mirror of
https://github.com/neovim/neovim.git
synced 2025-09-07 11:58:17 +00:00

Problem: Vim9: leaking memory when using continuation line. Solution: Keep a pointer to the continuation line in evalarg_T. Centralize checking for a next command.b171fb1790
Omit eval_next_line(): Vim9 script only. vim-patch:8.2.1050: missing change in struct Problem: Missing change in struct. Solution: Add missing change.65a8ed37f7
Co-authored-by: Bram Moolenaar <Bram@vim.org>
2585 lines
75 KiB
C
2585 lines
75 KiB
C
// This is an open source non-commercial project. Dear PVS-Studio, please check
|
|
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
|
|
|
|
// Handling of regular expressions: vim_regcomp(), vim_regexec(), vim_regsub()
|
|
|
|
// By default: do not create debugging logs or files related to regular
|
|
// expressions, even when compiling with -DDEBUG.
|
|
// Uncomment the second line to get the regexp debugging.
|
|
// #undef REGEXP_DEBUG
|
|
// #define REGEXP_DEBUG
|
|
|
|
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
|
|
#include "nvim/ascii.h"
|
|
#include "nvim/buffer_defs.h"
|
|
#include "nvim/charset.h"
|
|
#include "nvim/eval.h"
|
|
#include "nvim/eval/typval.h"
|
|
#include "nvim/eval/typval_defs.h"
|
|
#include "nvim/eval/userfunc.h"
|
|
#include "nvim/garray.h"
|
|
#include "nvim/gettext.h"
|
|
#include "nvim/globals.h"
|
|
#include "nvim/keycodes.h"
|
|
#include "nvim/macros.h"
|
|
#include "nvim/mark.h"
|
|
#include "nvim/mbyte.h"
|
|
#include "nvim/memline.h"
|
|
#include "nvim/memory.h"
|
|
#include "nvim/message.h"
|
|
#include "nvim/option_defs.h"
|
|
#include "nvim/os/input.h"
|
|
#include "nvim/plines.h"
|
|
#include "nvim/pos.h"
|
|
#include "nvim/regexp.h"
|
|
#include "nvim/regexp_defs.h"
|
|
#include "nvim/strings.h"
|
|
#include "nvim/types.h"
|
|
#include "nvim/undo_defs.h"
|
|
#include "nvim/vim.h"
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
// show/save debugging data when BT engine is used
|
|
# define BT_REGEXP_DUMP
|
|
// save the debugging data to a file instead of displaying it
|
|
# define BT_REGEXP_LOG
|
|
# define BT_REGEXP_DEBUG_LOG
|
|
# define BT_REGEXP_DEBUG_LOG_NAME "bt_regexp_debug.log"
|
|
#endif
|
|
|
|
// Magic characters have a special meaning, they don't match literally.
|
|
// Magic characters are negative. This separates them from literal characters
|
|
// (possibly multi-byte). Only ASCII characters can be Magic.
|
|
#define Magic(x) ((int)(x) - 256)
|
|
#define un_Magic(x) ((x) + 256)
|
|
#define is_Magic(x) ((x) < 0)
|
|
|
|
// We should define ftpr as a pointer to a function returning a pointer to
|
|
// a function returning a pointer to a function ...
|
|
// This is impossible, so we declare a pointer to a function returning a
|
|
// pointer to a function returning void. This should work for all compilers.
|
|
typedef void (*(*fptr_T)(int *, int))(void);
|
|
|
|
static int no_Magic(int x)
|
|
{
|
|
if (is_Magic(x)) {
|
|
return un_Magic(x);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static int toggle_Magic(int x)
|
|
{
|
|
if (is_Magic(x)) {
|
|
return un_Magic(x);
|
|
}
|
|
return Magic(x);
|
|
}
|
|
|
|
// The first byte of the BT regexp internal "program" is actually this magic
|
|
// number; the start node begins in the second byte. It's used to catch the
|
|
// most severe mutilation of the program by the caller.
|
|
#define REGMAGIC 0234
|
|
|
|
// Utility definitions.
|
|
#define UCHARAT(p) ((int)(*(uint8_t *)(p)))
|
|
|
|
// Used for an error (down from) vim_regcomp(): give the error message, set
|
|
// rc_did_emsg and return NULL
|
|
#define EMSG_RET_NULL(m) return (emsg(m), rc_did_emsg = true, (void *)NULL)
|
|
#define IEMSG_RET_NULL(m) return (iemsg(m), rc_did_emsg = true, (void *)NULL)
|
|
#define EMSG_RET_FAIL(m) return (emsg(m), rc_did_emsg = true, FAIL)
|
|
#define EMSG2_RET_NULL(m, c) \
|
|
return (semsg((m), (c) ? "" : "\\"), rc_did_emsg = true, (void *)NULL)
|
|
#define EMSG3_RET_NULL(m, c, a) \
|
|
return (semsg((m), (c) ? "" : "\\", (a)), rc_did_emsg = true, (void *)NULL)
|
|
#define EMSG2_RET_FAIL(m, c) \
|
|
return (semsg((m), (c) ? "" : "\\"), rc_did_emsg = true, FAIL)
|
|
#define EMSG_ONE_RET_NULL EMSG2_RET_NULL(_("E369: invalid item in %s%%[]"), reg_magic == MAGIC_ALL)
|
|
|
|
#define MAX_LIMIT (32767L << 16L)
|
|
|
|
static const char e_missingbracket[] = N_("E769: Missing ] after %s[");
|
|
static const char e_reverse_range[] = N_("E944: Reverse range in character class");
|
|
static const char e_large_class[] = N_("E945: Range too large in character class");
|
|
static const char e_unmatchedpp[] = N_("E53: Unmatched %s%%(");
|
|
static const char e_unmatchedp[] = N_("E54: Unmatched %s(");
|
|
static const char e_unmatchedpar[] = N_("E55: Unmatched %s)");
|
|
static const char e_z_not_allowed[] = N_("E66: \\z( not allowed here");
|
|
static const char e_z1_not_allowed[] = N_("E67: \\z1 - \\z9 not allowed here");
|
|
static const char e_missing_sb[] = N_("E69: Missing ] after %s%%[");
|
|
static const char e_empty_sb[] = N_("E70: Empty %s%%[]");
|
|
static const char e_recursive[] = N_("E956: Cannot use pattern recursively");
|
|
static const char e_regexp_number_after_dot_pos_search_chr[]
|
|
= N_("E1204: No Number allowed after .: '\\%%%c'");
|
|
static const char e_nfa_regexp_missing_value_in_chr[]
|
|
= N_("E1273: (NFA regexp) missing value in '\\%%%c'");
|
|
static const char e_atom_engine_must_be_at_start_of_pattern[]
|
|
= N_("E1281: Atom '\\%%#=%c' must be at the start of the pattern");
|
|
static const char e_substitute_nesting_too_deep[] = N_("E1290: substitute nesting too deep");
|
|
|
|
#define NOT_MULTI 0
|
|
#define MULTI_ONE 1
|
|
#define MULTI_MULT 2
|
|
|
|
// return values for regmatch()
|
|
#define RA_FAIL 1 // something failed, abort
|
|
#define RA_CONT 2 // continue in inner loop
|
|
#define RA_BREAK 3 // break inner loop
|
|
#define RA_MATCH 4 // successful match
|
|
#define RA_NOMATCH 5 // didn't match
|
|
|
|
/// Return NOT_MULTI if c is not a "multi" operator.
|
|
/// Return MULTI_ONE if c is a single "multi" operator.
|
|
/// Return MULTI_MULT if c is a multi "multi" operator.
|
|
static int re_multi_type(int c)
|
|
{
|
|
if (c == Magic('@') || c == Magic('=') || c == Magic('?')) {
|
|
return MULTI_ONE;
|
|
}
|
|
if (c == Magic('*') || c == Magic('+') || c == Magic('{')) {
|
|
return MULTI_MULT;
|
|
}
|
|
return NOT_MULTI;
|
|
}
|
|
|
|
static char *reg_prev_sub = NULL;
|
|
|
|
// REGEXP_INRANGE contains all characters which are always special in a []
|
|
// range after '\'.
|
|
// REGEXP_ABBR contains all characters which act as abbreviations after '\'.
|
|
// These are:
|
|
// \n - New line (NL).
|
|
// \r - Carriage Return (CR).
|
|
// \t - Tab (TAB).
|
|
// \e - Escape (ESC).
|
|
// \b - Backspace (Ctrl_H).
|
|
// \d - Character code in decimal, eg \d123
|
|
// \o - Character code in octal, eg \o80
|
|
// \x - Character code in hex, eg \x4a
|
|
// \u - Multibyte character code, eg \u20ac
|
|
// \U - Long multibyte character code, eg \U12345678
|
|
static char REGEXP_INRANGE[] = "]^-n\\";
|
|
static char REGEXP_ABBR[] = "nrtebdoxuU";
|
|
|
|
// Translate '\x' to its control character, except "\n", which is Magic.
|
|
static int backslash_trans(int c)
|
|
{
|
|
switch (c) {
|
|
case 'r':
|
|
return CAR;
|
|
case 't':
|
|
return TAB;
|
|
case 'e':
|
|
return ESC;
|
|
case 'b':
|
|
return BS;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/// Check for a character class name "[:name:]". "pp" points to the '['.
|
|
/// Returns one of the CLASS_ items. CLASS_NONE means that no item was
|
|
/// recognized. Otherwise "pp" is advanced to after the item.
|
|
static int get_char_class(char **pp)
|
|
{
|
|
static const char *(class_names[]) = {
|
|
"alnum:]",
|
|
#define CLASS_ALNUM 0
|
|
"alpha:]",
|
|
#define CLASS_ALPHA 1
|
|
"blank:]",
|
|
#define CLASS_BLANK 2
|
|
"cntrl:]",
|
|
#define CLASS_CNTRL 3
|
|
"digit:]",
|
|
#define CLASS_DIGIT 4
|
|
"graph:]",
|
|
#define CLASS_GRAPH 5
|
|
"lower:]",
|
|
#define CLASS_LOWER 6
|
|
"print:]",
|
|
#define CLASS_PRINT 7
|
|
"punct:]",
|
|
#define CLASS_PUNCT 8
|
|
"space:]",
|
|
#define CLASS_SPACE 9
|
|
"upper:]",
|
|
#define CLASS_UPPER 10
|
|
"xdigit:]",
|
|
#define CLASS_XDIGIT 11
|
|
"tab:]",
|
|
#define CLASS_TAB 12
|
|
"return:]",
|
|
#define CLASS_RETURN 13
|
|
"backspace:]",
|
|
#define CLASS_BACKSPACE 14
|
|
"escape:]",
|
|
#define CLASS_ESCAPE 15
|
|
"ident:]",
|
|
#define CLASS_IDENT 16
|
|
"keyword:]",
|
|
#define CLASS_KEYWORD 17
|
|
"fname:]",
|
|
#define CLASS_FNAME 18
|
|
};
|
|
#define CLASS_NONE 99
|
|
int i;
|
|
|
|
if ((*pp)[1] == ':') {
|
|
for (i = 0; i < (int)ARRAY_SIZE(class_names); i++) {
|
|
if (strncmp(*pp + 2, class_names[i], strlen(class_names[i])) == 0) {
|
|
*pp += strlen(class_names[i]) + 2;
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
return CLASS_NONE;
|
|
}
|
|
|
|
// Specific version of character class functions.
|
|
// Using a table to keep this fast.
