_w(word + i - 1, curwin)
&& (!spell_iswordp_w(word + i + k0, curwin)))) {
// search for followup rules, if:
// followup and k > 1 and NO '-' in searchstring
c0 = word[i + k - 1];
n0 = slang->sl_sal_first[c0 & 0xff];
if (slang->sl_followup && k > 1 && n0 >= 0
&& p0 != '-' && word[i + k] != NUL) {
// Test follow-up rule for "word[i + k]"; loop over
// all entries with the same index byte.
for (; ((ws = smp[n0].sm_lead_w)[0] & 0xff)
== (c0 & 0xff); n0++) {
// Quickly skip entries that don't match the word.
if (c0 != ws[0]) {
continue;
}
k0 = smp[n0].sm_leadlen;
if (k0 > 1) {
if (word[i + k] != ws[1]) {
continue;
}
if (k0 > 2) {
pf = word + i + k + 1;
for (j = 2; j < k0; j++) {
if (*pf++ != ws[j]) {
break;
}
}
if (j < k0) {
continue;
}
}
}
k0 += k - 1;
if ((pf = smp[n0].sm_oneof_w) != NULL) {
// Check for match with one of the chars in
// "sm_oneof".
while (*pf != NUL && *pf != word[i + k0]) {
pf++;
}
if (*pf == NUL) {
continue;
}
k0++;
}
p0 = 5;
s = (char_u *)smp[n0].sm_rules;
while (*s == '-') {
// "k0" gets NOT reduced because
// "if (k0 == k)"
s++;
}
if (*s == '<') {
s++;
}
if (ascii_isdigit(*s)) {
p0 = *s - '0';
s++;
}
if (*s == NUL
// *s == '^' cuts
|| (*s == '$'
&& !spell_iswordp_w(word + i + k0,
curwin))) {
if (k0 == k) {
// this is just a piece of the string
continue;
}
if (p0 < pri) {
// priority too low
continue;
}
// rule fits; stop search
break;
}
}
if (p0 >= pri && (smp[n0].sm_lead_w[0] & 0xff)
== (c0 & 0xff)) {
continue;
}
}
// replace string
ws = smp[n].sm_to_w;
s = (char_u *)smp[n].sm_rules;
p0 = (vim_strchr((char *)s, '<') != NULL) ? 1 : 0;
if (p0 == 1 && z == 0) {
// rule with '<' is used
if (reslen > 0 && ws != NULL && *ws != NUL
&& (wres[reslen - 1] == c
|| wres[reslen - 1] == *ws)) {
reslen--;
}
z0 = 1;
z = 1;
k0 = 0;
if (ws != NULL) {
while (*ws != NUL && word[i + k0] != NUL) {
word[i + k0] = *ws;
k0++;
ws++;
}
}
if (k > k0) {
memmove(word + i + k0, word + i + k, sizeof(int) * (size_t)(wordlen - (i + k) + 1));
}
// new "actual letter"
c = word[i];
} else {
// no '<' rule used
i += k - 1;
z = 0;
if (ws != NULL) {
while (*ws != NUL && ws[1] != NUL
&& reslen < MAXWLEN) {
if (reslen == 0 || wres[reslen - 1] != *ws) {
wres[reslen++] = *ws;
}
ws++;
}
}
// new "actual letter"
if (ws == NULL) {
c = NUL;
} else {
c = *ws;
}
if (strstr((char *)s, "^^") != NULL) {
if (c != NUL) {
wres[reslen++] = c;
}
memmove(word, word + i + 1, sizeof(int) * (size_t)(wordlen - (i + 1) + 1));
i = 0;
z0 = 1;
}
}
break;
}
}
} else if (ascii_iswhite(c)) {
c = ' ';
k = 1;
}
if (z0 == 0) {
if (k && !p0 && reslen < MAXWLEN && c != NUL
&& (!slang->sl_collapse || reslen == 0
|| wres[reslen - 1] != c)) {
// condense only double letters
wres[reslen++] = c;
}
i++;
z = 0;
k = 0;
}
}
// Convert wide characters in "wres" to a multi-byte string in "res".