|
|
static int16_t class_tab[256];
|
|
|
|
#define RI_DIGIT 0x01
|
|
#define RI_HEX 0x02
|
|
#define RI_OCTAL 0x04
|
|
#define RI_WORD 0x08
|
|
#define RI_HEAD 0x10
|
|
#define RI_ALPHA 0x20
|
|
#define RI_LOWER 0x40
|
|
#define RI_UPPER 0x80
|
|
#define RI_WHITE 0x100
|
|
|
|
static void init_class_tab(void)
|
|
{
|
|
int i;
|
|
static int done = false;
|
|
|
|
if (done) {
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
if (i >= '0' && i <= '7') {
|
|
class_tab[i] = RI_DIGIT + RI_HEX + RI_OCTAL + RI_WORD;
|
|
} else if (i >= '8' && i <= '9') {
|
|
class_tab[i] = RI_DIGIT + RI_HEX + RI_WORD;
|
|
} else if (i >= 'a' && i <= 'f') {
|
|
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
|
|
} else if (i >= 'g' && i <= 'z') {
|
|
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
|
|
} else if (i >= 'A' && i <= 'F') {
|
|
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
|
|
} else if (i >= 'G' && i <= 'Z') {
|
|
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
|
|
} else if (i == '_') {
|
|
class_tab[i] = RI_WORD + RI_HEAD;
|
|
} else {
|
|
class_tab[i] = 0;
|
|
}
|
|
}
|
|
class_tab[' '] |= RI_WHITE;
|
|
class_tab['\t'] |= RI_WHITE;
|
|
done = true;
|
|
}
|
|
|
|
#define ri_digit(c) ((c) < 0x100 && (class_tab[c] & RI_DIGIT))
|
|
#define ri_hex(c) ((c) < 0x100 && (class_tab[c] & RI_HEX))
|
|
#define ri_octal(c) ((c) < 0x100 && (class_tab[c] & RI_OCTAL))
|
|
#define ri_word(c) ((c) < 0x100 && (class_tab[c] & RI_WORD))
|
|
#define ri_head(c) ((c) < 0x100 && (class_tab[c] & RI_HEAD))
|
|
#define ri_alpha(c) ((c) < 0x100 && (class_tab[c] & RI_ALPHA))
|
|
#define ri_lower(c) ((c) < 0x100 && (class_tab[c] & RI_LOWER))
|
|
#define ri_upper(c) ((c) < 0x100 && (class_tab[c] & RI_UPPER))
|
|
#define ri_white(c) ((c) < 0x100 && (class_tab[c] & RI_WHITE))
|
|
|
|
// flags for regflags
|
|
#define RF_ICASE 1 // ignore case
|
|
#define RF_NOICASE 2 // don't ignore case
|
|
#define RF_HASNL 4 // can match a NL
|
|
#define RF_ICOMBINE 8 // ignore combining characters
|
|
#define RF_LOOKBH 16 // uses "\@<=" or "\@<!"
|
|
|
|
// Global work variables for vim_regcomp().
|
|
|
|
static char *regparse; ///< Input-scan pointer.
|
|
static int regnpar; ///< () count.
|
|
static bool wants_nfa; ///< regex should use NFA engine
|
|
static int regnzpar; ///< \z() count.
|
|
static int re_has_z; ///< \z item detected
|
|
static unsigned regflags; ///< RF_ flags for prog
|
|
static int had_eol; ///< true when EOL found by vim_regcomp()
|
|
|
|
static magic_T reg_magic; ///< magicness of the pattern
|
|
|
|
static int reg_string; // matching with a string instead of a buffer
|
|
// line
|
|
static int reg_strict; // "[abc" is illegal
|
|
|
|
// META contains all characters that may be magic, except '^' and '$'.
|
|
|
|
// uncrustify:off
|
|
|
|
// META[] is used often enough to justify turning it into a table.
|
|
static uint8_t META_flags[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
// % & ( ) * + .
|
|
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0,
|
|
// 1 2 3 4 5 6 7 8 9 < = > ?
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
|
|
// @ A C D F H I K L M O
|
|
1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1,
|
|
// P S U V W X Z [ _
|
|
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1,
|
|
// a c d f h i k l m n o
|
|
0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
|
|
// p s u v w x z { | ~
|
|
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1
|
|
};
|
|
|
|
// uncrustify:on
|
|
|
|
static int curchr; // currently parsed character
|
|
// Previous character. Note: prevchr is sometimes -1 when we are not at the
|
|
// start, eg in /[ ^I]^ the pattern was never found even if it existed,
|
|
// because ^ was taken to be magic -- webb
|
|
static int prevchr;
|
|
static int prevprevchr; // previous-previous character
|
|
static int nextchr; // used for ungetchr()
|
|
|
|
// arguments for reg()
|
|
#define REG_NOPAREN 0 // toplevel reg()
|
|
#define REG_PAREN 1 // \(\)
|
|
#define REG_ZPAREN 2 // \z(\)
|
|
#define REG_NPAREN 3 // \%(\)
|
|
|
|
typedef struct {
|
|
char *regparse;
|
|
int prevchr_len;
|
|
int curchr;
|
|
int prevchr;
|
|
int prevprevchr;
|
|
int nextchr;
|
|
int at_start;
|
|
int prev_at_start;
|
|
int regnpar;
|
|
} parse_state_T;
|
|
|
|
static regengine_T bt_regengine;
|
|
static regengine_T nfa_regengine;
|
|
|
|
#ifdef INCLUDE_GENERATED_DECLARATIONS
|
|
# include "regexp.c.generated.h"
|
|
#endif
|
|
|
|
// Return true if compiled regular expression "prog" can match a line break.
|
|
int re_multiline(const regprog_T *prog)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
return prog->regflags & RF_HASNL;
|
|
}
|
|
|
|
// Check for an equivalence class name "[=a=]". "pp" points to the '['.
|
|
// Returns a character representing the class. Zero means that no item was
|
|
// recognized. Otherwise "pp" is advanced to after the item.
|
|
static int get_equi_class(char **pp)
|
|
{
|
|
int c;
|
|
int l = 1;
|
|
char *p = *pp;
|
|
|
|
if (p[1] == '=' && p[2] != NUL) {
|
|
l = utfc_ptr2len(p + 2);
|
|
if (p[l + 2] == '=' && p[l + 3] == ']') {
|
|
c = utf_ptr2char(p + 2);
|
|
*pp += l + 4;
|
|
return c;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Check for a collating element "[.a.]". "pp" points to the '['.
|
|
// Returns a character. Zero means that no item was recognized. Otherwise
|
|
// "pp" is advanced to after the item.
|
|
// Currently only single characters are recognized!
|
|
static int get_coll_element(char **pp)
|
|
{
|
|
int c;
|
|
int l = 1;
|
|
char *p = *pp;
|
|
|
|
if (p[0] != NUL && p[1] == '.' && p[2] != NUL) {
|
|
l = utfc_ptr2len(p + 2);
|
|
if (p[l + 2] == '.' && p[l + 3] == ']') {
|
|
c = utf_ptr2char(p + 2);
|
|
*pp += l + 4;
|
|
return c;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int reg_cpo_lit; // 'cpoptions' contains 'l' flag
|
|
|
|
static void get_cpo_flags(void)
|
|
{
|
|
reg_cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL;
|
|
}
|
|
|
|
/// Skip over a "[]" range.
|
|
/// "p" must point to the character after the '['.
|
|
/// The returned pointer is on the matching ']', or the terminating NUL.
|
|
static char *skip_anyof(char *p)
|
|
{
|
|
int l;
|
|
|
|
if (*p == '^') { // Complement of range.
|
|
p++;
|
|
}
|
|
if (*p == ']' || *p == '-') {
|
|
p++;
|
|
}
|
|
while (*p != NUL && *p != ']') {
|
|
if ((l = utfc_ptr2len(p)) > 1) {
|
|
p += l;
|
|
} else if (*p == '-') {
|
|
p++;
|
|
if (*p != ']' && *p != NUL) {
|
|
MB_PTR_ADV(p);
|
|
}
|
|
} else if (*p == '\\'
|
|
&& (vim_strchr(REGEXP_INRANGE, (uint8_t)p[1]) != NULL
|
|
|| (!reg_cpo_lit
|
|
&& vim_strchr(REGEXP_ABBR, (uint8_t)p[1]) != NULL))) {
|
|
p += 2;
|
|
} else if (*p == '[') {
|
|
if (get_char_class(&p) == CLASS_NONE
|
|
&& get_equi_class(&p) == 0
|
|
&& get_coll_element(&p) == 0
|
|
&& *p != NUL) {
|
|
p++; // It is not a class name and not NUL
|
|
}
|
|
} else {
|
|
p++;
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/// Skip past regular expression.
|
|
/// Stop at end of "startp" or where "delim" is found ('/', '?', etc).
|
|
/// Take care of characters with a backslash in front of it.
|
|
/// Skip strings inside [ and ].
|
|
char *skip_regexp(char *startp, int delim, int magic)
|
|
{
|
|
return skip_regexp_ex(startp, delim, magic, NULL, NULL, NULL);
|
|
}
|
|
|
|
/// Call skip_regexp() and when the delimiter does not match give an error and
|
|
/// return NULL.
|
|
char *skip_regexp_err(char *startp, int delim, int magic)
|
|
{
|
|
char *p = skip_regexp(startp, delim, magic);
|
|
|
|
if (*p != delim) {
|
|
semsg(_("E654: missing delimiter after search pattern: %s"), startp);
|
|
return NULL;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/// skip_regexp() with extra arguments:
|
|
/// When "newp" is not NULL and "dirc" is '?', make an allocated copy of the
|
|
/// expression and change "\?" to "?". If "*newp" is not NULL the expression
|
|
/// is changed in-place.
|
|
/// If a "\?" is changed to "?" then "dropped" is incremented, unless NULL.
|
|
/// If "magic_val" is not NULL, returns the effective magicness of the pattern
|
|
char *skip_regexp_ex(char *startp, int dirc, int magic, char **newp, int *dropped,
|
|
magic_T *magic_val)
|
|
{
|
|
magic_T mymagic;
|
|
char *p = startp;
|
|
|
|
if (magic) {
|
|
mymagic = MAGIC_ON;
|
|
} else {
|
|
mymagic = MAGIC_OFF;
|
|
}
|
|
get_cpo_flags();
|
|
|
|
for (; p[0] != NUL; MB_PTR_ADV(p)) {
|
|
if (p[0] == dirc) { // found end of regexp
|
|
break;
|
|
}
|
|
if ((p[0] == '[' && mymagic >= MAGIC_ON)
|
|
|| (p[0] == '\\' && p[1] == '[' && mymagic <= MAGIC_OFF)) {
|
|
p = skip_anyof(p + 1);
|
|
if (p[0] == NUL) {
|
|
break;
|
|
}
|
|
} else if (p[0] == '\\' && p[1] != NUL) {
|
|
if (dirc == '?' && newp != NULL && p[1] == '?') {
|
|
// change "\?" to "?", make a copy first.
|
|
if (*newp == NULL) {
|
|
*newp = xstrdup(startp);
|
|
p = *newp + (p - startp);
|
|
}
|
|
if (dropped != NULL) {
|
|
(*dropped)++;
|
|
}
|
|
STRMOVE(p, p + 1);
|
|
} else {
|
|
p++; // skip next character
|
|
}
|
|
if (*p == 'v') {
|
|
mymagic = MAGIC_ALL;
|
|
} else if (*p == 'V') {
|
|
mymagic = MAGIC_NONE;
|
|
}
|
|
}
|
|
}
|
|
if (magic_val != NULL) {
|
|
*magic_val = mymagic;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// variables used for parsing
|
|
static int prevchr_len; // byte length of previous char
|
|
static int at_start; // True when on the first character
|
|
static int prev_at_start; // True when on the second character
|
|
|
|
// Start parsing at "str".
|
|
static void initchr(char *str)
|
|
{
|
|
regparse = str;
|
|
prevchr_len = 0;
|
|
curchr = prevprevchr = prevchr = nextchr = -1;
|
|
at_start = true;
|
|
prev_at_start = false;
|
|
}
|
|
|
|
// Save the current parse state, so that it can be restored and parsing
|
|
// starts in the same state again.
|
|
static void save_parse_state(parse_state_T *ps)
|
|
{
|
|
ps->regparse = regparse;
|
|
ps->prevchr_len = prevchr_len;
|
|
ps->curchr = curchr;
|
|
ps->prevchr = prevchr;
|
|
ps->prevprevchr = prevprevchr;
|
|
ps->nextchr = nextchr;
|
|
ps->at_start = at_start;
|
|
ps->prev_at_start = prev_at_start;
|
|
ps->regnpar = regnpar;
|
|
}
|
|
|
|
// Restore a previously saved parse state.
|
|
static void restore_parse_state(parse_state_T *ps)
|
|
{
|
|
regparse = ps->regparse;
|
|
prevchr_len = ps->prevchr_len;
|
|
curchr = ps->curchr;
|
|
prevchr = ps->prevchr;
|
|
prevprevchr = ps->prevprevchr;
|
|
nextchr = ps->nextchr;
|
|
at_start = ps->at_start;
|
|
prev_at_start = ps->prev_at_start;
|
|
regnpar = ps->regnpar;
|
|
}
|
|
|
|
// Get the next character without advancing.
|
|
static int peekchr(void)
|
|
{
|
|
static int after_slash = false;
|
|
|
|
if (curchr != -1) {
|
|
return curchr;
|
|
}
|
|
|
|
switch (curchr = (uint8_t)regparse[0]) {
|
|
case '.':
|
|
case '[':
|
|
case '~':
|
|
// magic when 'magic' is on
|
|
if (reg_magic >= MAGIC_ON) {
|
|
curchr = Magic(curchr);
|
|
}
|
|
break;
|
|
case '(':
|
|
case ')':
|
|
case '{':
|
|
case '%':
|
|
case '+':
|
|
case '=':
|
|
case '?':
|
|
case '@':
|
|
case '!':
|
|
case '&':
|
|
case '|':
|
|
case '<':
|
|
case '>':
|
|
case '#': // future ext.
|
|
case '"': // future ext.
|
|
case '\'': // future ext.
|
|
case ',': // future ext.
|
|
case '-': // future ext.
|
|
case ':': // future ext.
|
|
case ';': // future ext.
|
|
case '`': // future ext.
|
|
case '/': // Can't be used in / command
|
|
// magic only after "\v"
|
|
if (reg_magic == MAGIC_ALL) {
|
|
curchr = Magic(curchr);
|
|
}
|
|
break;
|
|
case '*':
|
|
// * is not magic as the very first character, eg "?*ptr", when
|
|
// after '^', eg "/^*ptr" and when after "\(", "\|", "\&". But
|
|
// "\(\*" is not magic, thus must be magic if "after_slash"
|
|
if (reg_magic >= MAGIC_ON
|
|
&& !at_start
|
|
&& !(prev_at_start && prevchr == Magic('^'))
|
|
&& (after_slash
|
|
|| (prevchr != Magic('(')
|
|
&& prevchr != Magic('&')
|
|
&& prevchr != Magic('|')))) {
|
|
curchr = Magic('*');
|
|
}
|
|
break;
|
|
case '^':
|
|
// '^' is only magic as the very first character and if it's after
|
|
// "\(", "\|", "\&' or "\n"
|
|
if (reg_magic >= MAGIC_OFF
|
|
&& (at_start
|
|
|| reg_magic == MAGIC_ALL
|
|
|| prevchr == Magic('(')
|
|
|| prevchr == Magic('|')
|
|
|| prevchr == Magic('&')
|
|
|| prevchr == Magic('n')
|
|
|| (no_Magic(prevchr) == '('
|
|
&& prevprevchr == Magic('%')))) {
|
|
curchr = Magic('^');
|
|
at_start = true;
|
|
prev_at_start = false;
|
|
}
|
|
break;
|
|
case '$':
|
|
// '$' is only magic as the very last char and if it's in front of
|
|
// either "\|", "\)", "\&", or "\n"
|
|
if (reg_magic >= MAGIC_OFF) {
|
|
uint8_t *p = (uint8_t *)regparse + 1;
|
|
bool is_magic_all = (reg_magic == MAGIC_ALL);
|
|
|
|
// ignore \c \C \m \M \v \V and \Z after '$'
|
|
while (p[0] == '\\' && (p[1] == 'c' || p[1] == 'C'
|
|
|| p[1] == 'm' || p[1] == 'M'
|
|
|| p[1] == 'v' || p[1] == 'V'
|
|
|| p[1] == 'Z')) {
|
|
if (p[1] == 'v') {
|
|
is_magic_all = true;
|
|
} else if (p[1] == 'm' || p[1] == 'M' || p[1] == 'V') {
|
|
is_magic_all = false;
|
|
}
|
|
p += 2;
|
|
}
|
|
if (p[0] == NUL
|
|
|| (p[0] == '\\'
|
|
&& (p[1] == '|' || p[1] == '&' || p[1] == ')'
|
|
|| p[1] == 'n'))
|
|
|| (is_magic_all
|
|
&& (p[0] == '|' || p[0] == '&' || p[0] == ')'))
|
|
|| reg_magic == MAGIC_ALL) {
|
|
curchr = Magic('$');
|
|
}
|
|
}
|
|
break;
|
|
case '\\': {
|
|
int c = (uint8_t)regparse[1];
|
|
|
|
if (c == NUL) {
|
|
curchr = '\\'; // trailing '\'
|
|
} else if (c <= '~' && META_flags[c]) {
|
|
// META contains everything that may be magic sometimes,
|
|
// except ^ and $ ("\^" and "\$" are only magic after
|
|
// "\V"). We now fetch the next character and toggle its
|
|
// magicness. Therefore, \ is so meta-magic that it is
|
|
// not in META.
|
|
curchr = -1;
|
|
prev_at_start = at_start;
|
|
at_start = false; // be able to say "/\*ptr"
|
|
regparse++;
|
|
after_slash++;
|
|
(void)peekchr();
|
|
regparse--;
|
|
after_slash--;
|
|
curchr = toggle_Magic(curchr);
|
|
} else if (vim_strchr(REGEXP_ABBR, c)) {
|
|
// Handle abbreviations, like "\t" for TAB -- webb
|
|
curchr = backslash_trans(c);
|
|
} else if (reg_magic == MAGIC_NONE && (c == '$' || c == '^')) {
|
|
curchr = toggle_Magic(c);
|
|
} else {
|
|
// Next character can never be (made) magic?
|
|
// Then backslashing it won't do anything.
|
|
curchr = utf_ptr2char(regparse + 1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
curchr = utf_ptr2char(regparse);
|
|
}
|
|
|
|
return curchr;
|
|
}
|
|
|
|
// Eat one lexed character. Do this in a way that we can undo it.
|
|
static void skipchr(void)
|
|
{
|
|
// peekchr() eats a backslash, do the same here
|
|
if (*regparse == '\\') {
|
|
prevchr_len = 1;
|
|
} else {
|
|
prevchr_len = 0;
|
|
}
|
|
if (regparse[prevchr_len] != NUL) {
|
|
// Exclude composing chars that utfc_ptr2len does include.
|
|
prevchr_len += utf_ptr2len(regparse + prevchr_len);
|
|
}
|
|
regparse += prevchr_len;
|
|
prev_at_start = at_start;
|
|
at_start = false;
|
|
prevprevchr = prevchr;
|
|
prevchr = curchr;
|
|
curchr = nextchr; // use previously unget char, or -1
|
|
nextchr = -1;
|
|
}
|
|
|
|
// Skip a character while keeping the value of prev_at_start for at_start.
|
|
// prevchr and prevprevchr are also kept.
|
|
static void skipchr_keepstart(void)
|
|
{
|
|
int as = prev_at_start;
|
|
int pr = prevchr;
|
|
int prpr = prevprevchr;
|
|
|
|
skipchr();
|
|
at_start = as;
|
|
prevchr = pr;
|
|
prevprevchr = prpr;
|
|
}
|
|
|
|
// Get the next character from the pattern. We know about magic and such, so
|
|
// therefore we need a lexical analyzer.
|
|
static int getchr(void)
|
|
{
|
|
int chr = peekchr();
|
|
|
|
skipchr();
|
|
return chr;
|
|
}
|
|
|
|
// put character back. Works only once!
|
|
static void ungetchr(void)
|
|
{
|
|
nextchr = curchr;
|
|
curchr = prevchr;
|
|
prevchr = prevprevchr;
|
|
at_start = prev_at_start;
|
|
prev_at_start = false;
|
|
|
|
// Backup regparse, so that it's at the same position as before the
|
|
// getchr().
|
|
regparse -= prevchr_len;
|
|
}
|
|
|
|
// Get and return the value of the hex string at the current position.
|
|
// Return -1 if there is no valid hex number.
|
|
// The position is updated:
|
|
// blahblah\%x20asdf
|
|
// before-^ ^-after
|
|
// The parameter controls the maximum number of input characters. This will be
|
|
// 2 when reading a \%x20 sequence and 4 when reading a \%u20AC sequence.
|
|
static int64_t gethexchrs(int maxinputlen)
|
|
{
|
|
int64_t nr = 0;
|
|
int c;
|
|
int i;
|
|
|
|
for (i = 0; i < maxinputlen; i++) {
|
|
c = (uint8_t)regparse[0];
|
|
if (!ascii_isxdigit(c)) {
|
|
break;
|
|
}
|
|
nr <<= 4;
|
|
nr |= hex2nr(c);
|
|
regparse++;
|
|
}
|
|
|
|
if (i == 0) {
|
|
return -1;
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
// Get and return the value of the decimal string immediately after the
|
|
// current position. Return -1 for invalid. Consumes all digits.
|
|
static int64_t getdecchrs(void)
|
|
{
|
|
int64_t nr = 0;
|
|
int c;
|
|
int i;
|
|
|
|
for (i = 0;; i++) {
|
|
c = (uint8_t)regparse[0];
|
|
if (c < '0' || c > '9') {
|
|
break;
|
|
}
|
|
nr *= 10;
|
|
nr += c - '0';
|
|
regparse++;
|
|
curchr = -1; // no longer valid
|
|
}
|
|
|
|
if (i == 0) {
|
|
return -1;
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
// get and return the value of the octal string immediately after the current
|
|
// position. Return -1 for invalid, or 0-255 for valid. Smart enough to handle
|
|
// numbers > 377 correctly (for example, 400 is treated as 40) and doesn't
|
|
// treat 8 or 9 as recognised characters. Position is updated:
|
|
// blahblah\%o210asdf
|
|
// before-^ ^-after
|
|
static int64_t getoctchrs(void)
|
|
{
|
|
int64_t nr = 0;
|
|
int c;
|
|
int i;
|
|
|
|
for (i = 0; i < 3 && nr < 040; i++) { // -V536
|
|
c = (uint8_t)regparse[0];
|
|
if (c < '0' || c > '7') {
|
|
break;
|
|
}
|
|
nr <<= 3;
|
|
nr |= hex2nr(c);
|
|
regparse++;
|
|
}
|
|
|
|
if (i == 0) {
|
|
return -1;
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
// read_limits - Read two integers to be taken as a minimum and maximum.
|
|
// If the first character is '-', then the range is reversed.
|
|
// Should end with 'end'. If minval is missing, zero is default, if maxval is
|
|
// missing, a very big number is the default.
|
|
static int read_limits(long *minval, long *maxval)
|
|
{
|
|
int reverse = false;
|
|
char *first_char;
|
|
long tmp;
|
|
|
|
if (*regparse == '-') {
|
|
// Starts with '-', so reverse the range later.
|
|
regparse++;
|
|
reverse = true;
|
|
}
|
|
first_char = regparse;
|
|
*minval = getdigits_long(®parse, false, 0);
|
|
if (*regparse == ',') { // There is a comma.
|
|
if (ascii_isdigit(*++regparse)) {
|
|
*maxval = getdigits_long(®parse, false, MAX_LIMIT);
|
|
} else {
|
|
*maxval = MAX_LIMIT;
|
|
}
|
|
} else if (ascii_isdigit(*first_char)) {
|
|
*maxval = *minval; // It was \{n} or \{-n}
|
|
} else {
|
|
*maxval = MAX_LIMIT; // It was \{} or \{-}
|
|
}
|
|
if (*regparse == '\\') {
|
|
regparse++; // Allow either \{...} or \{...\}
|
|
}
|
|
if (*regparse != '}') {
|
|
EMSG2_RET_FAIL(_("E554: Syntax error in %s{...}"), reg_magic == MAGIC_ALL);
|
|
}
|
|
|
|
// Reverse the range if there was a '-', or make sure it is in the right
|
|
// order otherwise.
|
|
if ((!reverse && *minval > *maxval) || (reverse && *minval < *maxval)) {
|
|
tmp = *minval;
|
|
*minval = *maxval;
|
|
*maxval = tmp;
|
|
}
|
|
skipchr(); // let's be friends with the lexer again
|
|
return OK;
|
|
}
|
|
|
|
// vim_regexec and friends
|
|
|
|
// Global work variables for vim_regexec().
|
|
|
|
// Sometimes need to save a copy of a line. Since alloc()/free() is very
|
|
// slow, we keep one allocated piece of memory and only re-allocate it when
|
|
// it's too small. It's freed in bt_regexec_both() when finished.
|
|
static uint8_t *reg_tofree = NULL;
|
|
static unsigned reg_tofreelen;
|
|
|
|
// Structure used to store the execution state of the regex engine.