int l = 0;
for (int n = 0; n < reslen; n++) {
l += utf_char2bytes(wres[n], res + l);
if (l + MB_MAXBYTES > MAXWLEN) {
break;
}
}
res[l] = NUL;
}
// ":spellinfo"
void ex_spellinfo(exarg_T *eap)
{
if (no_spell_checking(curwin)) {
return;
}
msg_start();
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len && !got_int; lpi++) {
langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
msg_puts("file: ");
msg_puts((const char *)lp->lp_slang->sl_fname);
msg_putchar('\n');
const char *const p = (const char *)lp->lp_slang->sl_info;
if (p != NULL) {
msg_puts(p);
msg_putchar('\n');
}
}
msg_end();
}
#define DUMPFLAG_KEEPCASE 1 // round 2: keep-case tree
#define DUMPFLAG_COUNT 2 // include word count
#define DUMPFLAG_ICASE 4 // ignore case when finding matches
#define DUMPFLAG_ONECAP 8 // pattern starts with capital
#define DUMPFLAG_ALLCAP 16 // pattern is all capitals
// ":spelldump"
void ex_spelldump(exarg_T *eap)
{
if (no_spell_checking(curwin)) {
return;
}
char *spl;
long dummy;
(void)get_option_value("spl", &dummy, &spl, NULL, OPT_LOCAL);
// Create a new empty buffer in a new window.
do_cmdline_cmd("new");
// enable spelling locally in the new window
set_option_value_give_err("spell", true, "", OPT_LOCAL);
set_option_value_give_err("spl", dummy, spl, OPT_LOCAL);
xfree(spl);
if (!buf_is_empty(curbuf)) {
return;
}
spell_dump_compl(NULL, 0, NULL, eap->forceit ? DUMPFLAG_COUNT : 0);
// Delete the empty line that we started with.
if (curbuf->b_ml.ml_line_count > 1) {
ml_delete(curbuf->b_ml.ml_line_count, false);
}
redraw_later(curwin, UPD_NOT_VALID);
}
/// Go through all possible words and:
/// 1. When "pat" is NULL: dump a list of all words in the current buffer.
/// "ic" and "dir" are not used.
/// 2. When "pat" is not NULL: add matching words to insert mode completion.
///
/// @param pat leading part of the word
/// @param ic ignore case
/// @param dir direction for adding matches
/// @param dumpflags_arg DUMPFLAG_*
void spell_dump_compl(char *pat, int ic, Direction *dir, int dumpflags_arg)
{
langp_T *lp;
slang_T *slang;
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
char word[MAXWLEN];
int c;
char *byts;
idx_T *idxs;
linenr_T lnum = 0;
int depth;
int n;
int flags;
char *region_names = NULL; // region names being used
bool do_region = true; // dump region names and numbers
char *p;
int dumpflags = dumpflags_arg;
int patlen;
// When ignoring case or when the pattern starts with capital pass this on
// to dump_word().
if (pat != NULL) {
if (ic) {
dumpflags |= DUMPFLAG_ICASE;
} else {
n = captype(pat, NULL);
if (n == WF_ONECAP) {
dumpflags |= DUMPFLAG_ONECAP;
} else if (n == WF_ALLCAP
&& (int)strlen(pat) > utfc_ptr2len(pat)) {
dumpflags |= DUMPFLAG_ALLCAP;
}
}
}
// Find out if we can support regions: All languages must support the same
// regions or none at all.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
p = lp->lp_slang->sl_regions;
if (p[0] != 0) {
if (region_names == NULL) { // first language with regions
region_names = p;
} else if (strcmp(region_names, p) != 0) {
do_region = false; // region names are different
break;
}
}
}
if (do_region && region_names != NULL) {
if (pat == NULL) {
vim_snprintf(IObuff, IOSIZE, "/regions=%s", region_names);
ml_append(lnum++, IObuff, (colnr_T)0, false);
}
} else {
do_region = false;
}
// Loop over all files loaded for the entries in 'spelllang'.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (slang->sl_fbyts == NULL) { // reloading failed
continue;
}
if (pat == NULL) {
vim_snprintf(IObuff, IOSIZE, "# file: %s", slang->sl_fname);
ml_append(lnum++, IObuff, (colnr_T)0, false);
}
// When matching with a pattern and there are no prefixes only use
// parts of the tree that match "pat".