|
|
// Which ones are set depends on whether a single-line or multi-line match is
|
|
// done:
|
|
// single-line multi-line
|
|
// reg_match ®match_T NULL
|
|
// reg_mmatch NULL ®mmatch_T
|
|
// reg_startp reg_match->startp <invalid>
|
|
// reg_endp reg_match->endp <invalid>
|
|
// reg_startpos <invalid> reg_mmatch->startpos
|
|
// reg_endpos <invalid> reg_mmatch->endpos
|
|
// reg_win NULL window in which to search
|
|
// reg_buf curbuf buffer in which to search
|
|
// reg_firstlnum <invalid> first line in which to search
|
|
// reg_maxline 0 last line nr
|
|
// reg_line_lbr false or true false
|
|
typedef struct {
|
|
regmatch_T *reg_match;
|
|
regmmatch_T *reg_mmatch;
|
|
|
|
uint8_t **reg_startp;
|
|
uint8_t **reg_endp;
|
|
lpos_T *reg_startpos;
|
|
lpos_T *reg_endpos;
|
|
|
|
win_T *reg_win;
|
|
buf_T *reg_buf;
|
|
linenr_T reg_firstlnum;
|
|
linenr_T reg_maxline;
|
|
bool reg_line_lbr; // "\n" in string is line break
|
|
|
|
// The current match-position is remembered with these variables:
|
|
linenr_T lnum; ///< line number, relative to first line
|
|
uint8_t *line; ///< start of current line
|
|
uint8_t *input; ///< current input, points into "line"
|
|
|
|
int need_clear_subexpr; ///< subexpressions still need to be cleared
|
|
int need_clear_zsubexpr; ///< extmatch subexpressions still need to be
|
|
///< cleared
|
|
|
|
// Internal copy of 'ignorecase'. It is set at each call to vim_regexec().
|
|
// Normally it gets the value of "rm_ic" or "rmm_ic", but when the pattern
|
|
// contains '\c' or '\C' the value is overruled.
|
|
bool reg_ic;
|
|
|
|
// Similar to "reg_ic", but only for 'combining' characters. Set with \Z
|
|
// flag in the regexp. Defaults to false, always.
|
|
bool reg_icombine;
|
|
|
|
// Copy of "rmm_maxcol": maximum column to search for a match. Zero when
|
|
// there is no maximum.
|
|
colnr_T reg_maxcol;
|
|
|
|
// State for the NFA engine regexec.
|
|
int nfa_has_zend; ///< NFA regexp \ze operator encountered.
|
|
int nfa_has_backref; ///< NFA regexp \1 .. \9 encountered.
|
|
int nfa_nsubexpr; ///< Number of sub expressions actually being used
|
|
///< during execution. 1 if only the whole match
|
|
///< (subexpr 0) is used.
|
|
// listid is global, so that it increases on recursive calls to
|
|
// nfa_regmatch(), which means we don't have to clear the lastlist field of
|
|
// all the states.
|
|
int nfa_listid;
|
|
int nfa_alt_listid;
|
|
|
|
int nfa_has_zsubexpr; ///< NFA regexp has \z( ), set zsubexpr.
|
|
} regexec_T;
|
|
|
|
static regexec_T rex;
|
|
static bool rex_in_use = false;
|
|
|
|
// Return true if character 'c' is included in 'iskeyword' option for
|
|
// "reg_buf" buffer.
|
|
static bool reg_iswordc(int c)
|
|
{
|
|
return vim_iswordc_buf(c, rex.reg_buf);
|
|
}
|
|
|
|
// Get pointer to the line "lnum", which is relative to "reg_firstlnum".
|
|
static char *reg_getline(linenr_T lnum)
|
|
{
|
|
// when looking behind for a match/no-match lnum is negative. But we
|
|
// can't go before line 1
|
|
if (rex.reg_firstlnum + lnum < 1) {
|
|
return NULL;
|
|
}
|
|
if (lnum > rex.reg_maxline) {
|
|
// Must have matched the "\n" in the last line.
|
|
return "";
|
|
}
|
|
return ml_get_buf(rex.reg_buf, rex.reg_firstlnum + lnum, false);
|
|
}
|
|
|
|
static uint8_t *reg_startzp[NSUBEXP]; // Workspace to mark beginning
|
|
static uint8_t *reg_endzp[NSUBEXP]; // and end of \z(...\) matches
|
|
static lpos_T reg_startzpos[NSUBEXP]; // idem, beginning pos
|
|
static lpos_T reg_endzpos[NSUBEXP]; // idem, end pos
|
|
|
|
// true if using multi-line regexp.
|
|
#define REG_MULTI (rex.reg_match == NULL)
|
|
|
|
// Create a new extmatch and mark it as referenced once.
|
|
static reg_extmatch_T *make_extmatch(void)
|
|
FUNC_ATTR_NONNULL_RET
|
|
{
|
|
reg_extmatch_T *em = xcalloc(1, sizeof(reg_extmatch_T));
|
|
em->refcnt = 1;
|
|
return em;
|
|
}
|
|
|
|
// Add a reference to an extmatch.
|
|
reg_extmatch_T *ref_extmatch(reg_extmatch_T *em)
|
|
{
|
|
if (em != NULL) {
|
|
em->refcnt++;
|
|
}
|
|
return em;
|
|
}
|
|
|
|
// Remove a reference to an extmatch. If there are no references left, free
|
|
// the info.
|
|
void unref_extmatch(reg_extmatch_T *em)
|
|
{
|
|
int i;
|
|
|
|
if (em != NULL && --em->refcnt <= 0) {
|
|
for (i = 0; i < NSUBEXP; i++) {
|
|
xfree(em->matches[i]);
|
|
}
|
|
xfree(em);
|
|
}
|
|
}
|
|
|
|
// Get class of previous character.
|
|
static int reg_prev_class(void)
|
|
{
|
|
if (rex.input > rex.line) {
|
|
return mb_get_class_tab((char *)rex.input - 1 -
|
|
utf_head_off((char *)rex.line, (char *)rex.input - 1),
|
|
rex.reg_buf->b_chartab);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// Return true if the current rex.input position matches the Visual area.
|
|
static bool reg_match_visual(void)
|
|
{
|
|
pos_T top, bot;
|
|
linenr_T lnum;
|
|
colnr_T col;
|
|
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
|
|
int mode;
|
|
colnr_T start, end;
|
|
colnr_T start2, end2;
|
|
colnr_T curswant;
|
|
|
|
// Check if the buffer is the current buffer and not using a string.
|
|
if (rex.reg_buf != curbuf || VIsual.lnum == 0 || !REG_MULTI) {
|
|
return false;
|
|
}
|
|
|
|
if (VIsual_active) {
|
|
if (lt(VIsual, wp->w_cursor)) {
|
|
top = VIsual;
|
|
bot = wp->w_cursor;
|
|
} else {
|
|
top = wp->w_cursor;
|
|
bot = VIsual;
|
|
}
|
|
mode = VIsual_mode;
|
|
curswant = wp->w_curswant;
|
|
} else {
|
|
if (lt(curbuf->b_visual.vi_start, curbuf->b_visual.vi_end)) {
|
|
top = curbuf->b_visual.vi_start;
|
|
bot = curbuf->b_visual.vi_end;
|
|
} else {
|
|
top = curbuf->b_visual.vi_end;
|
|
bot = curbuf->b_visual.vi_start;
|
|
}
|
|
mode = curbuf->b_visual.vi_mode;
|
|
curswant = curbuf->b_visual.vi_curswant;
|
|
}
|
|
lnum = rex.lnum + rex.reg_firstlnum;
|
|
if (lnum < top.lnum || lnum > bot.lnum) {
|
|
return false;
|
|
}
|
|
|
|
col = (colnr_T)(rex.input - rex.line);
|
|
if (mode == 'v') {
|
|
if ((lnum == top.lnum && col < top.col)
|
|
|| (lnum == bot.lnum && col >= bot.col + (*p_sel != 'e'))) {
|
|
return false;
|
|
}
|
|
} else if (mode == Ctrl_V) {
|
|
getvvcol(wp, &top, &start, NULL, &end);
|
|
getvvcol(wp, &bot, &start2, NULL, &end2);
|
|
if (start2 < start) {
|
|
start = start2;
|
|
}
|
|
if (end2 > end) {
|
|
end = end2;
|
|
}
|
|
if (top.col == MAXCOL || bot.col == MAXCOL || curswant == MAXCOL) {
|
|
end = MAXCOL;
|
|
}
|
|
|
|
// getvvcol() flushes rex.line, need to get it again
|
|
rex.line = (uint8_t *)reg_getline(rex.lnum);
|
|
rex.input = rex.line + col;
|
|
|
|
unsigned int cols_u = win_linetabsize(wp, rex.reg_firstlnum + rex.lnum, (char *)rex.line, col);
|
|
assert(cols_u <= MAXCOL);
|
|
colnr_T cols = (colnr_T)cols_u;
|
|
if (cols < start || cols > end - (*p_sel == 'e')) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check the regexp program for its magic number.
|
|
// Return true if it's wrong.
|
|
static int prog_magic_wrong(void)
|
|
{
|
|
regprog_T *prog;
|
|
|
|
prog = REG_MULTI ? rex.reg_mmatch->regprog : rex.reg_match->regprog;
|
|
if (prog->engine == &nfa_regengine) {
|
|
// For NFA matcher we don't check the magic
|
|
return false;
|
|
}
|
|
|
|
if (UCHARAT(((bt_regprog_T *)prog)->program) != REGMAGIC) {
|
|
emsg(_(e_re_corr));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Cleanup the subexpressions, if this wasn't done yet.
|
|
// This construction is used to clear the subexpressions only when they are
|
|
// used (to increase speed).
|
|
static void cleanup_subexpr(void)
|
|
{
|
|
if (!rex.need_clear_subexpr) {
|
|
return;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
// Use 0xff to set lnum to -1
|
|
memset(rex.reg_startpos, 0xff, sizeof(lpos_T) * NSUBEXP);
|
|
memset(rex.reg_endpos, 0xff, sizeof(lpos_T) * NSUBEXP);
|
|
} else {
|
|
memset(rex.reg_startp, 0, sizeof(char *) * NSUBEXP);
|
|
memset(rex.reg_endp, 0, sizeof(char *) * NSUBEXP);
|
|
}
|
|
rex.need_clear_subexpr = false;
|
|
}
|
|
|
|
static void cleanup_zsubexpr(void)
|
|
{
|
|
if (!rex.need_clear_zsubexpr) {
|
|
return;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
// Use 0xff to set lnum to -1
|
|
memset(reg_startzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
|
|
memset(reg_endzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
|
|
} else {
|
|
memset(reg_startzp, 0, sizeof(char *) * NSUBEXP);
|
|
memset(reg_endzp, 0, sizeof(char *) * NSUBEXP);
|
|
}
|
|
rex.need_clear_zsubexpr = false;
|
|
}
|
|
|
|
// Advance rex.lnum, rex.line and rex.input to the next line.
|
|
static void reg_nextline(void)
|
|
{
|
|
rex.line = (uint8_t *)reg_getline(++rex.lnum);
|
|
rex.input = rex.line;
|
|
fast_breakcheck();
|
|
}
|
|
|
|
// Check whether a backreference matches.
|
|
// Returns RA_FAIL, RA_NOMATCH or RA_MATCH.
|
|
// If "bytelen" is not NULL, it is set to the byte length of the match in the
|
|
// last line.
|
|
static int match_with_backref(linenr_T start_lnum, colnr_T start_col, linenr_T end_lnum,
|
|
colnr_T end_col, int *bytelen)
|
|
{
|
|
linenr_T clnum = start_lnum;
|
|
colnr_T ccol = start_col;
|
|
int len;
|
|
char *p;
|
|
|
|
if (bytelen != NULL) {
|
|
*bytelen = 0;
|
|
}
|
|
for (;;) {
|
|
// Since getting one line may invalidate the other, need to make copy.
|
|
// Slow!
|
|
if (rex.line != reg_tofree) {
|
|
len = (int)strlen((char *)rex.line);
|
|
if (reg_tofree == NULL || len >= (int)reg_tofreelen) {
|
|
len += 50; // get some extra
|
|
xfree(reg_tofree);
|
|
reg_tofree = xmalloc((size_t)len);
|
|
reg_tofreelen = (unsigned)len;
|
|
}
|
|
STRCPY(reg_tofree, rex.line);
|
|
rex.input = reg_tofree + (rex.input - rex.line);
|
|
rex.line = reg_tofree;
|
|
}
|
|
|
|
// Get the line to compare with.
|
|
p = reg_getline(clnum);
|
|
assert(p);
|
|
|
|
if (clnum == end_lnum) {
|
|
len = end_col - ccol;
|
|
} else {
|
|
len = (int)strlen(p + ccol);
|
|
}
|
|
|
|
if (cstrncmp(p + ccol, (char *)rex.input, &len) != 0) {
|
|
return RA_NOMATCH; // doesn't match
|
|
}
|
|
if (bytelen != NULL) {
|
|
*bytelen += len;
|
|
}
|
|
if (clnum == end_lnum) {
|
|
break; // match and at end!
|
|
}
|
|
if (rex.lnum >= rex.reg_maxline) {
|
|
return RA_NOMATCH; // text too short
|
|
}
|
|
|
|
// Advance to next line.