if (pat != NULL && slang->sl_pbyts == NULL) {
patlen = (int)strlen(pat);
} else {
patlen = -1;
}
// round 1: case-folded tree
// round 2: keep-case tree
for (int round = 1; round <= 2; round++) {
if (round == 1) {
dumpflags &= ~DUMPFLAG_KEEPCASE;
byts = slang->sl_fbyts;
idxs = slang->sl_fidxs;
} else {
dumpflags |= DUMPFLAG_KEEPCASE;
byts = slang->sl_kbyts;
idxs = slang->sl_kidxs;
}
if (byts == NULL) {
continue; // array is empty
}
depth = 0;
arridx[0] = 0;
curi[0] = 1;
while (depth >= 0 && !got_int
&& (pat == NULL || !ins_compl_interrupted())) {
if (curi[depth] > byts[arridx[depth]]) {
// Done all bytes at this node, go up one level.
depth--;
line_breakcheck();
ins_compl_check_keys(50, false);
} else {
// Do one more byte at this node.
n = arridx[depth] + curi[depth];
curi[depth]++;
c = (uint8_t)byts[n];
if (c == 0 || depth >= MAXWLEN - 1) {
// End of word or reached maximum length, deal with the
// word.
// Don't use keep-case words in the fold-case tree,
// they will appear in the keep-case tree.
// Only use the word when the region matches.
flags = (int)idxs[n];
if ((round == 2 || (flags & WF_KEEPCAP) == 0)
&& (flags & WF_NEEDCOMP) == 0
&& (do_region
|| (flags & WF_REGION) == 0
|| (((unsigned)flags >> 16)
& (unsigned)lp->lp_region) != 0)) {
word[depth] = NUL;
if (!do_region) {
flags &= ~WF_REGION;
}
// Dump the basic word if there is no prefix or
// when it's the first one.
c = (int)((unsigned)flags >> 24);
if (c == 0 || curi[depth] == 2) {
dump_word(slang, word, pat, dir, dumpflags, flags, lnum);
if (pat == NULL) {
lnum++;
}
}
// Apply the prefix, if there is one.
if (c != 0) {
lnum = dump_prefixes(slang, word, pat, dir,
dumpflags, flags, lnum);
}
}
} else {
// Normal char, go one level deeper.
word[depth++] = (char)c;
arridx[depth] = idxs[n];
curi[depth] = 1;
// Check if this character matches with the pattern.
// If not skip the whole tree below it.
// Always ignore case here, dump_word() will check
// proper case later. This isn't exactly right when
// length changes for multi-byte characters with
// ignore case...
assert(depth >= 0);
if (depth <= patlen
&& mb_strnicmp(word, pat, (size_t)depth) != 0) {
depth--;
}
}
}
}
}
}
}
/// Dumps one word: apply case modifications and append a line to the buffer.
/// When "lnum" is zero add insert mode completion.
static void dump_word(slang_T *slang, char *word, char *pat, Direction *dir, int dumpflags,
int wordflags, linenr_T lnum)
{
bool keepcap = false;
char *p;
char cword[MAXWLEN];
char badword[MAXWLEN + 10];
int flags = wordflags;
if (dumpflags & DUMPFLAG_ONECAP) {
flags |= WF_ONECAP;
}
if (dumpflags & DUMPFLAG_ALLCAP) {
flags |= WF_ALLCAP;
}
if ((dumpflags & DUMPFLAG_KEEPCASE) == 0 && (flags & WF_CAPMASK) != 0) {
// Need to fix case according to "flags".