|
|
reg_nextline();
|
|
if (bytelen != NULL) {
|
|
*bytelen = 0;
|
|
}
|
|
clnum++;
|
|
ccol = 0;
|
|
if (got_int) {
|
|
return RA_FAIL;
|
|
}
|
|
}
|
|
|
|
// found a match! Note that rex.line may now point to a copy of the line,
|
|
// that should not matter.
|
|
return RA_MATCH;
|
|
}
|
|
|
|
/// Used in a place where no * or \+ can follow.
|
|
static bool re_mult_next(char *what)
|
|
{
|
|
if (re_multi_type(peekchr()) == MULTI_MULT) {
|
|
semsg(_("E888: (NFA regexp) cannot repeat %s"), what);
|
|
rc_did_emsg = true;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
typedef struct {
|
|
int a, b, c;
|
|
} decomp_T;
|
|
|
|
// 0xfb20 - 0xfb4f
|
|
static decomp_T decomp_table[0xfb4f - 0xfb20 + 1] = {
|
|
{ 0x5e2, 0, 0 }, // 0xfb20 alt ayin
|
|
{ 0x5d0, 0, 0 }, // 0xfb21 alt alef
|
|
{ 0x5d3, 0, 0 }, // 0xfb22 alt dalet
|
|
{ 0x5d4, 0, 0 }, // 0xfb23 alt he
|
|
{ 0x5db, 0, 0 }, // 0xfb24 alt kaf
|
|
{ 0x5dc, 0, 0 }, // 0xfb25 alt lamed
|
|
{ 0x5dd, 0, 0 }, // 0xfb26 alt mem-sofit
|
|
{ 0x5e8, 0, 0 }, // 0xfb27 alt resh
|
|
{ 0x5ea, 0, 0 }, // 0xfb28 alt tav
|
|
{ '+', 0, 0 }, // 0xfb29 alt plus
|
|
{ 0x5e9, 0x5c1, 0 }, // 0xfb2a shin+shin-dot
|
|
{ 0x5e9, 0x5c2, 0 }, // 0xfb2b shin+sin-dot
|
|
{ 0x5e9, 0x5c1, 0x5bc }, // 0xfb2c shin+shin-dot+dagesh
|
|
{ 0x5e9, 0x5c2, 0x5bc }, // 0xfb2d shin+sin-dot+dagesh
|
|
{ 0x5d0, 0x5b7, 0 }, // 0xfb2e alef+patah
|
|
{ 0x5d0, 0x5b8, 0 }, // 0xfb2f alef+qamats
|
|
{ 0x5d0, 0x5b4, 0 }, // 0xfb30 alef+hiriq
|
|
{ 0x5d1, 0x5bc, 0 }, // 0xfb31 bet+dagesh
|
|
{ 0x5d2, 0x5bc, 0 }, // 0xfb32 gimel+dagesh
|
|
{ 0x5d3, 0x5bc, 0 }, // 0xfb33 dalet+dagesh
|
|
{ 0x5d4, 0x5bc, 0 }, // 0xfb34 he+dagesh
|
|
{ 0x5d5, 0x5bc, 0 }, // 0xfb35 vav+dagesh
|
|
{ 0x5d6, 0x5bc, 0 }, // 0xfb36 zayin+dagesh
|
|
{ 0xfb37, 0, 0 }, // 0xfb37 -- UNUSED
|
|
{ 0x5d8, 0x5bc, 0 }, // 0xfb38 tet+dagesh
|
|
{ 0x5d9, 0x5bc, 0 }, // 0xfb39 yud+dagesh
|
|
{ 0x5da, 0x5bc, 0 }, // 0xfb3a kaf sofit+dagesh
|
|
{ 0x5db, 0x5bc, 0 }, // 0xfb3b kaf+dagesh
|
|
{ 0x5dc, 0x5bc, 0 }, // 0xfb3c lamed+dagesh
|
|
{ 0xfb3d, 0, 0 }, // 0xfb3d -- UNUSED
|
|
{ 0x5de, 0x5bc, 0 }, // 0xfb3e mem+dagesh
|
|
{ 0xfb3f, 0, 0 }, // 0xfb3f -- UNUSED
|
|
{ 0x5e0, 0x5bc, 0 }, // 0xfb40 nun+dagesh
|
|
{ 0x5e1, 0x5bc, 0 }, // 0xfb41 samech+dagesh
|
|
{ 0xfb42, 0, 0 }, // 0xfb42 -- UNUSED
|
|
{ 0x5e3, 0x5bc, 0 }, // 0xfb43 pe sofit+dagesh
|
|
{ 0x5e4, 0x5bc, 0 }, // 0xfb44 pe+dagesh
|
|
{ 0xfb45, 0, 0 }, // 0xfb45 -- UNUSED
|
|
{ 0x5e6, 0x5bc, 0 }, // 0xfb46 tsadi+dagesh
|
|
{ 0x5e7, 0x5bc, 0 }, // 0xfb47 qof+dagesh
|
|
{ 0x5e8, 0x5bc, 0 }, // 0xfb48 resh+dagesh
|
|
{ 0x5e9, 0x5bc, 0 }, // 0xfb49 shin+dagesh
|
|
{ 0x5ea, 0x5bc, 0 }, // 0xfb4a tav+dagesh
|
|
{ 0x5d5, 0x5b9, 0 }, // 0xfb4b vav+holam
|
|
{ 0x5d1, 0x5bf, 0 }, // 0xfb4c bet+rafe
|
|
{ 0x5db, 0x5bf, 0 }, // 0xfb4d kaf+rafe
|
|
{ 0x5e4, 0x5bf, 0 }, // 0xfb4e pe+rafe
|
|
{ 0x5d0, 0x5dc, 0 } // 0xfb4f alef-lamed
|
|
};
|
|
|
|
static void mb_decompose(int c, int *c1, int *c2, int *c3)
|
|
{
|
|
decomp_T d;
|
|
|
|
if (c >= 0xfb20 && c <= 0xfb4f) {
|
|
d = decomp_table[c - 0xfb20];
|
|
*c1 = d.a;
|
|
*c2 = d.b;
|
|
*c3 = d.c;
|
|
} else {
|
|
*c1 = c;
|
|
*c2 = *c3 = 0;
|
|
}
|
|
}
|
|
|
|
/// Compare two strings, ignore case if rex.reg_ic set.
|
|
/// Return 0 if strings match, non-zero otherwise.
|
|
/// Correct the length "*n" when composing characters are ignored.
|
|
static int cstrncmp(char *s1, char *s2, int *n)
|
|
{
|
|
int result;
|
|
|
|
if (!rex.reg_ic) {
|
|
result = strncmp(s1, s2, (size_t)(*n));
|
|
} else {
|
|
assert(*n >= 0);
|
|
result = mb_strnicmp(s1, s2, (size_t)(*n));
|
|
}
|
|
|
|
// if it failed and it's utf8 and we want to combineignore:
|
|
if (result != 0 && rex.reg_icombine) {
|
|
char *str1, *str2;
|
|
int c1, c2, c11, c12;
|
|
int junk;
|
|
|
|
// we have to handle the strcmp ourselves, since it is necessary to
|
|
// deal with the composing characters by ignoring them:
|
|
str1 = s1;
|
|
str2 = s2;
|
|
c1 = c2 = 0;
|
|
while ((int)(str1 - s1) < *n) {
|
|
c1 = mb_ptr2char_adv((const char **)&str1);
|
|
c2 = mb_ptr2char_adv((const char **)&str2);
|
|
|
|
// decompose the character if necessary, into 'base' characters
|
|
// because I don't care about Arabic, I will hard-code the Hebrew
|
|
// which I *do* care about! So sue me...
|
|
if (c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2))) {
|
|
// decomposition necessary?
|
|
mb_decompose(c1, &c11, &junk, &junk);
|
|
mb_decompose(c2, &c12, &junk, &junk);
|
|
c1 = c11;
|
|
c2 = c12;
|
|
if (c11 != c12 && (!rex.reg_ic || utf_fold(c11) != utf_fold(c12))) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
result = c2 - c1;
|
|
if (result == 0) {
|
|
*n = (int)(str2 - s2);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Wrapper around strchr which accounts for case-insensitive searches and
|
|
/// non-ASCII characters.
|
|
///
|
|
/// This function is used a lot for simple searches, keep it fast!
|
|
///
|
|
/// @param s string to search
|
|
/// @param c character to find in @a s
|
|
///
|
|
/// @return NULL if no match, otherwise pointer to the position in @a s
|
|
static inline char *cstrchr(const char *const s, const int c)
|
|
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
|
|
FUNC_ATTR_ALWAYS_INLINE
|
|
{
|
|
if (!rex.reg_ic) {
|
|
return vim_strchr(s, c);
|
|
}
|
|
|
|
// Use folded case for UTF-8, slow! For ASCII use libc strpbrk which is
|
|
// expected to be highly optimized.
|
|
if (c > 0x80) {
|
|
const int folded_c = utf_fold(c);
|
|
for (const char *p = s; *p != NUL; p += utfc_ptr2len(p)) {
|
|
if (utf_fold(utf_ptr2char(p)) == folded_c) {
|
|
return (char *)p;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int cc;
|
|
if (ASCII_ISUPPER(c)) {
|
|
cc = TOLOWER_ASC(c);
|
|
} else if (ASCII_ISLOWER(c)) {
|
|
cc = TOUPPER_ASC(c);
|
|
} else {
|
|
return vim_strchr(s, c);
|
|
}
|
|
|
|
char tofind[] = { (char)c, (char)cc, NUL };
|
|
return strpbrk(s, tofind);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// regsub stuff //
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
// This stuff below really confuses cc on an SGI -- webb
|
|
|
|
static fptr_T do_upper(int *d, int c)
|
|
{
|
|
*d = mb_toupper(c);
|
|
|
|
return (fptr_T)NULL;
|
|
}
|
|
|
|
static fptr_T do_Upper(int *d, int c)
|
|
{
|
|
*d = mb_toupper(c);
|
|
|
|
return (fptr_T)do_Upper;
|
|
}
|
|
|
|
static fptr_T do_lower(int *d, int c)
|
|
{
|
|
*d = mb_tolower(c);
|
|
|
|
return (fptr_T)NULL;
|
|
}
|
|
|
|
static fptr_T do_Lower(int *d, int c)
|
|
{
|
|
*d = mb_tolower(c);
|
|
|
|
return (fptr_T)do_Lower;
|
|
}
|
|
|
|
/// regtilde(): Replace tildes in the pattern by the old pattern.
|
|
///
|
|
/// Short explanation of the tilde: It stands for the previous replacement
|
|
/// pattern. If that previous pattern also contains a ~ we should go back a
|
|
/// step further... But we insert the previous pattern into the current one
|
|
/// and remember that.
|
|
/// This still does not handle the case where "magic" changes. So require the
|
|
/// user to keep his hands off of "magic".
|
|
///
|
|
/// The tildes are parsed once before the first call to vim_regsub().
|
|
char *regtilde(char *source, int magic, bool preview)
|
|
{
|
|
char *newsub = source;
|
|
char *tmpsub;
|
|
char *p;
|
|
int len;
|
|
int prevlen;
|
|
|
|
for (p = newsub; *p; p++) {
|
|
if ((*p == '~' && magic) || (*p == '\\' && *(p + 1) == '~' && !magic)) {
|
|
if (reg_prev_sub != NULL) {
|
|
// length = len(newsub) - 1 + len(prev_sub) + 1
|
|
prevlen = (int)strlen(reg_prev_sub);
|
|
tmpsub = xmalloc(strlen(newsub) + (size_t)prevlen);
|
|
// copy prefix
|
|
len = (int)(p - newsub); // not including ~
|
|
memmove(tmpsub, newsub, (size_t)len);
|
|
// interpret tilde
|
|
memmove(tmpsub + len, reg_prev_sub, (size_t)prevlen);
|
|
// copy postfix
|
|
if (!magic) {
|
|
p++; // back off backslash
|
|
}
|
|
STRCPY(tmpsub + len + prevlen, p + 1);
|
|
|
|
if (newsub != source) { // already allocated newsub
|
|
xfree(newsub);
|
|
}
|
|
newsub = tmpsub;
|
|
p = newsub + len + prevlen;
|
|
} else if (magic) {
|
|
STRMOVE(p, p + 1); // remove '~'
|
|
} else {
|
|
STRMOVE(p, p + 2); // remove '\~'
|
|
}
|
|
p--;
|
|
} else {
|
|
if (*p == '\\' && p[1]) { // skip escaped characters
|
|
p++;
|
|
}
|
|
p += utfc_ptr2len(p) - 1;
|
|
}
|
|
}
|
|
|
|
// Only change reg_prev_sub when not previewing.
|
|
if (!preview) {
|
|
// Store a copy of newsub in reg_prev_sub. It is always allocated,
|
|
// because recursive calls may make the returned string invalid.
|
|
xfree(reg_prev_sub);
|
|
reg_prev_sub = xstrdup(newsub);
|
|
}
|
|
|
|
return newsub;
|
|
}
|
|
|
|
static bool can_f_submatch = false; // true when submatch() can be used
|
|
|
|
// These pointers are used for reg_submatch(). Needed for when the
|
|
// substitution string is an expression that contains a call to substitute()
|
|
// and submatch().
|
|
typedef struct {
|
|
regmatch_T *sm_match;
|
|
regmmatch_T *sm_mmatch;
|
|
linenr_T sm_firstlnum;
|
|
linenr_T sm_maxline;
|
|
int sm_line_lbr;
|
|
} regsubmatch_T;
|
|
|
|
static regsubmatch_T rsm; // can only be used when can_f_submatch is true
|
|
|
|
/// Put the submatches in "argv[argskip]" which is a list passed into
|
|
/// call_func() by vim_regsub_both().
|
|
static int fill_submatch_list(int argc FUNC_ATTR_UNUSED, typval_T *argv, int argskip, ufunc_T *fp)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
typval_T *listarg = argv + argskip;
|
|
|
|
if (!fp->uf_varargs && fp->uf_args.ga_len <= argskip) {
|
|
// called function doesn't take a submatches argument
|
|
return argskip;
|
|
}
|
|
|
|
// Relies on sl_list to be the first item in staticList10_T.
|
|
tv_list_init_static10((staticList10_T *)listarg->vval.v_list);
|
|
|
|
// There are always 10 list items in staticList10_T.
|
|
listitem_T *li = tv_list_first(listarg->vval.v_list);
|
|
for (int i = 0; i < 10; i++) {
|
|
char *s = rsm.sm_match->startp[i];
|
|
if (s == NULL || rsm.sm_match->endp[i] == NULL) {
|
|
s = NULL;
|
|
} else {
|
|
s = xstrnsave(s, (size_t)(rsm.sm_match->endp[i] - s));
|
|
}
|
|
TV_LIST_ITEM_TV(li)->v_type = VAR_STRING;
|
|
TV_LIST_ITEM_TV(li)->vval.v_string = s;
|
|
li = TV_LIST_ITEM_NEXT(argv->vval.v_list, li);
|
|
}
|
|
return argskip + 1;
|
|
}
|
|
|
|
static void clear_submatch_list(staticList10_T *sl)
|
|
{
|
|
TV_LIST_ITER(&sl->sl_list, li, {
|
|
xfree(TV_LIST_ITEM_TV(li)->vval.v_string);
|
|
});
|
|
}
|
|
|
|
/// vim_regsub() - perform substitutions after a vim_regexec() or
|
|
/// vim_regexec_multi() match.
|
|
///
|
|
/// If "flags" has REGSUB_COPY really copy into "dest[destlen]".
|
|
/// Otherwise nothing is copied, only compute the length of the result.
|
|
///
|
|
/// If "flags" has REGSUB_MAGIC then behave like 'magic' is set.
|
|
///
|
|
/// If "flags" has REGSUB_BACKSLASH a backslash will be removed later, need to
|
|
/// double them to keep them, and insert a backslash before a CR to avoid it
|
|
/// being replaced with a line break later.
|
|
///
|
|
/// Note: The matched text must not change between the call of
|
|
/// vim_regexec()/vim_regexec_multi() and vim_regsub()! It would make the back
|
|
/// references invalid!
|
|
///
|
|
/// Returns the size of the replacement, including terminating NUL.
|
|
int vim_regsub(regmatch_T *rmp, char *source, typval_T *expr, char *dest, int destlen, int flags)
|
|
{
|
|
regexec_T rex_save;
|
|
bool rex_in_use_save = rex_in_use;
|
|
|
|
if (rex_in_use) {
|
|
// Being called recursively, save the state.
|
|
rex_save = rex;
|
|
}
|
|
rex_in_use = true;
|
|
|
|
rex.reg_match = rmp;
|
|
rex.reg_mmatch = NULL;
|
|
rex.reg_maxline = 0;
|
|
rex.reg_buf = curbuf;
|
|
rex.reg_line_lbr = true;
|
|
int result = vim_regsub_both(source, expr, dest, destlen, flags);
|
|
|
|
rex_in_use = rex_in_use_save;
|
|
if (rex_in_use) {
|
|
rex = rex_save;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int vim_regsub_multi(regmmatch_T *rmp, linenr_T lnum, char *source, char *dest, int destlen,
|
|
int flags)
|
|
{
|
|
regexec_T rex_save;
|
|
bool rex_in_use_save = rex_in_use;
|
|
|
|
if (rex_in_use) {
|
|
// Being called recursively, save the state.
|
|
rex_save = rex;
|
|
}
|
|
rex_in_use = true;
|
|
|
|
rex.reg_match = NULL;
|
|
rex.reg_mmatch = rmp;
|
|
rex.reg_buf = curbuf; // always works on the current buffer!
|
|
rex.reg_firstlnum = lnum;
|
|
rex.reg_maxline = curbuf->b_ml.ml_line_count - lnum;
|
|
rex.reg_line_lbr = false;
|
|
int result = vim_regsub_both(source, NULL, dest, destlen, flags);
|
|
|
|
rex_in_use = rex_in_use_save;
|
|
if (rex_in_use) {
|
|
rex = rex_save;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// When nesting more than a couple levels it's probably a mistake.
|
|
#define MAX_REGSUB_NESTING 4
|
|
static char *eval_result[MAX_REGSUB_NESTING] = { NULL, NULL, NULL, NULL };
|
|
|
|
#if defined(EXITFREE)
|
|
void free_resub_eval_result(void)
|
|
{
|
|
for (int i = 0; i < MAX_REGSUB_NESTING; i++) {
|
|
XFREE_CLEAR(eval_result[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int vim_regsub_both(char *source, typval_T *expr, char *dest, int destlen, int flags)
|
|
{
|
|
char *src;
|
|
char *dst;
|
|
char *s;
|
|
int c;
|
|
int cc;
|
|
int no = -1;
|
|
fptr_T func_all = (fptr_T)NULL;
|
|
fptr_T func_one = (fptr_T)NULL;
|
|
linenr_T clnum = 0; // init for GCC
|
|
int len = 0; // init for GCC
|
|
static int nesting = 0;
|
|
bool copy = flags & REGSUB_COPY;
|
|
|
|
// Be paranoid...
|
|
if ((source == NULL && expr == NULL) || dest == NULL) {
|
|
emsg(_(e_null));
|
|
return 0;
|
|
}
|
|
if (prog_magic_wrong()) {
|
|
return 0;
|
|
}
|
|
if (nesting == MAX_REGSUB_NESTING) {
|
|
emsg(_(e_substitute_nesting_too_deep));
|
|
return 0;
|
|
}
|
|
int nested = nesting;
|
|
src = source;
|
|
dst = dest;
|
|
|
|
// When the substitute part starts with "\=" evaluate it as an expression.
|
|
if (expr != NULL || (source[0] == '\\' && source[1] == '=')) {
|
|
// To make sure that the length doesn't change between checking the
|
|
// length and copying the string, and to speed up things, the
|
|
// resulting string is saved from the call with
|
|
// "flags & REGSUB_COPY" == 0 to the call with
|
|
// "flags & REGSUB_COPY" != 0.
|
|
if (copy) {
|
|
if (eval_result[nested] != NULL) {
|
|
STRCPY(dest, eval_result[nested]);
|
|
dst += strlen(eval_result[nested]);
|
|
XFREE_CLEAR(eval_result[nested]);
|
|
}
|
|
} else {
|
|
const bool prev_can_f_submatch = can_f_submatch;
|
|
regsubmatch_T rsm_save;
|
|
|
|
XFREE_CLEAR(eval_result[nested]);
|
|
|
|
// The expression may contain substitute(), which calls us
|
|
// recursively. Make sure submatch() gets the text from the first
|
|
// level.
|
|
if (can_f_submatch) {
|
|
rsm_save = rsm;
|
|
}
|
|
can_f_submatch = true;
|
|
rsm.sm_match = rex.reg_match;
|
|
rsm.sm_mmatch = rex.reg_mmatch;
|
|
rsm.sm_firstlnum = rex.reg_firstlnum;
|
|
rsm.sm_maxline = rex.reg_maxline;
|
|
rsm.sm_line_lbr = rex.reg_line_lbr;
|
|
|
|
// Although unlikely, it is possible that the expression invokes a
|
|
// substitute command (it might fail, but still). Therefore keep
|
|
// an array of eval results.
|
|
nesting++;
|
|
|
|
if (expr != NULL) {
|
|
typval_T argv[2];
|
|
typval_T rettv;
|
|
staticList10_T matchList = TV_LIST_STATIC10_INIT;
|
|
rettv.v_type = VAR_STRING;
|
|
rettv.vval.v_string = NULL;
|
|
argv[0].v_type = VAR_LIST;
|
|
argv[0].vval.v_list = &matchList.sl_list;
|
|
funcexe_T funcexe = FUNCEXE_INIT;
|
|
funcexe.fe_argv_func = fill_submatch_list;
|
|
funcexe.fe_evaluate = true;
|
|
if (expr->v_type == VAR_FUNC) {
|
|
s = expr->vval.v_string;
|
|
call_func(s, -1, &rettv, 1, argv, &funcexe);
|
|
} else if (expr->v_type == VAR_PARTIAL) {
|
|
partial_T *partial = expr->vval.v_partial;
|
|
|
|
s = partial_name(partial);
|
|
funcexe.fe_partial = partial;
|
|
call_func(s, -1, &rettv, 1, argv, &funcexe);
|
|
}
|
|
if (tv_list_len(&matchList.sl_list) > 0) {
|
|
// fill_submatch_list() was called.
|
|
clear_submatch_list(&matchList);
|
|
}
|
|
if (rettv.v_type == VAR_UNKNOWN) {
|
|
// something failed, no need to report another error
|
|
eval_result[nested] = NULL;
|
|
} else {
|
|
char buf[NUMBUFLEN];
|
|
eval_result[nested] = (char *)tv_get_string_buf_chk(&rettv, buf);
|
|
if (eval_result[nested] != NULL) {
|
|
eval_result[nested] = xstrdup(eval_result[nested]);
|
|
}
|
|
}
|
|
tv_clear(&rettv);
|
|
} else {
|
|
eval_result[nested] = eval_to_string(source + 2, true);
|
|
}
|
|
nesting--;
|
|
|
|
if (eval_result[nested] != NULL) {
|
|
int had_backslash = false;
|
|
|
|
for (s = eval_result[nested]; *s != NUL; MB_PTR_ADV(s)) {
|
|
// Change NL to CR, so that it becomes a line break,
|
|
// unless called from vim_regexec_nl().
|
|
// Skip over a backslashed character.
|
|
if (*s == NL && !rsm.sm_line_lbr) {
|
|
*s = CAR;
|
|
} else if (*s == '\\' && s[1] != NUL) {
|
|
s++;
|
|
// Change NL to CR here too, so that this works:
|
|
// :s/abc\\\ndef/\="aaa\\\nbbb"/ on text:
|
|
// abc{backslash}
|
|
// def
|
|
// Not when called from vim_regexec_nl().
|
|
if (*s == NL && !rsm.sm_line_lbr) {
|
|
*s = CAR;
|
|
}
|
|
had_backslash = true;
|
|
}
|
|
}
|
|
if (had_backslash && (flags & REGSUB_BACKSLASH)) {
|
|
// Backslashes will be consumed, need to double them.
|
|
s = vim_strsave_escaped(eval_result[nested], "\\");
|
|
xfree(eval_result[nested]);
|
|
eval_result[nested] = s;
|
|
}
|
|
|
|
dst += strlen(eval_result[nested]);
|
|
}
|
|
|
|
can_f_submatch = prev_can_f_submatch;
|
|
if (can_f_submatch) {
|
|
rsm = rsm_save;
|
|
}
|
|
}
|
|
} else {
|
|
while ((c = (uint8_t)(*src++)) != NUL) {
|
|
if (c == '&' && (flags & REGSUB_MAGIC)) {
|
|
no = 0;
|
|
} else if (c == '\\' && *src != NUL) {
|
|
if (*src == '&' && !(flags & REGSUB_MAGIC)) {
|
|
src++;
|
|
no = 0;
|
|
} else if ('0' <= *src && *src <= '9') {
|
|
no = *src++ - '0';
|
|
} else if (vim_strchr("uUlLeE", (uint8_t)(*src))) {
|
|
switch (*src++) {
|
|
case 'u':
|
|
func_one = (fptr_T)do_upper;
|
|
continue;
|
|
case 'U':
|
|
func_all = (fptr_T)do_Upper;
|
|
continue;
|
|
case 'l':
|
|
func_one = (fptr_T)do_lower;
|
|
continue;
|
|
case 'L':
|
|
func_all = (fptr_T)do_Lower;
|
|
continue;
|
|
case 'e':
|
|
case 'E':
|
|
func_one = func_all = (fptr_T)NULL;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
if (no < 0) { // Ordinary character.