make_case_word(word, cword, flags);
p = cword;
} else {
p = word;
if ((dumpflags & DUMPFLAG_KEEPCASE)
&& ((captype(word, NULL) & WF_KEEPCAP) == 0
|| (flags & WF_FIXCAP) != 0)) {
keepcap = true;
}
}
char *tw = p;
if (pat == NULL) {
// Add flags and regions after a slash.
if ((flags & (WF_BANNED | WF_RARE | WF_REGION)) || keepcap) {
STRCPY(badword, p);
STRCAT(badword, "/");
if (keepcap) {
STRCAT(badword, "=");
}
if (flags & WF_BANNED) {
STRCAT(badword, "!");
} else if (flags & WF_RARE) {
STRCAT(badword, "?");
}
if (flags & WF_REGION) {
for (int i = 0; i < 7; i++) {
if (flags & (0x10000 << i)) {
const size_t badword_len = strlen(badword);
snprintf(badword + badword_len,
sizeof(badword) - badword_len,
"%d", i + 1);
}
}
}
p = badword;
}
if (dumpflags & DUMPFLAG_COUNT) {
hashitem_T *hi;
// Include the word count for ":spelldump!".
hi = hash_find(&slang->sl_wordcount, tw);
if (!HASHITEM_EMPTY(hi)) {
vim_snprintf(IObuff, IOSIZE, "%s\t%d",
tw, HI2WC(hi)->wc_count);
p = IObuff;
}
}
ml_append(lnum, p, (colnr_T)0, false);
} else if (((dumpflags & DUMPFLAG_ICASE)
? mb_strnicmp(p, pat, strlen(pat)) == 0
: strncmp(p, pat, strlen(pat)) == 0)
&& ins_compl_add_infercase(p, (int)strlen(p),
p_ic, NULL, *dir, false) == OK) {
// if dir was BACKWARD then honor it just once
*dir = FORWARD;
}
}
/// For ":spelldump": Find matching prefixes for "word". Prepend each to
/// "word" and append a line to the buffer.
/// When "lnum" is zero add insert mode completion.
///
/// @param word case-folded word
/// @param flags flags with prefix ID
///
/// @return the updated line number.
static linenr_T dump_prefixes(slang_T *slang, char *word, char *pat, Direction *dir, int dumpflags,
int flags, linenr_T startlnum)
{
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
char prefix[MAXWLEN];
char word_up[MAXWLEN];
bool has_word_up = false;
linenr_T lnum = startlnum;
// If the word starts with a lower-case letter make the word with an
// upper-case letter in word_up[].
int c = utf_ptr2char(word);
if (SPELL_TOUPPER(c) != c) {
onecap_copy(word, word_up, true);
has_word_up = true;
}
char_u *byts = (char_u *)slang->sl_pbyts;
idx_T *idxs = slang->sl_pidxs;
if (byts != NULL) { // array not is empty
// Loop over all prefixes, building them byte-by-byte in prefix[].
// When at the end of a prefix check that it supports "flags".
int depth = 0;
arridx[0] = 0;
curi[0] = 1;
while (depth >= 0 && !got_int) {
int n = arridx[depth];
int len = byts[n];
if (curi[depth] > len) {
// Done all bytes at this node, go up one level.
depth--;
line_breakcheck();
} else {
// Do one more byte at this node.
n += curi[depth];
curi[depth]++;
c = byts[n];
if (c == 0) {
// End of prefix, find out how many IDs there are.
int i;
for (i = 1; i < len; i++) {
if (byts[n + i] != 0) {
break;
}
}
curi[depth] += i - 1;
c = valid_word_prefix(i, n, flags, word, slang, false);
if (c != 0) {
xstrlcpy(prefix + depth, word, (size_t)(MAXWLEN - depth));
dump_word(slang, prefix, pat, dir, dumpflags,
(c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum);
if (lnum != 0) {
lnum++;
}
}
// Check for prefix that matches the word when the
// first letter is upper-case, but only if the prefix has
// a condition.
if (has_word_up) {
c = valid_word_prefix(i, n, flags, word_up, slang, true);
if (c != 0) {
xstrlcpy(prefix + depth, word_up, (size_t)(MAXWLEN - depth));
dump_word(slang, prefix, pat, dir, dumpflags,
(c & WF_RAREPFX) ? (flags | WF_RARE) : flags, lnum);
if (lnum != 0) {
lnum++;
}
}
}
} else {
// Normal char, go one level deeper.
prefix[depth++] = (char)c;
arridx[depth] = idxs[n];
curi[depth] = 1;
}
}
}
}
return lnum;
}
// Move "p" to the end of word "start".