|
|
if (c == K_SPECIAL && src[0] != NUL && src[1] != NUL) {
|
|
// Copy a special key as-is.
|
|
if (copy) {
|
|
if (dst + 3 > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
*dst++ = (char)c;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
} else {
|
|
dst += 3;
|
|
src += 2;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (c == '\\' && *src != NUL) {
|
|
// Check for abbreviations -- webb
|
|
switch (*src) {
|
|
case 'r':
|
|
c = CAR; ++src; break;
|
|
case 'n':
|
|
c = NL; ++src; break;
|
|
case 't':
|
|
c = TAB; ++src; break;
|
|
// Oh no! \e already has meaning in subst pat :-(
|
|
// case 'e': c = ESC; ++src; break;
|
|
case 'b':
|
|
c = Ctrl_H; ++src; break;
|
|
|
|
// If "backslash" is true the backslash will be removed
|
|
// later. Used to insert a literal CR.
|
|
default:
|
|
if (flags & REGSUB_BACKSLASH) {
|
|
if (copy) {
|
|
if (dst + 1 > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
*dst = '\\';
|
|
}
|
|
dst++;
|
|
}
|
|
c = (uint8_t)(*src++);
|
|
}
|
|
} else {
|
|
c = utf_ptr2char(src - 1);
|
|
}
|
|
// Write to buffer, if copy is set.
|
|
if (func_one != NULL) {
|
|
func_one = (fptr_T)(func_one(&cc, c));
|
|
} else if (func_all != NULL) {
|
|
func_all = (fptr_T)(func_all(&cc, c));
|
|
} else {
|
|
// just copy
|
|
cc = c;
|
|
}
|
|
|
|
int totlen = utfc_ptr2len(src - 1);
|
|
int charlen = utf_char2len(cc);
|
|
|
|
if (copy) {
|
|
if (dst + charlen > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
utf_char2bytes(cc, dst);
|
|
}
|
|
dst += charlen - 1;
|
|
int clen = utf_ptr2len(src - 1);
|
|
|
|
// If the character length is shorter than "totlen", there
|
|
// are composing characters; copy them as-is.
|
|
if (clen < totlen) {
|
|
if (copy) {
|
|
if (dst + totlen - clen > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
memmove(dst + 1, src - 1 + clen, (size_t)(totlen - clen));
|
|
}
|
|
dst += totlen - clen;
|
|
}
|
|
src += totlen - 1;
|
|
dst++;
|
|
} else {
|
|
if (REG_MULTI) {
|
|
clnum = rex.reg_mmatch->startpos[no].lnum;
|
|
if (clnum < 0 || rex.reg_mmatch->endpos[no].lnum < 0) {
|
|
s = NULL;
|
|
} else {
|
|
s = reg_getline(clnum) + rex.reg_mmatch->startpos[no].col;
|
|
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
|
|
len = rex.reg_mmatch->endpos[no].col
|
|
- rex.reg_mmatch->startpos[no].col;
|
|
} else {
|
|
len = (int)strlen(s);
|
|
}
|
|
}
|
|
} else {
|
|
s = rex.reg_match->startp[no];
|
|
if (rex.reg_match->endp[no] == NULL) {
|
|
s = NULL;
|
|
} else {
|
|
len = (int)(rex.reg_match->endp[no] - s);
|
|
}
|
|
}
|
|
if (s != NULL) {
|
|
for (;;) {
|
|
if (len == 0) {
|
|
if (REG_MULTI) {
|
|
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
|
|
break;
|
|
}
|
|
if (copy) {
|
|
if (dst + 1 > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
*dst = CAR;
|
|
}
|
|
dst++;
|
|
s = reg_getline(++clnum);
|
|
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
|
|
len = rex.reg_mmatch->endpos[no].col;
|
|
} else {
|
|
len = (int)strlen(s);
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
} else if (*s == NUL) { // we hit NUL.
|
|
if (copy) {
|
|
iemsg(_(e_re_damg));
|
|
}
|
|
goto exit;
|
|
} else {
|
|
if ((flags & REGSUB_BACKSLASH) && (*s == CAR || *s == '\\')) {
|
|
// Insert a backslash in front of a CR, otherwise
|
|
// it will be replaced by a line break.
|
|
// Number of backslashes will be halved later,
|
|
// double them here.
|
|
if (copy) {
|
|
if (dst + 2 > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
dst[0] = '\\';
|
|
dst[1] = *s;
|
|
}
|
|
dst += 2;
|
|
} else {
|
|
c = utf_ptr2char(s);
|
|
|
|
if (func_one != (fptr_T)NULL) {
|
|
// Turbo C complains without the typecast
|
|
func_one = (fptr_T)(func_one(&cc, c));
|
|
} else if (func_all != (fptr_T)NULL) {
|
|
// Turbo C complains without the typecast
|
|
func_all = (fptr_T)(func_all(&cc, c));
|
|
} else { // just copy
|
|
cc = c;
|
|
}
|
|
|
|
{
|
|
int l;
|
|
int charlen;
|
|
|
|
// Copy composing characters separately, one
|
|
// at a time.
|
|
l = utf_ptr2len(s) - 1;
|
|
|
|
s += l;
|
|
len -= l;
|
|
charlen = utf_char2len(cc);
|
|
if (copy) {
|
|
if (dst + charlen > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
utf_char2bytes(cc, dst);
|
|
}
|
|
dst += charlen - 1;
|
|
}
|
|
dst++;
|
|
}
|
|
|
|
s++;
|
|
len--;
|
|
}
|
|
}
|
|
}
|
|
no = -1;
|
|
}
|
|
}
|
|
}
|
|
if (copy) {
|
|
*dst = NUL;
|
|
}
|
|
|
|
exit:
|
|
return (int)((dst - dest) + 1);
|
|
}
|
|
|
|
/// Call reg_getline() with the line numbers from the submatch. If a
|
|
/// substitute() was used the reg_maxline and other values have been
|
|
/// overwritten.
|
|
static char *reg_getline_submatch(linenr_T lnum)
|
|
{
|
|
char *s;
|
|
linenr_T save_first = rex.reg_firstlnum;
|
|
linenr_T save_max = rex.reg_maxline;
|
|
|
|
rex.reg_firstlnum = rsm.sm_firstlnum;
|
|
rex.reg_maxline = rsm.sm_maxline;
|
|
|
|
s = reg_getline(lnum);
|
|
|
|
rex.reg_firstlnum = save_first;
|
|
rex.reg_maxline = save_max;
|
|
return s;
|
|
}
|
|
|
|
/// Used for the submatch() function: get the string from the n'th submatch in
|
|
/// allocated memory.
|
|
///
|
|
/// @return NULL when not in a ":s" command and for a non-existing submatch.
|
|
char *reg_submatch(int no)
|
|
{
|
|
char *retval = NULL;
|
|
char *s;
|
|
int round;
|
|
linenr_T lnum;
|
|
|
|
if (!can_f_submatch || no < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (rsm.sm_match == NULL) {
|
|
ssize_t len;
|
|
|
|
// First round: compute the length and allocate memory.
|
|
// Second round: copy the text.
|
|
for (round = 1; round <= 2; round++) {
|
|
lnum = rsm.sm_mmatch->startpos[no].lnum;
|
|
if (lnum < 0 || rsm.sm_mmatch->endpos[no].lnum < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s = reg_getline_submatch(lnum);
|
|
if (s == NULL) { // anti-crash check, cannot happen?
|
|
break;
|
|
}
|
|
s += rsm.sm_mmatch->startpos[no].col;
|
|
if (rsm.sm_mmatch->endpos[no].lnum == lnum) {
|
|
// Within one line: take form start to end col.
|
|
len = rsm.sm_mmatch->endpos[no].col - rsm.sm_mmatch->startpos[no].col;
|
|
if (round == 2) {
|
|
xstrlcpy(retval, s, (size_t)len + 1);
|
|
}
|
|
len++;
|
|
} else {
|
|
// Multiple lines: take start line from start col, middle
|
|
// lines completely and end line up to end col.
|
|
len = (ssize_t)strlen(s);
|
|
if (round == 2) {
|
|
STRCPY(retval, s);
|
|
retval[len] = '\n';
|
|
}
|
|
len++;
|
|
lnum++;
|
|
while (lnum < rsm.sm_mmatch->endpos[no].lnum) {
|
|
s = reg_getline_submatch(lnum++);
|
|
if (round == 2) {
|
|
STRCPY(retval + len, s);
|
|
}
|
|
len += (ssize_t)strlen(s);
|
|
if (round == 2) {
|
|
retval[len] = '\n';
|
|
}
|
|
len++;
|
|
}
|
|
if (round == 2) {
|
|
strncpy(retval + len, // NOLINT(runtime/printf)
|
|
reg_getline_submatch(lnum),
|
|
(size_t)rsm.sm_mmatch->endpos[no].col);
|
|
}
|
|
len += rsm.sm_mmatch->endpos[no].col;
|
|
if (round == 2) {
|
|
retval[len] = NUL; // -V595
|
|
}
|
|
len++;
|
|
}
|
|
|
|
if (retval == NULL) {
|
|
retval = xmalloc((size_t)len);
|
|
}
|
|
}
|
|
} else {
|
|
s = rsm.sm_match->startp[no];
|
|
if (s == NULL || rsm.sm_match->endp[no] == NULL) {
|
|
retval = NULL;
|
|
} else {
|
|
retval = xstrnsave(s, (size_t)(rsm.sm_match->endp[no] - s));
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
// Used for the submatch() function with the optional non-zero argument: get
|
|
// the list of strings from the n'th submatch in allocated memory with NULs
|
|
// represented in NLs.
|
|
// Returns a list of allocated strings. Returns NULL when not in a ":s"
|
|
// command, for a non-existing submatch and for any error.
|
|
list_T *reg_submatch_list(int no)
|
|
{
|
|
if (!can_f_submatch || no < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
linenr_T slnum;
|
|
linenr_T elnum;
|
|
list_T *list;
|
|
const char *s;
|
|
|
|
if (rsm.sm_match == NULL) {
|
|
slnum = rsm.sm_mmatch->startpos[no].lnum;
|
|
elnum = rsm.sm_mmatch->endpos[no].lnum;
|
|
if (slnum < 0 || elnum < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
colnr_T scol = rsm.sm_mmatch->startpos[no].col;
|
|
colnr_T ecol = rsm.sm_mmatch->endpos[no].col;
|
|
|
|
list = tv_list_alloc(elnum - slnum + 1);
|
|
|
|
s = reg_getline_submatch(slnum) + scol;
|
|
if (slnum == elnum) {
|
|
tv_list_append_string(list, s, ecol - scol);
|
|
} else {
|
|
tv_list_append_string(list, s, -1);
|
|
for (int i = 1; i < elnum - slnum; i++) {
|
|
s = reg_getline_submatch(slnum + i);
|
|
tv_list_append_string(list, s, -1);
|
|
}
|
|
s = reg_getline_submatch(elnum);
|
|
tv_list_append_string(list, s, ecol);
|
|
}
|
|
} else {
|
|
s = rsm.sm_match->startp[no];
|
|
if (s == NULL || rsm.sm_match->endp[no] == NULL) {
|
|
return NULL;
|
|
}
|
|
list = tv_list_alloc(1);
|
|
tv_list_append_string(list, s, rsm.sm_match->endp[no] - s);
|
|
}
|
|
|
|
tv_list_ref(list);
|
|
return list;
|
|
}
|
|
|
|
/// Initialize the values used for matching against multiple lines
|
|
///
|
|
/// @param win window in which to search or NULL
|
|
/// @param buf buffer in which to search
|
|
/// @param lnum nr of line to start looking for match
|
|
static void init_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum)
|
|
{
|
|
rex.reg_match = NULL;
|
|
rex.reg_mmatch = rmp;
|
|
rex.reg_buf = buf;
|
|
rex.reg_win = win;
|
|
rex.reg_firstlnum = lnum;
|
|
rex.reg_maxline = rex.reg_buf->b_ml.ml_line_count - lnum;
|
|
rex.reg_line_lbr = false;
|
|
rex.reg_ic = rmp->rmm_ic;
|
|
rex.reg_icombine = false;
|
|
rex.reg_maxcol = rmp->rmm_maxcol;
|
|
}
|
|
|
|
// XXX Do not allow headers generator to catch definitions from regexp_nfa.c
|
|
#ifndef DO_NOT_DEFINE_EMPTY_ATTRIBUTES
|
|
# include "nvim/regexp_bt.c"
|
|
# include "nvim/regexp_nfa.c"
|
|
#endif
|
|
|
|
static regengine_T bt_regengine = {
|
|
bt_regcomp,
|
|
bt_regfree,
|
|
bt_regexec_nl,
|
|
bt_regexec_multi,
|
|
};
|
|
|
|
static regengine_T nfa_regengine = {
|
|
nfa_regcomp,
|
|
nfa_regfree,
|
|
nfa_regexec_nl,
|
|
nfa_regexec_multi,
|
|
};
|
|
|
|
// Which regexp engine to use? Needed for vim_regcomp().