// Uses the spell-checking word characters.
char *spell_to_word_end(char *start, win_T *win)
{
char *p = start;
while (*p != NUL && spell_iswordp(p, win)) {
MB_PTR_ADV(p);
}
return p;
}
// For Insert mode completion CTRL-X s:
// Find start of the word in front of column "startcol".
// We don't check if it is badly spelled, with completion we can only change
// the word in front of the cursor.
// Returns the column number of the word.
int spell_word_start(int startcol)
{
if (no_spell_checking(curwin)) {
return startcol;
}
char *line = get_cursor_line_ptr();
char *p;
// Find a word character before "startcol".
for (p = line + startcol; p > line;) {
MB_PTR_BACK(line, p);
if (spell_iswordp_nmw(p, curwin)) {
break;
}
}
int col = 0;
// Go back to start of the word.
while (p > line) {
col = (int)(p - line);
MB_PTR_BACK(line, p);
if (!spell_iswordp(p, curwin)) {
break;
}
col = 0;
}
return col;
}
// Need to check for 'spellcapcheck' now, the word is removed before
// expand_spelling() is called. Therefore the ugly global variable.
static bool spell_expand_need_cap;
void spell_expand_check_cap(colnr_T col)
{
spell_expand_need_cap = check_need_cap(curwin->w_cursor.lnum, col);
}
// Get list of spelling suggestions.
// Used for Insert mode completion CTRL-X ?.
// Returns the number of matches. The matches are in "matchp[]", array of
// allocated strings.
int expand_spelling(linenr_T lnum, char *pat, char ***matchp)
{
garray_T ga;
spell_suggest_list(&ga, pat, 100, spell_expand_need_cap, true);
*matchp = ga.ga_data;
return ga.ga_len;
}
/// @return true if "val" is a valid 'spelllang' value.
bool valid_spelllang(const char *val)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
return valid_name(val, ".-_,@");
}
/// @return true if "val" is a valid 'spellfile' value.
bool valid_spellfile(const char *val)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
for (const char *s = val; *s != NUL; s++) {
if (!vim_isfilec((uint8_t)(*s)) && *s != ',' && *s != ' ') {
return false;
}
}
return true;
}
char *did_set_spell_option(bool is_spellfile)
{
char *errmsg = NULL;
if (is_spellfile) {
int l = (int)strlen(curwin->w_s->b_p_spf);
if (l > 0
&& (l < 4 || strcmp(curwin->w_s->b_p_spf + l - 4, ".add") != 0)) {
errmsg = e_invarg;
}
}
if (errmsg == NULL) {
FOR_ALL_WINDOWS_IN_TAB(wp, curtab) {
if (wp->w_buffer == curbuf && wp->w_p_spell) {
errmsg = did_set_spelllang(wp);
break;
}
}
}
return errmsg;
}
/// Set curbuf->b_cap_prog to the regexp program for 'spellcapcheck'.
/// Return error message when failed, NULL when OK.
char *compile_cap_prog(synblock_T *synblock)
FUNC_ATTR_NONNULL_ALL
{
regprog_T *rp = synblock->b_cap_prog;
if (synblock->b_p_spc == NULL || *synblock->b_p_spc == NUL) {
synblock->b_cap_prog = NULL;
} else {
// Prepend a ^ so that we only match at one column
char *re = concat_str("^", synblock->b_p_spc);
synblock->b_cap_prog = vim_regcomp(re, RE_MAGIC);
xfree(re);
if (synblock->b_cap_prog == NULL) {
synblock->b_cap_prog = rp; // restore the previous program
return e_invarg;
}
}
vim_regfree(rp);
return NULL;
}