|
|
// Must match with 'regexpengine'.
|
|
static int regexp_engine = 0;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
static uint8_t regname[][30] = {
|
|
"AUTOMATIC Regexp Engine",
|
|
"BACKTRACKING Regexp Engine",
|
|
"NFA Regexp Engine"
|
|
};
|
|
#endif
|
|
|
|
// Compile a regular expression into internal code.
|
|
// Returns the program in allocated memory.
|
|
// Use vim_regfree() to free the memory.
|
|
// Returns NULL for an error.
|
|
regprog_T *vim_regcomp(const char *expr_arg, int re_flags)
|
|
{
|
|
regprog_T *prog = NULL;
|
|
const char *expr = expr_arg;
|
|
|
|
regexp_engine = (int)p_re;
|
|
|
|
// Check for prefix "\%#=", that sets the regexp engine
|
|
if (strncmp(expr, "\\%#=", 4) == 0) {
|
|
int newengine = expr[4] - '0';
|
|
|
|
if (newengine == AUTOMATIC_ENGINE
|
|
|| newengine == BACKTRACKING_ENGINE
|
|
|| newengine == NFA_ENGINE) {
|
|
regexp_engine = expr[4] - '0';
|
|
expr += 5;
|
|
#ifdef REGEXP_DEBUG
|
|
smsg("New regexp mode selected (%d): %s",
|
|
regexp_engine,
|
|
regname[newengine]);
|
|
#endif
|
|
} else {
|
|
emsg(_("E864: \\%#= can only be followed by 0, 1, or 2. The automatic engine will be used "));
|
|
regexp_engine = AUTOMATIC_ENGINE;
|
|
}
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
bt_regengine.expr = expr;
|
|
nfa_regengine.expr = expr;
|
|
#endif
|
|
// reg_iswordc() uses rex.reg_buf
|
|
rex.reg_buf = curbuf;
|
|
|
|
//
|
|
// First try the NFA engine, unless backtracking was requested.
|
|
//
|
|
const int called_emsg_before = called_emsg;
|
|
if (regexp_engine != BACKTRACKING_ENGINE) {
|
|
prog = nfa_regengine.regcomp((uint8_t *)expr,
|
|
re_flags + (regexp_engine == AUTOMATIC_ENGINE ? RE_AUTO : 0));
|
|
} else {
|
|
prog = bt_regengine.regcomp((uint8_t *)expr, re_flags);
|
|
}
|
|
|
|
// Check for error compiling regexp with initial engine.
|
|
if (prog == NULL) {
|
|
#ifdef BT_REGEXP_DEBUG_LOG
|
|
// Debugging log for BT engine.
|
|
if (regexp_engine != BACKTRACKING_ENGINE) {
|
|
FILE *f = fopen(BT_REGEXP_DEBUG_LOG_NAME, "a");
|
|
if (f) {
|
|
fprintf(f, "Syntax error in \"%s\"\n", expr);
|
|
fclose(f);
|
|
} else {
|
|
semsg("(NFA) Could not open \"%s\" to write !!!",
|
|
BT_REGEXP_DEBUG_LOG_NAME);
|
|
}
|
|
}
|
|
#endif
|
|
// If the NFA engine failed, try the backtracking engine. The NFA engine
|
|
// also fails for patterns that it can't handle well but are still valid
|
|
// patterns, thus a retry should work.
|
|
// But don't try if an error message was given.
|
|
if (regexp_engine == AUTOMATIC_ENGINE && called_emsg == called_emsg_before) {
|
|
regexp_engine = BACKTRACKING_ENGINE;
|
|
report_re_switch(expr);
|
|
prog = bt_regengine.regcomp((uint8_t *)expr, re_flags);
|
|
}
|
|
}
|
|
|
|
if (prog != NULL) {
|
|
// Store the info needed to call regcomp() again when the engine turns out
|
|
// to be very slow when executing it.
|
|
prog->re_engine = (unsigned)regexp_engine;
|
|
prog->re_flags = (unsigned)re_flags;
|
|
}
|
|
|
|
return prog;
|
|
}
|
|
|
|
// Free a compiled regexp program, returned by vim_regcomp().
|
|
void vim_regfree(regprog_T *prog)
|
|
{
|
|
if (prog != NULL) {
|
|
prog->engine->regfree(prog);
|
|
}
|
|
}
|
|
|
|
#if defined(EXITFREE)
|
|
void free_regexp_stuff(void)
|
|
{
|
|
ga_clear(®stack);
|
|
ga_clear(&backpos);
|
|
xfree(reg_tofree);
|
|
xfree(reg_prev_sub);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void report_re_switch(const char *pat)
|
|
{
|
|
if (p_verbose > 0) {
|
|
verbose_enter();
|
|
msg_puts(_("Switching to backtracking RE engine for pattern: "));
|
|
msg_puts(pat);
|
|
verbose_leave();
|
|
}
|
|
}
|
|
|
|
/// Match a regexp against a string.
|
|
/// "rmp->regprog" must be a compiled regexp as returned by vim_regcomp().
|
|
/// Note: "rmp->regprog" may be freed and changed.
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
/// When "nl" is true consider a "\n" in "line" to be a line break.
|
|
///
|
|
/// @param rmp
|
|
/// @param line the string to match against
|
|
/// @param col the column to start looking for match
|
|
/// @param nl
|
|
///
|
|
/// @return true if there is a match, false if not.
|
|
static bool vim_regexec_string(regmatch_T *rmp, const char *line, colnr_T col, bool nl)
|
|
{
|
|
regexec_T rex_save;
|
|
bool rex_in_use_save = rex_in_use;
|
|
|
|
// Cannot use the same prog recursively, it contains state.
|
|
if (rmp->regprog->re_in_use) {
|
|
emsg(_(e_recursive));
|
|
return false;
|
|
}
|
|
rmp->regprog->re_in_use = true;
|
|
|
|
if (rex_in_use) {
|
|
// Being called recursively, save the state.
|
|
rex_save = rex;
|
|
}
|
|
rex_in_use = true;
|
|
|
|
rex.reg_startp = NULL;
|
|
rex.reg_endp = NULL;
|
|
rex.reg_startpos = NULL;
|
|
rex.reg_endpos = NULL;
|
|
|
|
int result = rmp->regprog->engine->regexec_nl(rmp, (uint8_t *)line, col, nl);
|
|
rmp->regprog->re_in_use = false;
|
|
|
|
// NFA engine aborted because it's very slow, use backtracking engine instead.
|
|
if (rmp->regprog->re_engine == AUTOMATIC_ENGINE
|
|
&& result == NFA_TOO_EXPENSIVE) {
|
|
int save_p_re = (int)p_re;
|
|
int re_flags = (int)rmp->regprog->re_flags;
|
|
char *pat = xstrdup(((nfa_regprog_T *)rmp->regprog)->pattern);
|
|
|
|
p_re = BACKTRACKING_ENGINE;
|
|
vim_regfree(rmp->regprog);
|
|
report_re_switch(pat);
|
|
rmp->regprog = vim_regcomp(pat, re_flags);
|
|
if (rmp->regprog != NULL) {
|
|
rmp->regprog->re_in_use = true;
|
|
result = rmp->regprog->engine->regexec_nl(rmp, (uint8_t *)line, col, nl);
|
|
rmp->regprog->re_in_use = false;
|
|
}
|
|
|
|
xfree(pat);
|
|
p_re = save_p_re;
|
|
}
|
|
|
|
rex_in_use = rex_in_use_save;
|
|
if (rex_in_use) {
|
|
rex = rex_save;
|
|
}
|
|
|
|
return result > 0;
|
|
}
|
|
|
|
// Note: "*prog" may be freed and changed.
|
|
// Return true if there is a match, false if not.
|
|
bool vim_regexec_prog(regprog_T **prog, bool ignore_case, const char *line, colnr_T col)
|
|
{
|
|
regmatch_T regmatch = { .regprog = *prog, .rm_ic = ignore_case };
|
|
bool r = vim_regexec_string(®match, line, col, false);
|
|
*prog = regmatch.regprog;
|
|
return r;
|
|
}
|
|
|
|
// Note: "rmp->regprog" may be freed and changed.
|
|
// Return true if there is a match, false if not.
|
|
bool vim_regexec(regmatch_T *rmp, const char *line, colnr_T col)
|
|
{
|
|
return vim_regexec_string(rmp, line, col, false);
|
|
}
|
|
|
|
// Like vim_regexec(), but consider a "\n" in "line" to be a line break.
|
|
// Note: "rmp->regprog" may be freed and changed.
|
|
// Return true if there is a match, false if not.
|
|
bool vim_regexec_nl(regmatch_T *rmp, const char *line, colnr_T col)
|
|
{
|
|
return vim_regexec_string(rmp, line, col, true);
|
|
}
|
|
|
|
/// Match a regexp against multiple lines.
|
|
/// "rmp->regprog" must be a compiled regexp as returned by vim_regcomp().
|
|
/// Note: "rmp->regprog" may be freed and changed, even set to NULL.
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
///
|
|
/// @param win window in which to search or NULL
|
|
/// @param buf buffer in which to search
|
|
/// @param lnum nr of line to start looking for match
|
|
/// @param col column to start looking for match
|
|
/// @param tm timeout limit or NULL
|
|
/// @param timed_out flag is set when timeout limit reached
|
|
///
|
|
/// @return zero if there is no match. Return number of lines contained in the
|
|
/// match otherwise.
|
|
long vim_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col,
|
|
proftime_T *tm, int *timed_out)
|
|
FUNC_ATTR_NONNULL_ARG(1)
|
|
{
|
|
regexec_T rex_save;
|
|
bool rex_in_use_save = rex_in_use;
|
|
|
|
// Cannot use the same prog recursively, it contains state.
|
|
if (rmp->regprog->re_in_use) {
|
|
emsg(_(e_recursive));
|
|
return false;
|
|
}
|
|
rmp->regprog->re_in_use = true;
|
|
|
|
if (rex_in_use) {
|
|
// Being called recursively, save the state.
|
|
rex_save = rex;
|
|
}
|
|
rex_in_use = true;
|
|
|
|
long result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col, tm, timed_out);
|
|
rmp->regprog->re_in_use = false;
|
|
|
|
// NFA engine aborted because it's very slow, use backtracking engine instead.
|
|
if (rmp->regprog->re_engine == AUTOMATIC_ENGINE
|
|
&& result == NFA_TOO_EXPENSIVE) {
|
|
int save_p_re = (int)p_re;
|
|
int re_flags = (int)rmp->regprog->re_flags;
|
|
char *pat = xstrdup(((nfa_regprog_T *)rmp->regprog)->pattern);
|
|
|
|
p_re = BACKTRACKING_ENGINE;
|
|
regprog_T *prev_prog = rmp->regprog;
|
|
|
|
report_re_switch(pat);
|
|
// checking for \z misuse was already done when compiling for NFA,
|
|
// allow all here
|
|
reg_do_extmatch = REX_ALL;
|
|
rmp->regprog = vim_regcomp(pat, re_flags);
|
|
reg_do_extmatch = 0;
|
|
|
|
if (rmp->regprog == NULL) {
|
|
// Somehow compiling the pattern failed now, put back the
|
|
// previous one to avoid "regprog" becoming NULL.
|
|
rmp->regprog = prev_prog;
|
|
} else {
|
|
vim_regfree(prev_prog);
|
|
|
|
rmp->regprog->re_in_use = true;
|
|
result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col, tm, timed_out);
|
|
rmp->regprog->re_in_use = false;
|
|
}
|
|
|
|
xfree(pat);
|
|
p_re = save_p_re;
|
|
}
|
|
|
|
rex_in_use = rex_in_use_save;
|
|
if (rex_in_use) {
|
|
rex = rex_save;
|
|
}
|
|
|
|
return result <= 0 ? 0 : result;
|
|
}
|